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a b s t r a c t 

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the 
dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the 
dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition 
schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding 
parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons 
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across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain 
with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 
2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining 
part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance 
of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed 
by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong 
diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion 
time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting 
the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI 
acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range 
of diffusion encodings. 
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. Introduction 

Diffusion Magnetic Resonance Imaging (dMRI) is a powerful tool
o investigate microstructural properties of biologic tissues in-vivo
 Alexander et al., 2007 ; Tournier et al., 2011 ) with applications in
euroimaging studying brain development ( Ouyang et al., 2019 ), plas-
icity ( Blumenfeld-Katzir et al., 2011 ), aging ( Baker et al., 2014 ),
s well as changes upon disease for diagnostic and monitoring pur-
oses in various conditions such as Alzheimer’s disease ( Doan et al.,
017 , Weston et al., 2015 ), multiple sclerosis ( De Santis et al., 2019 ,
nglese and Bester, 2010 ), Parkinson’s disease ( Atkinson-Clement et al.,
017 ), brain tumours ( Costabile et al., 2019 ), etc. The signal measured
n dMRI is sensitized to the microscopic motion of water molecules,
hich is hindered and restricted by the presence of biologic membranes,

hus carrying information about the cellular organization. Over the last
ecade, an increasing number of techniques have been proposed in the
iterature to describe the dMRI signal and provide biomarkers of tissue
icrostructure and have been recently complemented with various ma-

hine learning approaches ( Alexander et al., 2017 , Ghosh et al., 2018 ;
ovikov et al., 2019 , Poulin et al., 2019 , Ravi et al., 2019 ). 

The standard acquisition strategy for dMRI data is single diffusion
ncoding (SDE), which employs a pair of diffusion weighting gradients
ith identical areas, usually embedded before and after the refocusing
ulse in a spin echo preparation, a sequence widely known also as pulsed
radient spin-echo ( Stejskal and Tanner, 1965 ). The SDE sequences are
haracterized by the gradient strength (G), duration ( 𝛿), time interval
etween the onset of the two gradients ( Δ) and gradient orientation ( ̂𝑔 ).
he scalar parameters (G, 𝛿, Δ) are usually combined to describe the dif-
usion weighting of the sequence, also referred to as the b-value. For SDE
equences, b = 𝛾2 G 

2 𝛿2 ( Δ- 𝛿/3), where 𝛾 is the gyromagnetic ratio. In the
ajority of SDE acquisitions 𝛿 and Δ are fixed and G is varied to change

he b-value, although varying the gradient duration and diffusion time
an provide additional orthogonal measurements ( Novikov et al., 2019 ).
ver the last decade, diffusion sequences which further vary the gradi-
nt waveform within one measurement, such as double diffusion encod-
ng (DDE) ( Henriques et al., 2020 , Mitra, 1995 ) or b-tensor encoding
pproaches ( Lasic et al., 2014 ; Westin et al., 2016 ), have been gaining
nterest as they can further improve the specificity of the measurements
owards the underlying tissue microstructure. Other approaches replace
he pulsed gradients with oscillating gradient waveforms to probe diffu-
ion on a range of (shorter) time scales ( Burcaw et al., 2015 , Does et al.,
003 ), measurements which can also be performed with different gradi-
nt orientations in a double oscillating diffusion encoding (DODE) fash-
on ( Ianus et al., 2018 , Ianus et al., 2017 ). While the majority of recent
MRI studies employ SDE sequences, such advanced acquisitions are
teadily gaining popularity. 

The most widely used dMRI technique for brain imaging in the clinic
s diffusion tensor imaging (DTI) ( Basser et al., 1994 ), which assumes
hat water diffusion in the underlying tissue can be described by a Gaus-
ian anisotropic process. As minimum requirements, the tensor parame-
ers can be estimated from SDE sequences with a single b-value (usually
bout 1000 s/mm 

2 ) and at least 6 non-collinear directions in addition
2 
o non-diffusion weighted data (b = 0 s/mm 

2 ). Although simple and ro-
ust, DTI cannot describe the signal decay in correspondence of higher
-values (e.g., above about 1500 s/mm 

2 in the living brain) and cannot
istinguish between multiple fibre populations, for instance in areas of
rossing fibres ( Jeurissen et al., 2013 ). After DTI, a plethora of tech-
iques have been introduced to capture the dMRI signal decay over a
ider range of parameter values ( Alexander et al., 2017 ; Novikov et al.,
019 ). dMRI models can generally be regarded as biophysical models,
ignal representations or somewhere in between ( Ghosh et al., 2018 ;
elescu and Budde, 2017 ). Biophysical models usually employ multi-
le water compartments to describe the dMRI signal in the tissue in
rder to capture microscopic metrics such as intracellular signal frac-
ion, cell size, shape etc ( Jespersen et al., 2007 , Stanisz et al., 1997 ;
ssaf et al., 2008 ; Alexander, 2008 ; Fan et al., 2020 , Fieremans et al.,
013 , Palombo et al., 2020 , Panagiotaki et al., 2012 , Zhang et al., 2012 ).
everal biophysical models have been proposed in the literature and
ary in terms of the number of compartments, diffusion model (hin-
ered/restricted), number of fibre populations, fibre orientation dis-
ributions, etc. Signal representations on the other hand, usually pro-
ide a statistical description to capture the signal decay without ex-
licitly modelling the underlying tissue composition ( Yablonskiy et al.,
003 ; Jensen et al., 2005 , Ozarslan et al., 2009 ; Fieremans et al., 2011 ,
zarslan et al., 2013 , Steven et al., 2014 ). Next to these two main fam-

lies, there are also hybrid approaches that, for instance, aim to char-
cterize the fibre orientation distribution without explicitly modelling
he fibre composition ( Tournier et al., 2008 ; Jeurissen et al., 2014 ), or
se a statistical model for different compartments ( De Luca et al., 2017 ,
asternak et al., 2009 , Scherrer et al., 2016 ), which can be defined a-
riori or driven from the data ( De Luca et al., 2018 , Keil et al., 2017 ).
esides these “classical ” approaches to model dMRI, the last couple of
ears have witnessed a vast increase in the number of machine learning
echniques applied to dMRI to predict signal decay ( Golkov et al., 2016 ,
russu et al., 2020 ), fibre orientations ( Nath et al., 2019 , Poulin et al.,
019 ) or the underlying tissue parameters ( Nedjati-Gilani et al., 2017 ).

The choice of dMRI technique depends on many factors, such as the
urpose of the experiment, the amount and quality of the data, the
umber and strength of b-values, angular resolution, etc, and gener-
lly no consensus has been reached on what a state-of-the-art diffusion
xperiment should include. Nevertheless, for a given acquisition, com-
aring diffusion models can provide valuable information about which
pproaches best describe the signal and can be generalized to predict
easurements outside the initial range. In the literature, there have been

arious studies which aimed to compare brain tissue models in terms of
oodness of fit and signal prediction, with an emphasis on white mat-
er (WM) ( Panagiotaki et al., 2012 ; Ferizi et al., 2015 ; Jelescu et al.,
014 , Rokem et al., 2015 ) and less on gray matter (GM)( Assaf, 2019 ).
owever, such studies usually focused on a certain group of models,

or instance multi-compartment biophysical models were investigated
n ( Panagiotaki et al., 2012 ; Ferizi et al., 2015 ), while ( Wang et al.,
017 ) looked in more detail at signal representations. 

Open challenges play an important role to gain a better understand-
ng of how various models capture the dMRI signal decay, as they
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Table 1 
A description of the SDE encoding acquired as part of the MASSIVE data, and 
their subdivision in training and evaluation data. No data points of SDE-MS 
at b = 4000 s/mm 

2 and SDE-GRID at b > 7600 s/mm 

2 were provided for 
training. The ratio between training and evaluation data was about 1:3 for 
SDE-MS and 3:5 for SDE-GRID. 

