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Abstract

The classic Johnson-Kendall-Roberts (JKR) contact theory was developed for frictionless adhesive
contact between two isotropic elastic spheres. The advantage of the classical JKR formalism is the
use of the principle of superposition of solutions to non-adhesive axisymmetric contact problems. In
the recent years, the JKR formalism has been extended to other cases, including problems of contact
between an arbitrary shaped blunt axisymmetric indenter and a linear elastic half-space obeying
rotational symmetry of its elastic properties. Here the most general form of the JKR formalism
using the minimal number of a priori conditions is studied. The corresponding condition of energy
balance is developed. For the axisymmetric case and a convex indenter, the condition is reduced to
a set of expressions allowing explicit transformation of force-displacement curves from non-adhesive
to corresponding adhesive cases. The implementation of the developed theory is demonstrated by
presentation of a two term asymptotic adhesive solution of the contact between a thin elastic layer
and a rigid punch of arbitrary axisymmetric shape. Some aspects of numerical implementation of the
theory by means of Finite Element Method are also discussed.

Keywords: adhesion, the JKR theory, axisymmetric contact, parametric force-displacement curve, Finite
Element Method

1 Introduction

The classic formulation of the Hertz-type contact problems was independently introduced by Hertz (1882) and
Boussinesq (1885) (see references in [1]). This formulation of Hertz contact theory assumes that the shape of the
bodies and the compressing force P are given and molecular adhesion can be ignored. Hence, the displacements
and stresses appear in the solids only after the external load is applied. In addition, it is assumed that the
contact region is small in comparison with the characteristic size of contacting solids and, therefore, the boundary
value problem for the solids may be formulated as a boundary value problem for an isotropic elastic half-space.
A particular case of the Hertz solution can be used for a spherical punch that is approximated as a paraboloid
of revolution. In the framework of the Hertz contact theory for axisymmetric punches, several authors found
relations between the radius of the contact region a, the force P and the approach between solids δ for punches
whose shape functions f are monomial f(r) = Bdr

d , where r is the polar radius, d is the degree of the monom,
and Bd is a positive constant whose physical dimension depends on d. In particular, Love [2] obtained a solution
for d = 1 (a cone), Shtaerman [3] presented a solution for d = 2n where n is an arbitrary natural number, and
Galin [4] solved the problem for an arbitrary d > 1. In fact Galin [4, 5] presented a solution for an arbitrary
convex punch of revolution.

It is important to note that the influence of effects of adhesion between solids increases at micro-/nanometer
length scales. Assuming that adhesion between points of two rigid spheres of radii R1 and R2 respectively,
is caused by the London intermolecular forces and that these interactions are additive, Bradley [6] calculated
the force of adhesion Padh between the spheres as Padh = 2πwR where R is the effective radius of the spheres
R−1 = R−1

1 +R−1
2 , and w is the work of adhesion. In fact, he calculated the force of adhesion between each point

of the former sphere with all points of the later sphere and then integrated the results obtained for all points of
the former sphere. The calculations were rather lengthy, while the same result was derived just in a couple of
lines by Derjaguin [7] using his approximation.

Derjaguin [7] stated that elastic deformations of spheres should be taken into account in order to consider
their adhesive contact. In his excellent paper Derjaguin argued that adhesive interactions may be reduced to
interactions among surface elements of spheres (see a discussion about the Derjaguin approximation in [1]).
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Derjaguin stated also [7] that the virtual work done by the external load during adhesive contact is equal to the
sum of the virtual change of the potential elastic energy and the virtual work that is consumed by the increase
of the surface attractions. Unfortunately, the paper contains some erroneous assumptions and miscalculations.
Nevertheless, using Derjaguin’s results, Sperling in his PhD thesis [8] derived the force-displacement diagram
for a sticky sphere and analyzed the critical points of the curve. Sperling was not aware about Johnson’s [9]
suggestion to use the stress superposition to estimate the influence of adhesive forces. Like Derjaguin’s paper,
Johnson’s paper was brilliant but containing a wrong statement that the adhesive interactions should be neglected.
Independently of Sperling, Johnson et al. [10] presented the JKR (Johnson, Kendall and Roberts) theory that
united Derjauguin energy approach and Johnson idea of stress fields superposition (see a discussion by Kendall
[11]). In fact, it was shown that a solution to the adhesive contact problem may be derived using superposition
of two non-adhesive frictionless contact problems: the Hertz solution for contact between elastic spheres and
the Boussinesq solution for a flat-ended cylindrical punch. This approach to adhesive contact problems will be
referred further as the JKR formalism. Due to its simplicity and elegance, the JKR approach is very popular and
it has been referenced in the literature thousands of times [12].

The JKR formalism was employed to solve problems of adhesive contact between power-law shaped solids
independently by Galanov [13] (see also Galanov and Grigoriev [14]) for an arbitrary d ≥ 1 and Carpick et al. [15]
for d = 2n (see a discussion by Borodich [5]). Later Borodich and his co-workers extended the JKR formalism to
arbitrary blunt axisymmetric indenters and to materials having rotational symmetry like transversely isotropic
or homogeneously prestressed materials [17, 16, 1]. It was shown by Borodich [1] that using the JKR formalism
along with the Griffith idea of equating the derivative of the total energy to zero [18], one can obtain the JKR
expressions for a convex punch of arbitrary shape. Actually, it was shown that the derivative of the total energy
will produce two terms having the same absolute value and opposite signs, i.e. these two terms vanish, and a
product of some expression and a derivative of the contact radius with respect to the indentation force (da/dP ).
The novelty of this approach was that one did not need to express the da/dP explicitly and the the expression
staying in front of the derivative was in essence the JKR solution. The Borodich approach was extended to
problem of probing of stretched sticky two-dimensional (2D) membranes [19], and to problems of adhesive contact
between a convex axisymmetric punch and a thin elastic layer [20] or a thin bi-layer [21] in the leading term
approximation.

A major development occurred in works by Shull and his collaborators [22, 23]. Using a method called
”the compliance method”, they derived formulae linking energy release rate, the values of contact force and
displacement related to the same contact area on force-displacement curves in a non-adhesive case and the
corresponding JKR adhesive one. Nonetheless, Shull’s works did not suggest to use those formulae to reduce
solutions of contact problems from one case to the other.

Recently a further improvement to the JKR theory was suggested in the works by Popov and his collaborators
[24, 25]. Similarly to Borodich [1], it was shown that the derivative of the total energy of an adhesive contact
produces two terms that vanish and a product of some expression that is a JKR-type solution and a derivative of
the contact radius with respect to the indentation force; and similarly to Shull’s work [22], yet using a different
mathematical justification, they were able to develop formulae that allowed explicit transformation from the
solutions to largely arbitrary axisymmetric non-adhesive contact problems to the JKR-type solutions of the
adhesive problems. In fact, those formulae made redundant a number of semi-analytical models of adhesive
contact, for instance, Finite Element Method-based approaches [26, 27, 28] developed to describe adhesive contact
between a rigid indenter and an elastic layer of finite thickness by means of introducing correction factors into
the classical JKR relations for elastic half-spaces.

