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Topological bulk lasing modes using an imaginary gauge field
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Topological edge modes, which are robust against disorders, have been used to enhance the spatial stability of
lasers. Recently, it was revealed that topological lasers can be further stabilized using a topological phase in non-
Hermitian photonic topological insulators. Here we propose a procedure to realize topologically protected modes
extended over a d-dimensional bulk by introducing an imaginary gauge field. This generalizes the idea of zero-
energy extended modes in the one-dimensional Su-Schrieffer-Heeger lattice into higher dimensional lattices,
allowing a d-dimensional bulk mode that is topologically protected. Furthermore, we numerically demonstrate
that the topological bulk lasing mode can facilitate high temporal stability superior to topological edge-mode
lasers. Using an exemplified topological extended mode in the kagome lattice, we show that large regions of
stability exist in its parameter space.
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I. INTRODUCTION

In an attempt at ultimate control of the flow of light, pho-
tonic topological insulators (PTIs) [1] have enabled exciting
devices such as unidirectional waveguides and topological
lasers that are robust against perturbations and defects. In
particular, the realization of robust topological optical sys-
tems has drawn attention for advanced photonics by reducing
propagation loss in optical devices [2,3], quantum comput-
ers [4,5], photonic neural networks [6], and near-zero epsilon
devices [7–9].

Recently, considerable effort has been made to study
non-Hermitian PTIs by engaging topological edge modes
to enable a lasing regime with optical nonlinearity [10,11],
distribution of gain and loss [12–15], and nonreciprocal
couplings [16–18]. For example, the one-dimensional (1D)
Su-Schrieffer-Heeger (SSH) model [19] has been utilized to
generate edge states with gain and loss and implement topo-
logical lasing devices [11–13]. A cavity made of topologically
distinct PTIs has been proposed to enhance the lasing effi-
ciency by using unidirectional topologically protected edge
modes [15,16].

However, the edge-mode-based topological lasers are not
appropriate for high-power lasers due to the localized nature
of the edge modes and the possible breakdown of the con-
stituting optical elements. As an alternative, topological bulk
lasers have been proposed to achieve broad-area emission by
using extended topological modes based solely on the parity
symmetry at the � point in a two-dimensional (2D) hexagonal
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cavity [17] or by using an imaginary gauge field in a 1D PT -
symmetric SSH lattice to delocalize the zero-energy boundary
mode over the 1D bulk [18].

Although the spatial stability of the topological lasing
mode is guaranteed based on topological band theory, its tem-
poral behavior is not necessarily stable due to the nonlinear
nature of the laser rate equation [20]. Therefore, the temporal
instability can further deteriorate the performance of lasing
devices and it becomes important to study the dynamics and
the temporal stability of the topological lasing modes [21].

In this work, we generalize the topological extended mode
on the 1D SSH lattice to higher dimensional lattices. In par-
ticular, we demonstrate a topological extended mode on a
2D bulk by using a kagome lattice with a rhombus geometry
and an imaginary gauge field. The topological bulk laser is
studied with an alternating gain and loss distribution. We show
that the topological extended mode lases and has large stable
regions in its parameter space. We thus demonstrate that a
phase-locked broad-area topological lasers can be realized in
a two-dimensional (2D) kagome lattice.

The structure of this paper is as follows: In Sec. II, we
recall the result in Ref. [18] where a topological extended
mode is achieved using the 1D SSH lattice [19] along with
an imaginary gauge field. Then Sec. III generalizes this result
to higher dimensions. An explicit example is carried out on
the kagome lattice with rhombus geometry. Section IV is ded-
icated to the study of the non-Hermitian kagome lattice in the
active setting where the temporal dynamics of the topological
protected mode is studied.

II. EXTENDED TOPOLOGICAL MODE IN A 1D LATTICE

Here, we briefly recall the procedure used to delocalize the
topologically protected (zero-energy) mode in the SSH lattice,
as presented in Ref. [18].

