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a b s t r a c t 

In the context of increasing urbanization and climate change globally, urban energy systems (UES) planning needs 

adequate consideration of climate change, particularly to ensure energy supply during extreme weather events 

(EWE) such as heatwaves, floods, and typhoons. Here we propose a two-layer modeling framework for UES plan- 

ning considering the impact of EWE. An application of the framework to a typical coastal city of Xiamen, China 

reveals that deploying energy storage (i.e., pumped hydro and battery) offers significant flexibility to ensure the 

critical demand is met during typhoon as a typical EWE and avoids over investment in supply technologies. This 

requires an extra 2.8% total cost on investment and operation of UES for 20 years. Planning energy systems with 

proper consideration of EWE can ensure robust urban energy services even with increasing penetration of fluctu- 

ating renewables, and we offer a flexible and computationally efficient paradigm for UES planning considering 

the impact of EWE. 
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. Introduction 

According to the latest Intergovernmental Panel on Climate Change

IPCC) assessment report [1] , global climate change would lead to in-

reasingly more frequent and intense extreme weather events (EWE),

uch as rainstorms, typhoons, heatwaves, droughts and wildfires (see

ig. 1 ), which have posed unprecedented threats to human-built infras-

ructures [ 2 , 3 ]. Failure to prepare for the impacts of EWE could lead to

ery costly consequences for urban areas as most of the economic ac-

ivities are happening there [4] . Currently, over 3.5 billion people live

n urban areas, contributing to more than 70% of energy-related green-

ouse gas (GHG) emissions globally [5] . These figures are expected to

ncrease, which makes cities standing on front lines for both human

evelopment and climate change mitigation. Facing the serious exter-

al threats from EWE as well as the internal high penetration of fluc-

uating renewables, designing ‘climate-resilient’ urban energy systems

UES) that are able to adapt to changing climate variables [6] is an

merging challenge. At present, the EWE induced climate risks remain

nsufficiently accounted among key stakeholders [7] . Without sufficient

nowledge for such risks, the city administrators and energy investors

an only hope the next EWE would not trigger a sudden blackout. 

Understanding the impacts of EWE on UES is extremely challenging

ue to the multivariate and multiscale changes of climate systems as
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ell as the complex interactions between climate systems and energy

ystems [ 8 , 9 ]. Over the last two decades, significant progress has been

ade in developing climate models and projecting future climate condi-

ions. Methods are developed to generate future climate data sets based

n reginal climate models [10] , modified clustering approach [11] , and

ased on historical data and simulation tools [12] . These efforts provide

aluable future climate information for further impact assessments. Re-

ently, remarkable progress has been made on understanding the impact

f EWE for individual energy sector, such as solar power [ 13 , 14 ], wind

ower [15] , thermal power generation [16] , as well as residential en-

rgy systems [17] . Nevertheless, the impact of EWE on the supply-side,

emand-side, and transition pathways of UES have not yet been ade-

uately explored systematically. 

Energy system models have been developed to address both design

nd dispatch uncertainties considering the integration of different sec-

ors [ 18 , 19 ], which enables investigating the impact of EWE on en-

rgy systems. Stochastic programming [ 20 , 21 ], stochastic-robust pro-

ramming [22] , and a combined approach [23] have been developed

or modeling energy systems with uncertainties. These modeling ap-

roaches tend to be computationally expensive. Meanwhile, quantify-

ng the probability of EWE occurrence remains an open challenge since

WE are usually with low probability but high impact. Furthermore,

WE could be heavily fluctuating during a short period of time, typical
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Fig. 1. The world has encountered a significant number of extreme weather events in 2020 (until July). The selected climate anomalies presented in this map is 

compiled from NOAA’s Global Climate Reports from January to July 2020 [24] . 
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2 
emporal resolution in planning models may not be sufficient to cap-

ure its dynamics. More efficient and flexible approaches are therefore

eeded. 

As an emerging concept with growing importance, understanding

he impact of EWE on UES and further designing ‘EWE-resilient’ UES re-

ain a research gap. Here, we propose an original two-layer modeling

ramework to bridge the gap of addressing EWE during UES planning.

e then apply the framework to investigate the UES planning for a rep-

esentative coastal city of Xiamen, China considering the typical EWE

f typhoon events. The contributions of the study are: 

(1) Compared to previous stochastic or robust formulation, the two-

layer modeling framework splits the EWE simulation from the

conventional energy planning, which offer greater flexibility on

setting EWE simulation to better capture the EWE dynamics and

is generally applicable for various EWE. 

(2) The proposed framework enriches the methodology on designing

an EWE-resilient UES, generates quantitative insights from the

case study to enlighten promising strategies for the urban energy

transition, and enhances the understanding for the impact of EWE

on UES. 

. Methodology 

.1. Two-layer modeling framework addressing EWE impact 

UES planning aims to inform the optimal decisions on UES design

nd dispatch, such strategies satisfying the total energy demand of a

ity [ 25 , 26 ]. Here, we propose an original two-layer modeling frame-

ork for urban energy systems (UES) planning considering the impact

f extreme weather events (EWE), including the upper-layer UES opti-

ization model that considers the conventional scenario only; and the

ower-layer EWE simulation model that simulates the performance of

he optimized design from upper-layer optimization model in EWE sce-

ario. 