The above mentioned approach [24, 25] contains a priori assumptions, such as constant contact stiffness during
the virtual ”unloading” stage. Those assumption are required to reach the true configuration of the system in
the JKR approach. In contrast, here the same problems are studied without employment of any assumptions
concerning the mathematical form of the involved force-displacement relations, assuming only the validity of
the JKR formalism, i.e. the validity of the superposition principle of the contact problems for axial symmetric
problems. See Section 2(a) for details of representation of the JKR formalism as a virtual two-stage ”loading-
unloading” process. As a consequence, additional mathematical conditions arise naturally, as we employ the
original approach presented in the classical paper [10] and derive a general form of the energy balance condition
of the JKR theory without specifying a particular form of the indentation force-displacement relations (Section
2(b)). Those extra conditions, leading to the explicit formulae of the JKR formalism, and their validity scope are
considered in Section 3. Further, the implementation of the developed theory is demonstrated by presenting a
two term asymptotic adhesive solution of the contact between a thin elastic layer and a rigid punch of arbitrary
axisymmetric shape (Section 4). Section 5 contains discussion concerning some limitations of the presented theory
and certain aspects of its practical implementation by means of Finite Element Method. In particular, it has been
shown that the complete set of values required for practical use of the explicit JKR formulae (these connect the
force, displacement, contact radius, slope, and the first derivative of slope) can all be accurately evaluated from
FEM results by means of combined use of the original convex punch model along with a set of auxiliary flat-ended
punch problems (the two-model approach).
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2 Energy balance and the explicit form of the JKR formalism

It will be shown here that an adhesive contact problem can be reduced to non-adhesive ones using the classical
JKR formalism. All steps of the JKR energy balance are done in the most general form producing expressions
that can be used for explicit converting of the solutions to the problems.

First, consider a reference non-adhesive contact problem for an elastic medium (half-space, multilayered half-
space, a single layer etc.) and an axisymmetric convex rigid punch described in the polar coordinates (r, ϕ, z)
by the function z = f(r) (the Hertz-type problem, Fig. 1,a). It is supposed that the elastic medium obeys the
principle of superposition of loads. Only vertical displacements of the punch are allowed. Denoting the amount
of applied force as P , the punch displacement as δ, and the radius of the contact area as a, one can formulate the
solution of the Hertz-type problem in one of the two alternative parametric forms:{

P = PH(a),

δ = δH(a).

{
δ = δ̂H(P ),

a = aH(P ).
(1)

Here aH is the inverse of the PH function, and δ̂H(P ) = δH(aH(P )). In addition, under the same assumptions we
consider an auxiliary contact problem for a circular cylindrical flat-ended punch and the same elastic medum (the
Boussinesq-type problem, Fig. 1,b). The punch radius is supposed to be exactly the same as in the Hertz-type
problem above and is also denoted as a. Let the solution of the auxiliary problem be

δ = δB(a, P ) (2)

The presence of the punch radius a as the parameter in the latter relation is explicitly emphasized. Both relations
(1) and (2) are supposed to be known ones.

(a) (b)

Figure 1: (a) The reference Hertz-type contact problem for a convex axisymmetrical punch; (b) The
auxiliary Boussinesq-type contact problem for a cylindrical flat-ended punch.

2.1 The classical JKR formalism

The classical JKR formalism [10] suggests that the adhesive solution for the reference contact problem can be
constructed as the result of a two-stage imaginary loading-unloading experiment (Fig. 2,a). The true configuration
of the contact problem with adhesion can be reached in the following way (arrows in Fig. 2,a). First, the forces
of adhesion are not taken into account. Therefore, under the true value of the applied force P = P0 the contact
area is smaller than it is in adhesive case, and the radius of the contact area a = a0 is smaller than the true one
(Fig. 2).

To obtain the true configuration of the contact area, the punch load is increased to the value P = P1 such that
the radius of the contact area a = a1 becomes exactly the same as it would be in adhesive case under true load P0.
However, the applied value of force is now greater than the true one, and hence the punch displacement δ = δ1 is
not the true one. The following relation are true: P1 = PH(a1), δ1 = δH(a1) and δ1 = δ̂H(P1), a1 = aH(P1).

On the second stage of the imaginary process, adhesive forces are “applied”, that is, “turned on” within the
contact region, and the punch is unloaded back to the true value of force P0 while maintaining the radius of the
contact area unchanged (the true one a = a1). The punch displacement becomes δ = δ2, which is the correct one
for the adhesive contact problem. Thus, in the end of unloading stage the force value P = P0, the displacement
value δ = δ2, and the contact radius value a = a1 all become the true ones for the adhesive contact problem which
means that the true configuration is reached. The above subscript notation P0, a1, δ2 follows the classical work
by Johnson et al. [10].

Since the superposition principle is supposed to be valid, the unloading stage can be considered as the result
of superposition of the flat punch solution corresponding to the true contact radius a1, and the solution of the
Hertz-type problem at the point P = P1. Hence, the unloading path in the P − δ coordinates can be considered
a part of the force-displacement curve of the Boussinesq-type problem δ = δB(a, P ) at a = a1 between the force
values P0 and P1 translated to the point of the loading (Hertz) curve at which the force reaches the value P = P1

(bold line in Fig. 2,b, translation of the flat punch force-displacement curve is denoted by arrows).

Introducing notation δ1B = δB(a1, P1) and recalling that δ1 = δ̂H(P1) one obtains that the unloading part of
the loading-unloading path in the P − δ coordinates can be mathematically expressed as

δ = δunload(a1, P1, P ) = δB(a1, P ) + (δ1 − δ1B) = δB(a1, P ) + δ̂H(P1)− δB(a1, P1) (3)
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(a) (b)

Figure 2: (a) Construction of the JKR adhesive force-displacement curve as the result of imaginary
loading-unloading process (the loading-unloading path marked with arrows); (b) Superposition of the
flat punch solution (the Boussinesq-type problem) during the process of construction of the JKR force-
displacement curve.

where a1 and P1 act as parameters. In contrast, δ and P are considered variables here.
The above classical JKR approach employs the Griffith idea [18] that derivative of the total energy of the

system UT , is zero in the true configuration, i.e.

dUT
da1

= 0,
dUT
dP1

= 0. (4)

2.2 Explicit formulae of the JKR theory

Consider the total energy UT of the system ”punch-elastic medium” with adhesion. The total energy can be built
up of the stored elastic energy UE , the mechanical energy in the applied load UM and the surface energy US . In
turn, the elastic energy UE can be expressed as the difference between the stored elastic energies corresponding
to the loading (UE1) and unloading (UE2) parts of the loading-unloading diagram: UE = UE1 − UE2. Hence, the
total energy of the system can be written as

UT = UE1 − UE2 − UM + US (5)

Now consider separate graphical representation for all the positive and the negative terms in (5) using the
loading-unloading diagram from Fig. 2. The term UE1 is the amount of the elastic energy stored during the

loading process, and it can be calculated as UE1 =
δ1∫
0

PH(δ)dδ, where PH is defined in (1). Graphically, UE1

can be represented as the area under the curve representing the solution of the Hertz-type problem (Fig. 3,a).
The term UE2 is the amount of the elastic energy released during the unloading process. It can be calculated as

UE2 =
δ2∫
δ1

Punload(δ)dδ, where Punload(δ) denotes force-displacement relation during unloading that is, the inverted

expression (3). Hence, UE2 can be graphically represented as a curvilinear trapezoid built on the unloading branch
of the imaginary loading-unloading process (the strip-filled area in Fig. 3,b). The term UM can be computed as
UM = P0δ2 and thus can be represented as a rectangular area in Fig. 3.

