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Abstract—The complexity of modern military operations create
a demand for efficient collaborative decision making and problem
solving. Additionally, as military units operate in increasingly
dynamic environments, the ability to respond to changing cir-
cumstances becomes paramount for mission success. An effective
response rests on correct dissemination and transfer of infor-
mation across the command and control structure, and thus is
critically linked to the network of human interactions.

In this paper, we take an agent-based modeling approach
to collective problem solving. We investigate three key factors
affecting the performance in collaborative environments: (1) the
structure of network used to share information between agents,
(2) the search strategies adopted by agents, and (3) the complexity
of problems facing the group. In particular we study how the
trade-off between exploitation of known solutions and exploration
for novel ones is related to the efficiency of collective search.
Additionally we consider the role of agent behavior: propensity
for risk-taking and trustworthiness, as well as the dynamic nature
of social connections. Finally, we outline the directions for future
work regarding the efficiency of problem solving on military-like
command and control structures.

Index Terms—collective decision making, NK-landscapes, in-
formation spread, collective intelligence, problem solving

I. INTRODUCTION

Problems encountered in business, engineering and gover-
nance are increasingly complex in the sense that they require
optimization of multiple variables, where the dimensionality
and interdependence between problem composites extends
beyond cognitive abilities of individual decision makers [11],
[40]. Therefore, with the increasing scale of tasks facing
managers, engineers and planners, collaboration and teamwork
become primary mechanisms of decision making, problem
solving and generation of knowledge and innovations [41].
Teams which engage in collaborative problem solving by
harnessing diverse and complementary skills [13], [15] are
critical in addressing complex and dynamic tasks that require
efficient processing of distributed and networked information
[23].

Theoretical and experimental work on collective intelligence
distinguishes two main paths to the acquisition of knowledge
[4], [12], [25]. Individuals can innovate by searching for new
solutions through trial and error, testing various courses of
action in isolation from others, or alternatively, they can copy
existing solutions by imitating other individuals [24]. Trial and
error approach can lead to potentially novel solutions, however
due to bounded rationality of decision makers, this exploration

is myopic in scope and restricted to testing only few dimensions
of the current solution [19], [20]. Imitation, on the other hand,
is a simple cognitive strategy that can lead to exceptionally
good outcomes [16], [25], [28], [31], however it cannot produce
new information by itself. Additionally, social learning can be
error prone [22], leading groups to acquire inappropriate or
outdated information in nonuniform and changing environments
[7], [30]. Altogether, cognitive learning in groups can be seen
as the outcome of both individual learning and the spread
of social information through imitation [10], [14]. Different
balance of these two strategies can lead to very different levels
of group performance [3], [13], [33].

In many regards modern military operations experience
analogous problem solving challenges as the ones encountered
by companies and organizations. As in civilian institutions, the
ability to efficiently collect and disseminate information and
share it through the command and control (C2) structure is
paramount for success of military enterprises. However, the
unique objectives facing the military result in a distinct set of
issues related to collaborative problem solving. The extreme
uncertainty of military mission space, stemming from high
intensity of combat operations, coupled with a wide spectrum
of scenarios, ranging from humanitarian relief operations to
complex coalition efforts, creates challenges not experienced

Figure 1. Accuracy and success of collaborative problem solving are functions
of three fundamental factors: the structure of the social network through which
information is exchanged, the complexity of problem that requires solution
and strategies adopted in searching for the solution.



by modern companies. The dynamic and nonlinear character
of battle space demands increased C2 agility obtained through
augmented information sharing and raised shared awareness
[1].

The key question is what types of command structures are
most suitable for achieving the required C2 capabilities. In this
paper, we adopt an agent-based model to investigate three key
aspects of collective problem solving (Fig. 1) in an attempt
at understanding this issue. We study how: (1) the structure
of networks used to share information between agents, (2) the
search strategies adopted by agents, and (3) the complexity
of problems facing the group affect the performance of teams
working in collaborative environments. We demonstrate that
different levels of performance can be explained by varying
exploration-exploitation patterns, and those in return translate
into amount of information gathered during the collaborative
problem solving. The information-based approach provides a
framework for quantifying the impact of various configurations
of collective problem solving environments and allows us to
formulate directions of further work.