.1.1. Upper-layer optimization model 

As outlined in Fig. 2 a, we proposed a two-layer modeling framework

o address the EWE impact when planning UES. The upper-layer UES op-

imization model is developed to optimize UES design and dispatch con-

idering conventional scenario only [27] . We develop this model based
2 
n the bottom-up structure [28] , which consists of two components:

1) characterizing the annual capacity of each energy technology from

015 to 2035, (2) capturing the dynamic balance between demand and

upply at hourly basis. The design decisions include optimal investment

iming, system-level capacity, generation mix, CO 2 emissions, and to-

al capital cost for all modeled energy technologies [29] . The dispatch

ecisions include optimal energy outputs, fuel consumptions, and total

perational cost of all energy technologies [30] . The hourly temporal

esolution of our model enables capturing the intermittent renewables

nd the dynamics of energy storage technologies. To reduce the com-

utational complexity, the full hourly time sets of demand, wind speed,

nd solar radiation for conventional scenarios are clustered to 6 typical

ays by the k-means clustering approach following the method as re-

orted in Ref. [ 31 , 32 ], while the EWE scenario would be simulated in

he lower layer. The planning horizon is 20-year with the hourly reso-

ution (see Fig. 2 b). Daily fluctuations on demand and renewables are

aptured by slicing each year into three typical seasons (summer, winter,

nd transition seasons) and two typical days (weekday and weekend). 

The outline of the upper-layer UES optimization model is presented

s follows, where the objective function of the optimization model is

o minimize the total discounted cost (TDC) of the energy system over

he modeling horizon [33] . The constraints include energy balance (sum

f supply is larger than demands), capacity expansion constraints (an-

ual capacity expansion within limits), capacity constraints (energy out-

ut constrained by capacity), operation constraints (on/off and ramp-

p/down control), conversion constraints (other energy sources such

s natural gas and coal to electricity), PHES constraints (constraints on

torage), grid connection constraints, and CO 2 emissions limit (annual

mission reduction target). The detailed mathematical equations of the

ptimization model are detailed in Appendix A.2.1. 

min obj opt = total discounted cost 

S.T. Energy balance 

Capacity expansion constraints 

Operation constraints 

Conversion constraints 

PHES constraints 

Battery constraints 

Grid connection constraints 

CO emissions limit 
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Fig. 2. Schematic of the two-layer modeling framework. a, outline of the two-layer framework. b, temporal setup for upper-layer UES optimization model. c, temporal 

setup for lower-layer EWE simulation model. Abbreviations: UES, urban energy systems; EWE, extreme weather events; PHES, pumped hydro energy storage; Summ, 

summer; Tran, transition season, Wint, winter. 
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.1.2. Lower-layer simulation model 

The lower-layer EWE simulation model aims to validate whether the

ptimized UES pre-design from the upper-layer UES optimization model

an meet the critical energy demand of the city during EWE. The criti-

al demand is extracted from the total energy demand, and the remain-

ng demand is considered as the less-critical demand. The EWE sim-

lation model is essentially an economic dispatch model with specific

onstraints on the availability of renewables during EWE. Hence, the dis-

atch decisions are optimized including optimal imported power, fuel

onsumption, and energy output for all energy technologies. The sim-

lation horizon is set to 96 h considering 2-day before EWE (the first

ay is conventional, the second day preparing for EWE happens), 1-day

WE (e.g., typhoon in this case) happens, and 1-day recovery after the

WE (see Fig. 2 c). So that the simulation results would iteratively in-

orm the upper-layer optimization model to adjust UES design by either

Storage Prior’ or ‘Supply Prior’ heuristics when the pre-design cannot

ass the EWE simulation. Therefore, the proposed two-layer modeling

ramework not only achieves optimal UES planning considering EWE,

ut also offers optimal UES dispatch decisions during EWE. 

The outline of the lower-layer EWE simulation model is presented as

ollows, where the objective function of the simulation model is to min-

mize the operational cost of the energy system during the EWE, subject

o the constraints including capacity constraints, energy balance, op-

ration constraints, conversion constraints, PHES constraints, and grid

onnection constraints. The detailed mathematical equations of the sim-

lation model are detailed in Appendix A.2.2. 

min obj sim 

= operational cost 

S.T. Energy balance 

Capacity constraints 

Operation constraints 

Conversion constraints 

PHES constraints 

Battery constraints 

Grid connection constraints 

.2. Logic flow of the iterative framework 

Based on the setup of above mentioned two-layer modeling frame-

ork, Fig. 3 explicates how the two layers models are iterated in the

roposed framework. 
3 
- Step 1: Run the upper-layer UES optimization model with conven-

tional scenario only. 

- Step 2: Record all optimized design and dispatch decisions. 

- Step 3: Put design decisions (i.e., optimal capacity expansion) of

year i into the lower-layer EWE simulation model and run the

simulation as the validation. 

- Step 4: If a solution exists from the Step 3 simulation (i.e., validation

passed), retain the design and dispatch decisions from year 1 to

i, then set i + 1, and redo the Step 3 for next run of the EWE

simulation. 