Diffusion Encoding Number of directions Training Evaluation 

SDE-MS data of a healthy volunteer acquired at 3T in 18 sessions (13 shells) 
b = 0 s/mm 

2 430 20 410 
b = 5 s/mm 

2 30 8 22 
b = 10 s/mm 

2 30 7 23 
b = 25 s/mm 

2 40 10 30 
b = 40 s/mm 

2 40 10 30 
b = 60 s/mm 

2 20 5 15 
b = 80 s/mm 

2 20 5 15 
b = 140 s/mm 

2 20 5 15 
b = 250 s/mm 

2 30 8 22 
b = 500 s/mm 

2 250 62 188 
b = 1000 s/mm 

2 500 125 375 
b = 2000 s/mm 

2 500 125 375 
b = 3000 s/mm 

2 500 125 375 
b = 4000 s/mm 

2 600 0 600 
Total 3010 515 2495 

SDE-GRID data of a healthy volunteer acquired at 3T in 18 sessions 
b = 0 s/mm 

2 430 20 410 
b = 141-563 s/mm 

2 58 22 36 
b = 750-938 s/mm 

2 54 22 32 
b = 1125-1875 s/mm 

2 170 72 98 
b = 2016-2766 s/mm 

2 248 102 146 
b = 3000-3938 s/mm 

2 314 129 185 
b = 4125-4875 s/mm 

2 168 68 100 
b = 5016-6891 s/mm 

2 196 65 131 
b = 7687-9000 s/mm 

2 32 0 32 
Total 1670 500 1170 
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ut forward rich datasets and well-defined tasks and usually receive
ubmissions from across the modelling landscapes ( Ferizi et al., 2017 ,
izzolato et al., 2020 , Schilling et al., 2019 ). The last diffusion mi-
rostructure challenge which included a comprehensive dMRI acquisi-
ion ( Ferizi et al., 2017 ) was organized in 2015 and focused on mod-
lling the dMRI signal acquired on the Connectome scanner for two ROIs
n white matter: genu of the Corpus Callosum with mostly aligned fi-
res and fornix with a more complex fibre configuration. The challenge
ncluded a rich dataset acquired with many combinations of gradient
trengths, durations and diffusion times and the goal was to predict un-
een shells with parameter values within the range used for the provided
ata. Since the end of this challenge, many novel approaches have been
roposed, including a booming application of machine learning tech-
iques for data fitting and prediction ( Golkov et al., 2016 , Nath et al.,
019 , Nedjati-Gilani et al., 2017 , Poulin et al., 2019 , Ravi et al., 2019 ).
oreover, previous challenges ( Ferizi et al., 2017 , Pizzolato et al., 2020 ,

chilling et al., 2019 ) included only diffusion data acquired with stan-
ard SDE sequences, and do not provide any insight into the different
pproaches available to analyse advanced sequences such as DDE. 

In this challenge we set to evaluate the ability of different dMRI
odeling approaches to capture the dMRI signal contrast from state-

f-the-art acquisitions performed with SDE, including shells with an
rder of magnitude higher angular resolution compared to previous
hallenges ( Ferizi et al., 2017 , Pizzolato et al., 2020 , Schilling et al.,
019 ), as well as DDE and DODE data. Further, we aim to inves-
igate the relationship between the goodness of fit and tissue type,
cquisition parameters, and diffusion sensitization. Finally, this chal-
enge acts as a benchmark database for the evaluation of future mod-
ls focusing on healthy tissue as the full datasets are made available
 https://github.com/PROVIDI-Lab/MEMENTO.git ). 

. Methods 

Section 2.1 presents an overview of the data that was used in the
EMENTO challenge and of the reasoning behind the selection of spe-

ific brain locations. A description of the methods used in the received
ubmissions is reported in section 2.2, whereas section 2.3 illustrates
he analyses we performed on the collected signal predictions. 

.1. Challenge data 

.1.1. MRI acquisition 

The main aim of the MEMENTO challenge was to investigate how
ell existing models can represent the dMRI signal collected with i)
ifferent gradient encoding schemes, and ii) from different tissue types.

To investigate how the existing models can predict data sampled
ith different diffusion sensitization, we selected two datasets contain-

ng extensively sampled dMRI brain data with 4 encoding schemes:
ulti-shell SDE (SDE-MS), SDE with gradients sampled in a cartesian

rid (SDE-GRID), DDE and DODE. The SDE acquisitions were performed
n a healthy volunteer with a 3T scanner as part of the MASSIVE datasets
 Froeling et al., 2017a ), a collection of 18 MRI sessions containing
nique dMRI data performed with a 3T scanner (Philips Healthcare, The
etherlands) with voxel-size 2.5mm 

3 isotropic, echo time TE = 100ms
nd repetition time TR between 7 and 7.5s. The DDE and DODE data
ere sampled from an ex-vivo mouse brain imaged with a 16.4T scan-
er (Bruker) with imaging resolution 0.12 × 0.12 × 0.7mm 

3 , TE = 52ms,
R = 3s ( Ianus et al., 2018 ). The diffusion parameters of the acquired
ata are reported in Tables 1 and 2 . To establish the signal to noise ra-
io (SNR) of the data, we considered the datapoints collected at b = 0
/mm 

2 , removed eventual outliers and defined the average SNR as the
atio between the average non-weighted value and its standard devia-
ion. A point was defined as an outlier when its value was outside the
onfidence interval defined by the median value ± 2 times the robust
tandard deviation of the data ( Chang et al., 2005 ). The SNR of the 5
3 
elected signals at b = 0 s/mm2 was 15 ± 3 for SDE-MS, 16 ± 3 for
DE-GRID, 76 ± 37 for DDE and 66 ± 28 for DODE. 

.1.2. Signals selection 

Five signals were selected for each dataset from brain voxels ex-
ibiting different microstructural organization. For the human MASSIVE
ataset, the voxels aimed to include WM signals with an increasing num-
er of crossing fiber configurations from 1 to 3, deep gray matter (DGM)
nd cortical gray matter (CGM) and the selection was based on visual
nspection of the fiber orientation distribution (FOD). The FOD was de-
ived with constrained spherical deconvolution ( Tournier et al., 2007 )
f data at b = 0, 3000 s/mm 

2 (500 directions) using a recursively cal-
brated response function ( Tax et al., 2014 ) approach implemented in
xploreDTI. Given the relatively low imaging resolution of the MAS-
IVE dataset, 2.5mm 

3 isotropic, care was taken in selecting voxels not
ocated at tissue interfaces, also using the FODs as guidance. For the
ouse brain, the five voxels were placed in white matter tracts with dif-

erent microstructures and based on visual comparison with an anatom-
cal atlas, as the number of collected gradient orientations per diffusion
eighting was insufficient to reliably estimate the FOD. Specifically, the
ve voxels were placed in medial corpus callosum, lateral corpus callo-
um, internal capsule, a fanning region of the internal capsule and the
mbria, respectively. An illustration of the locations and tissue types of
he selected voxels is shown in Fig. 1 . 

.1.3. Training and evaluation data 

The 20 selected measurement sets (5 signal locations x 4 diffusion en-
odings) were subdivided in training and evaluation data. The challenge
articipants were provided with the training data and the correspond-
ng diffusion encoding information, and asked to predict the evaluation
ata. The proportion of training and evaluation data was not constant
mong data encodings. For SDE, the training data consisted of about
00 gradient directions uniformly subsampled from all available data
xcept for the largest diffusion weightings, which corresponds to about

https://github.com/PROVIDI-Lab/MEMENTO.git
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Table 2 
The table describes the subdivision in training and evaluation data of the unique combinations of diffusion 
weighting b and diffusion time ( Δ) / oscillation frequency ( f ) for the DDE and DODE data, respectively. 
In the DDE training set, the data acquired with Δ = 5ms was provided with the exception of the largest 
diffusion weighting (b = 4000 s/mm 

2 ), and no data acquired with Δ = 10ms was provided for training. 
The mixing time for DDE sequences was 18.3ms. For DODE, the data points acquired with the three lower 
oscillation frequencies (66, 100, 133 Hz) were provided with the exception of b = 4000 s/mm 

2 , and no 
data acquired with f = 166 and 200 Hz was provided for training. The separation time between gradi- 
ent waveforms was 5ms. For DDE and DODE data, the sequence description included information about 
gradient strengths, directions, timing parameters as well as the elements of the B-matrix. 

