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In binary-black-hole systems where the black-hole spins are misaligned with the orbital angular
momentum, precession effects leave characteristic modulations in the emitted gravitational waveform.
Here, we investigate where in the parameter space we will be able to accurately identify precession, for
likely observations over coming LIGO-Virgo-KAGRA observing runs. Despite the large number of
parameters that characterize a precessing binary, we perform a large scale systematic study to identify the
impact of each source parameter on the measurement of precession. We simulate a fiducial binary at
moderate mass-ratio, signal-to-noise ratio (SNR), and spins, such that precession will be clearly
identifiable, then successively vary each parameter while holding the remaining parameters fixed. As
expected, evidence for precession increases with signal-to noise-ratio (SNR), higher in-plane spins, more
unequal component masses, and higher inclination, but our study provides a quantitative illustration of
each of these effects, and informs our intuition on parameter dependencies that have not yet been studied in
detail, for example, the effect of varying the relative strength of the two polarizations, the total mass, and
the aligned-spin components. We also measure the “precession SNR” ρp, to quantify the signal power
associated with precession. By comparing ρp with both Bayes factors and the recovered posterior
distributions, we find it is a reliable metric for measurability that accurately predicts when the detected
signal contains evidence for precession.
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I. INTRODUCTION

In September 2015, the first direct detection of gravi-
tational-wave (GWs) marked the beginning of GW
astronomy [1]. Another 14 detections have been announced
by the LIGO Scientific and Virgo collaborations (LVC), the
vast majority of which were due to black-hole (BH)
mergers [2–7]. Additional events have also been reported
by independent groups [8–11]. These GW observations
have already provided significant insights into gravitational
physics, cosmology, astronomy, nuclear physics and fun-
damental physics (see e.g., Refs. [12–19]). With an order
of magnitude more observations expected over the next
5–10 years, as the sensitivities of the LIGO [20,21],
Virgo [22] and KAGRA [23] detectors improve and
additional detectors come online, GW astronomy from
compact-binary mergers has the potential to transform
our understanding of gravitational and fundamental
physics [24–26].
Everything we learn from GW binary-black-hole

(BBH) observations is a consequence of a detailed
parameter estimation analysis that extracts the source
parameters of the binary. While some parameters are
extracted with good precision, inspiral dominanted signals
show strong correlations between certain parameters

which means that they cannot be measured so accurately,
for example correlations between the binary’s distance
and inclination [27–29], the two masses [27,30], and the
mass-ratio and spin components aligned to the binary’s
orbital angular momentum [30–33]. As well as studies of
the inspiral, work has been done to extract the source
properties for high mass signals dominated by the merger
ringdown, see e.g., [34–37].
Spin components misaligned with the binary’s orbital

angular momentum, leading to a precession of the binary’s
orbital plane and hence modulations of the amplitude
and phase, have not yet been unambiguously measured in
GW observations [2], see Fig. 1. Precession effects and
correlations with other parameters are understood in
principle [38,39] but since theoretical signal models of
precessing binaries that include the merger and ringdown
date from only shortly before the first detections [40,41],
we have less experience of when precession will be
measurable, and what the impact will be on other
parameter measurements.
The purpose of this paper is to explore when precession

will be measurable, and its impact on other parameter
measurements, in the kind of configurations that are
representative of expectations from binary populations
based on LIGO-Virgo-KAGRA observations to date [2].

PHYSICAL REVIEW D 103, 124023 (2021)

2470-0010=2021=103(12)=124023(22) 124023-1 © 2021 American Physical Society

https://orcid.org/0000-0002-8843-6719
https://orcid.org/0000-0002-0967-2204
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.124023&domain=pdf&date_stamp=2021-06-10
https://doi.org/10.1103/PhysRevD.103.124023
https://doi.org/10.1103/PhysRevD.103.124023
https://doi.org/10.1103/PhysRevD.103.124023
https://doi.org/10.1103/PhysRevD.103.124023


By utilizing the precession signal-to-noise ratio (SNR) ρp
[43,44] as a quantifier for the measurability of precession,
we also verify that ρp is indeed a good metric for the
measurability of precession across the vast majority of the
parameter space, and relate it to the standard means to
identify the presence of precession, the Bayes factor. In
doing so, we show that computationally expensive param-
eter estimation runs can be avoided by simply calculating
the precession SNR.
Previous work has explored the general phenomenology

of precession effects: its increased measurability with large
in-plane spins [45–47], large mass ratios [45,46], high
inclination [36,38,44,48–50], and of course high SNR
[45,46,51]. Beyond these general expectations, the quanti-
tative behavior of parameter measurements in the presence
of precession has not been studied in great detail for typical
LIGO-Virgo-KAGRA observations. The measurability of
precession for high mass ratio LIGO-Virgo-KAGRA obser-
vations like GW190814 has been investigated in recent
work [52].
In this paper, we focus on the region of parameter space

most likely to yield binaries with observable precession:
binaries of comparable mass, with moderate in-plane and
aligned-spin components [44]. We perform a series of one-
dimensional investigations of the parameter space, in which
we vary one parameter at a time: total mass, mass ratio,
spins (both in-plane as characterized by χp, and the aligned
spin combination χeff ), the binary orientation (both the
inclination of the orbit and also binary polarization), and
the sky location and show the impact of varying each of
the binary parameters individually. These investigations
serve to confirm that much of the known phenomenology
is apparent even at relatively low SNR, while also

demonstrating that the precession SNR can be effectively
used across a significant fraction of the parameter space to
predict the observable consequences of precession without
the need for computationally costly parameter estimation
analyses.
This paper is structured as follows: Sec. II provides

an introduction to precession, a brief recap of the two-
harmonic approximation that allows us to define ρp, and a
summary of the importance of precession across the
parameter space. Section III provides an introduction to
the parameter estimation techniques used here, and
parameter estimation results and interpretation for our
fiducial system. In Sec. IV we perform a series of one-
dimensional explorations of the parameter space. In
Sec. VI we compare the predicted precession SNR with
observations and in Sec. V we compare precession SNR
with the Bayes factors between precessing and nonpre-
cessing runs. We conclude with a summary and discussion
of future directions.

II. BLACK HOLE SPIN INDUCED PRECESSION

A binary consisting of two compact objects will slowly
inspiral due to the emission of GWs. Assuming that the
binary is on a quasi-spherical orbit, it may be described by
the individual component masses, m1 and m2 (where we
define m1 > m2 and we denote the mass ratio to be
q ¼ m1=m2 > 1), and their spin angular momenta S1

and S2.
For the case where the total spin is misaligned with the

total orbital angular momentum, Si ×L ≠ 0, the system
undergoes spin-induced precession. In most cases L ≪ J,
and the system undergoes “simple precession,” where
the orbital angular momentum precesses around the

FIG. 1. Plot showing the posterior distributions for χp and ρp for all LIGO/Virgo BBH observations. The χp posterior distribution (left
hand side, colored) is compared to its prior (right hand side, white) in the form of a split violin plot. The ρp posterior distribution is
shown as a single violin. Horizontal grey lines show the 90% symmetric credible interval. The solid black line shows the ρp ¼ 2.1
threshold. Bounded KDEsare used for estimating the probability density. Data obtained from the Gravitational Wave Open Science
Center [42].
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(approximately constant) total angular momentum,
J ¼ S1 þ S2 þL, and the spins precess such that
_S ¼ − _L, where S ¼ S1 þ S2 [38,39].
The strength of precession is characterised by the tilt

angle of the binary’s orbit, β, defined as the polar angle
between L and J; see Fig. 2. β is determined primarily by
the total spin in the plane, and the binary’s mass ratio and
separation. At leading order the magnitude of the binary’s
orbital angular momentum is given by L ¼ μ

ffiffiffiffiffiffiffi
Mr

p
, and we

can write,

cos β ¼ μ
ffiffiffiffiffiffiffi
Mr

p þ Sk
½ðμ ffiffiffiffiffiffiffi

Mr
p þ SkÞ2 þ S2⊥�1=2

; ð1Þ

where M ¼ m1 þm2 is the total mass of the source,
μ ¼ m1m2=M is the reduced mass, r is the separation
and Sk and S⊥ are the total spin parallel and perpendicular
to L respectively. In general, the larger the “opening angle,”
β, the more prominent the precession effects.
In simple precession cases, β slowly increases during

inspiral. This temporal variation is mostly dependent on
the variation of r as, throughout the portion of the binary’s
inspiral that is visible in the GW detectors, μ, M, Sk
and S⊥ are all approximately constant. Therefore, β also
typically varies very little over the duration that is visible
in the GW detectors, and it is possible to make the
simplifying assumption that β remains constant. This
assumption has been used to good effect in previous
work, e.g., Ref. [48], although in this work we make no
assumptions about β.
It is often convenient to quantify the binary’s in-plane

spin by the scalar quantity χp [53] (see Refs. [54,55] for
alternative measures). χp estimates a time-average of the in-
plane spin components that drive precession, motivated by

the leading-order PN precession equations [38,39], and is
defined as,

χp ¼ 1

A1

max ðA1S1⊥; A2S2⊥Þ; ð2Þ

where A1 ¼ 2þ 3=ð2qÞ and A2 ¼ 2þ 3q=2 and Si⊥ is the
component of the spin perpendicular to L on the ith black
hole. χp as defined above, takes values between 0 (non-
precessing system) andþ1 (maximally precessing system).