- Step 5: If no solution exists from the Step 3 simulation (i.e., valida-

tion failed), indicating that either increase supply or energy stor-

age is necessary to ensure the critical demand to be met during

the EWE scenario. We, therefore, offer two strategies for model-

users to select one, namely, ‘Storage Prior’ and ‘Supply Prior’

heuristics. 

As displayed in Fig. 3 b, in the ‘Storage Prior’ heuristics (from Step

.1 to 5.6), PHES has the priority to incrementally increase its capacity,

etaining other design decision fixed, and iteratively running the EWE

imulation model (Step 5.1 and 5.2). If the capacity increase of PHES

eaches the upper limit on the annual built rate but a feasible solution

till cannot be found for the EWE simulation, then incrementally in-

rease the capacity of battery storage (Step 5.3 and 5.4). If no solution

an be found for the EWE simulation until battery storage reaches its

nnual built rate limit, then incrementally increase the capacity of gas

ower. The reason why putting PHES prior to battery storage lies in the

act that PHES has both lower investment and operational cost than that

f battery storage, which makes PHES more likely to be implemented.

ote that PHES may not always available in other cities, so model-users

ould skip Step 5.1 and 5.2 and start from Step 5.3 for cities without

HES development potential. As shown by Fig. 3 c, the logic of the ‘Sup-

ly Prior’ heuristics (Step 5.7 to 5.11) is similar to the ‘Storage Prior’

ut in a reverse order, i.e., the capacity of gas power is incrementally

ncreased first (Step 5.7 and 5.8), followed by PHES (Step 5.9 and 5.10),

hen battery storage (Step 5.11 and 5.12). 

- Step 6: By either the ‘Storage Prior’ or ‘Supply Prior’ heuristics in

Step 5, the updated design decisions (i.e., values of capacities) for

gas power, PHES, and battery storage are set as lower bounds for

corresponding capacity variables. Then, re-run the UES optimiza-

tion model with these lower bounds. So far, the EWE simulation
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Fig. 3. Logic flow of the two-layer modeling framework to achieve UES planning with EWE. (a) Major steps of the logic flow. (b) The procedure of implementing 

‘Storage Prior’ heuristics. (c) The procedure of implementing ‘Supply Prior’ heuristics. 
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of year i is completed and the impact of EWE has been consid-

ered during the UES optimization for year i . By setting i + 1 and

redo Step 2 to 6, the EWE simulation for year i + 1 can be done

and iteratively inform the UES optimization model to adjust its

design and dispatch decisions if needed. 

- Step 7: When i = N , the UES design for all years over the planning

horizon has been validated by the EWE simulation. Correspond-

ing optimal UES design can ensure the critical demand to be met

when EWE happens. 

.3. Categorizing energy demand 

When the EWE happens, the energy system has to ensure at least

he critical demand is fulfilled. The critical demand is categorized as

ne type of demand from the total energy demand (hourly-basis) and

he rest demand belongs to the less-critical demand. To do the catego-

ization, the total electricity demand of a city is firstly breakdown by

ifferent sectors, including the industry, service, residential, transport

 agriculture sectors. This breakdown is based on the typical demand

rofile (hourly) for each sector [34] and the amount of annual electric-

ty consumption for each sector, which could be found in the statistical

earbook of the city [35] . Then, for each sector, the demand is further

ategorized into the two types based on the priority, i.e., critical demand

nd less-critical demand. The priority is based on the rules of power

upply coordination by consulting to the local utility company. For the

ndustry sector, the demands of uninterruptible process and conditioned

orkshops are categorized to the critical demand, while the demand for

ther industry usage belongs to the less-critical demand. For the service

ector, the demands of utility infrastructure, government essential, and

ritical public services belong to the critical demand, while the demands

or other public service and general business are categorized to the less-

ritical demand. All residential demand is considered as critical demand.

s for the transport & agriculture sector, the demands of railways, sea-

orts, and airports belong to critical demand, while the demands for

ther transport and agriculture activity are considered as less-critical

emand. The typical demand profile (hourly) for each sector and the
4 
nergy demand categorizing results for Xiamen city are presented in

ppendix Fig. A2. 

.4. Constructing an EWE scenario 

We construct the EWE scenario and develop the EWE simulation

odel to validate the performance of the optimized UES design when

WE happens. Before that, it is noteworthy that the global climate &

eather data can be obtained from the NASA MERRA-2 database [36] .

n particular, the historical data for hurricane (also known as typhoon

n specific regions) can be obtained from the associated visualized tool

37] . Meanwhile, it is helpful to consult local power suppliers for the

emand to be met during EWE, the supply technologies’ availability,

nd possible damage recovery after EWE. 

Since an EWE simulation model is essentially an economic dispatch

odel with specific constraints on both demand and supply, there are

our major steps to generate an EWE scenario. (Step 1) Determine the

emand to be met. For the disruptive EWE that seriously affects the en-

rgy supply, e.g., typhoons, the critical demand (part of total demand)

eeds to be met at least; while the demand of all-day could rise rapidly

uring heatwaves. Model-users are flexible to self-define the demand to

e met in their cases. (Step 2) Set specific constraints on supply. During

n EWE, the availability of different energy supplies could be affected

o different degrees. In this study, the solar, wind, and import power

re considered completely not available when encountering typhoons.

nother good example is that the availability of coal and gas power

ould drop when encountering heatwaves as the cooling water temper-

ture may rise and affect the power output of combustion-based power

echnologies. (Step 3) Set specific constraints on technology availability

uring the recovery stage. After the EWE, a certain portion of each en-

rgy supply might still be unavailable due to the damage during EWE.

ence, specific constraints can be set on the availability of each energy

upply technology if needed in the recovery stage. In this case, we as-

ume all technologies could be fully recovered after the EWE (i.e., in

ay-4), in other word, no specific constraints are set. (Step 4) Construct

he economic dispatch model with the demand settings (Step 1), the sup-
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Fig 4. Map of the studied region (Xiamen) with existing energy infrastructures. 
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Table 1 

Situation definitions and TDC cost difference compared to Situ-1. 