II. METHODS

A. Fitness landscape

A common way to represent complexity of problems is
with multidimensional search spaces, where any possible
combination of choices is represented by a point in the
landscape, a height of which denotes the performance of
that combination [20], [35], [36]. The process of problem
solving is then seen as sequential search, where individuals
are characterized by limited rationality, and thus are not able
to identify optimal solutions in a single try [37].

The NK model [17], [18] is a fundamental computational
implementation of fitness landscapes that has been extensively
used to study complex problem representation in management
research [20], [35], [36]. The model represents a complex prob-
lem as one consisting of N variables where each component can
take two possible values. Thus, the fitness landscape consists
of 2N possible policy choices, with the overall problem space
characterized by a vector x = (x1, x2, ..., xN ), where each xi

Figure 2. Landscapes generated by the NK-model vary in ruggedness, as
parameter K defining degree of interdependence between N problem variables
increases. (a) Low values of K result in a smooth landscape characterized by
few local optima, (b) while high K values lead to a landscape with numerous
local optima. (c) Agents exploring the landscape in search for global optimum
can share information through their social network and avoid mistaking local
optimum for the global one. Three dimensional landscapes presented here
serve as illustrations of the NK-landscape concept, however real NK-landscape
is an N−dimensional construct.

takes on the value of 0 or 1. The parameter K = 0, ..., N − 1,
determines the level of interdependence between components
and influences strongly the number of local maxima in the
landscape.

To each string x representing a unique solution we associate
a fitness value F(x) = 1

N

∑N
i=1 fi(x), where fi is the

contribution of component i to the fitness of string x. The
local fitness fi depends on the state xi as well as in the states
of K distinct randomly chosen components. The values of
each fi are assigned randomly from a uniform distribution in
the unit interval and because of the randomness of fi, we can
guarantee that F(x) ∈ (0, 1) has an unique global maximum.
For K = 0 the landscape has a single maximum, where a
maximum is defined as a binary configuration which fitness
is larger than the fitness of all its N neighbors (strings that
differ from it by a single bit). With increasing K number of
such local maxima increases (see Fig. 2), and at extreme value
K = N − 1 results in a landscape in which the fitness of
neighboring points are uncorrelated and the average number
of maxima is 2N/(N + 1). As will be demonstrated next,
increasing the ruggedness of the landscape (number of local
maxima) [39] significantly affects performance of individual
search, making it less and less effective as K rises.

Following convention established in earlier papers [3], [19],
we normalize the fitness values by the maximum observed
value in the landscape, to obtain relative fitness between 0
and 1, with the global maximum set to 1. Next, we rescale
these values by raising each number to the power of 8. This
monotonic transformation creates larger differences in the upper
range of fitness values but leaves other features of the landscape
unchanged.

B. Social network structure

Several computational [3], [19], [33] and experimental [25],
[38] studies have explored the connection between structure of a
team and outcomes of collective problem solving, focusing the
attention on networks that facilitate or hinder the exchange of
information at the group level. In order to test a wide spectrum
of possible structures, we follow the approach of Mason et al.
[25] and starting from a random regular graph with n nodes
and a fixed degree k, we perform degree-preserving rewirings
of edges which optimize specific measure of interest.

Since recent studies report contradictory results with regard
to efficient (fast information spread) and inefficient (slower
information diffusion) structures [3], [19], [25], we select
to maximize betweenness centrality as means of creating an
inefficient network (INEFF), and minimize average clustering
as a way of obtaining an efficient topology (EFF). Additionally,
we include in the study a maximally connected network, an
all-to-all structure (ATA) and a regular graph (REG), which
occupies a middle ground between efficient and inefficient
structures, since it is characterized by large clustering and long
average paths.

In order to study the connection between size of a social
group and its performance in a collective learning task we vary
density of these networks by changing the size n of the group,



Algorithm 1: Outline of static learning strategies

for Time do
for NodeIndex do

SampleNeighbors=NNeighborsFitness(Sample)
if Learning=BEST then

TestFitness=max(SampleNeighbors)
end
if Learning=FREQ then

TestFitness=max(Count(SampleNeighbors))
end
if TestFitness > CurrentFitness then

CurrentFitness ← TestFitness
else

SearchFitness=IndividualSearch
if SearchFitness > CurrentFitness then

CurrentFitness ← SearchFitness
else

KeepState
end

end
end

end

keeping degree k constant in all cases besides ATA. Figure 4
illustrates basic topological properties of these four networks
as a function of their density.