A. Two harmonic approximation

Non-zero values of β and χp indicate that a binary is
precessing, and, if all other parameters are kept constant,
they parameterise the amount of precession in a system.
However, they are not sufficient to tell us whether precession
will be observable. Precession appears in the signal as
modulations of the amplitude and phase, but these also
depend on the binary orientation and signal polarization.
References [43,44] introduce a method for decomposing a
precessing waveform into a series of five nonprecessing
harmonics, where the characteristic modulations of a pre-
cessing signal are caused by the beating of these harmonics.
The harmonics form a power series in the parameter,

b ¼ tanðβ=2Þ: ð3Þ

In most regions of parameter space, the two leading
harmonics (a leading-order term independent of b, and a
first-order term proportional to b) are sufficient to capture the
significant precession features in the waveform, and the
other harmonics can be neglected. As discussed in detail in
Sec. Vof Ref. [43]), these other precession harmonics can be
ignored for binaries where β ≲ 45°. In general this is true
for all binaries, apart from relatively extreme systems, for
example, those that have θJN close to edge-on and are either
highly precessing or have very large negative spins.
Thus, for almost all signals we expect to observe, the

waveform can faithfully be expressed as,

hðfÞ ≈A0h0ðfÞ þA1h1ðfÞ; ð4Þ

where A0 and A1 are complex, orientation dependent
amplitudes, and h0ðfÞ and h1ðfÞ are the waveforms of
the two leading harmonics. For a detector with a one-sided
noise spectral density of SnðfÞ, the relative amplitude of the
harmonics is given by

b̄ ≔
jh1j
jh0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
df jh1ðfÞj2

SnðfÞR
df jh0ðfÞj2

SnðfÞ

vuuut : ð5Þ

which is the average value of b over the frequency range
defined by our starting frequency (20 Hz) to our Nyquist

FIG. 2. Plot showing how the precession angles used in this
study are defined in the coprecessing frame. The normal vector n̂
here indicates the line of sight of the observer, L̂ and Ĵ are the
orbital angular momentum and total angular momentum vectors
respectively, S1x, S1y and S1z are the x, y and z components of the
spin on the larger black hole. Note that J,L and n̂ are shown to be
co-planar only for ease of illustration. It is not true in general.
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Frequency (1024 Hz), weighted by the signal strength in
the detector. The complex amplitudesA0;1 depend upon the
extrinsic parameters of the binary: the distance dL, angle
between J and the line of sight n̂, polarization angle ψ ,
reference phase ϕ0, and the reference precession phase
ϕJL.

1 It is convenient to introduce a reference distance d0,
which is incorporated into the definitions of the harmonics
h0 and h1. The amplitudes are then defined as,2

A0 ¼
d0
dL

�
Fþ

�
1þ cos2θJN

2

�
þ iF× cos θJN

�
e−ið2ϕoþ2ϕJLÞ;

A1 ¼
d0
dL

½Fþ sin 2θJN þ 2iF× sin θJN�e−ið2ϕoþϕJLÞ: ð6Þ

The relative significance of the two harmonics is
encoded by

ζ ≔
b̄A1

A0

¼ b̄eiϕJL

�
Fþ sin 2θJN þ 2iF× sin θJN

1
2
Fþð1þ cos2θJNÞ þ iF× cos θJN

�
; ð7Þ

where the detector response Fþ;× is calculated using the
polarization angle appropriate for a coordinate system
defined with the z-axis along the direction of total angular
momentum J.
The observability of precession can then be characterized

by the precession SNR ρp, defined as the SNR in the
weaker of the two harmonics, and also expressible as a
fraction of ρ ¼ jhj, the total signal SNR,

ρp ¼ MinðjA0h0j; jA1h1jÞ

¼ ρ

�
minð1; jζjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jζj2
p

�
: ð8Þ

Equation (8) assumes that the two harmonics are
orthogonal. If the two harmonics are not orthogonal, such
that the overlap between the two harmonics is nonzero, it is
necessary to consider only the orthogonal part of the
less significant harmonic when calculating the precession
SNR. This introduces additional overlap terms between the
two harmonics in Eq. (8), see Ref. [43] for details. For
simplicity of presentation, in this work all equations are
presented under the assumption that the two harmonics are
orthogonal, unless otherwise stated. The majority of cases
considered in this paper have a small overlap between the
two harmonics (less than 10%). However, in the analysis
we always orthogonalize the harmonics for all calculations.

At higher masses, the two harmonics have significant
overlap and we discuss the impact of this when we vary
the total mass of the binary below.
The quantity ρp parametrizes the observable precession,

it is therefore the measured quantity in the data. By
considering what we actually measure in the data we are
able to understand many of the correlations and degener-
acies in the physical parameters that are caused by the
presence of (or lack of) measurable precession.
In the absence of precession, ρ2p will be χ2 distributed

with two degrees of freedom. Consequently, if there is no
observable precession in the system, ρp ≥ 2.1 in only 10%
of cases. Thus far we have used ρp ¼ 2.1 as a simple
threshold to determine if there is any observable precession
in the system. We revisit this in more detail in Sec. VI B.

B. Observability of precession

The strength of the modulations in the GW signal depend
primarily on the opening angle, β, and this is reflected in
the expansion parameter b in the two-harmonic approxi-
mation; the precession frequency _α also plays a role. The
strength of the modulations in the observed signal also
depend on the binary’s inclination to the observer, θJN, and
the detector polarization ψ , and these are all incorporated
into the precession SNR ρp, through Eqs. (7) and (8). From
these we can draw immediate conclusions about the
scenarios in which precession will be most easily mea-
sured. These observations are in general not new (see, as
always, the pioneering discussions in Refs. [38,39]), but we
summarize them here and, where salient, present them in
terms of the two harmonic formalism, which highlights the
insights and intuition that are simplified in this formulation.
We then compare these expectations with the quantitative
results that we find in our full parameter estimation study.
Our first basic picture of the strength of precession

effects comes from Eq. (1), which gives the dominant effect
on β during the inspiral. If we first consider cases where the
spin is entirely in the orbital plane, i.e., Sjj ¼ 0, we see that
the opening angle β will be zero if S⊥ ¼ 0 (as we would
expect), and increases linearly for small S⊥. The opening
angle also increases as μ decreases, i.e., as the mass ratio is
increased. Equation (1) is no longer accurate near merger,
and for equal-mass systems β does not become large, but
for large mass ratios the opening angle can approach 90°.
If we now consider nonzero Sjj, we see that the level of

precession will be reduced for systems with a positive
aligned-spin component, and will be increased for systems
with a negative aligned-spin component. The importance of
this effect will depend on the other terms, but we can see
that for a high-mass-ratio system where μ is very small, and
close to merger, so rM is also small, the aligned-spin
component will have a strong effect on β, and therefore the
measurability of precession. A negative Sjj is necessary to
achieve β > 90°, and for large mass-ratio systems near

1This is equivalent to α0 in Ref. [43].
2These expressions are equivalent to Eq. (33) in [43], which

are restricted to the special case where Fþ ¼ cos 2ψ and
F× ¼ − sin 2ψ . More generally, the detector response also
depends upon the sky location in addition to the polarization.
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merger (small μ and rM) and large negative Sjj, β can
approach 180°, but such systems will be rare.
The measurability of precession also depends on the

orientation of the binary with respect to the detector, θJN.
As we see in Eq. (7), precession effects will be minimal if
θJN ∼ 0° or 180°, i.e., the observer views the system from
the direction of Ĵ. We expect precession to be strongest in
the observed waveform for orientations close to θJN ∼ 90°.
Additionally, when the detector, or network is primarily
sensitive to the × polarization, precession effects will be
more significant. The amplitude of the k ¼ 1 harmonic
vanishes in the þ polarization for both face on θJN ¼ 0°
and 180° and edge-on θJN ¼ 90° systems, while the ×
polarization is maximal for edge-on systems. Additionally,
the × polarization for the k ¼ 0 harmonic vanishes for
edge on systems, while the þ polarization is only reduced
by a factor of two. Thus, even when b is small, there
can be observable precession when the system is close to
edge on and the network is preferentially sensitive to the ×
polarization. For a given choice of masses and spins, the
maximum precession SNR is ρp ¼ ρ=

ffiffiffi
2

p
.