Situation Planning with 

EWE 

EWE 

simulation 

EWE handling 

heuristics 

TDC higher 

than Situ-1 

Situ-1 No No No 0% 

Situ-2 Yes Yes Storage Prior 2.8% 

Situ-3 Yes Yes Supply Prior 5.4% 

Note: TDC, total discounted cost, is the objective function for the UES optimiza- 

tion model to be minimized. 
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ly availability settings from (Step 2), and the recovery settings (Step

), so as to generate an EWE simulation model. 

.5. Model assumptions for the optimization and the simulation 

A set of assumptions are made to enable computational tractabil-

ty of both optimization and simulation models as following. (1) The

requency and voltage control relate to a sub-hourly temporal resolu-

ion; we approximate these options by the hourly resolution with suffi-

ient access to ancillary services. (2) The modeled power plants would

ot be decommissioned during the planning horizon. Battery storage re-

lacement is considered due to its relatively short service time. (3) The

hole UES is represented as a single-node network; and the electricity

ransmission losses are considered. (4) Electricity demand and electric-

ty import prices are inelastic; uncertainty of input parameters is not

onsidered; the model is deterministic with perfect foresight. 

Both the upper-layer UES optimization model and lower-layer EWE

imulation model are developed based on Mixed Integer Linear Pro-

ramming (MILP) approach. The upper-layer UES optimization model

ypically has 5.8 × 10 5 variables, of which 2.2 × 10 5 are discrete, re-

ulting in approximately 15 min solution time per run by an Intel Core

7, 1.8 GHz, 8GB RAM personal computer with CPLEX 28.2 solver [38] .

he lower-layer EWE simulation model has 2500 variables with a solu-

ion time less than 1 second on the same machine. 

. Results 

.1. Case setup for urban energy planning 

We apply the proposed framework to investigate the impact of EWE

n UES planning for Xiamen City, China, as Xiamen is a representative

oastal city on the southeast coast of China (see Fig. 4 ) encountering

WE of typhoons occasionally. Typhoons (or Hurricanes) are one kind

f the most destructive and expensive EWE – for example, hurricanes

ead to 9 of the top 10 U.S. EWE disasters by cost since 2000 [39] . Xia-

en is one of China’s first special economic zones with over 4.3 million

esidents in 2019 and it is one of the first batch of low-carbon pilot cities

40] . In general, the critical demand and less-critical demand account

or 52% and 48% of the total electrical demand, respectively in Xiamen.

n this use case, the planning temporal horizon is intended from 2015

o 2035 instead of starting from 2020 for the convenience of model val-

dation with historical recorded data (i.e., 2015~2019). 
5 
The local power supply of Xiamen relies on coal-fired power plants at

resent. Due to the emissions peaking mission, no new coal-fired power

lants are planned, and the CO 2 emissions should peak no later than

030. The natural gas supply is sufficient, whereas the unit cost of nat-

ral gas is relatively high. Biomass power (waste incineration based) is

romising but the maximum potential is relatively small. The imported

ower from the provincial grid of Fujian province is another important

nergy source of Xiamen. Detailed inputs including total demand, exist-

ng energy technology and deployment potential, energy tariffs, as well

s other techno-economic parameters, are provided in Appendix A.3. 

.2. Adapt urban energy to extreme weather with affordable extra cost 

We investigate three situations for UES planning with EWE in Xia-

en (see Table 1 ). Situ-1 refers to the ‘baseline’ situation without consid-

ring EWE impact, and therefore, EWE simulation is not implemented;

nd the TDC is the lowest. Situ-2 and Situ-3 consider EWE impacts by the

Storage Prior’ and ‘Supply Prior’ heuristics, respectively. The ‘Storage

rior’ refers to the heuristics that expand storage capacity prior when the

re-design from upper-layer UES optimization cannot pass the lower-

ayer EWE simulation, while ‘Supply Prior’ refers to the heuristics that

xpand gas power capacity prior when the same issue occurs. 

The results indicate that both heuristics can help to achieve an EWE-

esilient UES for Xiamen, among which an extra 2.8% cost is required

hen implementing the ‘Storage Prior’ heuristics, whereas 5.4% more

ost is needed when implementing the ‘Supply Prior’ heuristics. 

.3. Impacts of extreme weather on capacity expansion 

Planning UES considering the impacts of EWE could lead to signifi-

antly different capacity expansion plans as shown in Fig. 5 a-c. Gener-

lly, the differences in capacity expansion are comprehensively caused

y the supply-demand balance for increasing demand, physical con-

traints of system operation particularly during EWE, and the invest-

ent cost of each technology that may vary over the planning horizon.