C. Learning rules

In earlier sections we defined two aspects of collaborative
problem solving: the structure of networks used to share
information between agents and the complexity of problems
teams are trying to solve. Here we define learning strategies
(see Alg. 1) adopted by teammates in order to localize optimal
solutions.

We start from randomly placing n agents of a social network
on a given NK-landscape. Next, at each time step of the
simulation, all agents synchronously apply a social learning
step, followed if necessary by an individual learning step. In
the social learning, agents consult a subset of their nearest
neighbors, and make decision of either selecting the solution of
the best performing neighbor (BEST) [19] or the most frequent
solution in the sample (FREQ) [3]. If solutions obtained through
social learning are associated with higher fitness value, an agent
imitates its better performing neighbor and and replaces its
solution with the one characterized by higher fitness. However,
if the socially acquired solution is no better, the agent switches
to individual learning, which consists of examining the fitness
value of a solution differing in one randomly chosen bit from
the current solution. As in the social learning, the solution
obtained through individual learning is accepted only if it’s
fitness is higher then the currently held option. In cases when
both social and individual learning fails at providing a better
solution, an agent preserves its current configuration.

The main property of learning strategies outlined above is
that they are static, performing the same sequence of steps

at the beginning, throughout and at the end of the learning
process. Here we introduce two additional learning strategies,
which in very basic terms introduce a temporal component to
learning. In the first one (EXP), we perform only individual
learning steps until at least 90% of agents are unable to locate
a better solution then the one currently held. Then all agents
switch to social learning by imitating the best among their
neighbors. The second strategy is motivated by experimental
observations [5] of improved collective learning outcomes when
social influence is intermittent (INTER). Thus, in this learning
strategy, in an periodic fashion, agents perform a set number
of individual learning steps, followed by set number of social
learning steps (imitating the best neighbor).

D. Modeling trust

Finally, we consider how different levels of trust between
agents within a social network influence the learning strategy
and collective problems solving abilities of groups. Trust
between agents is represented as a weighted edge applied
to a neighbour’s fitness value during the social learning phase.
This simple representation of trust alludes to the dynamic
nature of real world information sharing where the validity and
timeliness of information shared can not always be guaranteed
[32]. Both the value of the information being shared and the
trust in the source of the information are considered in the
decision by each agent to leverage social learning or not.

Three levels of average trust within a regular network
structure (REG) are explored; HIGH (µ = 0.84, σ = 0.14),
EVEN (µ = 0.5, σ = 0.23) and LOW (µ = 0.16, σ = 0.14),
where agents consider the best solution from all k neighbors
during the social learning phase (BEST) for increasing levels
of problem complexity. The edge weights between neighbors
are chosen randomly for each level of average trust from three
different beta distributions defined on the interval [0, 1] (see
Fig. 6 (a-c)). These are compared to COMPLETE (µ = 1,
σ = 0) average trust in the same network, equivalent to all
connected nodes having edge weights of 1. An edge weight of
0 indicates there is no trust between an agent and it’s neighbor,
equivalent to no connection, while an edge weight of 1 indicates
a neighbor who is completely trusted.

The amount of trust between two neighbors influences the
likelihood that information shared through social learning will
be adopted via imitation. Each edge weight is applied to the
associated agent’s fitness value, effectively downgrading the
fitness value for each neighbor being considered during the
social learning phase. The level of trust stays constant within the
social network for each time step of the numerical simulation.