III. PARAMETER ESTIMATION RESULTS

A. Standard configuration

We begin by describing the results of the parameter
recovery routine for a specific simulated signal. The details
of the signal are given in Table I. These parameters were
chosen so that precession effects would be significant in the
observed waveform while still being consistent with the
observed population of BBHs. In the following sections,
we vary over the parameters of the signal one-by-one to
investigate the impact of each parameter on the observ-
ability of precession and the accuracy of parameter

recovery. For each parameter, we are able to both increase
and decrease the significance of precession.
By taking the inferred properties of the BBHs observed

in the first, second and third observing runs [56], it is
predicted that 90% of detected binaries will have mass
ratios q < 4 and ∼97% of BHs in these binaries will have
masses less than 45 M⊙ [57]. Our “standard” simulated
signal was chosen to have total mass M ¼ 40 M⊙ and
mass ratio q ¼ 2 inclined at an angle of θJN ¼ 60°. This
corresponds to component masses of 26.7 M⊙ and
13.3 M⊙. This mass ratio and inclination was chosen to
increase the observability of precession.
Of the 50 events reported by the LIGO/Virgo, 13 exclude

the aligned-spin measure χeff ¼ 0 at 90% confidence
[2,56,58]. The other 37 observations peak at χeff ¼ 0
[2,56]. Based on this, studies have shown that it is likely
BHs in binaries have low spin magnitudes [19,44,59,60].
For this reason, in our standard configuration the BH spins
were chosen such that there is zero spin aligned with the
binary’s orbital angular momentum, χeff ¼ 0. We introduce
precession by giving the more massive BH a spin of 0.4 in-
plane and leaving the second BH with zero spin; two-spin
effects are generally far weaker than the dominant pre-
cession effect, which exhibits the same phenomenology as
a single-spin system [53,61]. From Eq. (2) we see that this
gives us a system with χp ¼ 0.4. The opening angle for the
binary when the signal enters the detector’s sensitivity band
is 10° and the average value of the parameter b ¼ tanðβ=2Þ
is b̄ ¼ 0.11, from Eq. (5). The signal is simulated using the
IMRPhenomPv2 waveform model that incorporates pre-
cession effects, but not higher harmonics (l > 2) in the
signal [40,62].
Our “standard” simulated signal was chosen to be more

favorable to precession measurements than typical LIGO-
Virgo observations. Assuming systems are distributed

TABLE I. Table showing the simulated and inferred parameters for the “standard” injection when recovered by a nonprecessing
(IMRPhenomD) and a precessing (IMRPhenomPv2) waveform model. We report the median values along with the 90% symmetric
credible intervals and the maximum likelihood (maxL) value.

Simulated Median maxL

Precessing Nonprecessing Precessing Nonprecessing Precessing

Total mass M=M⊙ 40.0 40þ3
−2 40þ4

−2 40.161 40.507
Chirp mass M=M⊙ 16.22 16.5þ0.3

−0.2 16.3þ0.3
−0.3 16.459 16.113

Mass ratio q 2.0 1.8þ0.8
−0.7 1.9þ0.9

−0.7 1.895 2.191
Inclination angle θJN=° 60.0 110þ50

−100 120þ40
−90 30.0 40.0

Precession phase ϕJL=° 45.0 … 200þ100
−200 … 80.0

Effective aligned spin, χeff 0.0 0.044þ0.099
−0.084 −0.005þ0.098

−0.092 0.06 −0.011
Effective precessing spin, χp 0.4 … 0.5þ0.4

−0.3 … 0.554
Right ascension RA=rad 1.88 3þ3

−3 3þ3
−3 1.418 1.325

Declination DEC=rad 1.19 0.2þ1.0
−1.2 0.2þ1.0

−1.2 1.229 1.221
Luminosity distance dL=Mpc 223 500þ200

−200 400þ200
−200 451.834 372.706

Network SNR ρ 20.0 19.3þ0.1
−0.2 19.7þ0.2

−0.2 19.52 19.936
Precessing SNR ρp 5.05 … 4þ2

−2 … 4.649
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uniformly in binary orientation, masses drawn from a
power law distribution and spins drawn from a low
isotropic distribution (see Ref. [44] for details), we expect
that 4 in every 100 binaries detected by LIGO-Virgo will be
inclined at angles greater than 60° and have b̄ > 0.11.
The sky location of the binary was chosen to have

RA ¼ 1.88 rad, DEC ¼ 1.19 rad. The coalescence time is
t ¼ 1186741861 GPS (corresponding to the merger time of
GW170814 [63]). The polarization angle, defined by the
orientation of the orbital plane when entering the sensitive
band at 20 Hz, is ψ ¼ 40°. The two harmonic approxi-
mation is calculated in the J-aligned frame (ẑ ¼ Ĵ). In this
frame, the polarization angle is ψJ ¼ 120°, which gives
antenna factors for H1 of Fþ ¼ 0.34 and F× ¼ 0.53
and for L1 of Fþ ¼ −0.45 and F× ¼ −0.30, thus both
detectors are roughly equally sensitive to the two GW
polarizations.
We injected the signals into zero noise. The zero-noise

analysis results will be similar to those obtained from the
average results of multiple identical injections in different
Gaussian noise realizations. The simulated signal is recov-
ered using the LIGO Livingston and Hanford detectors
with sensitivities matching those achieved in the second
observing run (O2) [2]. A low frequency cut-off of 20 Hz
was used for likelihood evaluations, this frequency is also
used as the reference frequency when defining all fre-
quency dependent parameters such as θJN. Both the LIGO
Livingston and Hanford sensitivities improved prior to the
third observing run (O3) [64] and are expected to improve
further prior to the fourth observing run (O4) [65]. The
results presented in this work are unlikely to be affected
significantly by these changes and therefore we expect the
main conclusions to be valid for O4 and beyond.
The SNR of the signal is fixed to be 20, corresponding to

a moderately loud signal for aLIGO and AdVobservations
[65]. This sets the distance to dL ¼ 223 Mpc. The simu-
lated SNR in the two detectors is 16.2 in L1 and 11.7 in H1.
The simulated precession SNR in each of the detectors is
3.7 and 3.4 respectively, giving a network precession SNR
of 5.0. Thus, we expect that precession will be clearly
observable in this signal.

B. Parameter estimation techniques

We will adopt a parameter estimation methodology that
uses matched filtering with phenomenological gravitational
waveforms and Markov Chain Monte Carlo (MCMC)
techniques to sample the posterior.
We begin by introducing the matched filtering formali-

zation for parameter estimation. We assume that the time
series received from the GW detectors can be decomposed
as a sum of the GW signal, hðtÞ, plus noise, nðtÞ, which is
assumed stationary and Gaussian with zero mean,

dðtÞ ¼ hðtÞ þ nðtÞ: ð9Þ

Under the assumption of Gaussian noise, the probability of
observing data d given a signal hðλÞ parametrized by
λ ¼ fλ1; λ2;…; λNg, otherwise known as the likelihood,
is [66],

pðdjλÞ ∝ exp

�
−
1

2
hd − hðλÞjd − hðλÞi

�
; ð10Þ

where hajbi denotes the inner product between two wave-
forms a and b and is defined as,

hajbi ¼ 4Re
Z

∞

0

ãðfÞb̃�ðfÞ
SnðfÞ

df; ð11Þ

where SnðfÞ is the one-sided power-spectral density (PSD)
and ã denotes the Fourier transform of the gravitational
waveform a.
The posterior probability density function (PDF) can

then be computed through a simple application of Bayes’
theorem,

pðλjdÞ ¼ pðλÞpðdjλÞ
pðdÞ ;

∝ pðλÞ exp
�
−
1

2
hd − hðλÞjd − hðλÞi

�
; ð12Þ

where pðλjdÞ is the posterior distribution for the parameters
λ, pðλÞ is the prior probability distribution whereR
pðλÞdλ ¼ 1, and pðdÞ is the marginalized likelihood

where pðdÞ ¼ R
pðλiÞpðdjλiÞdλi. Posterior distributions

for specific parameters can then be found by marginalizing
over all other parameters,

pðλijdÞ ¼
Z

pðλjdÞdλ1…dλi−1dλiþ1…dλN: ð13Þ

In the idealized situation of zero noise, Eq. (10) has a
maximum at hðλÞ ¼ hðλ0Þ. However, as can be seen in
Eq. (12) the posterior also includes priors, this means that,
as well as effects due to noise, certain priors may cause the
maxima to be deflected away from hðλÞ ¼ hðλ0Þ. This
would then lead to Eq. (13) recovering a biased posterior.
In this work, we consider the effect of three closely related
priors,

(i) Global: the prior used during the parameter estima-
tion analysis. This reflects our prior belief before
observing any data,

(ii) Conditioned: the global prior conditioned upon the
posterior distributions of other parameters from
the same analysis. For example since χeff and χp
are correlated, any informative measurement of χeff
modifies our prior beliefs about χp. This prior has
been used in previous LVC publications, see
e.g., [2],
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(iii) Informed: the global prior conditioned upon the
posterior distributions from a different analysis.
Here, we use this to inform our expectations of
the degree of precession given the results from a
nonprecessing analysis. See Sec. VI for details.