When EWE is not considered, i.e., Situ-1 (see Fig. 5 a), there is no

lan for implementing energy storage technologies, and capacity ex-

ansion plans on energy supply technologies could be completed before

030. In Situ-2, since the ‘Storage Prior’ heuristics is applied, PHES is

eployed during 2020 to 2030, and Lithium battery is further deployed

rom 2030 t0 2035 (see Fig. 5 b). The PHES is deployed ahead of battery

torage due to its lower investment and operational cost compared to

hat of battery storage. When the capacity expansion of PHES reaches its

pper limit in 2030, battery storage is further deployed to ensure critical

emand is met during EWE. As for Situ-3, in light of the ‘Supply Prior’

euristics, energy storage technologies are not deployed, but instead, a

00MW capacity expansion of gas power is planned at 2016 to handle

he EWE from 2016 to 2022 (see Fig. 5 c). The capacity of gas power

s further expanded from 2023 to 2035 to ensure energy supply during

WE thereafter. 

Taking an overview of Fig. 5 a-c, renewable energy (e.g., biomass

ower, solar power, and wind power) could be deployed as soon as pos-

ible within the built rate limits annually no matter considering EWE or

ot. Even for the places with limited renewable potential, the ‘Enclaves

conomy’ mode that enables a renewable-resource-poor area to invest in
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Fig. 5. Three situations lead to different solutions for annual capacity expansion, energy output by technology types, and carbon emissions from 2016 to 2035. 

a, Capacity expansion without considering EWE, referring to as Situ-1. b, Capacity expansion considering EWE by the ‘Storage Prior’ heuristics, Situ-2. c, Capacity 

expansion considering EWE by the ‘Supply Prior’ heuristics, Situ-3. d~f, Annual energy output by technology types and annual carbon emissions for Situ-1, Situ-2, 

and Situ-3, respectively. 
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a  
 renewable-resource-rich area would help the sustainable development

f both areas. In general, a larger total expanded capacity of either stor-

ge technologies or energy supply is needed by Situ-2 and 3 compared

o the Situ-1 (not considering EWE) as the weather-dependent renew-

bles might not function properly during the EWE. Both the ‘Storage

rior’ heuristics (i.e., Situ-2) and ‘Supply Prior heuristics’ (i.e., Situ-3)

ould generate their optimal UES plans considering the impact of EWE,

hile the differences on capacity expansion plans are due to the priority

ettings on technology deployment for two heuristics. 

.4. Energy breakdown under carbon mitigation target 

Fig. 5 d-f shows the annual energy output breakdown by technology

ypes from 2015 to 2035 for different situations under the constraint

f the carbon mitigation target. We set the carbon mitigation target as

he CO 2 emissions should peak no later than 2030, which is modeled

s a constraint in the UES optimization model and is consistent with

he commitments of China on the Paris Agreement. Throughout Fig. 5 d-

, three situations could all achieve the target of CO 2 emissions peak

efore 2030; and the output of biomass power, solar power, and wind

ower continue to rise in all three situations. 

Specifically, in Situ-1, the TDC of Situ-1 is the lowest among the three

ituations because the output from low-cost coal power remains stable

ver the planning horizon of 2015~2035, accounting for 17.8% of the

otal energy output at 2035 (see Fig. 5 d). The output of gas power re-

ains stable as well. Hence, the CO 2 emissions peak in 2030 is slightly

igher than the other two situations, and the carbon mitigation target

s mainly achieved by implementing biomass, solar, and wind power

echnologies. Starting from 2031, the lower carbon electricity generated
6 
rom biomass, solar, and wind power would be fully utilized. To further

educing CO 2 emissions while meeting the increasing demand, an in-

reased amount of lower carbon electricity from the provincial grid is

mported. This increase of power import from 2031 to 2035 is also ob-

erved in Situ-2 and 3 for a similar reason. Fig. 5 e shows the annual

nergy output breakdown of Situ 2, where the CO 2 emissions will peak

n 2028. After that, the share of coal power gradually declines, leading

o the decrease of CO 2 emissions, and the increasing demand is then met

y expanding output share from energy storage technologies (i.e., PHES

nd battery), gas power, and renewables (i.e., solar and wind). Due to

he deployment of PHES and battery storage, 7% of the total energy

emand is met by PHES and battery storage in 2035, and more wind

ower (usually abundant during the off-peak period) could be utilized

ompared to other situations. Fig. 5 f displays the annual energy output

reakdown for Situ 3. Instead of deploying energy storage technologies,

he capacity of gas power expands gradually from 2015 to 2035 along

ith solar and wind power. The CO 2 emissions will peak in 2030 and

hen decrease along with the decline of coal power’s share as well as the

ise of import power’s share. 