Addition, in the algebraic sense, of the terms in (5) can be graphically represented as overlapping of the
areas representing UE1, UE2, and UM , which is depicted in Fig. 4. This overlapping shows that a number of
components in the total energy cancel one another as they have the same values and the opposite signs (these are
represented as the areas filled black in Fig. 4). Therefore, the total energy of the system can be reduced to just
three components: U+, U− (depicted in Fig. 4 as the strip-filled areas), and US in the following way:

UT = U+ − U− + US (6)

Now return to the condition of the minimum of the total energy in the form of the second expression (4). The
above considerations do not imply variation of the true force value P0 in any way. Hence, dU−/dP ≡ 0, and the
condition (4), which defines the true configuration of the system, can be re-written as

dUT
dP1

=
dU+

dP1
+
dUS
dP1

= 0 (7)

Numerically, the value of U+ is equal to the area of the corresponding area in Fig. 4. Hence, the value of U+ can
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(a) (b)

Figure 3: Representation of terms in the total energy UT . (a) UE1; (b) UE2 and UM .

Figure 4: Graphical representation of different terms in the expression for the total energy UT that
cancel (black area) and do not cancel one another (strip-filled areas).

be calculaetd in the form of the following integral:

U+ =

P1∫
P0

[
δunload(a1, P1, P )− δ̂H(P )

]
dP =

P1∫
P0

[
δB(a1, P ) + δ̂H(P1)− δB(a1, P1)− δ̂H(P )

]
dP (8)

or in a simplified form

U+ = (P1 − P0)
[
δ̂H(P1)− δB(a1, P1)

]
+

P1∫
P0

[
δB(a1, P )− δ̂H(P )

]
dP (9)

Hence, the total derivative dU+/dP1 can be written after some transformations as

dU+

dP1
= (P1 − P0)

[
dδ̂H(P1)

dP1
− ∂δB(a1, P1)

∂P1
− ∂δB(a1, P1)

∂a1

daH(P1)

dP1

]

+

P1∫
P0

[
∂δB(a1, P )

∂a1

daH(P1)

dP1

]
dP

(10)

In the latter expression we take into account that a1 depends on P1 as a1 = aH(P1). The differentiation rule

applied is: if J =
∫ x
α
f(x, t)dt, then dJ

dx
= f(x, x) +

∫ x
α

∂f(x,t)
∂x

dt.
In axisymmetrical contact problem the surface energy US can be expressed as US = −πwa21, where w is the

work of adhesion which is equal to the amount of energy per unit area needed to separate two surfaces from initial
contact to infinite distance. Hence

dUS
dP1

= −2πwa1
da1
dP1

= −2πwa1
daH(P1)

dP1
(11)

5



Thus, using the above expressions the condition of the minimum of the total energy (7) in general form
becomes

dUT
dP1

= (P1 − P0)

(
dδ̂H(P1)

dP1
− ∂δB(a1, P1)

∂P1

)
+

+

P1∫
P0

∂δB(a1, P )

∂a1
dP − (P1 − P0)

∂δB(a1, P1)

∂a1
− 2πwa1

 daH(P1)

dP1
= 0

(12)

The latter expresion can be considered the most general form of the energy balance condition of the JKR theory
as it has been developed without any particular assumptions regarding mathematical form of the solutions of the
Hertz-type and the Boussinesq-type problems. The only assumptions implemented here are the assumption of
validity of the superposition principle for the considered elastic medium, and the axial symmetry of the problem.

The above general expression can be significantly simplified under the following two assumptions (the scope
of their validity will be discussed in the next Section).

Condition 1: At any given value of the true contact radius a1 the curves related to the Hertz-type problem
and the Boussinesq-type problem have identical slopes;

Condition 2: The solution of the Boussinesq-type problem is linear with respect to both δ and P .
Indeed, Condition 1 can be mathematically expressed as

dδ̂H(P1)

dP1
=
∂δB(a1, P1)

∂P1
(13)

which makes the first term in (12) exactly zero. Further, Condition 2 suggests that the solution (2) of the
Boussinesq problem can be represented as

δ =
P

S(a1)
(14)

That is, the function δB(a1, P ) (see (2)) is equal to P/S(a1) where S(a1) = dP/dδ is the corresponding slope of

the Boussinesq-type solution. Clearly, ∂δB(a1,P )
∂a1

= −(P/S2(a1))(dS/da1).

Denoting the total derivative with respect to the true value of contact radius with prime (′) and assuming
that both Conditions 1 and 2 are true, as well as daH(P1)/dP1 6= 0, (12) becomes

(P1 − P0)2

2

S′(a1)

S2(a1)
= 2πwa1 (15)

The latter expression readily gives the amount of unloading P1 − P0 necessary for the transformation from the
non-adhesive solution of the Hertz-type problem to the JKR adhesive one. In fact, P1−P0 is the additional term
that has to be subtracted from the expression for the contact force in order to reduce the non-adhesive problem
to the adhesive one:

P1 − P0 =

√
4πwa1S

2(a1)

S′(a1)
(16)

Since the unloading curve is now supposed to be linear, according to (14), the increment of punch displacement
δ1 − δ2 obeys the following law: (P1−P0)/(δ1−δ2) = S(a1). Therefore, (16) leads to

δ1 − δ2 =

√
4πwa1
S′(a1)

(17)

Note that the values P1, δ1, a1 always correspond to a point on the Hertzian non-adhesive curve because P1 =
PH(a1), δ1 = δH(a1). In the light of (16) and (17), the solution of the corresponding JKR adhesive problem can
be now written as

PH(a1)− P0 =

√
4πwa1S

2(a1)

S′(a1)
, δH(a1)− δ2 =

√
4πwa1
S′(a1)

(18)

Further we remove auxiliary subscripts and will use the notations P , δ and a instead of P0, δ2 and a1for the
true values of the total force, the punch displacement and the contact radius in the adhesive contact problem.
Thus, the following formulae can be used to reduce the solution of an adhesive-less axisymmetric contact problem
into the corresponding solution of the JKR adhesive contact problem:

P = PH(a)−

√
4πwaS2(a)

S′(a)
, δ = δH(a)−

√
4πwa

S′(a)
(19)

where

S(a) =
dPH
dδH

=
P ′H(a)

δ′H(a)
(20)
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is the slope of the non-adhesive P − δ curve which is supposed to be identical to the slope of the auxiliary
Boussinesq-type problem according to (13).

The formulae (19) allow to reduce an arbitrary axisymmetric non-adhesive contact problem to the JKR-type
adhesive one explicitly, without the need to develop and solve the equations of energy balance.

It is interesting to note that particular cases of the expressions (19) were discussed by Shull et al. [22] (see
the expressions (11) and (12) in their paper), however the formulae were not applied to extend the JKR theory
for arbitrary shaped solids and they were not suggested as means of explicit transformation between non-adhesive
and adhesive solutions. As it has been mentioned above, the JKR theory was extended to the power-law shapes
of indenters independently by Galanov [13] (for arbitrary exponents of the power-law) and by Carpick et al. [15]
(for integer exponents of the power-law). For arbitrary axisymmetric shape of the indenter, this generalization
was presented by Borodich [1] still using the Hertzian half-space approximation of the contacting medium. The
difference between the approaches to a power-law shaped indenter and an arbitrary shaped indenter was that the
P − δ relations for power-law shaped indenters may be presented explicitly (see Galin [4], while Borodich did not
write these expressions but instead he employed the formulae for dP/dδ in his calculations of the derivative of the
total energy. The latter approach can be expressed using the formulae (19) as it was eventually shown by Popov
[24] and Argatov et al [25].

In the next Section, the scope of Conditions 1 and 2, used to develop the above explicit JKR formulae, is
investigated for some general cases.