The SSH lattice, shown in Fig. 1(a), is a 1D lattice made
of an array of Ns sites. It has a unit cell composed of two sites
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FIG. 1. (a) Schematic of a non-Hermitian SSH lattice made of an
array of Ns sites. The usual Hermitian SSH lattice corresponds to the
case where h = 0. (b) Spectrum of the finite-size SSH lattice in the
Hermitian and non-Hermitian setting. The lattice starting from a site
A and terminating at a site A. (c) Normalized field profile |ψn| of the
zero-energy mode from the finite-size SSH lattice in the Hermitian
and non-Hermitian setting. The parameter are chosen such that Ns =
19, EA = EB = 0, t1 = 0.02, t2 = 0.06, and h = h0.

(A and B) and the lattice is characterized by alternating intra-
and interunit cell couplings given by the real scalars t1 and t2,
respectively.

In the non-Hermitian configurations, where an extended
mode has been proposed [18,22], an imaginary gauge poten-
tial, A = −ihe1, is introduced. In the presence of a gauge
field, the Peierl’s phase modifies the hopping terms by a
factor: ei

∫
A·dl , with dl = dxiei, the direction of the hopping.

The couplings are therefore modified and become asymmet-
ric. Note that the usual prefactors are here absorbed in A, or
equivalently in h. The coupling constants get a eh factor term
when hopping from left to right and a e−h factor term when
hopping from right to left. The coupled-mode equations are
then written as

i
dan

dt
= EAan + t1e−hbn + t2ehbn−1, (1)

i
dbn

dt
= EBbn + t1ehan + t2e−han+1, (2)

with an and bn being the modal amplitudes on the A and B
sites at the nth unit cell, respectively. Eσ is the on-site energy
on the site σ .

For a finite system, the introduction of the imaginary gauge
field will not affect the spectrum [22]. This is made explicit
here because the system of equations above can be solved with
a suitable gauge transformation:

an = e2hnãn, (3)

bn = e2hne−2hb̃n, (4)

where an and bn are solutions of the coupled-mode equations
if ãn and b̃n are solutions of the Hermitian SSH coupled-mode
equations, namely, when h = 0.

For a SSH lattice starting and terminating on an A site, it is
known that the zero-energy mode of the Hermitian SSH lattice
reads

ãn = r̃nã0, (5)

b̃n = 0, ∀n, (6)

where r̃ = − t1
t2

defined as ãn+1 = r̃ãn and satisfies the destruc-
tive interference condition on the B sites t1 + r̃t2 = 0.

The solution for the non-Hermitian SSH lattice is then
written as

an = rna0, (7)

bn = 0, ∀n, (8)

where r = − t1
t2

e2h defined as an+1 = ran and satisfies the de-

structive interference condition on the B sites t1eh + rt2e−h =
0.

The main effect of this imaginary gauge field is to change
the localization property of the modes without affecting the
spectrum. In particular, one can delocalize the topological
protected edge mode over the whole 1D bulk, while keeping
its topological protection from the chiral symmetry of the
Hermitian topologically protected (zero-energy) mode. The
exponentially increasing or decaying factor is removed by
appropriately choosing the gauge field h:

h = h0 := −1

2
ln

( t1
t2

)
. (9)

Figure 1(b) shows that the spectrum of the finite-size Her-
mitian and non-Hermitian SSH lattice are indeed identical.
However, Fig. 1(c) shows, for t1 < t2, that the field profile |ψn|
of the zero-energy mode, which is localized on the left edge
for the Hermitian case, is extended over the 1D bulk for the
non-Hermitian case.