.5. Dispatch during extreme weather events 

Fig. 6 presents a representative optimized UES dispatch during the

WE Simulation in 2035, showing that the critical demand can be suc-

essfully met by either the ‘Storage Prior’ or ‘Supply Prior’ heuristics

uring the EWE scenario. Fig. 6 a shows the 96-hour EWE-simulation

esults for Situ-2 by applying the ‘Storage Prior’ heuristics. During the

rst 48-hour (i.e., Day-1 and 2), the outputs from biomass, gas, coal,

nd wind power keep stable, and solar power only contributes during
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Fig. 6. EWE Simulation results of the optimized UES in 2035 under different heuristics. a, 96-hour UES dispatch during EWE simulation with ‘Storage Prior’ heuristics 

in Situ-2. b, 96-hour UES dispatch during EWE simulation with ‘Storage Prior’ heuristics in Situ-3. 
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he day-time (i.e., 6 a.m. to 5 p.m.). Import power is greatly utilized

uring the off-peak period (i.e., 1 a.m. to 8 a.m. and 9 p.m. to 12 p.m.)

ased on the time-of-use tariff. The cheap import power and surplus re-

ewable power are charged into storage technologies, and the stored

ower is then discharged for peak shaving during 11 a.m. to 7 p.m. It is

oteworthy that, compared to Day-1, more power is charged into stor-

ge technologies (mainly in PHES) at the end of Day-2 (i.e., before EWE

appens). This part of energy will be discharged to cover the peak of

ritical demand when EWE happens in Day-3. The rest of critical de-

and is met by the stable outputs from biomass, gas, and coal power.

hen it comes to the recovery stage (i.e., Day-4), since most of stored

nergy (in both PHES and battery) are discharged in Day-3, a significant

mount of energy would be charged into the storage at the beginning 7 h

n Day-4. Gas and coal power remain stable operation, solar and wind

ower recover to the conventional operation immediately, and biomass

ower returns to use until 8 p.m. of Day-4. 

Fig. 6 b presents the system dispatch during EWE simulation for Situ-

 by implementing the ‘Supply Prior’ heuristics. Day-1 and Day-2 have

 similar dispatch decision, i.e., biomass and coal power remain sta-

le, and solar power only contributes during the daytime. Compared

o Situ-2, since a larger capacity of gas power is installed in Situ-3, an

ncreasing amount of gas power will be generated as expected. Due to

o deployment of energy storage technology, the wind power will be

artially curtailed during the solar power abundant period (i.e., day-

ime), and the amount of import power is significantly less than that in

itu-2. When the EWE happens in Day-3, biomass and coal power out-

uts remain stable, and the fluctuation of critical demand is met by the

utput from gas power. In the recovery stage (i.e., Day-4), all technolo-

ies recover to conventional dispatch strategies immediately, which are

dentical to those in Day-1 and 2. 

. Discussion 

.1. Multiple measures adapting urban energy to extreme weather 

Climate change brings about more frequent and intense EWE, which

as posed serious challenges to urban energy security. Due to record-

reaking heatwaves, wildfires, and possibly inadequate planning, the
7 
ower supply has to be cut off for thousands of residences in California

US) [ 41 , 42 ]. The power cut worsens as the fluctuating renewables ac-

ount for a significant share in the local energy mix (up to 67.5%) and

ould not secure energy supply during peak hours. Such types of extraor-

inary events are becoming increasingly common in a world rapidly

eing impacted by climate change, and careful planning to ensure ad-

quate power supplies is therefore becoming more important globally

43] . 

Our research shows that both the ‘Storage Prior’ and ‘Supply Prior’

euristics turn out effective to inform the upper-layer UES optimiza-

ion model and eventually address EWE impacts on UES planning in

he case of Xiamen (China). Storage technologies could play key roles

o ensure energy supply reliability during EWE when solar, wind, and

mport power are not available [44] . An acceptable 2.8% extra cost is

eeded when applying the ‘Storage Prior’ heuristics, which avoids over-

nvestment in installing too large supply capacity. Hence, the ‘Storage

rior’ heuristics could be preferable. 

However, utility-scale battery storage is still not economically attrac-

ive so far [45] . For a city that does not have local PHES potential, ap-

lying ‘Supply Prior’ heuristics could also ensure energy supply during

WE with an extra 5.4% cost. Meanwhile, alternative strategies such as

1) enhancing the connection with neighboring grids as ‘virtual energy

torage’ [46] , (2) implementing coal power flexibility retrofit [47] , and

3) developing demand-side management, especially coordinating with

he growing penetration of electric vehicle charging, can offer flexibil-

ty during EWE and significantly save capital investment in the battery

torage. 

.2. Flexibility of the framework 

The proposed two-layer modeling framework captures the system

ispatch for the whole ‘before-in-after’ process of EWE and the impacts

n investment decisions of UES. The framework also has the advantages

f high flexibility compared to earlier studies, described as follows. 

(1) The framework has the generality for investigating various kinds

of EWE, such as heatwaves, drought, etc. We take the typhoon

as a representative example of EWE in this study considering it

is one major EWE threatening an enormous number of coastal
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cities, as well as the data availability from local authorities. While

the framework is widely applicable for investigating other kinds

of EWE, future model-users could construct their own EWE sce-

nario following a similar procedure as detailed in Section 2.4 . 

(2) The frequency of implementing the simulation is user-defined.

We implement the lower-layer EWE simulation annually in this

study, which is consistent with the frequency of the design

decision-making in the upper-layer UES optimization model. Fu-

ture model-users can self-define the EWE simulation frequency

such as annually, per 5-year, per 10-year or referring to the fre-

quency of the design decision-making in the UES optimization

model as we did in this study. In addition, the probability of

EWE is highly unpredictable, but it is one essential element in

generating a scenario tree by a stochastic or stochastic-robust ap-

proach. The probability assignment of an EWE scenario could af-

fect the UES planning results for those approaches. In contrast,

high-accuracy prediction for the probability of EWE is not neces-

sary for our framework. 