3 Some properties of the slopes of the Hertz-type and Boussinesq-
type force-displacement curves

In the previous Section, two statements, related to the properties of the slopes of the Hertz-type and Boussinesq-
type force-displacement curves, were used to simplify the general condition of the minimum of the total system
energy (12) into the explicit form of the JKR theory (19). Here the scope of these statements is discussed and
proven for some particular cases.

The validity of those two properties, the linearity of the solution of Boussinesq-type problem, and the equality
of the slopes of a Boussinesq-type problem and the respective Hertz-type problem at the same contact radius, can
be proven relatively easily when well-known solutions of classical problems of Contact Mechanics are considered.
For instance, the below short analytical examples demonstrate validity of the two properties (13)-(14).

1) Elastic isotropic half-space, rigid smooth convex axisymmetric indenter of arbitrary shape.
Consider the solution of the frictionless contact problem for an axisymmetric smooth indenter of arbitrary

shape defined in cylindrical coordinates by the function z = f(r), and an elastic isotropic half-space. Here we use
the solution in the form developed by Galin (see discussion and references in [1]):

PH = 2E∗
a∫
0

r∆f(r)
√
a2 − r2dr, δH =

a∫
0

r∆f(r)arctanh

(√
1− r2

a2

)
dr. (21)

An alternative form of the above relations was developed by Rostovtsev [29] and Sneddon [30]. The detailed
transformation between the two solutions is also discussed in [1].

Having performed differentiation of the above expressions, one can obtain after some transformations the slope
of the P − δ curve (21) as

SH(a) =
dPH
dδH

=
dPH/da

dδH/da
= 2E∗a. (22)

The force-displacement relation of the contact problem for a cylindrical indenter of radius a and the same elastic
half-space, and the corresponding slope are

PB = 2E∗aδB , SB(a) =
dPB
dδB

= 2E∗a, (23)

which readily confirms the properties of slopes (13)-(14) for this case. In the above expressions, E∗ denotes the
effective elastic modulus of the half-space: E∗ = E/(1− ν2) where the Young modulus and Poisson’s ratio of the
half-space are denoted as E, ν.

2) Elastic transversely isotropic half-space, rigid smooth axisymmetrical indenter.
It is known [31, 32], that a transversely isotropic elastic half-space has the same surface influence function

(the Green function), as an isotropic elastic half-space, except that the elastic modulus E∗ in the latter case
is substituted with a different elastic modulus ETI in the former case. The modulus ETI depends on the five
independent elastic moduli that form the tensor of elastic constants of the transversely-isotropic material. Thus,
having substituted E∗ with ETI in the above equations, one can readily prove correctness of properties (13)-(14).

In more complex cases, e.g. layers of finite thickness, multilayered medium, the validity of the formulae (13)-
(14) may be less obvious, as simple analytical solutions are not always readily available. Hence, in the remaining
part of the present Section we provide proofs of the formulae (13)-(14) for more general cases. We again consider
the two non-adhesive contact problems introduced in the previous Section: the Hertz-type problem for a convex
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axisymmetric rigid punch, and the Boussinesq-type problem for a flat-ended punch of the same radius a. The
shape of the convex punch is defined in the cylindrical coordinates (r, ϕ, z) by the function z = f(r).

First, we present a proof of the linearity of the force-displacement dependency for the Boussinesq-type problem
under the following assumptions.

Consider a contact problem for a rigid flat-ended punch with cylindrical side surface (the Boussinesq-type
problem, Fig. 5,a) and an elastic medium (half-space, multilayered half-space, a single layer etc.) Assume that the
elastic medium obeys the principle of the superposition of loads, the flat side of the punch is in full contact with
it, and the contact problem is frictionless. Let P be the external force applied to the punch and acting alongside
its generating line, punch movement in all other directions is prohibited. The punch penetration is denoted δ.

In that case, the force-displacement dependency for the problem can be represented in the form P = δSB,
which is linear with respect to P and δ. The quantity SB depends on the geometric parameters of the punch base,
and not on the penetration depth. If the punch base is a circle of radius a, then SB is a function of a, and the
force-displacement dependency for the problem has form P = δSB(a).

(a) (b)

Figure 5: (a) Contact problem for an arbitrary flat-ended punch with cylindrical side surface; (b) Contact
problem for an arbitrary axisymmetrical smooth convex punch.

Proof. Consider the main contact problem, which has punch penetration equal to δ and normal pressure
distribution denoted as p(x1, x2), and an auxiliary one, which has punch penetration equal to 1 and normal
pressure distribution denoted as p∗(x1, x2), where x1, x2 are the spatial coordinates associated with the contact
area (Fig. 5,a). The contact problems are both assumed frictionless, hence only normal contact pressure acts
within the contact area A, which does not change at any load.

Since the elastic medium obeys the principle of superposition of loads, both problems can be expressed in the
form of integral equations:∫∫

A

p∗(ξ1, ξ2)K(R)dξ1dξ2 = 1,

∫∫
A

p(ξ1, ξ2)K(R)dξ1dξ2 = δ. (24)

HereK(R) is the convolution kernel, the surface influence function of the elastic medium, andR =
√

(ξ1 − x1)2 + (ξ2 − x2)2

is the distance between the current point (ξ1, ξ2) and some selected point (x1, x2) on the surface.
Apart from the elastic constants of the elastic medium, which are a part of the kernel K(R), the pressure

distribution p∗ implicitly depends on geometrical parameters of the contact area A, as this is the integration
domain in (24). Due to linearity of the double integral, it is clear that pressure distribution p, which is the
solution of the second equation (24), can be expressed as:

p(ξ1, ξ2) = δ p∗(ξ1, ξ2). (25)

Finally, the total force P applied to the punch can be calculated as

P =

∫∫
A

p(x1, x2)dx1dx2 = δ

∫∫
A

p∗(x1, x2)dx1dx2 = δSB (26)

where SB =

∫∫
A

p∗(x1, x2)dx1dx2 does not depend on δ, and depends only on material properties and geometrical

parameters of the contact area. If the contact area is a circle with radius a, then SB = SB(a), as a becomes an
integration limit in (26) and (24) if these expressions are reduced to polar coordinates.

Apparently, this proof mostly follows from the assumed validity of the superposition principle, which readily
leads to the linear integral equations (24). Hence, one may expect similar slope properties in more advanced
cases, like contact with friction.

Note that the expresion SB represents the total force value required to produce the unit displacement of the
considered cylindrical punch.

Next, we present a proof of the equality of the slopes of a Boussinesq-type problem and Hertz-type problem
at the same contact radius using assumption as follows.
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Consider a convex axisymmetrical punch pressed against an elastic medium (half-space, multilayered half-
space, a single layer etc.) with the force P (normal contact) and assume the contact problem to be frictionless (the
Hertz-type problem) with contact pressure greater than zero inside the contact area and equal to zero on its edge.
Let δ be the punch penetration. If the elastic medium obeys the principle of the superposition of loads and has
circular symmetry of elastic properties (i.e. isotropic, transversely isotropic) around the direction of punch action,
then for any non-zero value of the radius of the contact area a the slope S = dP/dδ of the load-displacement curve
P (δ): (i) does not depend explicitly on the indenter shape but rather on the radius a of the contact area; (ii)
has the same value as the slope of the contact problem for the same medium and a flat-ended cylindrical punch of
radius a (the Boussinesq-type problem).