C. Parameter recovery

We performed parameter estimation on the signal
using the LALInference [67] and LALSimulation
libraries within LALSuite [68]. Parameter recovery was
performed with the IMRPhenomPv2 model [40,62],
which matches the simulated signal to remove any sys-
tematic error caused by waveform uncertainty, and the
corresponding IMRPhenomD aligned-spin waveform
model [69,70], which does not include any precession
effects. Additionally, all analyses used exactly the same
priors as those used in the LIGO-Virgo discovery papers,
for details, see Appendix B.1 of [2]. All post-processing
was handled by the PESummary PYTHON package [71].
Table I summarizes the key results for the standard

configuration. All uncertainties are the 90% symmetric
credible intervals.
We begin by comparing the overall differences between

parameter recovery with the precessing, IMRPhenomPv2,
and nonprecessing, IMRPhenomD, runs. From the table,
we see that the maximum likelihood SNR for the non-
precessing model is, as expected, lower than for the
precessing waveforms. This can be easily understood from
the two-harmonic approximation. Since the precessing
waveform is well approximated by the sum of two non-
precessing harmonics, we would expect the nonprecessing
recovery to accurately recover the more significant of these
two. If that were the case, the we would expect that,

ρ2D ≈ ρ2 − ρ2p; ð14Þ

and this is indeed the case, as ρD ¼ 19.52, ρ ¼ 19.94 and
the recovered power in the second harmonic is ρp ¼ 4.6.
Furthermore, we see that the recovered waveforms confirm
this expectation: the recovered waveform when we include
precession matches well with the simulated signal, while
the nonprecessing run recovers a waveform that matches
the dominant harmonic, as show in Fig. 3.
We first consider the accuracy with which the masses and

(aligned) spins are recovered. As expected, the chirp mass
of the system is well recovered, in that it matches the
simulated value with only a 2% uncertainty, which remains
constant for both precessing and nonprecessing runs. As is
well known, there is a degeneracy between mass-ratio and
spin, particularly during the inspiral part of the waveform
[30–33], which leads to significant uncertainty in both
parameters. In Fig. 4 we show the recovery of the mass ratio
and spin, for both precessing and nonprecessing runs.
When the model used to recover includes precession
effects, the peak of the posteriors is located close to the

simulated value (χeff ¼ 0 and q ¼ 2.0) and, while the
degeneracy leads to significant uncertainty in both param-
eters, the mass-ratio distribution is clearly peaked away
from q ¼ 1. Interestingly, when we recover with a non-
precessing waveform model, the inferred aligned spin
component is systematically offset, with a peak at
χeff ≈ 0.05. This can be understood by recalling that
precession induces a secular drift in the phase evolution
of the binary, and this can be mimicked by a change in the
value of the aligned spin [38,43]. This discrepancy has not
been seen in LIGO/Virgo observations [2] as we have not
observed any systems with significant ρp (see Fig. 1). We
investigate this further in Sec. IV D, where we study the
effect of varying the mass ratio.
For nonprecessing binaries, it is generally not possible to

accurately recover the distance and orientation of the source,
due to a well known degeneracy (see e.g., Ref. [29] for
details), although the observation of higher signal harmonics
can break this degeneracy through an independent meas-
urement of the source inclination [27,29,72]. Similarly, the
observation of precession can break this degeneracy [73].
Precession causes an oscillation of the orbital plane leading
to a time-dependence of the orientation of the orbital plane
relative to the line of sight. Equivalently, in the two-harmonic
picture, precession leads to the observation of a second
harmonic and, consequently, additional constraints on the
binary orientation as the amplitudes of the harmonics depend
upon the viewing angle. In Fig. 4, we show the inferred two-
dimensional distance and inclination posteriors for the
precessing and nonprecessing runs. As expected, the pre-
cessing run constrains the source to be away from face-on,
while the nonprecessing run simply returns the prior.
However, even with observable precession, the simulated
distance and orientation are not accurately recovered—a
significant fraction of the posterior support is for a system at
a greater distance and oriented closer to face-on. We will see

FIG. 3. Comparison of the simulated precessing (green), non-
precessing maximum likelihood (red), precessing maximum
likelihood (black) and dominant precessing harmonic (blue)
waveforms as a function of frequency. Waveforms are projected
onto the LIGO Hanford detector.
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how these measurements improve with stronger precession
in Sec. IVB.
The sky location of the source is not well recovered. The

analysis was performed with only the two LIGO detectors,
and therefore we expect to recover the source restricted to a
ring on the sky, which corresponds to a fixed time delay
between the detectors [74,75]. The location along the ring
cannot be well constrained and, as expected the inferred
location is preferentially associated with sky positions
where the detector network is more sensitive. Thus, while
the simulated sky location is within the 90% region, it is not
at or close to the peak. This impacts the recovery of the
distance, with the signal being recovered at larger distances,
although the simulated distance remains within the 90%
range. In Sec. IVG, we show results from a set of runs with
varying sky location, and verify that at sky locations where
the network is more sensitive, the distance posterior is more
consistent with the simulated value.
Lastly, we turn to measurement of precession. In Fig. 5

we show the recovered distributions for binary orientation,
θJN, precessing spin χp, initial precession phase, ϕJL, and
precession SNR, ρp. There is a clear correlation between
the inferred orientation and χp, with binaries that are more
inclined having lower values of χp. Neither of these
quantities are directly observable, it is only the amount
of observable precession in the system, encoded by ρp, that
can be measured. Thus the orientation and spin must
combine to give the right amount of power in precession,
and we see that this is the case—there is little correlation
between the recovered values of ρp and the precessing

spin χp. The inferred value of the precessing spin χp and
precession SNR ρp are both consistent with the simulated
values. Specifically, the signal has χp ¼ 0.4 and this is
consistent with the recovered value, although the posterior
distribution is broad, with support over essentially the
entire range from 0 to 1. The precession SNR peaks well
away from zero, giving clear indication of precession in the
system. However, the peak of the distribution occurs at 3.5,
while the simulated value is 5.0. We have deliberately
chosen an event with significant observable precession.
Only a small fraction of the parameter-space volume leads
to such significant precession as shown by the informed
prior on Fig. 5. This is calculated by estimating the allowed
values of ρp conditioned on the measurements from a
nonprecessing analysis. See Sec. VI for further details.
The precession phase, ϕJL, while not measured with

great accuracy, does show two peaks, which are consistent
with the simulated value of 45° (0.8 rad). The precession
phase can be inferred from the relative phase of the two
precessing harmonics using Eq. (7), provided the binary
orientation is well measured. There is a clear dependence
with the binary orientation: if θJN < 90° then the peak is in
ϕJL at the simulated value and if it is greater then ϕJL is
offset by 180°, to compensate for the change in sign of the
cos θJN terms in Eq. (7).

IV. IMPACT OF VARYING PARAMETERS

We now look at the effect of varying individual param-
eters one at a time on the recovered posteriors, in particular

FIG. 4. 2d contour comparing q–χeff (left) and distance–inclination (right) degeneracies when precession effects are included.
Contours show the 90% confidence interval. Bounded two-dimensional KDEs are used for estimating the joint probability density. The
black circle indicates the simulated values.
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focusing on the measurement of precession as described by
the posterior distributions of ρp and χp. All subsequent one-
dimensional investigations of the parameter space maintain
a constant SNR (except for Sec. IVAwhere the effect of the
SNR is investigated). This is achieved by varying the
distance to the source.
Primary results presented in this section will be dis-

played in the form of violin plots. We show the χp
posterior distribution (left hand side, colored) compared
to the global prior (right hand side, white) unless other-
wise stated. We show the ρp posterior distribution as a
single violin. Horizontal grey lines show the 90% sym-
metric credible interval. Horizontal red lines show the
simulated value. A solid black line corresponds to the
ρp ¼ 2.1 threshold. Bounded KDEsare used for estimat-
ing the probability density. We use the same 2d contour
plots and multi-dimensional corner plots as described in
Sec. III C. Plots were generated with the PESummary [71]
PYTHON package.

A. SNR

We start with the fiducial run configuration described
above and vary the SNR of the simulated signal.