E. Numerical simulations

For chosen parameters of the social network and the NK-
landscape, as well as for given learning strategy, we start a
single realization of the collective learning task by assigning
random starting solutions to n agents of the social network.
Next, at each time step, agents use the strategies described
above to learn about the environment. We repeat this process
for 200 time steps and we quantify learning by registering



Figure 3. Learning strategy affects success of collective search process by shifting the exploitation-exploration balance. Under BEST strategy agents imitate
each other extensively, which leads to a lower performance in high K landscapes. FREQ strategy introduces more innovation in the initial phase of the search
process, followed by imitation at later times, which results in better performance at intermediate K values. Differences in social network structure have less
pronounced effect on the search process, however performing a social search is always better than searching alone (grey dot-dash line corresponds to the
average fitness achieved by agents searching individually). Results presented here are obtained for social networks of n = 100 agents, connected with degree
k = 20 for all networks besides all-to-all (ATA). In all cases comparison within local neighborhood is done using s = 3 randomly selected neighbors.

fitness trajectories of all agents, Fi(t), denoting consecutive
fitness values adopted by the i−th agent as it explores the
landscape. An average over all agents, F (t) = 1

n

∑n
i=1 Fi(t),

describes performance of the entire group, and due to the
adopted normalization, F (t) = 1 marks the case when all
team members found the optimal solution. In order to take
into account statistical variation of adopted social networks
and NK-landscapes, we repeat the above simulation 100 times.
We then use an ensemble average, 〈F (t)〉, to report results
for the given combination of strategy, problem complexity and
network structure.

Additionally, in order to quantify the exploration-exploitation
patterns created by different learning configurations, we monitor
fractions of the agents which at each time step update their
fitness value through one of three possible actions: social
learning (imitation, exploitation), individual learning (innova-
tion, exploration) or preserving current state. Furthermore, we
relate the group performance to observed imitation-innovation
ratio by quantifying the amount of information available to
the teammates during learning. We adopt Shannon entropy,
Hi(t) = −

∑
j pj ln pj , to measure the information available

to the i−th agent. The pj is the distribution of fitness values
of nearest neighbors of the i−th agent, and similarly to fitness
trajectories, we use an ensemble average, 〈H(t)〉, in further

discussion.

III. RESULTS

A. Exploration-exploitation patterns

Figure 3 shows the average performance achieved by two
learning strategies: BEST and FREQ for environments of
increasing complexity adopting collective learning in social
networks of different structure. In all cases strategies relying on
the best member lead to the fastest convergence and consistently
collaborative learning outperforms search performed by individ-
uals. Furthermore, the pace of learning based on FREQ strategy
is always slower, but in landscapes of medium complexity
(K = 6) it significantly outperforms other approaches. The
success of both learning strategies in simple environments
(K = 2) stems from the fact that those landscapes contain
few local optima, making misidentification of local optima for
the global one much less likely. On the other hand, highly
complex landscapes (K = 10) consist of a significantly larger
number of local maxima, resulting in poor group performance,
independent from adopted learning strategy.

We have shown that different learning strategies can achieve
very different performance within the same environment. At
the same time, it is known that different network structures also
affect the performance by changing relative use of exploration



Figure 4. Processes such as diffusion and spreading of information are commonly facilitated by well-connected networks (efficient). However the collective
search process benefits primarily from decreasing network density, or more precisely increasing network size. Four analyzed networks differ in their diameter,
average clustering and average betweenness centrality, but those differences do not significantly affect the collective search process. Notice: density of the
all-to-all network (ATA) is always 1, and the values plotted above correspond to ATA networks of the same number of nodes as other three cases. Degree of
networks used here is k = 20 for all networks besides ATA.

and exploitation in the group [3], [19]. Here, however, we see
that network structure influences group performance in very
limited fashion, playing secondary role when contrasted with
impact caused by different learning strategies. In particular, the
efficiency of topologies, defined in terms of short path lengths,
negatively affects learning outcomes.

In order to understand how particular learning strategies
influence search outcomes we study by what means (imitation
or innovation) agents update their state during the simulation.
The fact that the BEST strategy favours imitation, when the
FREQ rule promotes innovation is clearly visible on Fig. 3.
This different exploration-exploitation pattern is responsible
for the success of FREQ over BEST rule. Learning through
innovation means exploring new solutions, while learning
through imitation corresponds to propagating known answers.
The latter does not produce new knowledge and is limited to
choosing the best of available solutions, while the former is
based on exploration of the environment, increasing chances
that over time truly good solution will be found.

We capture this dichotomy by analyzing the relation between
information (entropy) available to the agents and average
performance. The period of innovation in FREQ strategy
corresponds to an increase in entropy of solutions present in
the network, and thus in the end is related to better outcomes.