Proof. Because both the elastic medium and the convex punch are axisymmetric, the contact area A in the
normal contact is a circle of radius a. Both the total force P and the punch displacement δ can be expressed as
functions P = P (a), δ = δ(a).

The whole problem can be reduced to cylindrical coordinates. Let r be the polar radius, ϕ be the polar angle,
and the point O of initial contact be the coordinate origin (Fig. 5,b). Denote f(r) the punch shape function in
cylindrical coordinates.

The contact problem is assumed frictionless, hence only normal contact pressure arise within the contact area
A. Due to the axial symmetry of the problem, normal contact pressure distribution is axisymmetric too and can
be expressed by an unknown function p(a, r). Here we explicitly emphasize that particular stress distribution
depends on the value of the contact radius as a parameter, which is linked to P and δ as described above.

Consider the governing integral equation of the contact problem:∫∫
A

p(a, ρ)K(R)dA = δ(a)− f(r) (27)

Here K(R) is the surface influence function of the elastic medium, and R is the distance between the current point
(ρ, θ) and some selected point (r, ϕ) on the surface (Fig. 5,b). Here (ρ, θ) are dummy coordinates used as integra-
tion variables in (27). In polar coordinates, the distanceR is expressed asR =

√
r2 + ρ2 − 2rρ cosϕ cos θ − 2rρ sinϕ sin θ.

Since the reference for both angular coordinates, ϕ and θ, can always be chosen in such a way that ϕ = 0, the
latter expression can be reduced to the following form without loosing generality: R =

√
r2 + ρ2 − 2rρ cos θ.

Hence, the integral equation (27) can be now written in the following form:

a∫
0

p(a, ρ)L(r, ρ)dρ = δ(a)− f(r), (28)

where L(r, ρ) = ρ
2π∫
0

K(
√
r2 + ρ2 − 2rρ cos θ)dθ.

Eq. (28) can be differentiated with respect to a, which yields

dδ(a)

da
=

p(a, a)L(r, a)+

a∫
0

∂p(a, ρ)

∂a
L(r, ρ)dρ

 (29)

Because p(a, a) ≡ 0 the formula (29) becomes:

dδ(a)

da
=

a∫
0

∂p(a, ρ)

∂a
L(r, ρ)dρ (30)

This is an integral equation with respect to the unknown function
∂p(a, r)

∂a
. Since the equation is linear, one can

always represent its solution as
∂p(a, r)

∂a
=
dδ(a)

da
ψ∗(a, r) (31)

where ψ∗(a, r) is the is the solution of the auxiliary equation:

a∫
0

ψ∗(a, r)L(r, ρ)dρ = 1 (32)

The solution of the auxiliary equation, function ψ∗(a, r), depends explicitly on the radius a, and does not depend
on the punch shape. There is no explicit dependency on either punch penetration, or the total force.

Now consider the total applied force, which can be evaluated in cylindrical coordinates as the integral of the
contact pressure p(a, r):

P (a) = 2π

a∫
0

p(a, r)rdr (33)
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The total derivative of P with respect to a becomes

dP (a)

da
= 2π

ap(a, a)+

a∫
0

∂p(a, r)

∂a
rdr

 (34)

Since the contact pressure on the boundary of the contact area is supposed to be zero p(a, a) ≡ 0, the latter is
simplified to

dP (a)

da
= 2π

a∫
0

∂p(a, r)

∂a
rdr (35)

Finally, (31) can be substituted into (35) which yields

dP

da
= 2π

a∫
0

∂p(a, r)

∂a
rdr = 2π

dδ

da

a∫
0

ψ∗(a, r)rdr (36)

The latter allows one to find the slope of the force-displacement curve:

S =
dP

dδ
=
dP (a)/da

dδ(a)/da
= 2π

a∫
0

ψ∗(a, r)rdr (37)

which is a function of the contact radius a. Thus, the slope value does not depend explicitly on the indenter
shape, because ψ∗(a, r) depends explicitly only on the radius a.

Now consider the same contact problem formulated for cylindrical punch of the same radius as the current
contact radius a (the Boussinesq-type problem). Denote pB the distribution of the contact pressure for this
problem. Having repeated the transformations (27)-(28), one can write the governing integral equation for the
Boussinesq-type problem in cylindrical coordinates as

a∫
0

pB(a, ρ)L(r, ρ)dρ = δ (38)

where a is a constant parameter, and an auxiliary integral equation that corresponds to the contact problem with
unity punch displacement:

a∫
0

p∗B(a, ρ)L(r, ρ)dρ = 1 (39)

It follows from the proof above, that the slope of the Boussinesq-type force-displacement curve SB is equal to
the total force required to produce the unit displacement of the considered cylindrical punch, that is

SB = 2π

a∫
0

p∗B(a, r)rdr (40)

Now compare expressions (39), (40), that define the slope of the Boussinesq-type force-displacement curve,
and Eq. (32), (37), which define the slope of the Hertz-type force-displacement curve. It is clear that these
equations are identical apart from the used notation. Since the contact radius a is supposed to be identical in
both cases, both slopes are identical too.

Remark. Clearly, the above proofs are not universal and do not cover certain contact scenarios, like contact
with friction (see a discussion in [1]), or some exotic cases like axisymmetric contact between a paraboloidal
indenter and a circular Kirchhoff plate [33], which leads to zero contact pressure in the inner points of the contact
area. Those cases are not covered in this paper and require separate consideration. Nonetheless, the above proofs
cover many important situations, like contact problems for layers of finite thickness, or multi-layered medium,
or Finite Element Method-based models of finite size. Section 5 contains a description of a two-model finite
elements-based approach to the construction of parametric force-displacement curves that is heavily based on the
above properties of slopes.

Although some of the above statements might already exist in the literature (see e.g. transformations in [46,
47]), we believe that the reader would benefit from the accurate formulations of the statements and presentation
their proofs consolidated in the present Section. To the best of our knowledge, there is no publication presenting
in full the above statements on properties of the slopes of the P − δ curves.
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4 Adhesive contact problem for a thin elastic layer: Leading
term and two term asymptotic solutions

Here the explicit transformation (19) is demonstrated for asymptotic JKR adhesive contact between a rigid punch
and a thin elastic layer. The cases of the leading term and two term asymptotic solutions are considered.

Consider a non-adhesive (Hertz-type) contact problem for an elastic layer of constant thickness h bonded to a
rigid substrate, and an axisymmetric rigid indenter, as shown in Fig. 6. In this section we demonstrate how one
can reduce a known asymptotic solution of this contact problem into the JKR adhesive one, using the previously
developed formulae.

P

δ h

a

Figure 6: Contact problem for a thin elastic layer and a rigid indenter

Let P be the total force applied to the indenter, δ be the penetration depth, a be the radius of the contact
area, and f(r) be the function describing the shape of the indenter in the cylindrical coordinates. Assume that
the layer thickness h is much smaller than the radius of the contact area a. In this case, the ratio h/a becomes
a small parameter, which allows one to use asymptotic techniques to solve the contact problem. It is known
(e.g. [34]) that isotropic or transversely isotropic asymptotically thin elastic layer can be reduced to the Winkler-
Fuss elastic foundation in the leading term asymptotic approximation, or the Pasternak elastic foundation in the
two-term asymptotic approximation. The Winkler-Fuss foundation [35] is a model that can be represented as a
layer of independent springs that act in such a way that normal external pressure at some point p(x1, x2) causes
the displacement w(x1, x2) proportional to the applied pressure: p(x1, x2) = Kw(x1, x2), where K is the elastic
modulus of the foundation. There are more advanced models where the external pressure p and the corresponding
displacements w are linked via the following relation: p (x1, x2) = Kw (x1, x2)−G∇2w (x1, x2), where K and G
are elastic moduli of the foundation. These two elastic moduli elastic foundation models include the Pasternak
foundation [36], which can be represented as a layer of springs that have shear interaction between them; and
Filonenko-Borodich foundation [37], which can be represented as springs of a Winkler-Fuss fondation covered by
a stretched membrane.