In the strong-signal limit, where the likelihood surface
can be well approximated by a multivariate gaussian, it is
well known that the accuracy with which parameters can be
measured is generally inversely proportional to the SNR
[27,30]. However, this is not always the case due to, for
example, degeneracies between parameters (see Ref. [76]
for a discussion of the limits of this approximation).
Fig. 6 shows that as the SNR of the simulated signal

increases, the accuracy and precision of the inferred χp
posterior distribution improves. As expected the width of
the 90% credible interval decreases approximately linearly
with increasing SNR. The improvement in the χp posterior
distribution can be mapped to a linear increase in ρp.
When the simulated signal has low SNR (ρ ¼ 10), the

recovered χp posterior distribution resembles the prior,
implying that there is no information about precession in
the data. For this case, ρp matches the expected distribution
in the absence of any measurable precession—a χ distri-
bution with 2 degrees of freedom. As the SNR increases
(ρ ¼ 20–30), the 5th percentile of the ρp distribution is
comparable or greater than the ρp ¼ 2.1 threshold. This
maps to the χp posterior distribution removing all support
for near-zero χp (χp ≲ 0.1). For larger SNRs (ρ > 40), the
entire ρp distribution is greater than the 2.1 threshold. This
implies significant power from precession. For these cases,
we remove support for maximal precession χp ∼ 1.
As expected we find good agreement between ρp and a

noncentral χ distribution with 2 degrees of freedom and
noncentrality equal to the inferred power in the second
harmonic (median of the ρp distribution).

B. In-plane spin components

We now look at the effect of varying the amount of
precession in the system, varying χp from 0 to 1 in steps
of 0.25. At χp ¼ 1 we have maximal spin, all in the plane
of the binary. The inferred values of precessing spin and
precession SNR are shown in Fig. 7. We observe, as
expected, that increasing the in-plane spin leads to an
increase in the magnitude of precession effects observable
in the system. With zero precessing spin, there is no
evidence for precession in the system; the recovered χp
is consistent with zero.3 Similarly, there is no support for
significant precession SNR, with ρp constrained near zero.
As χp increases, the amount of precession in the system
grows and the measurement of χp becomes both more
accurate and more precise. Figure 7 shows the relationship
between ρp and χp, and a larger value for ρp enables a
better measurement for χp.

FIG. 5. A corner plot showing the recovered values of binary
orientation θJN, precessing spin χp, precession phase ϕJL and
precession SNR ρp. Shading shows the 1σ, 3σ and 5σ confidence
intervals. Black dots show the simulated values. The grey
histograms show the informed prior, see Sec. VI. There is a
clear correlation between the binary orientation and inferred
precession spin, with signals which are close to face on
(cos θ ≈�1) having larger values of precessing spin, while those
which are more inclined having less precessing spin. The
precession SNR only weakly correlated with χp.

3We do not expect the χp posterior to contain χp ¼ 0 as there is
no prior support there, however the posterior is relatively well
constrained at low precession.
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Fig. 8 shows how the inferred mass ratio–aligned spin
and distance–orientation contours change as the magnitude
of the in-plane spins change. When there is no observable
precession in the system, there is a clear degeneracy in both
cases. However, as precession effects become stronger the
degeneracy between both pairs of parameters is broken. If
ρp is small then this can be explained by both a small
amount of precession observed at almost any inclination
angle, or a large χp observed close to face on, as seen in
Fig. 5. Since precession effects are not strong enough to
provide an accurate measurement of the orientation, the
degeneracy between distance and θJN persists. When ρp
clearly excludes small values, there is no support for close
to face-on signals, allowing a more precise measurement of
the inclination angle θJN , breaking the degeneracy with
distance.
Stronger precession also allows for improved measure-

ment of the mass ratio. The opening angle β, and con-
sequently the precession parameter b̄, increases as the

mass-ratio is increased, as can be seen from Eq. (1). Thus,
when strong precession effects are observed, the signal is
inconsistent with an equal mass system. In addition, the
difference in frequency between the two leading precession
harmonics depends upon the mass-ratio [43], and this may
also improve our measurement of q. This can also be seen
from the precession dynamics, where the precession rate of
L around J, _α, depends the mass ratio, and the number of
observable precession cycles corresponds to improved
accuracy in the measurement of the mass ratio [77].
As χp is increased, the peak of the recovered ρp

distribution is closer to the simulated value. This is likely
due to a better measurement of the binary orientation as
shown in Fig. 8.

C. Inclination

It is well known that the inclination angle will affect our
ability to measure precession, as outlined in the discussion
in Sec. II. In particular, from Eq. (7) we see that in the

FIG. 6. Violin plots showing the recovered posterior distributions distributions for χp compared to its prior (left) and ρp compared to a
noncentral χ distribution with 2 degrees of freedom and noncentrality equal to the median of the ρp distribution (right). Distributions are
plotted for varying SNR. Parameters other than the SNR of the signal match the “standard injection” (see Table I).

FIG. 7. Violin plots showing the recovered posterior distributions distributions for χp compared to its prior (left) and ρp (right).
Distributions are plotted for varying χp. Parameters other than χp match the “standard injection” (see Table I).
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two-harmonic approximation the second harmonic van-
ishes when θJN ¼ 0° or 180°. In this section we consider the
effect of changing the orientation of our standard configu-
ration, which allows us to quantify how it will manifest in
realistic LIGO-Virgo signals. A related study has looked at
the effect at higher mass ratios [52].
The effect of varying θJN is shown in Fig. 9. For binaries

where the total angular momentum is nearly aligned with the
line of sight, precession effects are not observable, as is clear
from both the ρp and χp posteriors. It is not until θJN ≥ 40°
that we begin to be able to measure precession. Although the
accuracy of the measurement clearly improves as we
increase θJN, the uncertainty in the measurement of χp

remains large and even at θJN ¼ 90° the posterior is very
broad. This can be understood by considering the degener-
acies shown in Fig. 5 for the standard signal and in Fig. 10
for the θJN ¼ 90° signal. In both cases, the measured
quantity, ρp, is relatively well constrained but neither the
binary orientation nor χp are accurately measured. The
observed precession is consistent with both a highly inclined
systemwith lower precessing spin (i.e., low χp and large θJN)
or by a less inclined system with higher precessing spin (i.e.,
high χp and small θJN). Both of these will produce similar
observable effects in the waveform.
This allows us to explain the measured posterior for χp.

At low inclination the posterior is consistent with small

FIG. 8. Two dimensional posteriors for (left) mass ratio and aligned spin, χeff , (right) binary orientation and distance. Contours show
the 90% confidence interval. Bounded two-dimensional KDEs are used for estimating the joint probability density. The black circle with
corresponding horizontal and vertical lines indicates the simulated values. For the simulated distance, a solid horizontal band indicates
the maximum and minimum simulated values.

FIG. 9. Violin plots showing the recovered posterior distributions distributions for χp compared to its prior (left) and ρp (right).
Distributions are plotted for varying θJN. Parameters other than θJN match the “standard injection” (see Table I).
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values of χp. While we are unable to rule out large χp, there
is limited support as it would require the system to be
observed very close to face-on, otherwise precession effects
become significant. At large values of θJN, when precession
is clearly observable in the signal, χp ¼ 0 is excluded but
the distribution remains broad and extends to χp ¼ 1.

D. Mass ratio and aligned spin

Figure 11 shows how the inferred precessing spin and
precession SNR varies with the mass ratio of the system.

As expected from the general considerations presented in
Sec. II, as the mass ratio increases, an in-plane spin on the
larger BH leads to a larger opening angle and more
significant precession effects. For near equal-mass sys-
tems (q≲ 1.5), the inferred χp posterior distribution
resembles its prior, and there is not significant power in
precession, as shown by the value of ρp. As the mass ratio
increases, the inferred power in precession also increases
and for q≳ 2.5, the 90% credible interval of the inferred
ρp distribution is entirely above ρp ¼ 2.1. At this stage,
precession is clearly identified and χp ≈ 0 is clearly
excluded. In addition, the maximum value of χp is also
bounded away from maximal.
Fig. 12 shows how varying χeff affects our ability to

measure precession. A system with a large negative χeff
results in a larger opening angle compared to an equivalent
system with a large positive χeff . Thus, based upon Eq. (1),
we expect the observable impact of precession to be greater
for negative values of χeff and smaller for positive values.
The results are consistent with this expectation, in that the
precession SNR decreases with increasing χeff and the
width of the recovered χp distribution increases. However,
for the χeff ¼ 0.4 analysis, we find that the range of χp is
restricted, with both χp ¼ 0 and χp ¼ 1 excluded. This is
not due to the measurement of precession, but is actually
due to the measured nonzero aligned-spin component.
A nonzero measurement of χeff forces χp < 1 as the

primary and secondary spin magnitudes must be less than
unity. For example, in the χeff ¼ 0.4 analysis, we measure
χeff ¼ 0.38þ0.07

−0.07 . Under the single spin assumption, this
limits χp < 0.95. Similarly, since we are using prior
distributions that are uniform in spin magnitude and
orientation, the observation of a large aligned spin compo-
nent leads to greater support for a large in-plane spin
component. This is shown in Fig. 13, where we plot both
the uninformed prior on the primary spin as well as the

FIG. 10. A corner plot showing the recovered values of binary
orientation θJN, precessing spin χp and precession SNR ρp for a
system simulated at edge on. Shading shows the 1σ, 3σ and 5σ
confidence intervals. Black dots show the simulated values, We
see the strong correlation between θJN and χp reflecting the
measurement of a certain ρp.