Diffusion Encoding Number of directions Training Evaluation 

DDE data from a mouse brain ex-vivo acquired at 16.4T 
Δ= 5ms, b = 0 s/mm 

2 40 32 8 
Δ= 5ms, b = 1000 s/mm 

2 72 72 0 
Δ= 5ms, b = 1750 s/mm 

2 72 72 0 
Δ= 5ms, b = 2500 s/mm 

2 72 72 0 
Δ= 5ms, b = 3250 s/mm 

2 72 72 0 
Δ= 5ms, b = 4000 s/mm 

2 72 0 72 
Δ= 10ms, b = 0 s/mm 

2 40 0 40 
Δ= 10ms, b = 1000 

s/mm 

2 

72 0 72 

Δ= 10ms, b = 1750 
s/mm 

2 

72 0 72 

Δ= 10ms, b = 2500 
s/mm 

2 

72 0 72 

Δ= 10ms, b = 3250 
s/mm 

2 

72 0 72 

Δ= 10ms, b = 4000 
s/mm 

2 

72 0 72 

Total 800 320 480 
DODE data from a mouse brain ex-vivo acquired at 16.4T 

f = 66, 100, 133Hz 
b = 0 s/mm 

2 

3 × 40 3 × 32 3 × 8 

f = 66, 100, 133Hz 
b = 1000 s/mm 

2 

3 × 72 3 × 72 0 

f = 66, 100, 133Hz 
b = 1750 s/mm 

2 

3 × 72 3 × 72 0 

f = 66, 100, 133Hz 
b = 2500 s/mm 

2 

3 × 72 3 × 72 0 

f = 66, 100, 133Hz 
b = 3250 s/mm 

2 

3 × 72 3 × 72 0 

f = 66, 100, 133Hz 
b = 4000 s/mm 

2 

3 × 72 0 3 × 72 

f = 166, 200Hz 
b = 0 s/mm 

2 

2 × 40 0 2 × 40 

f = 166, 200Hz 
b = 1000 s/mm 

2 

2 × 72 0 2 × 72 

f = 166, 200Hz 
b = 1750 s/mm 

2 

2 × 72 0 2 × 72 

f = 166, 200Hz 
b = 2500 s/mm 

2 

2 × 72 0 2 × 72 

f = 166, 200Hz 
b = 3250 s/mm 

2 

2 × 72 0 2 × 72 

f = 166, 200Hz 
b = 4000 s/mm 

2 

2 × 72 0 2 × 72 

Total 2000 960 1040 
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7% of SDE-MS, and 30% of SDE-GRID. . For DDE and DODE, we pro-
ided a larger amount of training data to take into account the need
o model an additional encoding dimension (e.g., time and frequency),
espectively 40% and 48%. To evaluate the ability of the tested models
o predict unseen data points, all the data corresponding to specific dif-
usion weightings was removed from the training data, as reported in
ables 1 and 2 . 

.2. Signal predictions 

We received initial submissions from 9 teams, but 2 of the 9 teams
id not provide valid submissions and were not included in this anal-
sis. The remaining 7 teams submitted a total of 80 valid signal pre-
ictions that were considered in the subsequent analyses. Of these, 31
ubmissions predicted the SDE-MS signals (37%), 16 the SDE-GRID sig-
als (19%), 15 the DDE signals (18%) and 18 the DODE signals (22%).
4 
hen a model was applied more than once to predict a given set of
ignals, only the submissions corresponding to the best and worst pre-
iction were analyzed, to simplify the presentation and interpretation of
he results. The final selection of predictions included in this analysis is
eported in Table 3 . When multiple predictions with a given model were
ubmitted, the best and worst predictions were identified by adding the
abels “_best ” and “_worst ” to the model name. 

To follow, we present an overview of the submissions we received
rouped in four different categories. 

.2.1. Tensor and beyond 

Diffusion tensor imaging (DTI, ( Basser et al., 1994 ) is one of the most
ommon quantification methods for dMRI data acquired with at least
ne diffusion-weighting and 6 + gradient directions. DTI is based on the
hree-dimensional generalization of the seminal works of Stejskal and
anner (1965 ), and assumes the diffusion process to be Gaussian (i.e.,
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Fig. 1. The locations of the 5 voxels selected 
for the SDE (top) and DDE/DODE data (bot- 
tom). The SDE data are sampled from a human 
brain scanned at 3T with imaging resolution 
2.5mm 

3 isotropic, and is part of the MASSIVE 
dataset. The 5 locations were chosen in 5 dif- 
ferent tissue types, such as white matter (WM) 
with increasing fiber complexity (signals 1-3, 
as exemplified by the shown fiber orientation 
distribution), deep gray matter (DGM) and cor- 
tical gray matter (CGM). DDE and DODE were 
sampled in a mouse brain at 16.4T with imag- 
ing resolution 0.12 × 0.12 × 0.7mm 

3 . The se- 
lected signals are all taken from WM locations 
with well-established differences in fiber orga- 
nization, as shown by the red dots overlaid on 
the fractional anisotropy map. 
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ot restricted). In the living brain, such assumption is typically satis-
ed when collecting dMRI data with diffusion weightings in the range
 = 800-1200 s/mm 

2 . While DTI typically does not accurately char-
cterize complex diffusion environments where, for example, multiple
iffusion mode (e.g., tissue diffusion vs blood pseudo-diffusion ( Le Bi-
an et al., 1988 ) or “crossing-fibers ” co-exist ( Wedeen et al., 2005 ), it is
ne of the most common dMRI signal representations in clinical appli-
ation, especially thanks to its sensitivity to microstructural changes in
ealth and pathology. Keeping in mind all of the above, the DTI method
as applied in this work to SDE-MS, DDE and DODE data to serve as
aseline reference using a weighted-least-squares fit. 

In 2005, Jensen and colleagues introduced the diffusion kurtosis
maging (DKI) method ( Jensen et al., 2005 ), an extension of DTI that
llows to account for and quantify the amount of non-Gaussian diffusion
hat is observed at stronger diffusion weightings (e.g., b > 1400 s/mm 

2 

n the living brain). The DKI model requires the collection of at least 21
nique measurements, including 2 non-zero diffusion-weightings and
5 + unique gradient directions, and allows to quantify the amount of
xcess kurtosis of the diffusion process. While DKI is suitable for dMRI
ata acquired with a stronger diffusion weighting than DTI, neverthe-
ess, there is a theoretical maximum to the diffusion weighting that can
e fit ( Jensen et al., 2005 ; Jensen and Helpern, 2010 ), and most brain
pplications use a maximum b-value equal to b = 3000 s/mm 

2 . De-
pite these theoretical limits, DKI was fit to all data included in this
ork using a constrained non-linear least-squares fit enforcing posi-

ivity in diffusion and kurtosis metrics and a monotonic decay of the
ignal. When fitting data acquired with strong diffusion weighting, it
ight be beneficial to take into account the presence of a minimum sig-
al offset due to Rician noise in the measurements ( Basu et al., 2006 ,
udbjartsson and Patz, 1995 ). One of the submissions considered in this
ork extended the DKI method with an offset term to account for such

ffect (DKI + Offset) ( Morez et al., 2020 ). This method was fit to SDE
ata by extending the classic DKI model with an additional degrees of
reedom (22 + 1 = 23 free parameters), and to DDE and DODE data by
xtending a fourth order covariance tensor (28 + 1 = 29 free parameters)
 Westin et al., 2016 ). 

.2.2. Multicompartment models 

Multi-compartment models are a family of methods that al-
ow to model the dMRI signal by means of biophysical features
 Panagiotaki et al., 2012 ; Jelescu and Budde, 2017 ). The assumption
ehind these models is that the dMRI signal acquired in a voxel can be
escribed as the linear combination of the signal profiles of each com-
onent that is present in a specific voxel. 
5 
All the submissions we received based on multicompartment models
ere computed with custom implementations of previously introduced
ethods with the “Diffusion Microstructure Imaging in Python ” toolbox

 Fick et al., 2019 ) (dmipy). The submissions considered only SDE data,
nd were based on three basic components: the intra-axonal compart-
ent was modelled as a stick or a cylinder, whereas the extra-axonal

nisotropic compartment was modelled as a zeppelin (axially symmet-
ic tensor) and the cerebrospinal fluid contribution modelled as isotropic
iffusion (sphere). Depending on the specific implemented model, the
nisotropic compartments were optionally convolved with a Watson or
 Bingham distribution to account for fiber orientation dispersion. A
ummary of the multicompartment models that were submitted and the
omponents they are based on is shown in Table 4 . 

For all the above mentioned models, the parallel diffusivity of the
nisotropic compartments was set to 1.7 × 10 − 3 mm 

2 /s, whereas the
iffusivity of the isotropic compartment was set to 3 × 10 − 3 mm 

2 /s,
s previously suggested ( Behrens et al., 2003 , Kaden et al., 2016 ,
otiropoulos et al., 2012 , Zhang et al., 2012 ). The perpendicular dif-
usivity of the anisotropic compartments was linked to the parallel dif-
usivity via the tortuosity constraint ( Szafer et al., 1995 , Zhang et al.,
012 ). 

.2.3. Parametric representations 

This family of methods focuses on expressing the dMRI signal as a
unction of mathematical signal basis without biophysical hypotheses.
 popular signal representation is the simple harmonic oscillator recon-
truction (SHORE) ( Ozarslan et al., 2009 ). The SHORE basis has some
egrees of freedom such as the order and a scaling factor. The SHORE
ethod was applied to predict all the 4 provided data types (SDE-MS,

DE-GRID, DDE, DODE) in combination with a BFGS fit ( Nath et al.,
019 ) that can be utilized to achieve the best fit of the scaling param-
ter. The same method was used for all 4 types of data with harmonics
f orders 6, 8 and 12. 