A contact problem for a thin isotropic layer of thickness h, with Young’s modulus E and Poisson ratio ν, is con-
sidered in the book [34], which suggests the values of the elastic moduliK andG asK = E (1− ν)/[h (1 + ν) (1− 2ν)]
and G = hEν(1− 4ν)/[3(1 + ν)(1− 2ν)2].

4.1 Leading term asymptotic adhesive solution

For the sake of completeness, first we briefly demonstrate the derivation of the leading term adhesive solution to
the contact problem for an asymptotically thin elastic layer. This problem has been discussed a number of times
in the literature (see e.g. review in [20]).

The total applied force P and the penetration depth δ of the Hertz-type problem in the leading term asymptotic
approximation can be represented as [20]:

δH(a) = f (a) , PH(a) = πK

a2f (a)− 2

a∫
0

f (r) rdr

 . (41)

The slope of the Hertz-type curve and its derivative are therefore S (a) = dPH/dδH = πKa2, S′ (a) = 2πKa. Thus,
the explicit formulae (19) can be readily written as:

δ(a) = f (a)−
√

2w

K
, P (a) = πK

a2f (a)− 2

a∫
0

f (r) rdr − a2
√

2w

K

 , (42)

which is exactly the result derived in [20] using the classical JKR methodology [10].
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4.2 Two term asymptotic adhesive solution

In this section, we use the above mentioned fact that in two term asymptotic approximation the thin elastic layer
can be formally substituted with the Pasternak elastic foundation. Here we start from the governing relation
between the applied pressure and the displacement of such a foundation, and represent the derivation of the
corresponding JKR adhesive solution in full.

First, let us take into account axial symmetry of the problem, which allows to re-write the governing relation
for the Pasternak foundation p (x1, x2) = Kw (x1, x2)−G∇2w (x1, x2) as

p (r) = Kw (r)−G
(
d2w

dr2
+

1

r

dw

dr

)
(43)

here p(r) and w(r) are the contact pressure and the foundation displacement correspondingly.
Clearly, the boundary condition of unilateral contact with the rigid punch requires that w (r) = δ− f (r) , r ∈

[0, a] . Substituting the latter expression into (43), one has

p (r) = K (δ − f(r)) +G

(
f ′′(r) +

1

r
f ′(r)

)
, r ∈ [0, a] . (44)

The contact pressure in the non-adhesive problem becomes zero on the edge of the contact area p (a) = 0, which
can be used to link the penetration depth δ to the contact radius a using (44):

δH = δ(a) = f (a)− G

K

(
f ′′ (a) +

1

a
f ′ (a)

)
(45)

To derive the relation between the total force P and the radius a, consider the total force, taking into account
(44):

P = 2π

a∫
0

p (r) rdr = 2π

K a∫
0

δrdr −K
a∫
0

f (r) rdr +G

a∫
0

(
rf ′′ (r) + f ′ (r)

)
dr

 . (46)

After simplification, using (45), we finally obtain

PH = P (a) = πK

a2f (a)− 2

a∫
0

f (r) rdr

+ πGa
[
2f ′ (a)− af ′′ (a)

]
(47)

To quickly evaluate the slope of the Hertz-type force-displacement curve S(a) = dPH/dδH , consider (46) explicitly
emphasizing that the contact radius and the contact pressure depend on the penetration depth δ:

P = 2π

a(δ)∫
0

p (δ, r) rdr. (48)

It follows from (48) that

dP

dδ
= 2π

d

dδ

a(δ)∫
0

p (δ, r) rdr

 = 2π

a (δ) p (δ, a (δ))
da(δ)

dδ
+

a(δ)∫
0

∂p (δ, r)

∂δ
rdr

 (49)

As long as p (δ, a) ≡ 0 and ∂p(δ,r)/∂δ = K, according to (44), we have S (a) = dP/dδ = 2π
a∫
0

Krdr = πKa2. That

is, the slope value of the non-adhesive P − δ curve is the same for both leading term, and two term asymptotic
approximations at the same value of the contact radius a. The latter conclusion readily implies that the extra
terms related to adhesion remain the same in both the leading term and the two-term asymptotics, as follows
from (19).

Finally, using (45), (47), we obtain

δ(a) = f (a)− G

K

(
f ′′ (a) +

1

a
f ′ (a)

)
−
√

2w

K
(50)

P (a) = πK

a2f (a)− 2

a∫
0

f (r) rdr +
Ga

K

[
2f ′ (a)− af ′′ (a)

]
− a2

√
2w

K

 , (51)

the two-term asymptotic solution for the contact problem for a thin elastic layer and a rigid punch in the framework
of the JKR theory of adhesive contact.
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5 Discussion

It has been developed above an explicit form of solution to the general JKR-type problems (formulae (19)) without
specifying any a priori conditions except the validity of the superposition principle and axial symmetry, therefore
letting additional conditions (13)-(14) arise naturally in order to simplify the condition of the minimum of the
total energy of the system. This is an important difference from the works [24, 25], where those conditions
were set a priori but not articulated clearly. Indeed, these conditions were ”blended” and presented in [24] in
an implicit form by expressing the unloading stage of the JKR formalism at the constant contact radius a as
F (a) = Fn.a.(a)− kn.a.∆l, where F (a) is the value of the force in the JKR solution (P0 in this paper), Fn.a.(a) is
the corresponding force value in the initial non-adhesive problem problem (P1 in this paper), ∆l is the amount of
unloading (δ1 − δ0 in this paper), and kn.a. is the contact stiffness in the non-adhesive problem, that is, the slope
of the force-displacement curve ( dPH

dδH
in this paper).

The expression F (a) = Fn.a.(a)− kn.a.∆l describes the unloading stage of the JKR formalism at the constant
radius which effectively suggests that the solution of the corresponding Boussinesq-type problem is a linear
relation between force and displacement. The formula is written in terms of increments from the system already
pre-loaded to reach the contact radius a. Hence, this implicitly requires the validity of the superposition principle,
as the solution of the flat-punch Boussinesq problem becomes superimposed with the pre-loaded system state.
Finally, the presence of coefficient kn.a. implicitly suggests that the slopes of the Boussinesq-type problem and
the Hertz-type problem are assumed equal at the same value of the contact radius.

The approach adopted in the present paper allowed us obtain all the above conditions in a clear and explicit
form (13)-(14), and also lead to the general energy balance condition (12), which can be used for futher analysis
of the JKR formalism in its most general form. However, there is another advantage in having the conditions
(13)-(14) explicitly formulated, which is related to practical implementation of the explicit formulae (19).

The results of the previous section demonstrate practical application of the formulae (19) in analytical form.
However, numerical implementation of the same approach, e.g. by means of the Finite Element Method (FEM),
can face certain challenges related to the discrete nature of finite element models. Clearly, the radius of contact
cannot be determined with arbitrary accuracy, as it is limited by the characteristic size of the FE mesh in the
contact area. In addition, as loads are applied, contact elements switch their effective stiffness in a non-smooth
manner based on the contact gap size (e.g. [38]). These factors lead to certain inaccuracies present in any
parametric force-displacement relation in the form (1) obtained from FEM solution of a contact problem.