FIG. 11. Violin plots showing the recovered posterior distributions distributions for χp compared to its prior (left) and ρp (right).
Distributions are plotted for varying mass ratio. Parameters other than the mass ratio of the signal match the “standard injection” (see
Table I).
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prior conditioned on χeff ¼ 0.4, which removes all support
for χp ≈ 0.
The χp measurement for the χeff ¼ 0.27 and 0.4 analyses

are similar to the conditional prior but do restrict the lower
χp bound beyond prior effects. Although the distribution
for ρp does extend to zero, it still peaks above ρp ¼ 2.1
indicating some evidence, although not particularly strong,
for precession.
As we vary the mass ratio and aligned spin, the length

of the waveform will change. In particular, the aligned
spin and high mass ratio configurations produce longer

waveforms than those with anti-aligned spins and equal
masses [78]. In principle, this will impact the measurability
of precession, as longer waveforms allow for a greater
number of precession cycles in the detectors’ sensitive
band. For very short signals, with less than one precession
cycle in band, the two leading harmonics are no longer
orthogonal (or even approximately so), which make it more
challenging to unambiguously identify the second har-
monic. This is not an issue for the signals considered here,
but does become important when we vary the mass of the
binary in Sec. IV E. With a greater number of precession
cycles, we will also be able to more accurately measure the
precession frequency (the frequency difference between the
harmonics), which may improve the measurement of mass
ratio [77]. However, it is still the precession SNR that
determines the observability of precession. Finally, we note
that changing the mass ratio and aligned spin will change
the overall amplitude of the waveform. Since our study is
performed at a fixed SNR, this simply leads to the signals
being placed at a larger or smaller distance and therefore
does not impact the results presented here.

E. Total mass

We now vary the total mass of the system, keeping all
other parameters including mass ratio fixed, in steps of
20 M⊙. As before, we keep the SNR of the system constant
at 20, so the higher mass systems are generated at a greater
distance. The inferred distributions for χp and ρp are shown
in Fig. 14.
As the total mass of the source increases, the length of

the waveform decreases, as does the number of precession
cycles, with the number scaling approximately inversely
to the total mass (see Eq. (45) of [38]). From the two-
harmonic perspective, a small number of precession
cycles leads to a large overlap between the harmonics.
Specifically, for the M ¼ 100 M⊙ system the overlap

FIG. 12. Violin plots showing the recovered posterior distributions distributions for χp compared to its prior conditioned on the χeff
and mass ratio posterior distributions (left) and ρp (right). Distributions are plotted for varying χeff . Parameters other than the χeff of the
signal match the “standard injection” (see Table I).

FIG. 13. 2d contours showing the prior 90% credible interval
over the primary spin magnitude and spin direction parameter
space. Blue shows the global prior and red shows the global prior
conditioned on the χeff ¼ 0.4 mass ratio and χeff posterior
distributions.
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between the normalized harmonics is hĥ0jĥ1i ¼ 0.77,
where ĥ ¼ h=jhj and the inner product is defined in
Eq. (11). At M ¼ 20 M⊙, the harmonics are close to
orthogonal with hĥ0jĥ1i ¼ 0.15. The opening angle does
not change significantly, with b̄ ¼ 0.14 atM ¼ 20 M⊙ and
b̄ ¼ 0.21 at M ¼ 100 M⊙.
At lower masses,M ≤ 40 M⊙, while the precessing spin

is not tightly constrained, it is clearly restricted to be
nonzero and the precession SNR has essentially no support
for ρp ¼ 0. For the 60 M⊙ and 80 M⊙ mergers, the
precessing spin is still peaked close to the simulated value
while ρp peaks above 2.1 showing evidence for observable
precession, although both ρp and χp distributions do extend
to zero.
For the high-mass system, M ¼ 100 M⊙, the χp pos-

terior more closely matches the prior and we are unable to
exclude χp ¼ 0. The inferred ρp distribution peaks close to
zero, and is consistent with no precession, even though the
precession SNR in the simulated signal is similar to the
lower mass signals. This is likely due to the breakdown of
the two-harmonic approximation for this short signal. In
particular, for a high-mass system, the power orthogonal to
the leading harmonic will depend sensitively upon the
initial precession phase ϕJL. The fact that the recovered
value of ρp is inconsistent with the simulated value may
be due to this fact: the value of ϕJL ¼ 45° used in the
simulation leads to maximal observable precession. Across
the full parameter space there are very few configurations
with significant precession, so this observation is disfa-
vored by our priors. We explore the prior effects such as this
in detail in Sec. VI B.

F. Polarization

The effect of changing the relative sensitivity to the two
GW polarizations is clear from Eq. (7). Recalling that

b̄ ¼ 0.11 and θJN ¼ 60°, we can express ζ (the ratio of the
amplitudes of the two harmonics) as

jζj ¼ 0.15

���� Fþ þ 2iF×

1Fþ þ 0.8iF×

����:
Thus, ζ, and consequently the imprint of precession on the
waveform, will be maximized when the detector network is
primarily sensitive to the × polarization and minimized
when the network is sensitive to theþ polarization. We can
investigate this by varying the polarization angle of the
simulated signal, in steps of 10° from the “standard” value
of 40°. At ψ ¼ 40°, the sensitivity to the two polarizations
is approximately equal, jF×j=jFþj ¼ 0.9. It is largest for
ψ ¼ 20° where jF×j=jFþj ¼ 25 and smallest for ψ ¼ 60°
where jF×j=jFþj ¼ 0.04. This leads to a variation in the
precession SNR from ρp ≈ 3 to ρp ≈ 7.
In Fig. 15 we show the recovered posteriors for χp and ρp

for a set of runs where the precession is varied. The
precession SNR varies in accordance with expectation—it
is largest at ψ ¼ 20°, where the median of the posterior is at
ρp ¼ 6 and there is no support for nonprecessing systems,
and smallest at 60° where the posterior extends down to
ρp ¼ 0. The amount of observable precesssion directly
impacts the inferred distribution for ρp. For the ψ ¼ 60°
signal, the posterior for χp is consistent with zero, or small
in-plane spins, and large values are excluded. Meanwhile
for ψ ¼ 20°, χp < 0.1 is excluded while extremal in-plane
spins are consistent with the observation.
It is well known that precession leaves a stronger imprint

upon the × polarization. However, we are not aware of
previous results showing how simply changing the polari-
zation of the system can so dramatically change the
observable consequences of precession—from being barely
observable when the observed signal is primarily the þ
polarization to being strongly observed in ×. Using the

FIG. 14. Violin plots showing the recovered posterior distributions distributions for χp compared to its prior (left) and ρp (right).
Distributions are plotted for varying total mass. Parameters other than the total mass of the signal match the “standard injection” (see
Table I).
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two-harmonic approximation, we are able to straightfor-
wardly predict this effect and then verify it with detailed
parameter estimation studies.

G. Sky location

We performed a series of runs where we altered the sky
location of the signal, keeping the masses and spins of the
components fixed. We also maintained the binary orienta-
tion θJN ¼ 60°, but varied the distance and polarization of
the source to ensure that the SNR remained constant and
that the relative contribution of the þ and × polarizations
was consistent with the standard run. Furthermore, sky
locations were restricted to those for which the relative time
of arrival between the Hanford and Livingston detectors
remains the same (i.e., we were sampling from the nearly
degenerate ring on the sky of constant time delays). Details
of the runs are given in Table II.
Table II shows that the inferred luminosity distance

remains approximately constant despite the simulated
luminosity distance varying by almost a factor of two. In
addition, the recovered ρp distribution remains consistent
with the “standard” injection. Figure 16 shows that the
inferred sky position of the source remains essentially
unchanged, and consistent with locations of the detectors’

greatest sensitivity. We note here that for this study we only
considered the two detector LIGO network. Including
VIRGO would likely have considerably improved the
precision of the inferred sky location. We do not expect
that this would affect any of the inferred physical param-
eters or any of the main conclusions in this work.