The BEST rule, on the other hand, is characterized mostly
by decrease of entropy, directly caused by basing learning on
imitation.

B. Team size

In the era of collaboration and teamwork, one key question
is what is the optimal team size for achieving the best group
performance [9], [11]. In the context of collective learning
modeled as search on NK-landscapes, the answer appears
to be that large and sparse teams perform the best (see Fig.
4). Similarly to observations reported in other optimization
tasks [2], high density of connections is not correlated with
improved performance, as one can clearly see by comparing
results obtained for a fully connected network (ATA) to ones
obtained for sparser topologies. Moreover, the observation
that decrease in network density improves search outcomes
stems almost entirely from the fact that decreased density
signifies an increase in network size, which in turn means that a
larger number of agents explore the environment. Additionally,
the performance of a team of given size is a function of
problem complexity, where highly complex problems require
significantly larger teams to perform well. It remains to be
seen if the need for increasing team size can be effectively



Figure 5. Success of search strategies is strongly linked with the amount of information generated during the search process. Strategies prioritizing innovation
(exploration) over imitation (exploitation) in the initial phase of the search (FREQ, EXP) are characterized by an increase in the entropy of fitness values
observed by the agents. Imitation strategy acts as a force reducing the information gained by the agents and thus needs to be applied strategically during
the search process, as demonstrated e.g. by intermittent (INTER) strategy. In this case imitation is applied sparsely between long intervals of innovation, a
procedure which provides good accuracy as well as it improves speed of the search process. Results presented here are obtained for a regular network (REG)
of n = 100 nodes and degree k = 20.

compensated by more efficient learning rules, since the former
approach is not realistically possible in entrepreneurial settings.

C. Dynamic learning rules

Observations of animal behavior [14], [26], [29], as well as
experiments in humans [5] have demonstrated that dynamic
switching between social and individual learning improves
performance of the collaborative decision making process.
Shifting from group driven activity to individual work is
conjectured to act like brainstorming sessions, allowing to
identify a wider range of possible solutions, since agents are
not influenced by each other at all times.

Figure 5 shows the impact of two simple dynamic learning
rules on the performance of the collective learning process. Our
results indicate that incorporation of a temporal component
into the learning sequence results in comparable or better
outcomes then ones obtained in the case of static learning

policies. The EXP rule of executing an extensive individual
search followed by social learning operates similarly to FREQ
strategy, however due to longer period of individual learning
and stronger presence of imitation, it outperforms the latter case.
Furthermore, the intermittent strategy is also an improvement
over BEST and FREQ rules, in particular since it results in
the outcomes equal and better than FREQ rule, but achieves
them in a much shorter time.

Finally, we investigate the behavior of entropy generated
by those rules. We observe a clear correlation between initial
increase in the information (entropy) present in the network and
the final outcome of the search process. In all cases a significant
adoption of innovation as the learning strategy improves
learning outcomes, demonstrating the importance of individual
activities in the general scope of a teamwork. Moreover,
the entropy-performance relation observed for intermittent
strategy suggests that the amount of information necessary



Figure 6. (a-c) Probability density function of edge weights between neighbors in a regular network as sampled from three different beta distribution
representing HIGH (α = 5, β = 1), EVEN (α = 2, β = 2) and LOW (α = 1, β = 5) average trust. (d-f) Average fitness and (g-i) average innovation for
different levels of trust within a regular network. For simple landscapes (N = 15,K = 2), average performance decreases as trust within a network decreases.
For complex landscapes (N = 15,K = 10), the opposite is observed. In both cases innovation is greater when trust is low within the network as individual
search is favored. Results presented here are obtained for a regular network (REG) of n = 100 nodes and degree k = 20 with all neighbors considered using
the BEST social learning strategy.

for identification of an optimal solution is not only a function
of the learning rule, but also depends on the complexity of
investigated landscape. In this case we observe that comparably
good performance is obtained from lower levels of entropy,
implying that there exists an optimal amount of information
necessary for identification of optimal solutions.

D. How trust influences search process

Figure 6 shows the average performance and average
innovation for three levels of average trust within a regular
network: HIGH, EVEN and LOW when solving problems of
increasing complexity.