Now it is worth recalling that formulae (19) contain the derivative of the slope S′(a). Hence, if values of P, δ,
and a are the primary data obtained from a FE model, then evaluation of S′(a) would require two consequtive
differentiations, which would considerably amplify any fluctuations present in the initial data.

To avoid that undesired numerical effect, it has been also developed here an alternative two-model approach
to the construction of parametric force-displacement curves (1), based on the assumption of simultaneous validity
of the conditions (13)-(14), that is:

dδ̂H
dP

=
∂δB(a, P )

∂P
=

1

S(a)
(52)

The two-model approach is graphically presented in Fig. 7. In this approach, the functions S = S(a), S′ =
S′(a) are accurately constructed using a set of auxiliary Boussinesq-type problems, whereas the dependencies
δ = δ(a), P = P (a) are identified from the Hertz-type problem using only P and δ values and the formula (52),
which links Hertz-type and Boussinesq-type problems together. Altogether, this leads to accurately constructed
JKR force-displacement curve (19). Let us consider this approach in more detail.

To identify the complete set of values a = a∗, δ = δ∗, P = P ∗, S = S∗ representing a point on the force-
displacement curve for a convex punch (Hertz-type problem), we begin with an auxiliary problem for a flat-ended
cylindrical punch of the same radius a∗ (Boussinesq-type problem). The auxiliary problem allows us accurately
identify the value of the slope S∗ by fitting the force-displacement data with a straight line.

Then the force-displacement data for the actual Hertz-type problem is numerically identified as a set of
pairs (P, δ). The values are fitted with a spline curve, and by means of numerical differentiation a point which
corresponds to the same slope value S∗ is identified. The respective values P ∗ and δ∗ are the sought ones.
Appendix A contains a numerical example demonstrating the accuracy and validity of this two-model approach
(with computer scripts used in calculations attached as supplementary materials, please see the Data Accessibility
section for more details).
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The Bousinesq-type 
problem

The Hertz-type 
problem

Figure 7: The two-model approach to the construction of a parametric force-displacement curve.

In this approach, the derivative S′(a) can be evaluated accurately, as it would not require differentiating
numerical data two consecutive times. Instead, a sequence of different pairs of values (a, S) from a sequence of
auxiliary Boussinesq-type problems allows us construct S′(a) using numerical differentiation just once.

We successfully implemented this concept during the development of a FEM-based equivalent of the extended
Borodich-Galanov (BG) method (originally proposed in [39]) of identification of elastic properties of materials and
structures by means of depth-sensing indentation [41, 40, 42]. The results have been presented at international
conferences (e.g. [43]) and are being prepared for journal publication.

One more advantage of having conditions (13)-(14) explicitly stated is that the reader can better understand
the validity scope of the explicit JKR formulae (19). Although those formulae seem to have been independently
re-discovered in different forms by different authors [22, 23, 25, 24, 44], those works lack formal mathematical
investigation of the exact applicability scope of the formulae. In this regard, the proofs developed in Section 3
can be considered an attempt to do some systematic analysis of that kind, although it is clear that those proofs
do not define the entire scope and limitations of the explicit JKR formulae and more work is needed in the
future. Certain limitations of the formulae (19) are highlighted in [24], such as apparent inability to reproduce
in full hysteretic behaviour in force-displacement curves. At the same time, it is not entirely clear whether the
formulae can be used to reproduce at least certain segments of those curves. Ciavarella [44] applied a very similar
approach to investigate a contact problem of rough surfaces, although other authors [24, 45] argue that those
explicit formulae should not be applied to rough contacts, at least directly. It is also worth mentioning here that
in the work by Argatov et al. [25] explicit transformation from non-adhesive to the JKR adhesive solutions was
done for a contact problem involving a toroidal indenter producing an annual area of contact.

6 Conclusion

The classical JKR formalism can be formulated and successfully studied in a general form employing a minimum
number of a priori conditions specified, namely just axial symmetry and the validity of the superposition principle.
It has been shown that the general energy balance condition can then be reduced into a set of formulae that allow
solutions to non-adhesive contact problems to be explicitly transformed into the corresponding JKR adhesive
solutions. For these transformations, there is no need to solve the entire problem of finding the minimum of the
total potential energy of the system.

Alongside the explicit formulae of the general JKR theory, two additional mathematical conditions emerge,
which can be interpreted as certain requirements imposed on the slopes of Boussinesq-type and Hertz-type force-
displacement curves. The validity scope of those requirements has been discussed and formally investigated for
some important practical cases. The implementation of the developed theory has been demonstrated in application
to several contact problems. A problem of contact between a thin elastic layer and a rigid punch of arbitrary
axisymmetric shape has been considered as an analytical example, and a two term asymptotic JKR adhesive
solution has been obtained. The aspects of numerical implementation of the developed theory by means of Finite
Element Method (FEM) have been discussed as well. In particular, it has been shown that the complete set of
values required for practical use of the explicit JKR formulae that connect the force, displacement, contact radius,
slope, and the first derivative of slope, can be accurately evaluated from FEM results by means of combined use of
the original Hertz-type model along with a set of auxiliary flat-ended punch problems (the two-model approach).
The advantage of the presented two-model approach is that the use of the auxiliary Boussinesq-type problems
enabled us to determine accurately the slope of the P − δ curve and its derivative as functions of contact radius
without differentiating numerical data two consecutive times.

Data Accessibility. The calculations presented in Appendix A can be re-created by means of Ansys
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(*.apdl) and Matlab (*.m) scripts provided as supplementary materials. The scripts Step1 problem cyl.APDL,
Step2 problem spher.APDL, Step4 problem spher verification.APDL correspond to calculation Steps 1,2, and 4
respectively. They are expected to be executed from interactive Ansys session. The script params.apdl con-
tains the key calculation options and must be placed alongside the three others. The script Step3 interpolate.m
corresponds to Step 3 and needs to be run using Matlab. Note that only the following scripts are annotated:
Step1 problem cyl.APDL, params.apdl, Step3 interpolate.m.
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[21] Erbaş B., Aydın Y.E., Borodich F.M. 2019 Indentation of thin elastic films glued to rigid substrate: Asymp-
totic solutions and effects of adhesion. Thin Solid Films, 683, 135-143

[22] Shull K.R., Ahn D., Chen W.-L., Flanigan C.M. and Crosby A.J. 1998 Axisymmetric adhesion tests of soft
materials.Macromol. Chem. Phys., 199, 489–511

[23] Shull K.R 2002 Contact mechanics and the adhesion of soft solids. Mat. Sci. Eng. R: Reports, 36(1), 1–45.

[24] Popov V.L. 2018 Solution of adhesive contact problem on the basis of the known solution for non-adhesive
one.Facta Universitatis: Mechanical Engineering,49(4), 93-98

[25] Argatov I., Li Q., Pohrt R. and Popov V.L. 2016 Johnson–Kendall–Roberts adhesive contact for a toroidal
indenter. Proc. R.Soc. Lond. A, 472, 20160218.