MAP-MRI( Ozarslan et al., 2013 ) is a signal representation-based
echnique that expresses the diffusion signal in q-space and parametrizes
ts Fourier transform –the mean apparent propagator (MAP)– in terms
f a series involving products of three Hermite functions, thus generaliz-
ng the 1D-SHORE technique to three dimensions. Unlike in 3D-SHORE,
n anisotropic scaling parameter is employed in MAP-MRI, making it
n extension of DTI for representing the signal at large q-values. In this
hallenge, we received submissions from two different teams based on
 Laplacian regularized version of MAP-MRI. Both submissions (MAP-
RI, MAP-MRI + Reg) predicted the unseen data points using regularized

east squares and SHORE basis of order 8. 
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Table 3 
The valid signal predictions submitted to the MEMENTO challenge. For each method, we report the acronym and the main reference, the “category ”, special 
notes on the fit procedure, and the data it has been applied to. The following predictions were subdivided in the following categories: tensor-based (TENS), 
multi-compartment model (MCM), parametric representation (PAR), deep learning-based (DL). 

Model name Category Notes SDE-MS SDE-GRID DDE DODE 

DTI ( Basser et al., 
1994 ) 

TENS Linear-Least Squares X X X X 

DKI (J. H. 
( Jensen et al., 2005 ) 

TENS Weighted-Least 
Squares 

X X X X 

DKI + Offset 
( Morez et al., 2020 ) 

TENS Constrained 
Non-Linear fit 

X X X 

DTD-cov (C. F. 
( Westin et al., 2016 ) 

TENS Constrained 
Non-Linear fit 

X X 

DTD-cov (C. F. 
( Westin et al., 
2016 ) + Offset 

TENS Constrained 
Non-Linear fit 

X X 

Ball&Stick 
( Behrens et al., 

2003 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

X 

Ball&Racket 
( Sotiropoulos et al., 

2012 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

X 

NODDI-Watson 
( Zhang et al., 2012 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

X 

NODDI -Bingham 

( Tariq et al., 2016 ) 
MCM Implemented in 

Dmipy ( Fick et al., 
2019 ) 

X 

SMT ( Kaden et al., 
2016 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

X 

NODDI-SMT MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

X 

MCMDI 
( Kaden et al., 2016 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

X 

ActiveAx (D. C. 
( Alexander et al., 

2010 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

X 

SHORE 
( Ozarslan et al., 

2009 ) 

PAR From DeepSHORE 
( Nath et al., 2019 ) 

X X X X 

MAP-MRI 
Ozarslan et al., 2013 

PAR Custom 

implementation with 
regularization 

X 

MAP-MRI + Reg 
( Fick et al., 2016 ) 

PAR Implemented in Dipy 
( Garyfallidis et al., 

2014 ) 

X X 

NeuralNet DL Perceptron 1 Layer 
50 nodes 

X X X X 

NeuralNet + Reinf 
( Williams, 1992 ) 

DL Perceptron 7 Layers 
optimized with NAS 
( Zoph and Le, 2016 ) 

X X X X 

Table 4 
An overview of the diffusion models used to represent the individual components of the considered multicompart- 
ment models. 

Model name Intra-axonal component Extra-Axonal component Isotropic component Orientation dispersion 

ActiveAx Cylinder Zeppelin Sphere NA 
Ball&Stick Stick NA Sphere NA 

Ball&Racket Stick NA Sphere Bingham 

MCMDI Stick Zeppelin NA NA 
NODDI-Watson Stick Zeppelin Sphere Watson 

NODDI-Bingham Stick Zeppelin Sphere Bingham 

SMT Zeppelin NA NA NA 
SMT-NODDI Stick Zeppelin Sphere Watson 

2
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.2.4. Neural networks 

Convolutional neural networks (NeuralNet) are increasingly be-
ng used for tasks such as quantification and signal representation.
n this case, the output of the networks corresponded to the dMRI
ignal. 
6 
The first family of submissions that we received is based on feed-
orward networks with a single hidden layer of 50 neurons and sigmoid
ctivation functions. These networks were trained on 80% of the mea-
urements and validated on 20% by minimizing the mean squared error
f the predictions with the AdamW algorithm. For the learning phase, a
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Fig. 2. Signal decay as a function of the b-value of the averaged SDE-MS data 
over different directions, for the unprovided measurements. The black dots rep- 
resent the unprovided data, the red shaded area represents the min-max of the 
submissions, the blue error bars represent the 25-75 percentile, the solid red 
curve represents the best fit and the red circles represent the residuals of the 
best fitting model. The 5 different plots illustrate the predictions of the different 
signals. 
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earning rate of 0.005 and 20000 epochs were used. To predict the SDE
ignals, the normalized components of the gradient (3 values) and the
-value were provided as inputs. For the DDE and DODE acquisitions,
he gradient strength, the normalized components of the two gradients
6 values), the b-value, and the components of the b-matrix (6 values)
ere concatenated into one input vector of length 14. The training and
rediction phase were repeated independently for each of the individual
ignal and data types. 

The second family of submissions we received was based on neu-
al networks with reinforcement learning (NN + Reinf) ( Williams, 1992 ,
oph and Le, 2016 ). A neural architecture search (NAS) was imple-
ented to search the optimal 7-layer feed-forward model with ReLU

ctivations for dMRI signal prediction given the acquisition parameters.
he search space of NAS is the number of nodes in each of the seven

ayers in the set [8, 16, 32, 64, and 128]. that best fit the training data
 For training, the initial learning rate was set to 0.01, and the adam
ptimizer was used. 

.3. Data analysis 

The data analyses were performed separately for SDE-MS, SDE-GRID,
DE and DODE. For each encoding type and signal, we evaluated the
in-max interval of all predictions, and their 25th to 75th percentile

onfidence interval. For each signal, we determined the best prediction
s the one achieving the lowest mean squared residuals (MSE), and vi-
ually investigated the residuals. As the MSE only represents one of the
ossible metrics that can capture the goodness of the signal prediction,
e also determined the variance of the residuals and the bayesian infor-
ation criteria (BIC) associated with the prediction of each individual

ignal. These results can be found in the supplementary material Table
2 and S3. 

Subsequently, the distribution of the residuals of each model were
nvestigated by means of boxplots. At this stage, the residuals from all
he 5 voxels were considered together. A ranking of all considered mod-
ls was derived according to increasing MSE, then the best prediction
odel was established per encoding type. The residuals of the best pre-
iction model were investigated as a function of the b-value, diffusion
ime (DDE only) and encoding frequency (DODE only), to understand
hether all diffusion encodings were predicted with comparable accu-

acy and precision. In the subsequent analysis, the 5 voxels were studied
eparately. Specifically for the SDE-MS data, an additional analysis was
erformed to evaluate how the best model predicted the directional de-
endent information of the shell acquired at b = 4000s/mm 

2 . To this
nd, the measured data and the best signal prediction were projected
n the unit sphere using spherical harmonics of order 12, then the pre-
iction error was evaluated. The diffusion tensor imaging model was
ncluded in this step for reference. 

. Results 

.1. Signal representation of SDE-MS data 

The geometric average of the SDE-MS signals and an overview of the
redictions is shown in Fig. 2 . In general, both the average and the best
tting method predicted the average signal decay without apparent bi-
ses, with the exception of the average fit of the low diffusion weightings
f signals 3 and 5. 

On average, the confidence interval of the submissions (blue error
ar) is centered on the geometric average of the data for diffusion-
eightings 400 < b < 4000 s/mm 

2 for all 5 signals. The prediction of
ata at b = 4000 s/mm 

2 (which was not provided in the training data)
as overall accurate in WM (signals 1-3), but showed a small and con-

istent over-estimation in DGM and GM. The signal measured at low
iffusion weightings (i.e. b < 200 s/mm 

2 ) was on average accurately
redicted in the WM voxel containing up to 2 crossing fibers and in
eep gray matter, but not in the complex WM-configuration (Signal 3)
7 
nd in cortical GM (Signal 5). The min-max range of the predictions
ighlights that data at b = 2000 s/mm 

2 is predicted on average with
he lowest uncertainty, whereas the largest spread is observed at b <
00 s/mm 

2 and b = 4000 s/mm 

2 . The best predicting models for sig-
als 1-5 are SHORE, MAP-MRI + Reg, MAP-MRI + Reg, Ball&Racket and
euralNet, respectively. 

Fig. 3 shows the average residuals of all tested signal predictions
hen considering the 5 provided signals together. The predictions of the
rst 7 methods were remarkably accurate, as shown by the tight confi-
ence interval of the residuals of about 0.03 of the measured data, which
ccasionally reached values up to 0.1. MAP-MRI provided the best over-
ll signal prediction with average MSE 0.00236 ± 0.00035 (Supplemen-
ary Material Table S1). When comparing the residuals of this prediction
o those from the remaining models, we found that only NeuralNet pro-
ided equally distributed residuals (sign test, p ≤ 0.05). When looking
t the average residuals of each signal individually (colored dots in the
oxplots of Fig. 3 ), a tendency towards a better prediction of WM signals
s compared to CGM and DGM was observed. 