Regardless of problem complexity, the learning through
innovation increases as the average level of trust in the network
moves from HIGH to LOW and the information shared through
collective learning is less likely to be trusted. When compared
to COMPLETE trust case, this increase in innovation results in

a reduced average performance for simple (K = 2) landscapes
but an improvement in average performance for complex
environments.

The average performance of agents exploring complex
landscapes, within a LOW trust network, benefits from greater
innovation as the chance of mistaking local optimum for
the global one is reduced. For simple landscapes, few local
optimum mean avoidance of such mistakes is less of a concern,
making imitation a more valuable strategy for increasing
average group performance. Within a network of LOW average
trust, agents are unlikely to imitate neighbors and instead
innovate more. For a simple environment, this ultimately fails
to lead to an average performance as strong as when average
trust in the network is high.

Social networks with HIGH and EVEN trust marginally
outperform networks with COMPLETE trust for simple land-
scapes due to the effective balance achieved between innovation



and imitation. This suggests that the average trust within a
network becomes an influencing factor when the majority
of neighbors are not trusted when considering problems in
simple environments. In a complex environment, HIGH and
COMPLETE trust show very similar performance suggesting
that complete trust in all neighbors is not necessary to achieve
the same average performance.

In both cases of problem complexity, reducing the aver-
age trust in the network, slows down the problem solving
capabilities. The exception to this is when average trust is
high and the problem environment is simple. In this case,
HIGH average trust outperforms COMPLETE trust in both
final average performance and number of time steps taken to
reach this result.

IV. CONCLUSIONS AND FUTURE WORK

We set out to investigate fundamental aspects of collaborative
problem solving by studying how the structure of social
networks coupled with different learning rules affects search
for solutions to complex problems. We found that learning
strategies favoring imitation identify solutions quickly, however
their performance decreases with increasing complexity of
the problem, severely limiting their usefulness. Moreover,
shifting the emphasis of the learning process from diffusion of
known solutions to the search for new knowledge results in an
improved performance in complex environments, but comes
at the cost of slower convergence. Additionally our results
indicate that structure of networks used for sharing solutions has
limited impact on the group performance. Contrary to results
reported in the literature [3], [19], networks characterized by
short paths are not significantly more efficient in determining
correct solutions then networks defined by long distances.
Altogether we find that network structure plays a secondary
role in collective learning, being overshadowed by rules of
interaction between agents. When considering the effect of
trust on the problem solving abilities in a regular network,
we observe that lower average trust in the network promotes
independent thinking and does not necessarily lead to poor
performance.

Furthermore, dynamic interplay between independent explo-
ration and exploitation of social ties proves to be the most
beneficial for the collective search process. In particular, we
show that exploration-exploitation patterns realized in various
learning scenarios can be quantified in terms of information
acquired during learning. Those results suggest avenues for
further research on efficient collective learning approaches,
where search for optimal learning strategies is guided by
information-based metrics. For example, this approach could
help answer the question of what is the maximum performance
of strategies limited to exploitation and exploration, and if
additional search mechanisms (e.g radical innovation [4]) are
needed to improve learning in complex environments. Another
interesting issue is temporal aspect of human interactions,
which can affect collective learning outcomes [21]. In this case,
an information-based approach could guide search towards

optimal frequency and patterns of interactions [34], extending
the issue of an optimal team size into the temporal domain.

Finally, in order to fully answer the question of what types
of C2 structures provide most agility, resilience and robustness,
we plan to extend our investigations into systems composed
of multiple teams, connected in varying forms of hierarchical-
like structures. Earlier studies [8], [27], [35] and numerous
observations of organizational structures adopted by various
institutions [6] suggest that hierarchical networks are the most
efficient structures for communication and decision making.
However, the work done within the framework of NK-model
is limited to two level hierarchies only [35], leaving out
more realistic, multilevel networks, which are ubiquitous in
military C2 structures. As a continuation of work presented
here, we will follow the NATO NEC C2 model [1] in order to
study the relation between C2 structures and their efficiency
for collaborative problem solving and decision making. We
expect that our work will provide insights into designing
communication environments required by modern military
operations.
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