V. RELATING ρp POSTERIORS
TO BAYES FACTORS

An alternative method for identifying evidence for
precession can be calculated within the Bayesian frame-
work. We can calculate the Bayes factor, B, by comparing
the marginalized likelihoods [see Eq. (12)] from two
competing hypotheses (A, B) [79],

lnB ¼ lnpðdAÞ − lnpðdBÞ: ð15Þ

Bayes factors have thus far been the gold standard for
identifying evidence for precession within the GW com-
munity and have been used extensively in previous works,
see e.g., Ref. [52].
In the same way that Bayes factors can be used to

quantify evidence for precession, it is also possible to
quantify the significance of a GW signal by calculating the
Bayes factor for signal verses noise [80]. It has been shown
that the log Bayes factor for signal versus noise scales
approximately with ρ2 [81]. Here, we investigate the
relationship between the Bayes factor in favor of precession
and the precession SNR ρp. Both of these quantities have
been used together in recent works when assessing the
evidence for observable precession [4,5,52]
For a subset of the runs described in Sec. IV C, we reran

the analysis using the aligned-spin waveform model
IMRPhenomD. Bayes factors in favor of precession could
then be calculated and compared to the derived ρp posterior
distributions.

FIG. 15. Violin plots showing the recovered posterior distributions distributions for χp compared to its prior (left) and ρp (right).
Distributions are plotted for varying ψJ . Parameters other than ψJ match the “standard injection” (see Table I).

TABLE II. Table showing the simulated parameters for the sky
location set (see Sec. IV G). All other parameters match the
“standard injection” (see Table I). The recovered luminosity
distance (far right column) is also shown.

Label RA/rad DEC/rad ψ=° dL=MPc ρp dL=MPc

A 0.31 0.92 320 370 5.02 480þ130
−180

B 0.80 1.15 345 320 5.09 470þ140
−160

C 1.31 1.22 10 280 5.11 450þ150
−160

D 1.88 1.19 40 220 5.05 430þ160
−160

E 6.11 0.21 40 310 5.09 440þ150
−170
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Fig. 17 shows an approximately linear relationship
between the log Bayes factor (ln BF) and the square of
the precession SNR (ρ2p). This is expected given that the
likelihoods recovered from the precessing waveform model
will be larger than the likelihoods recovered from the
aligned-spin waveform model by a factor of expðρ2p=2Þ.
The commonly used heuristic when assessing the

strength of evidence using Bayes factors is that 1 ≤
ln BF ≥ 3 is marginal evidence and lnBF > 3 is strong
evidence in favor of a hypothesis. From the plots above we
conclude that if 90% (50%) of the ρp posterior distribution
is above the ρp ¼ 2.1 threshold, this corresponds to a
ln BF ≈ 3.5 (ln BF ≈ 0.8) and is therefore very strong
(marginal) evidence for precession. The posterior distribu-
tion on ρp can therefore be approximately mapped to the

commonly used lnBF. Assessing the strength of evidence
for precession using ρp would also reduce the need for
additional parameter estimation runs using nonprecessing
models, which are necessary to compute the Bayes factor.
This reduction in computational cost will not be significant
for a single event, but for population analyses and large
scale PE studies this alternative metric could be extremely
useful.

VI. PREDICTING THE PRECESSION SNR
POSTERIOR

For the majority of simulations presented in this paper,
the distribution for the precession SNR, ρp, has been
peaked significantly below the simulated value, although
in nearly every case the simulated value does lie within the
90% confidence region. While the naive expectation is that
the recovered posterior will peak at the simulated value, for
complex parameter recovery where there are dependencies
and degeneracies between the different parameters, this is
often not the case. We have already seen that the distance
is typically overestimated in the simulations we have
performed—this is a well-known effect and arises for
two reasons, first that the network is less sensitive to
sources from the chosen sky location than from other
locations consistent with the observed signal (as discussed
in Sec. IV G), and second that the signal was simulated
significantly inclined from face-on, yet preferentially
recovered close to face-on (as discussed in Sec. IV C).
Similarly, it seems likely that the signals we have simulated
have more significant precession effects (deliberately, as we
wish to understand the observability of precession) than the
vast majority of possible sources. Thus, our conjecture is
that the likelihood peaks at the simulated value of ρp but the
posterior distribution will be biased to recover a smaller
value owing to the much larger volume of parameter space
consistent with low ρp. To demonstrate this, we calculate a
prior distribution for ρp which uses the information gleaned
from a nonprecessing analysis to take into consideration

FIG. 16. Skymap showing the different simulated sky positions, see Table II. The solid lines show the 90% credible intervals and the
markers show the simulated sky position. Their respective colors matches their corresponding credible intervals. We vary the distance
and polarization of the source to ensure that the SNR remains consistent with the standard injection in Table I.

FIG. 17. Plot comparing the Bayes factor in favor of precession
to the inferred ρp distribution. Bayes factors were calculated by
comparing the evidences for a precessing analysis and a non-
precessing analysis. The uncertainties on the Bayes factors are
calculated by taking the 90% confidence interval across multiple
LALinferencenest chains. The solid line uses the median of the ρp
distribution. The shading gives the 1σ and 2σ uncertainties on the
ρp measurement. The solid black lines shows the ρp ¼ 2.1
threshold.
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the much larger volume of parameter space consistent with
low ρp. We then show that when multiplying the likelihood
by the prior, the predicted posterior for ρp agrees well with
the inferred posterior from a fully precessing parameter
estimation analysis.

Let us first show that the likelihood peaks at the simulated
value of ρp. The two-harmonic approximation allows us to
factorize the likelihood in Eq. (16) into two terms: a
nonprecessing component (dependent on h0) ΛnpðλÞ and
precessing component (dependent on h1) ΛpðλÞ,

pðdjλÞ ∝ exp

�
−
1

2
hd − ðA0ðλÞh0ðλÞ þA1ðλÞh1ðλÞÞjd − ðA0ðλÞh0ðλÞ þA1ðλÞh1ðλÞi

�

∝ exp

�
hdjA0ðλÞh0ðλÞi −

jA0ðλÞj2
2

hh0ðλÞjh0ðλÞi
�
× exp

�
hdjA1ðλÞh1ðλÞi −

jA1ðλÞj2
2

hh1ðλÞjh1ðλÞi
�

∝ ΛnpðλÞ × ΛpðλÞ; ð16Þ

For simplicity we use the approximations that
hh0jh1i ¼ 0 and that h0 is the dominant harmonic, i.e.,
that the SNR in the h0 harmonic is larger than in h1. The
calculation proceeds analogously when h1 is dominant, and
can be extended to the general case by replacing h1 by its
projection onto the space orthogonal to h0.
We can reexpress the precessing contribution to the

likelihood Λp in terms of the precession SNR using Eq. (8).
To do so, we introduce ρ̂p which is the simulated value
of ρp, and ρpðλÞ which is the precession SNR for the set of
parameters λ. Furthermore, we define the simulated phase
[as given in Eq. (6)] of the precession harmonic as ϕ̂1 and
the phase associated with the parameters λ as ϕ1ðλÞ.
Following the procedure described in, e.g., Ref. [82], we
can rewrite the precession likelihood as

Λpðρp;ϕ1Þ ∝ exp

�
−
1

2
ðρ2pðλÞ − 2ρ̂pρpðλÞ cosðϕ̂1 − ϕ1Þ

þ ρ̂2pÞ
�
: ð17Þ

In general, we have no prior knowledge of the precession
phase, so it is natural to assume a uniform prior on ϕ1. We
may then analytically marginalize Λpðρp;ϕ1Þ over ϕ1 to
obtain,

ΛpðρpÞ ∝
Z

2π

0

Λpðρp;ϕ1Þpðϕ1Þdϕ1

∝ I0ðρ̂pρpÞ exp
�
−
ρ̂2p þ ρ2p

2

�
: ð18Þ

We therefore see that the precession likelihood peaks at ρ̂p.
We may then calculate the posterior distribution for ρp
using Bayes’ theorem,

pðρpjdÞ ∝ pðρpÞΛpðρpÞ; ð19Þ

where pðρpÞ is the prior for the precession SNR.

Previously, in Ref. [43], we obtained a distribution for
pðρpjdÞ by maximizing the likelihood over A1. This is
equivalent to assuming uniform priors for the real and
imaginary components of A1, and leads to a prior
pðρpÞ ∝ ρp. It follows from Eq. (19) that this results in
a χ2 distribution with 2 degrees of freedom. Here, we
instead use a prior for ρp which is informed by the
information obtained from a nonprecessing analysis, we
refer to this as the informed prior. This informed prior better
represents our prior knowledge about ρp before explicitly
accounting for precession in our analysis.
The majority of parameters required to calculate the

informed prior are already given in the nonprecessing results.
The two exceptions are the amplitude of the precessing spin
χp and the initial precession phase ϕJL. As discussed in
Sec. IVD, we can obtain a prior for χp conditioned upon the
other parameters, specifically the mass ratio and aligned spin
χeff , and this can be used to generate the informed prior on ρp.
The initial precession phase is unconstrained by the non-
precessingparameter recovery, this then allowsus to assume it
to be uniformly distributed. By calculating the predicted
posterior distribution forρp basedupona set of nonprecessing
samples, we may examine the effect of other measured
parameters on the final ρp distribution. For example, if the
aligned-spin run favors a binary that is close to equalmass and
an orientation consistent with a face-on system, then our prior
belief will be that the precessing SNR will be low—it is only
with unequal masses and systems misaligned with the line
of sight that there are significant precession effects in the
observed waveform. A prior belief of ρp peaking at low
values will cause the predicted ρp to peak at values lower
than the simulated one and consequently so too will the
inferred posterior distribution for ρp inferred from a full 15-
dimensional parameter estimation analysis.