To understand how the fit of the best prediction method (MAP-MRI)
aried as a function of the diffusion-weighting, we evaluated the value
f its average residuals for all 5 signals together for each shell indepen-
ently. In general, the average residuals of most shells were close to
ero, but a significant overestimation for b-shells 60 ≤ b ≤ 250 s/mm 

2 

as observed (one sample t-test, p ≤ 0.05). The average prediction error
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Fig. 3. Left) Boxplots of the normalized residuals (gray dots) 
of each prediction of SDE-MS data, when pooling together all 
5 signals. Right) The normalized residuals of the best predic- 
tion (MAP-MRI) over individual diffusion weightings. The red 
asterisks on the left panel indicate predictions significantly dif- 
ferent from the best prediction, whereas those on the right in- 
dicate that residuals at a specific diffusion weighting show a 
significantly non-zero mean. 

Fig. 4. 3D visualisation of the fiber orientation distribution 
(FOD), a projection on the unit sphere of the measured signal, 
of the signal predictions with DTI and with the best prediction 
model as well as of the residuals determined with DTI, average 
of all models and with the overall best predicting model for the 
unprovided SDE-MS data at b = 4000 s/mm 
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as on average less than 0.05 for all shells, but errors up to about 0.2
an be observed for the non-weighted data and the unprovided shell at
 = 4000 s/mm 

2 . 
Having established that model MAP-MRI provided the best average

t, we set to investigate how this method could predict the angular in-
ormation of the unprovided shell at b = 4000 s/mm 

2 , and included a
rediction with DTI and the average prediction of all methods for refer-
nce. This angular resolution analysis is shown in Fig. 4 . 

All methods could well-predict on average the donut-shaped 3D rep-
esentation of WM-1, and the average residuals of this signal are smaller
han those of the best fitting method. The DTI prediction of WM-1 well
aptured the overall shape of the signal, but also showed large errors in
pecific directions, likely due to unaccounted signal restrictions at this
iffusion weighting. The best prediction was remarkably better than the
verage prediction as well as the DTI one in the more complex configu-
 t  

8 
ations WM-2 and WM-3. In the WM-signals, the largest angular errors
ere observed in directions parallel and perpendicular to the main dif-

usion directions derived with CSD, as expected. In DGM and CGM, all
ethods performed overall equally well and the residuals had an almost

sotropic distribution. 

.2. Signal representation of SDE-GRID data 

Fig. 5 reports the average signal predictions for SDE-GRID after bin-
ing closely spaced diffusion-weightings to enhance clarity. In general,
he SDE-GRID was well predicted by most submissions, as highlighted by
he tight min-max and confidence intervals. Larger prediction variance
an be observed at low (b < 1000 s/mm 

2 ) and large diffusion weight-
ngs (b > 6000 s/mm 

2 ) than in the intermediate range. The best predic-
ions of signals 1 and 2 were achieved with DKI + Offset, whereas MAP-
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Fig. 5. Signal decay as a function of b-value of the averaged SDE-GRID data over 
different directions, for the unprovided measurements. The diffusion weightings 
were rounded to the closest multiple of 100 before averaging to enhance clarity. 
The black dots represent the unprovided data, the red shaded area represents 
the min-max of the submissions, the blue error bars represent the 25-75 per- 
centile, the solid red curve represents the best fit and the red circles represent 
the residuals of the best fitting model. The 5 different plots illustrate the fits of 
the different signals. 
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RI + Reg provided the best prediction of signals 3-5 and the best overall
rediction with MSE 0.00260 ± 0.00043 (Supplementary Table S1). 

The boxplots of residuals of the SDE-GRID predictions ranked by MSE
re reported in Fig. 6 . The first 7 submissions predicted the signals accu-
ately, without visible biases both at average level as well as in specific
issue-types, and most prediction errors were in the range of ± 0.03 with
alues occasionally up to 0.1, similar to what was previously observed
or SDE-MS. When considering all predictions together, MAP-MRI + Reg
rovided the best overall prediction, but predictions with DKI + Offset
nd NeuralNet can be considered comparable according to a signed rank
est. When analyzing the average prediction residuals of MAP-MRI + Reg
or the binned diffusion weightings, it is appreciable that most data was
ell predicted without biases and errors below 0.05, with the exception
f b ≤ 800 s/mm 

2 , b around 3000 s/mm 

2 and b > 6000 s/mm 

2 . 

.3. Signal representation of DDE and DODE data 

Fig. 7 shows the best and average signal predictions of the unseen
DE and DODE data for the 5 different voxels. Fig. 8 presents the nor-
alized residuals for the different submissions, averaged over voxels,

-values and diffusion times/frequencies while Fig. 9 shows the nor-
alized residuals for the best fitting model as a function of the b-value.
9 
For DDE we see that the prediction of the directionally averaged
ignal is well aligned with the measured data with the DTD-cov + Offset
roviding the best prediction with MSE 0.00072 ± 0.00023 (Supplemen-
ary Table S1). Nevertheless, other methods such as DKI, SHORE and
eural networks also performed reasonably well in providing unbiased
redictions, but with visibly larger errors. In general, we see that the
rediction of the higher b-values ( > 2500 s/mm 

2 ) is better than the pre-
iction of the lower b-values ( < 2500 s/mm 

2 ). For DODE data, the best
rediction comes from NeuralNet-best with MSE 0.00070 ± 0.00036,
hereas the majority of the submissions overestimate the signal, espe-

ially for b-values larger than 1750 s/mm 

2 . For both DDE and DODE,
he predictions show similar trends in the 5 different white matter vox-
ls. For the DODE data, both frequencies also show similar trends of the
redicted signal. 

. Discussion 

We have evaluated the generalizability of existing dMRI methods at
redicting diffusion-weighted data measured with SDE-MS, SDE-GRID,
DE and DODE by analyzing 80 submissions to the MEMENTO chal-

enge from 7 different teams. In general, our analysis suggests that mod-
ls predicting SDE-MS and SDE-GRID data generalized the easiest to
nseen diffusion encodings, whereas the prediction of DDE and DODE
eems more challenging. Within the domain of SDE, the worst predic-
ion was observed in correspondence of low and very strong diffusion
eightings. 

.1. Trends in SDE data predictions 

The large majority of the analyzed submissions predicted SDE data,
ith a considerable preference for SDE-MS over SDE-GRID, which also

eflects the overall larger number of studies which employ (multi-)shell
ata. When looking at SDE-MS, we can observe that the majority of
ubmissions could well predict the global signal decay, and 14 out of 18
redictions had a median error smaller than 0.04. Of these, however,
nly 7 had an interquartile range (25th-75th percentile) of the residuals
maller than 0.05 in absolute value, which suggests how the predic-
ion of the isotropic component of the signal decay (which captures the
verage decay of a given diffusion weighting) is an easier task than the
rediction of the anisotropic component. Interestingly, the 7 predictions
ith the lowest MSE can account for complex fiber configurations such
s 2 + crossing fibers, whereas predictions with single-fiber based meth-
ds result in higher MSE. Looking at the angular analysis reported in
ig. 4 , it becomes clear that MAP-MRI provides the best prediction of
oth SDE-MS and SDE-GRID by well representing the signal in voxels
ith complex fiber configurations (WM-2, WM-3) as well as in DGM,
hereas the prediction error in voxels with a single fiber population

WM-1) or almost isotropic diffusion (CGM) is worse than the average
ubmission. 

A second aspect regarding the analysis of SDE data is the dependence
f the prediction accuracy and precision on the diffusion weighting and
n the specific tissue type. Our results suggest that current dMRI meth-
ds can well represent and predict dMRI data with commonly used diffu-
ion weightings. Indeed, we observed that most submissions could pre-
ict SDE data remarkably well within the range of commonly employed
iffusion weightings (e.g., 1000 ≤ b ≤ 4000 s/mm 

2 ), whereas the pre-
iction of low (b < 800 s/mm 

2 ) and strong (b > 6000 s/mm 

2 ) diffusion
eightings was generally less accurate. While the latter might originate

rom Rician-related biases, it might also highlight the limited specificity
f existing models to genuine components such as perfusion contribu-
ions at low diffusion weightings ( Le Bihan et al., 1988 , Pasternak et al.,
009 ) and WM-restriction at strong diffusion weightings ( Cohen and
ssaf, 2002 ). In this context, a trend towards a worse prediction of the
GM and CGM signals as compared to WM signals emerges with SDE-MS
nd, to a lesser extent, with SDE-GRID. This seems to be mostly driven
y the inaccurate prediction of the signal measured at low diffusion
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Fig. 6. Left) boxplots of the normalized residuals (gray dots) 
of each prediction of SDE-MS data, when pooling together all 5 
signals. Right) The normalized residuals of the best prediction 
(MAP-MRI + Reg) over individual diffusion weightings. The red 
asterisks on the left panel indicate predictions significantly dif- 
ferent from the best prediction, whereas those on the right in- 
dicate that residuals at a specific diffusion weighting show a 
significantly non-zero mean. 