(3) The temporal setup in EWE simulation is flexible. This temporal

setup flexibility is reflected in two aspects: (a) the EWE simula-

tion’s temporal horizon, (b) the EWE simulation’s temporal res-

olution. In terms of the EWE simulation’s temporal horizon, it

could be set to more than one day so as to leave sufficient time

for each technology to act, e.g., let the PHES alter its reserve;

and consider the EWE may last more than one day; and (c) able

to simulate days before EWE, EWE happens, and recovery after

EWE. Hence, the EWE simulation horizon (e.g., four-day) in our

framework is not necessarily to be the same as that of the UES

optimization model (e.g., usually by typical day). In this case, we

chose four consecutive days including two days of before EWE

happens, one day when EWE happens, and one day after EWE

for the recovery. As for the EWE simulation’s temporal resolution,

we chose the hourly resolution considering the data availability

of the case study. Nevertheless, the EWE simulation’s temporal

resolution could be even finer than that of the UES optimization

model. Such features on temporal setup offer greater accuracy

and flexibility to capture a variety of EWE compared to the typi-

cal stochastic, robust, or combined approaches. 

(4) Compared to previous optimization model developed by stochas-

tic programming, robust programming, or combined approaches

for investigating the impact of EWE on UES planning, the pro-

posed two-layer modeling framework in this study does not need

to directly model the EWE scenario in the upper-layer optimiza-

tion model, which greatly reduces the complexity and compu-

tational burden of the optimization model. Instead, we validate

the optimized UES design during EWE by developing the sim-

ulation model and iteratively inform the optimization model to

adjust the design if needed. Although the iterative runs of the

optimization model (informed by the simulation model) would

take some time, the framework is still computationally efficient

for handling EWE in UES planning. In this case, the total com-

putational time by the framework is 1/3 for that of a stochastic

model (for comparison purpose), but the computational savings

could case specific. The computational complexity could be a key

factor particularly when the conventional optimization model it-

self is already time-consuming even without the EWE scenario.

With that in mind, the proposed framework offers an efficient

paradigm by modeling the EWE scenario and the conventional

scenario separately. 

.3. Insights on simulating extreme weather events 

Here we provide general insights on establishing an EWE simulation

odel for common types of EWE. Similar to the case study of typhoon

WE simulation, suggested settings of EWE simulation model are pro-

ided from four perspectives (see Table 2 ), i.e., temporal resolution,
8 
emporal horizon, demand-side, and supply-side. When setting the tem-

oral resolution of an EWE simulation, the dynamic characteristics of

n EWE needs to be considered. In terms of temporal horizon, the du-

ation time of an EWE is the most important concern. As for demand-

ide settings, some EWE could lead to drastic demand increase, and at

east critical demand needs to be met during other destructive EWE.

or supply-side settings, the impact of an EWE on each energy technol-

gy needs to be evaluated considering the sites of energy infrastructure

nd EWE. Note that the impact levels of an EWE on both supply and

emand sides could be case-specific; meanwhile, constructing a sequen-

ial or joint EWE simulation model could also originated from the four

spects of settings, i.e., temporal resolution, temporal horizon, demand-

ide, and supply-side. 

In addition, ‘EWE includes unexpected, unusual, severe, or unsea-

onal weather; weather at the extremes of the historical distribution’

48] . Definitions of ‘unexpected’ or ‘unusual’ could vary, but most lists

f EWE would include hurricanes (or typhoons), heatwaves, cold waves

or blizzards), wildfires, rainstorms (or downpours), and droughts. 

.4. Uncertainty handling 

Energy system modeling is always with uncertainties induced by en-

rgy demand, fuel cost, weather data, etc. In this study, since we aim

o investigate the impact of EWE, we set the situation without consid-

ring EWE (Situ-1) as the benchmark and other situations (i.e., Situ-2

nd Situ-3) are compared to Situ-1. Hence, all situations are in the same

ncertain circumstance, and then by calculating the cost difference of

itu-2 and Situ-3 from Situ-1, the uncertainty could be potentially off-

et to achieve a relatively robust cost differences, e.g., 2.8% and 5.4%

or the ‘Storage Prior’ and the ‘Supply Prior’ heuristics, respectively, as

eported in Section 3.2 . 

Note that uncertain factors could still be modeled by a stochastic

ormulation in the upper-layer UES optimization model. As the focus of

his study is the impact of EWE, we only apply a deterministic UES op-

imization model here. Note that modeling uncertainty by a stochastic

pproach could already lead to a computationally complex UES opti-

ization model even without considering EWE (just as we discussed

n Section 4.2 ). This further highlights the necessity for our two-layer

ramework to address the impact of EWE without adding too much com-

utational burden. 

.5. The way forward 

.5.1. Quantify extreme weather resilience 

We preliminary explore the urban energy planning adapting to EWE

n this study and the framework is developed based on the resilience

rinciples as illustrated in Fig. 7 . It embodies the four major attributes

f system resilience (i.e., diversity, adaptability, flexibility, and no free

unch) and covers the four major stages of evaluating resilience (i.e.,

lan/prepare, absorb, recover, and adapt). 