A. Precessing signal

We now apply this conjecture to a precessing signal
by attempting to predict the posterior distributions for ρp.
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This allows us to investigate how much our recovered
posterior distributions may differ from the idealized case of
a precession likelihood function distributed about the
simulated (true) value. In Fig. 18 we show the results of
this for the q ¼ 4 simulation presented in Sec. IV D. This
specific simulation was chosen since this case has the
largest ρp and corresponds to a simulation where a non-
precessing analysis is less justified. It is therefore a good
case to show how the combination of the informed prior
and the additional likelihood from precession Λp correctly
estimates the large ρp. In Fig. 19, we show how the
predicted posterior distribution compares to the inferred
distribution over the full range of mass ratio simulations
presented in Sec. IV D.
In Fig. 18 we show this predicted distribution, the

informed prior, the χ2 likelihood function and the posterior
distribution obtained from a full parameter estimation
analysis. By explicitly calculating the informed prior and
likelihood terms separately for ρp, we can see the effect of
the prior on the ρp posterior. The prior strongly disfavors
large observable precession and therefore pulls the pos-
terior toward smaller values than the simulated value i.e.,
where the likelihood function peaks.
In Fig. 19, we show a comparison between the predicted

and measured ρp distributions for the set of runs with
varying mass ratio presented in Sec. IV D. When we
calculate the posterior, explicitly accounting for the param-
eter space weighting encoded in the informed prior on ρp,
we find good agreement between the predicted and the
inferred ρp distributions and note that neither predicted nor
inferred are centered around the true value for the set of

signals that we have simulated. Of course, if we were to
draw signals uniformly from the prior distribution, we
would expect to observe the inferred distributions of ρp
matching with the simulated values.

B. Nonprecessing signal

We now look at the expected posterior distribution for ρp
when there is no precession in the signal. As explained in
Sec. VI, previously a χ2 distribution with two degrees of
freedom was used to model the ρp distribution in the
absence of any precession (see Ref. [43]). This then led to
the natural heuristic that ρp ¼ 2.1 should be the threshold
for observable precession. Using Eq. (19) we can now use a
more informative prior on ρ̃p and obtain a more accurate
estimate of the expected posterior distribution in the
absence of precession. We do this by using parameter
estimation samples from an aligned-spin model and setting
the simulated precession SNR to be 0, this then allows us to
account for the effects of priors and different noise
realizations.
In Fig. 20 we show the predicted and observed distri-

butions for the precession SNR for a nonprecessing signal.
We use a nonprecessing equivalent of the “standard”
injection as our simulated signal (i.e., we set χp ¼ 0 while
ensuring all other parameters match those in Table I). We
inject with zero noise and use the IMRPhenomPv2 model
for parameter recovery.
The inferred ρp distribution is peaked at lower values

that the χ2 distribution as shown in Fig. 20. However using
the prediction from the likelihood [Eq. (16)] and the

FIG. 18. The predicted distribution for the precession SNR ρp
(dashed orange) calculated as the product of the precessing
contribution to the likelihood (black dotted line) and the informed
prior of ρp (blue) for the q ¼ 4 simulation presented in Sec. IV D.
For comparison, we show the inferred ρp posterior distribution
from the full 15 dimensional parameter estimation analysis (solid
orange) and ρp for the injection (red line). The informed prior is
peaked at low values of ρp causing the peak of the posterior to be
smaller than the maximum likelihood value.

FIG. 19. Violin plot comparing the observed ρp distribution
(colored) from a precessing analysis, and the predicted distribu-
tion (white) based on the aligned-spin results and simulated value
of ρp for the set of varying mass ratio simulations presented in
Sec. IV D. The predicted and observed distributions for preces-
sion SNR are in good agreement, even though the ρp in the
simulated signal (red lines) lies above the peak of either
distribution.
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informed prior we are able to obtain a better estimate of the
posterior in the absence of precession. This estimate can be
obtained without performing parameter estimation incor-
porating precession, this therefore allows for a better metric
for determining whether or not there is measurable pre-
cession in the system.
The distribution for the informed prior on precession

SNR will depend upon the details of the signal. In
particular, it will be strongly peaked near zero for events
that are likely to have small opening angle (equivalently b̄),
i.e., events that are close to equal mass and have significant
spin aligned with the orbital angular momentum, while
high mass-ratio events and those with large antialigned
spins will lead to greater support for large values of ρp.
Furthermore, for binaries where the orientation can be well
measured, without precession information, for example
where higher modes are important, those that are close
to face-on will lead to predictions of smaller ρp while those
that are edge-on will give larger values. Given that the
majority of signals observed to date are consistent with
equal mass binaries, in most cases the prior on ρp will tend
to be peaked at low values. Consequently, the simple
threshold of ρp ≳ 2.1 as evidence for precession, remains
appropriate and is likely more stringent than suggested by
the simple likelihood calculation.

VII. DISCUSSION

In most candidate astrophysical binary distributions,
precession is likely to be first measured in a compa-
rable-mass binary [44]. We have considered a fiducial
example of such a possible signal (mass-ratio q ¼ 2,
SNR ρ ¼ 20, and in-plane spin χp ¼ 0.4, such that the

precession contribution to the total SNR is ρp ¼ 5), and
performed an extensive parameter-estimation study that has
systematically explored the impact on parameter measure-
ments of changes in each of the key source parameters: the
SNR, the in-plane spin magnitude, binary inclination, the
binary mass ratio and aligned-spin contribution, the bina-
ry’s total mass, the polarization, and sky location. These
examples illustrate well-known features of precession
signals [38,44–46,48–51], and quantify their effect on both
the measurement of precession, and their impact on the
measurement accuracy and precision of other parameters.
We have also verified that ρp provides a suitable and

intuitive metric for determining whether or not we have
measured precession, and shown that there is an approxi-
mate mapping between ρp and the use of the Bayes factor to
assess the evidence of precession. We suggest that given
these results, future large scale studies of precession can be
made considerably computationally cheaper by computing
ρp, rather than a full Bayesian analysis.
We note that as ρp captures precession by identifying

additional power beyond a simple nonprecessing waveform
model, it could therefore be effected by phenomena such as
eccentricity and higher order multipoles. As BFs simply
compare the evidence for two models, one precessing and
one nonprecessing, using BFs as the sole metric would also
be biased by properties like eccentricity and higher order
multipoles.
However, a similar approach to the 2-harmonic decom-

position for precessing signals has recently been applied to
GWs including the effects of higher harmonics [82]. In
future work, we will combine these approaches and explore
the measurability of precession in systems with significant
evidence for higher harmonics, and the impact of the
combination of higher modes and precession upon param-
eter accuracy. It may also be possible to account for
eccentricity through a similar decomposition.
As highlighted in Sec. VI these decompositions provide

powerful insights into how the addition of physical phe-
nomena introduce information into the analysis. Here we
show that the likelihood can be simply factored into
precessing and nonprecessing contributions. This then
allows us quantify the extra information that can be gained
from a precessing analysis and even predict the recovered
ρp distribution with or without these effects taken into
consideration in the analysis.
The current study does not include higher harmonics,

and uses a signal model (IMRPhenomPv2) that neglects
two-spin precession effects, mode asymmetries that lead to
out-of-plane recoil [83], and detailed modelling of pre-
cession effects through merger and ringdown. Although
these effects are typically small, so is the imprint of
precession on the signal, and it would be interesting in
future to investigate the impact of these additional features
on our results. We also emphasize that, although we
consider it to be extremely useful to provide quantitative

FIG. 20. Distribution of ρp in the absence of precession for
the “standard injection”. The inferred ρp distribution using the
IMRPhenomPv2 approximant for recovery is shown by the
solid orange line. The dashed orange line shows the predicted
distribution using samples collected from an aligned-spin
analysis and setting the simulated precession SNR to be 0.
We also shows the χ2 distribution used previously ([43]) as a
red dashed line
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examples of the effects of each of the binary parameters,
these will necessarily depend on the location in parameter
space of our fiducial example. However, having chosen a
configuration from among what we expect to be the most
likely signals, we hope that these examples will act as a
useful guide in interpreting precession measurements when
they arise in future gravitational-wave observations.
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