Fig. 7. The first three columns show the signal decay as a 
function of b-value of the geometrically averaged DDE and 
DODE data over different directions, for the unprovided mea- 
surements. The fourth column shows the geometric average 
of the signal measured at b = 4000 s/mm 

2 for different diffu- 
sion times Δ (DDE) and oscillation frequencies f (DODE). The 
black dots represent the unprovided data, the red shaded area 
represents the min-max of the submissions, the blue error bars 
represent the 25-75 percentile, the solid red curve represents 
the best fit and the red circles represent the residuals of the 
best fitting model. The 5 different plots illustrate the fits of the 
different signals. 

10 
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Fig. 8. The boxplots of the normalized residuals (gray dots) 
of the DDE (left) and DODE (right) predictions. The red aster- 
isks on the panels indicate predictions significantly different 
from the best prediction. The first 5 DDE predictions perform 

reasonably well as shown by the value of most residuals being 
well-below 0.1, although a trend towards the overestimation 
of the signal could generally be observed. 

Fig. 9. Right) The normalized residuals of the best prediction of DDE (DTD- 
cov + Offset) and DODE (NeuralNet-best) over individual diffusion weightings. 
The red asterisks indicate that residuals at a specific diffusion weighting show a 
significantly non-zero mean. With DDE data, this was observed only for b-values 
between 1800 and 3300 s/mm 

2 , whereas no biases were observed for DODE. 
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eightings where the sensitivity to blood pseudo-diffusion is maximal,
hich once again suggests a lack specificity at taking into account spe-

ific properties of the GM like its higher perfusion as compared to WM
 Ahlgren et al., 2016 ). This holds also for the best prediction (MAP-
RI) as shown by the significant overestimation of the signal at b <

50s/mm 

2 , where the contribution of pseudo-diffusion effects becomes
on-negligible. A bias in the prediction of SDE-GRID with MAP-MRI is
lso revealed for b > 6000 s/mm 

2 . While this effect might be partially
xplained by Rician noise, the observation that its effect is larger in WM
han GM, and that it grows in magnitude with fiber complexity being the
argest for WM-3, suggests the presence of a genuine unaccounted trend
n the signal. Interestingly, smaller errors are observed for the prediction
f SDE-GRID than of SDE-MS on average, and even methods providing
isibly biased SDE-MS predictions such as SHORE-worst, performed well
t predicting SDE-GRID. This might be explained by the larger range of
nique diffusion weightings included in SDE-GRID providing less redun-
ant information than many measurements in few shells, or to the larger
inimum diffusion weighting included in SDE-GRID (b = 141 s/mm 

2 )
s compared to SDE-MS (b = 10 s/mm 

2 ). 

.2. Trends in DDE and DODE data predictions 

The prediction of DDE and DODE data seems more challenging than
hat of SDE. Indeed, the signal measured with DDE and DODE is en-
oded with additional dimensions as compared to SDE, namely parallel
11 
nd orthogonal gradient orientations within one measurement, leading
o linear and planar b-tensors, respectively, as well as different diffusion
imes and oscillation frequencies. In the challenge design, this aspect
as stressed by requiring the prediction of unseen diffusion-weightings
nd gradient directions for 1 completely unseen diffusion time (DDE)
nd 2 unseen oscillation frequencies (DODE) provided a training set en-
oded with a different diffusion time and 3 different oscillation frequen-
ies, which is arguably a harder task than the prediction of SDE data.
he first take home message from the analysis of the DDE and DODE
redictions is the need to take into account the additional encoding di-
ension, which is in line with our expectations given that the previous

nalysis of the data showed a clear diffusion time/frequency dependence
ver this parameter range (e.g. Fig. 9 in Ianus et al., 2018 ). For models
hich do not account for diffusion time / frequency (e.g. DTI / DKI /
TD, etc), we expect the predictions for the unseen DDE with Δ = 10 ms

o be the same as the model prediction for the provided DDE data with
= 5 ms. Since for DDE only one diffusion time was provided, the neu-

al networks could not learn the effect of this parameter, so in practice
one of the submissions could account for diffusion time. For the un-
een DDE data with Δ = 10 ms, the best model from the current pool of
ubmissions is DTD-cov + Offset, which nevertheless resulted in a small
ias between the measurements and the predictions. The prediction er-
ors of the directionally averaged signal provided by the best model are
arger for intermediate b-values (e.g., b = 1800 – 3300 s/mm 

2 ) than for
he highest b-value of 4000 s/mm 

2 . This might be the case because the
ffect of diffusion time on the signal over this parameter range becomes
maller at higher b-value, for instance due to a smaller contribution of
xtracellular space. 

For DODE data, multiple frequencies were provided for training. The
est DODE predictions were achieved with methods able to account
or the frequency implicitly, such as in the case of neural networks,
hereas most submissions overestimated the measured signal. Interest-

ngly, the error increases on average with the oscillation frequency, and
ven the best prediction, NeuralNet-best, could not predict well the data
t b = 4000 s/mm 

2 for f = 200Hz. All submissions but one achieved a 25th
o 75th percentile error below 0.1, but 8 out of 10 submissions exhib-
ted a consistent median error of about 0.04. Altogether, this suggests
n our opinion that we currently do not fully understand how to prop-
rly model the effect of frequency, and highlights the need for further
esearch in the optimal modelling of DODE data. 

.3. Deep learning-based methods 

The application of machine learning and deep learning is currently
ooming across all science fields dealing with large data. MRI and dMRI
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re no exception, and in this very own challenge we have received 32
ubmissions based on deep learning methods next to established signal
epresentations and biophysical models, which represents 40% of the to-
al submissions. Interestingly, neural network-based methods provided
ccurate predictions for different diffusion encodings, achieving the 2nd
est prediction for SDE-MS, the 3rd best prediction for SDE-GRID and
DE, and the best prediction of DODE data. The latter performance is

emarkable, because NeuralNet-best and NeuralNet-worst provided the
nly two unbiased DODE predictions, showing ability to learn the rela-
ion between the diffusion signal and its encoding parameters, including
he oscillation frequency, without the need for explicit modelling. These
esults certainly showcase the potential of these methods, and support
heir applicability as excellent interpolators, able to learn data features
rom a rich dataset and to provide good predictions of unseen data -
ithin the boundaries of their training set. Most deep-learning based
ethods do not quantify metrics that can be used to extract properties

f in-vivo tissues, and are thus unlikely to spread into clinical use at
he current moment. Nevertheless, their good prediction performance
ake them favorable for tasks where a direct manipulation of the signal

s required, such as denoising, artefact removal or even data augmenta-
ion, and their application in combination with classic methods might
rove advantageous to enhance the quality of the results or to shorten
cquisition time. 

.4. Importance of hyperparameters and user choices 

Our analysis highlights how user choices and hyperparameters can
emarkably affect the prediction accuracy. The SHORE method, for ex-
mple, achieved both one of the best predictions of SDE-MS data as well
s the worst, with an average error difference between the two of about
%. Similarly, the addition of a degree of freedom to DKI or DTD-cov
i.e., + Offset) appreciably improved its accuracy. DKI + Offset, for ex-
mple, predicted the SDE-MS and DDE data with an average prediction
rror 10% and 92% smaller than DKI, respectively. Large variability
n the prediction performance was also observed for neural networks
ethods, which flexibility in design allows the implementation of very
iverse architectures with performance strongly influenced by the op-
imization of hyperparameters. Altogether, we believe that this high-
ights the importance of not only reporting the specific method used for
ata analysis, but also to explain the choice of its hyperparameters and,
here possible, to share its implementation to maximize the compara-
ility of results obtained in different studies. Next to user settings and
yperparameters, model assumptions are an important factor that might
imit the generalizability of a prediction method. This is especially the
ase for multi-compartment models based on physiological assumptions,
ncluding fixing the intra-cellular diffusivity to literature values or us-
ng tortuosity principles to constraint the cellular fraction, as recently
uggested (Lampinen et al. 2019; Henriques et al. 2019). 

.5. Link to previous challenges 

Various dMRI challenges have been organized in the past
 Ferizi et al., 2017 , Pizzolato et al., 2020 , Schilling et al., 2019 ), with
 focus on different data aspects. For instance the ones described by
chilling et al. (2019 ) focused on tractography, while others have fo-
used on data prediction, including diffusion measurements at multiple
cho times ( Ferizi et al., 2017 ) as well as inversion times ( Pizzolato
t al., 2020 ). In terms of challenge requirements, the one organized by
erizi et al. (2017 ) is the most similar to the current one, as it also evalu-
ted the submissions based on the prediction of unseen SDE data shells.