[26] Sridhar I, Johnson K L. and Fleck N. A. 1997 Adhesion mechanics of the surface force apparatus. J. Phys.
D: Appl. Phys. 30, 1710–1719

[27] Johnson K.L. and Sridhar I. 2001 Adhesion between a spherical indenter and an elastic solid with a compliant
elastic coating. J. Phys. D: Appl. Phys., 34, 683

[28] Sridhar I., Zheng Z.W. and Johnson K.L. 2004 A detailed analysis of adhesion mechanics between a compliant
elastic coating and a spherical probe. J. Phys. D: Appl. Phys., 37, 2886–2895

[29] Rostovtsev N.A. 1953 Complex stress functions in the axisymmetric contact problem of elasticity theory.
PMM J. Appl. Math. Mech., 17, 611–614.

[30] Sneddon I. 1965 The relation between load and penetration in the axisymmetric boussinesq problem for a
punch of arbitrary profile. Int. J. Engng Sci., 3, 47–57.

[31] Willis J.R. 1966 Hertzian contact of anisotropic bodies. J. Mech. Phys. Solids, 14, 163–176.

[32] Conway H.D., Farnham K.A., Ku T.C. 1967 The indentation of a transversely isotropic half space by a rigid
sphere. J. Appl. Mech., 34(2), 491–492.

[33] Timoshenko S. and Woinowsky-Krieger S. 1959 Theory of plates and shells. McGraw–Hill, New York.

[34] Argatov I. and Mishuris G. 2015 Contact Mechanics of Articular Cartilage Layers. Asymptotic Models.
Springer.

[35] Winkler E. 1867 Die Lehre von der Elastizität und Festigkeit, mit Besonderer Rücksicht auf ihre Anwendung
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Appendix A

In this Appendix, we consider a numerical example which has a twofold purpose. On the one hand, the example
demonstrates the accuracy of the approach to numerical reconstruction of parametric force-displacement curves
based on the combination of a Boussinesq-type model and a Hertz-type model described in Section 5. On the
other hand, it demonstrates that the two properties of slopes of force-displacement curves discussed earlier are
valid and can be easily implemented for Finite Element Method (FEM) calculations.

The example is based on a FE model of an elastic bi-layer structure (a disk) bonded to a rigid base at
the bottom and on the outer edge (Fig. 8). When the diameter-to-thickness ratio is high, such a model can
approximate the elastic response of an infinite bi-layer structure bonded to a rigid base.

Figure 8: Geometrical model of a bi-layer disk.

Three contact problems involving this elastic structure were considered using the Ansys Mechanical APDL
2019 and Matlab 2019 software. Problem 1 : a Boussinesq-type contact problem involving a circular cylindrical
indenter of radius a; Problem 2 : a Hertz-type contact problem involving a spherical indenter of radius R; Problem
3 : a verification contact problem (identical to No.2 but with a different indentation depth, see the details below).

In a sequence of steps, we assigned the value of the contact radius a = a∗, then identified the corresponding
slope value using a Boussinesq-type model, then assumed the same slope value in the Hertz-type problem and
identified the respective values of indentation depth δ = δ∗ and force P = P ∗. As a verification step, the value of
the contact radius corresponding to δ = δ∗ was evaluated directly from FEM model, thus making the complete
circle in the diagram in Fig. 7. The final value of a was then compared with the initially set one. The calculations
were done as follows.

Step 1. A particular value a = a∗ was set for the radius of the cylindrical indenter in Problem 1, and a force-
displacement relation was numerically obtained in Ansys as a set of discrete values corresponding to different
loading substeps.

Step 2. In Problem 2, a force-displacement relation for the same medium and the spherical indenter was
numerically obtained in Ansys, again in discrete form as pairs of force and displacement values.

According to the proofs in Section 3, the force-displacement relation in Step 1 should be linear and have
exactly the same slope as the force-displacement relation in Step 2 when the contact radius in the latter reaches
the value a∗.

Step 3. Using Matlab, the discrete force-displacement data from Problem 1 was least-squares fitted with a
straight line and the slope value S∗ was extracted. The discrete force-displacement data for Problem 2 was least-
squares fitted with B-splines using Matlab’s spap2 routine and then differentiated thus obtaining slope values S
corresponding to individual (P, δ) points. That data was then re-arranged by means of another spline fitting in the
form of the following dependencies: δ = δ(S), P = P (S). Finally, the value S = S∗ from Step 1 was substituted
into the latter dependencies to evaluate the values of the indentation depth δ∗ = δ(S∗) and the indentation force
P ∗ = P (S∗) which correspond to the slope value S∗ and the contact radius value a∗.

Step 4 (Verification). To verify the results of Step 3, Problem 3 identical to Problem 2 was considered.
The only difference was that the final indentation depth was now set to δ∗. Then the respective values of the
indentation force and the contact radius were identified directly from the FEM results and compared to the values
a∗ and P ∗ from Steps 1-3.

The particular model parameters and calculation settings were as follows. The top layer had thickness h1 = 0.1
mm and elastic properties: Young’s modulus E1 = 3 MPa, Poisson ratio ν1 = 0.3; the bottom layer had thickness
h2 = 1.9 mm and elastic properties: Young’s modulus E2 = 300 MPa, Poisson ratio ν2 = 0.3. The radius of
the structure was 4(h1 + h2). The radius of the cylindrical indenter was set a∗ = 0.4 mm, and the radius of the
spherical one was R = 10 mm.

The FEM model for the bi-layer used in Steps 1,2, and 4 consisted of PLANE183 elements in axisymmetric
formulation (with Ansys X-axis representing the radial coordinate). A part of the top layer of radius 2a = 0.8 mm
was meshed with quadrilateral mesh, the remaining parts of the model were meshed with free triangilar mesh.
Note that making the finest mesh was not our goal in that exercise. A frictionless contact pair was made using
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TARGE169 and CONTA175 elements. The indenter, be it cylindrical or spherical, became rigid target surface
with a pilot node. The FEM model for Steps 2 and 4 is shown in Fig. 9.

Indentation depths in Steps 1 and 2 were arbitrary set 0.025 mm. Indentation displacement was applied as a
kinematic constraint to the pilot node; indentation force was obtained as negative of the reaction value at that
node using the time history post-processor POST26 in Ansys. All the Ansys simulations had the same number
of 20 loading substeps. All the indentation data sequences were adjoined with zero data values corresponding to
the moment of initial contact.

Figure 9: Finite element model of a bi-layer structure and a rigid spherical indenter.

The calculated results were as follows. The force-displacement data obtained in Step 1 (cylindrical indenter) for
inenter radius a∗ = 0.4 mm and indentation depth 0.025 mm was fitted, using Matlab, with the following straight
line: P = 20276.40623376623δ − 0.00061455411, hence S∗ = 20276.40623376623 N/m. Using spline interpolation
and numerical differentiation in Matlab, a point on the Step 2 force-displacement curve was identified, where
the slope value was identical to S∗. The corresponding values of indentation depth and indentation force were:
δ∗ = 8.770177786585117 · 10−03 mm, P ∗ = 0.090008569091328 N.

At the verification step, indentation depth for the spherical indenter was set to δ∗ = 8.770177786585117 ·10−03

mm. The corresponding value of the indentation force was evaluated in Ansys as 0.0899206 N. Compared with
the value of P ∗, this shows the relative error of 0.0977341%. Next, the contact radius was approximated directly
from the Ansys output by finding the outermost contact node indicating the closed contact status, which gave
the value of 0.402 mm, whereas the theoretically predicted value was the initially set a∗ = 0.4 mm. Hence, the
relative error was 0.5%.

Thus, despite its increased complexity, the two-model approach to reconstructing parametric force-displacement
dependency exhibits its high accuracy. The above example also demonstrates the fact that the properties of slopes
of force-displacement curves discussed in Section 3 are applicable to FEM calculations as well.
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