Based on the existing study, a promising direction forward is to better

uantify the EWE-resilience of UES. Though there might be no gener-

lized form to do so, the tiered resilience assessment approach [49] or

reating an evaluation matrix with multi-criteria assessment combined

50] deserves an investigation. 

.5.2. Reduce unsatisfied demand 

In this case, the less-critical demand could be unsatisfied during

WE. In order to minimize that unsatisfied demand, one alternative is

ut the unsatisfied demand as a penalty term into the objective func-

ion, so that the model would balance the trade-off between investment

ore on supply capacity and leaving a certain amount of demand un-

atisfied. To do so, it is noticed that quantifying the unit penalty cost of

nsatisfied demand could be a challenge and vary case by case . 
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Table 2 

Suggested settings of establishing an EWE simulation model for typical EWE. 

EWE type Temporal resolution Temporal horizon Demand-side settings Supply-side settings 

Typhoon (Hurricane) - hourly or finer - 4 days or longer (e.g., 2-day before 

EWE, 1-day EWE happens, and 

1-day recovery) 

- critical demand to be met all-day - 

less-critical demand to be met as 

much as possible 

- PV and wind power may not be available- 

combustion based power sources remain 

stable- import power could be affected- 

possible damage to transmission lines 

Heatwave - hourly or finer - 4 days or longer (e.g., 2-day before 

EWE, 1-day EWE happens, and 

1-day recovery) 

- air conditioning induced rapid rise 

of energy demand all-day 

- combustion-based power output may drop 

due to cooling water temperature rise - PV 

output may drop due to extreme high 

temperature 

Cold wave (blizzard) - hourly or finer - 4 days or longer (e.g., 2-day before 

EWE, 1-day EWE happens, and 

1-day recovery) 

- space heating induced rapid rise of 

energy demand all-day 

- combustion-based power output may drop 

due to frozen cooling water intakes - PV 

output may drop due to snow accumulation- 

possible damage to transmission lines 

Drought - daily or coarser - days to months - critical demand to be met all-day- 

less-critical demand to be met as 

much as possible 

- combustion-based power output may drop 

due to lack of cooling water- PV output may 

drop due to poor cleaning 

Wildfire - hourly or coarser - 5 days or longer (e.g., 2-day before 

EWE, 2-day EWE happens, and 

1-day recovery) 

- critical demand to be met all-day- 

less-critical demand to be met as 

much as possible - specific to fire 

sites and energy-user sites 

- PV output may drop due to dust 

accumulation - specific to fire sites and 

energy infrastructure sites - possible damage 

to transmission lines 

Rainstorm (downpour) - hourly or finer - 4 days or longer (e.g., 2-day before 

EWE, 1-day EWE happens, and 

1-day recovery) 

- critical demand to be met all-day- 

less-critical demand to be met as 

much as possible 

- PV may not be available- specific to possible 

waterlogging sites and energy infrastructure 

sites - possible damage to transmission lines 

Fig. 7. The developed EWE-resilient urban energy planning framework following resilience concept. 
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. Conclusions 

To prepare for the global urbanization and climate change, it is

ritical to developing urban energy systems (UES) that are affordable,

ustainable, and reliable. These requirements are particularly emergent

onsidering the intense extreme weather events (EWE), tightening emis-

ions constraint, and increasing penetration of fluctuating renewables.

o advance the understanding of the impacts of EWE on UES, here we

ropose an original two-layer modeling framework for ‘EWE-resilient’

ES planning. By splitting the EWE scenario into lower-layer, construct-

ng an EWE simulation model, and iteratively informing the upper-layer

ES optimization model (which only considers conventional scenario)

o adjust the design with specific-designed heuristics, the developed

ramework not only achieves ‘EWE-resilient’ UES design and dispatch

ut also optimizes dispatch decisions during EWE. 

The investigation in UES planning for a typical coastal city, i.e., Xi-

men, China (encountering typhoon EWE frequently), reveals that de-

loying energy storage including pumped hydro and batteries (i.e., ‘Stor-

ge Prior’ heuristics) offers great flexibility to ensure the critical en-

rgy demand is met when EWE happen. Compared to not considering

WE, an affordable 2.8% extra cost can achieve the least-cost and EWE-
9 
esilient UES optimally, which may potentially reduce the losses during

WE (usually counted by billons of money). It is noteworthy that the ob-

ervations from the Xiamen case could vary with different applications,

ut future UES would surely need both stability by reliable sources and

exibility by energy storage technologies. 

Overall, by providing the forward-looking perspectives into the

EWE-resilient’ UES planning, our research offers a flexible and compu-

ationally efficient modeling framework to address the impacts of EWE

n UES planning. The proposed framework is generic and extensible,

ollowing the procedure of how to construct an EWE scenario, how to

ategorize energy demand, and how to develop the heuristics as we ex-

licated. Future model-users could further develop more EWE scenarios,

.g., heatwaves, drought, sequential and joint EWE, and further planning

EWE-resilient’ UES for other cities. The energy network topology will

e further considered in future research. 

ata and code availability 

The model formulation and data that support the findings of this

tudy are available by reasonable request to authors. 
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