Nevertheless, the majority of models submitted to the SDE part of
his challenge do not overlap with the models included in the previous
hallenge, making a direct comparison difficult. One notable exception
s MAP-MRI, which performed very well for the current SDE datasets,
ut not for the one considered by Ferizi et al. (2017 ) which included
ultiple diffusion and echo times. In that case, models which accounted
12 
or multiple compartments with different T2 properties provided better
stimates, an effect not considered here. In addition to the development
f more models and signal representations, the current work investigates
eneralizability over a wider range of diffusion weightings, angular di-
ections, and diffusion times. 

.6. Limitations 

Some limitations of this study should be acknowledged for a more
omprehensive interpretation of the presented results. 

Data limitations: Firstly, the SDE-MS/SDE-GRID and DDE/DODE data
ave been acquired in very different settings. The SDE data were ac-
uired as part of the MASSIVE data ( Froeling et al., 2017b ) and represent
n unique collection of thousands of unique diffusion measurements in
n in-vivo human brain at 3T, but were spreaded in 18 acquisition ses-
ions - which might introduce additional variability in the data - and
re characterized by an overall modest SNR at b = 0s/mm 

2 (~15). Con-
ersely, the DDE/DODE data were acquired in an ex-vivo mouse brain
ith a state-of-the-art 16.4T scanner, and characterized by very high
NR. Consequently, the generalizability of our results to DDE/DODE
ata acquired in in-vivo humans at 3T requires further research. While
e expect our findings to generalize to individuals with similar charac-

eristics, e.g., healthy adult humans (SDE) and mice (DDE/DODE), some
esults might be driven by the unique characteristics of these brains, and
ill likely not extrapolate well in presence of pathology, as well as in

nfants and elderlies. 
Data selection: A further element of variability in the comparison of

he two datasets is introduced by the different criteria used for the selec-
ion of the signals: on the SDE data, we sampled signals from WM voxels
ith different configurations (1 to 3 fibers), but also included GM voxels,
hich allowed us to investigate tissue-specific performance. As a conse-
uence of this choice, any submissions regarding SDE-MS and SDE-GRID
eeded to perform well in both WM and GM to achieve a good score.
ifferently, all signals sampled from the DDE/DODE datasets were lo-
ated in WM and offer a more thorough overview of the prediction per-
ormances across different fiber configurations - including regions with
nown fiber fanning - but no insights into their applicability to GM. For
ll of the above, the prediction performance obtained by the submis-
ions on SDE and DDE/DODE should not be directly compared. In the
election of the voxels, we attempted to avoid tissue interfaces in order
o minimize partial volume effects between different tissue types, but
hese cannot be ruled out and are expected to be more detrimental for
ethods not explicitly dealing with partial volume effects. Neverthe-

ess, we argue that some extent of partial volume is ubiquitous in brain
MRI applications, and that taking it into account is likely part of the
hallenge to accurately model the dMRI signal. 

Challenge evaluation: As a community challenge, we chose to calcu-
ate a single metric (the mean squared error) in order to determine a
winning ” algorithm. Other choices of the score criteria were possible,
nd would likely result in a different ranking. For example, according to
odelling theory it would seem more appropriate to investigate a good-
ess of fit criteria as the Bayesian information criteria rather than con-
idering the signal residuals alone, to penalize signal overfitting (Sup-
lementary Material Table S2 and S3). However, it is arguable that these
inds of metrics are not suitable to characterize methods based on ma-
hine learning / deep learning where thousands to millions of parame-
ers are fitted, and that the mean squared error captures, in its simplicity
nd limitation, the basic ability to predict an unseen signal. Neverthe-
ess, doing well in the current challenge does not automatically guaran-
ee that these algorithms are the most appropriate models in all cases.
ere, we have focused on the ability to explain (i.e. predict) the sig-
al over a wide range of diffusion weightings, diffusion times, and fre-
uencies. Furthermore, some modelling approaches in this study may
e suitable only for a subset of the wide range of acquisitions in this
atabase, and may be more/less sensitive at different areas of the diffu-
ion sensitization space. Tensor-based models such as DTI and DKI, for
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xample, are known to well fit data in the range b = 800-1200 s/mm 

2 

nd b = 1000-3000 s/mm 

2 , respectively. Unsurprisingly, in this chal-
enge we indeed observe very large residuals for the DTI model at b
 500 s/mm 

2 and b > 2000 s/mm 

2 , and for the DKI model at b < 800
/mm 

2 and b > 5800 s/mm 

2 , respectively, which penalize the final scor-
ng of these methods. Another aspect that might influence the evalua-
ion is the pre-processing of the data, which is well-established to have
 major impact on the subsequent data analysis. To rule out its poten-
ial confounding effect on our results, we have provided the participants
ith standardized - already pre-processed data, but the inclusion of ad-
itional pre-processing steps (i.e., denoising, Gibbs ringing correction,
utliers replacement, etc.) might have resulted in different prediction
erformance and “winners ”. 

Lack of validation: The ability of a method to accurately predict
nseen data offers a measure of fidelity to the underlying tissue mi-
rostructure, but it is by no means a substitute for validation efforts
hat compare signal models to the actual biological tissue structure ob-
ained through orthogonal measurements such as, for example, high-
esolution microscopy. Thus, we argue that the appropriateness and
pecificity of the tested methods cannot be adequately captured by sig-
al fitting alone, and requires external validation, which is particularly
ritical in the case of biophysical multicompartment models. In addi-
ion to empirically assessing data, future work should continually strive
o validate these measures against orthogonal information through sim-
lations, physical phantoms, and animal models of tissue microstruc-
ure in order to paint the complete picture of the models successes and
bilities. 

.7. What is a good model? 

As described in past challenges ( Panagiotaki et al., 2012 ; Ferizi et al.,
015 ; Jelescu et al., 2020 ) and in reviews ( Jelescu et al., 2020 ;
ovikov et al., 2018 ), a good model or signal representation must well-
apture trends in the signal (explain seen signal and predict unseen sig-
al), and also have stability and robustness of fit ( Jelescu et al., 2016 ),
or the appropriate signal regime . 

On the other hand, a good model fit to the data, and ability to predict
nseen data, does not guarantee that the estimated model parameters
ave a sensible physiological meaning. Similarly, a visually appealing
ap of quantitative indices also does not equate to a “good model ”.
hile the “best ” model is the one that well-explains the underlying

hysiology that the signal is sensitive to (within the experimental de-
ign), the process of converging on the most-appropriate model is com-
lex, and examining the generalizability of the model to various dif-
usion sensitizations is only one step in that process. This specific step
ends insight into the information uncovered and captured in the sig-
al, and successes and limitations of various attempts to describe the
ignal. 

. Conclusions 

We have reported the results of a community effort to investigate
he generalizability of existing methods at predicting unseen diffusion
RI signals collected over a large range of diffusion encodings. Our re-

ults highlight that existing models perform well at predicting SDE data
n white matter and, to a lesser extent, in grey matter. Conversely, fu-
ure work is needed to better understand and model the information
ontent of DDE and DODE data. Next to the method choice, hyperpa-
ameters play a key role in the generalizability of fit methods, high-
ighting the importance of their optimization, and of reporting their
alues to support reproducibility. These challenge results serve not
nly as a snapshot of the current status quo in the field, but also as
n openly available benchmark to support the development of novel
ethods. 
13 
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ppendix A 

.1. Tensor-based models 

• DTI: The diffusion tensor imaging method was fitted with a linear
least squares procedure to determine the diffusion tensor (6 param-
eters) and the average non-weighted signal (1 parameter). 

• DKI: The diffusion kurtosis imaging extends the DTI method to ac-
count for restricted diffusion. It was fitted with a weighted least
squares procedure using ExploreDTI to determine 22 parameters:
6 for the diffusion tensor, 15 for the kurtosis tensor and the non-
weighted signal. No additional constraints were considered in this
fit. 

• DKI + Offset: The DKI model was extended to accommodate an addi-
tional degree of freedom modelling a positive constant bias in the
signal due to, for example, Rician noise. The 23 free parameters of
this model were fitted with a non-linear least squares procedure im-
plemented in MATLAB, constraining a monotonic signal decay and
enforcing both the diffusion and kurtosis tensor to be positive defi-
nite. 

• DTD-cov: The diffusion tensor distribution (DTD) method describes
the diffusion signal as the sum of a distribution of microscopic
tensors. The 28 parameters of the fourth order covariance tensor
14 
method were fitted to the data with a non-linear least squares pro-
cedure implemented in MATLAB, constraining a monotonic signal
decay and enforcing both the diffusion and kurtosis tensor to be pos-
itive definite. 

• DTD-cov + Offset: The DTD-cov method was extended with one ad-
ditional degree of freedom modelling a positive constant bias in the
signal due to, for example, Rician noise. The 29 free parameters of
this model were fit with a non-linear least squares procedure im-
plemented in MATLAB, constraining a monotonic signal decay and
enforcing both the diffusion and kurtosis tensor to be positived def-
inite. 

.2. Multi-compartment models 

• Ball&Stick: originally proposed from Behrens and colleagues, this
model consists of two compartments: a stick (impermeable cylinder
with zero radius) to model anisotropic restricted intra-cellular diffu-
sion, and a ball to model isotropic hindered extra-cellular diffusion.
The model was implemented in Python using the Dmipy package,
and its 4 parameters fitted to the data using a two stages proce-
dure consisting of an initial grid search, followed by a constrained
non-linear fit procedure based on a limited-memory quasi-Newton
method. 

• Ball&Racket: this model is an extension of the Ball&Stick that explic-
itly takes into account fanning configurations. The 7 parameters of
the model were fitted to the data using the same procedure described
for the Ball&Stick model. 

• NODDI-Watson: originally introduce from Zhang et al., this model
accounts for intra-cellular diffusion modelled as a tensor convolved
with a Watson distribution to account for axonal dispersion, an ex-
tracellular compartment modelled with a Zeppelin, and an isotropic
free water component to account for partial volume with the cere-
brospinal fluid. The volumes of the intracellular and extracellular
compartments are linked with a tortuosity principle, and the parallel
diffusivity of the tensor is set to 1.7 × 10 − 3 mm 

2 /s. The 5 parame-
ters of the model were fitted to the data using the same procedure
described for the Ball&Stick model. 

• NODDI-Bingham: this model extends the NODDI-Watson model to
account for asymmetric fiber dispersion using a Bingham distribu-
tion. The 7 parameters of the model were fitted to the data using the
same procedure described for the Ball&Stick model. 

• SMT: The spherical mean technique (SMT) model provides estimates
of neurite density and of the intrinsic tissue diffusivity unconfounded
by fibre crossings and orientation dispersion. The 51 parameters of
the model were fitted to the data using the same procedure described
for the Ball&Stick model. 

• NODDI-SMT: This is a reformulation of the NODDI-Watson model
using the SMT technique. The 50 parameters of the model were fitted
to the data using the same procedure described for the Ball&Stick
model. 

• MCMDI: this model describes intra-cellular diffusion with a stick,
and extra-cellular diffusion with a Zeppelin. The SMT technique is
used to achieve invariance to fibre crossing and orientation disper-
sion. The 50 parameters of the model were fitted to the data using
the same procedure described for the Ball&Stick model. 

• ActiveAx: introduced from Dyrby and colleagues, this model de-
scribes intra-cellular diffusion as a cylinder with finite radius, extra-
cellular diffusion as a zeppelin, and accounts for isotropic contam-
ination due to cerebrospinal fluid. The 7 parameters of the model
were fitted to the data using the same procedure described for the
Ball&Stick model. 

.3. Parametric representations 

• SHORE: The method is based on the original simple harmonic oscil-
lator reconstruction (SHORE). SHORE with optimized reconstruction

https://doi.org/10.1016/j.neuroimage.2021.118367
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was tested at different orders of 6, 8 and up to 12. However, the best
results or lower errors were determined to be at either order 6 or 8.
The 50 parameters of the model were fitted to the data using a linear
least-squares approach. 

• MAP-MRI: Mean Apparent Propagator Magnetic Resonance Imaging
(MAP-MRI) is a linear representation of the diffusion signal that uses
a 3D generalization of the SHORE basis. The 95 parameters of the
method were fitted using a penalized least-squares procedure with
generalized cross validation implemented. 

• MAP-MRI + Reg: This submission used the Laplacian-regularized
MAP-MRI method of order 8 implemented in the Dipy software li-
brary with no positivity constraint in the propagator and a reg-
ularization weight of 0.47 to fit the 95 free parameters of the
method. 
Table A1 
The valid signal predictions submitted to the MEMENTO challenge. For each met
notes on the fit procedure, and the data it has been applied to. The following pre
multi-compartment model (MCM), parametric representation (PAR), deep learning

Model name Category 
Implementation 

details 
Computation

[voxel]

DTI ( Basser et al., 
1994 ) 

TENS - < 1s 

DKI (J. H. 
( Jensen et al., 2005 ) 

TENS Implemented in 
ExploreDTI 

< 1s 

DKI + Offset 
( Morez et al., 2020 ) 

TENS Monotonic signal 
decay, positive 
definite tensor 

< 1s 

DTD-cov (C. F. 
( Westin et al., 2016 ) 

TENS Monotonic signal 
decay, positive 
definite tensor 

< 1s 

DTD-cov (C. F. 
( Westin et al., 
2016 ) + Offset 

TENS Monotonic signal 
decay, positive 
definite tensor 

< 1s 

Ball&Stick 
( Behrens et al., 

2003 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

< 1s 

Ball&Racket 
( Sotiropoulos et al., 

2012 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

< 1s 

NODDI-Watson 
( Zhang et al., 2012 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

< 1s 

NODDI-Bingham 

( Tariq et al., 2016 ) 
MCM Implemented in 

Dmipy ( Fick et al., 
2019 ) 

< 1s 

SMT ( Kaden et al., 
2016 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

< 1s 

NODDI-SMT MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

< 1s 

MCMDI 
( Kaden et al., 2016 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

< 1s 

ActiveAx (D. C. 
( Alexander et al., 

2010 ) 

MCM Implemented in 
Dmipy ( Fick et al., 

2019 ) 

< 1s 

SHORE 
( Ozarslan et al., 

2009 ) 

PAR From DeepSHORE 
( Nath et al., 2019 ) 

< 1s 

MAP-MRI 
Ozarslan et al., 2013 

PAR < 1s 

MAP-MRI + Reg 
( Fick et al., 2016 ) 

PAR Implemented in Dipy 
( Garyfallidis et al., 

2014 ) 

33s 

NeuralNet DL Perceptron 1 Layer 
50 nodes 

Training: ~
Prediction:

NeuralNet + Reinf 
( Williams, 1992 ) 

DL Perceptron 7 Layers 
optimized with NAS 
( Zoph and Le, 2016 ) 

NA 

15 
.4. Deep-learning methods 

• NeuralNet: A fully connected neural network with a single hidden
layer of 50 neurons and using sigmoid activation functions was
trained to predict the unprovided signal amplitudes for each mea-
surement independently. The 50 parameters of the network were
optimized based on the mean squared error of the predictions us-
ing the ADAM algorithm with a learning rate of 0.005 over 20000
epochs. For SDE-MS and SDE-GRID the normalized components of
the gradient (3 values) and the b-value were provided as inputs to the
network. For the DDE and DODE acquisitions, the gradient strength,
the normalized components of the two gradients (6 values), the b-
value, and the components of the b-matrix (6 values) were concate-
nated into one input vector of length 14. 
hod, we report the acronym and the main reference, the “category ”, special 
dictions were subdivided in the following categories: tensor-based (TENS), 
-based (DL). 

 time 
 

Number of free 
parameters Noise assumptions 

Optimization 
algorithm 

7 Gaussian Linear Least Squares 

22 Gaussian Weighted Least 
Squares 

23 Rician Non-linear 
least-squares 

28 Gaussian Non-linear 
least-squares 

29 Rician Non-linear 
least-squares 

4 Gaussian Constrained 
non-linear 

least-squares 
7 Gaussian Constrained 

non-linear 
least-squares 

5 Gaussian Constrained 
non-linear 

least-squares 
7 Gaussian Constrained 

non-linear 
least-squares 

51 Gaussian Constrained 
non-linear 

least-squares 
50 Gaussian Constrained 

non-linear 
least-squares 

50 Gaussian Constrained 
non-linear 

least-squares 
7 Gaussian Constrained 

non-linear 
least-squares 

50 Gaussian Regularized least 
squares 

95 Gaussian Constrained 
quadratic 

programming 
95 Gaussian Regularized least 

squares 

70s, 
 < 1s 

Signal dependent Gaussian Adam 

Up to 896 Gaussian Adam 
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• NeuralNet + Reinf: A fully connected neural network with reinforce-
ment learning. The authors adopted a neural architecture search
(NAS) to identify the optimal 7-layer perceptron model for dMRI
signal prediction with either 8. 16, 32, 64 or 128 nodes per layer.
The free parameters of the network ranged between 56 and 896, and
their values was optimized with the ADAM method using an initial
learning rate equal to 0.01 and 200 training epochs. 

Table A1 . 
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