Finally, it is worth noting that although the zero-energy
mode is topologically protected, its localization property de-
pends on the coupling constants and is therefore sensitive to
their perturbations. However, for reasonably small perturba-
tions, i.e., small enough so that the band gap does not close,
the delocalization is not destroyed: The amplitudes remain of
the same order of magnitude over the bulk but are simply not
equal anymore [see Fig. 6(f)].
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FIG. 2. (a) Schematic of a d-dimensional lattice in a quasi-
1D lattice made of an array of Ns (d − 1)-dimensional lattices.
(b) Schematic of the kagome lattice drawn in the quasi-1D lattice
formalism. The solid and dashed lines denote the intracell (t1) and
intercell couplings (t2), respectively. eh, eh′

, eh′′
correspond to the

imaginary gauge field introduced for delocalizing the topological
mode. in the non-Hermitian kagome lattice. g (−g) is the gain (loss)
considered for the laser setting.

III. EXTENDED TOPOLOGICAL MODE
IN A d-DIMENSIONAL LATTICE: EXAMPLE ON

THE KAGOME LATTICE

We now generalize this notion of delocalized (or extended)
topological mode over a whole d-dimensional bulk.

A. General framework

The strategy follows the previous section, namely to find
an exact solution of the (topologically protected) boundary
state, and then use non-Hermiticity to change the localization
property of the chosen mode.

In order to find an exact solution, the procedure follows
Refs. [23,24]. One needs to consider a d-dimensional lattice
as a stack of (d − 1)-dimensional lattices (e‖ direction) and
with an open boundary condition (OBC) in the remaining
one-dimensional (e⊥ direction) boundary [23–25] (see Fig. 2
for the example of the kagome lattice). The lattice can then be
considered as a quasi-1D lattice with the unit cell composed
of two lattice sites, I and J , except that here the lattice sites
represent (d − 1)-dimensional lattices, as shown in Fig. 2.
Additional conditions are assumed such that the quasi-1D
lattice needs to start and terminate on the same lattice site, and
we forbid direct hopping between the I lattice sites [23,24,26].
Therefore, the lattice naturally supports the exact disappear-
ance of the modal amplitude of n modes on the J lattice sites,
with n being the number of degrees of freedom on the I lattice
site.

From the quasi-1D formalism, the coupled-mode equation
is conveniently written as

i
d�

dt
= Hlattice�, (10)

where � = (ψI,0, ψJ,0, . . . , ψI,N )T with ψI,n and ψJ,n being
the modal amplitudes on the I and J lattice sites in the nth
stacked unit cell, respectively. N is the index of the last unit
cell.

The Hamiltonian of the lattice reads

Hlattice =

⎛
⎜⎜⎜⎝

HI HI←J 0 · · ·
H̃†

I←J HJ H̃†
J→I · · ·

0 HJ→I HI · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ (11)

with HI and HJ being the Hamiltonian of the lattice I and J ,
respectively. HI←J and HJ→I are, respectively, the intra- and
interunit cell couplings between the I and J lattices. For the
Hermitian case, H̃†

I←J = H†
I←J and H̃†

J→I = H†
J→I .

For the general d-dimensional lattice, the eigenvalue prob-
lem Hlattice� = E� yields, for n = 1, . . . , N ,

HI,kψI,n + HI←JψJ,n + HJ→IψJ,n−1 = EψI,n, (12)

HJ,kψJ,n + H̃†
I←JψI,n + H̃†

J→IψI,n+1 = EψJ,n. (13)

The condition for destructive interference on the J lattices,
ψJ,n = 0, is given by

H̃†
I←Jψ

(i)
I,n + H̃†

J→Iψ
(i)
I,n+1 = 0. (14)

From Eq. (12), the solution with vanishing amplitude on the J
lattice therefore gives the additional condition

HIψI,n = EψI,n; (15)

namely ψI,n must be an eigenmode of the Hamiltonian on the
lattice I , labeled ψ

(i)
I,n, with corresponding energy E = E (i)

I .
Since we are looking at edge states, one can ask for solu-

tions which exponentially decay or increase, or equivalently
solutions that satisfy [23,25]

ψ
(i)
I,n+1 = riψ

(i)
I,n (16)

with ri being a scalar term representing the decaying ampli-
tudes of the mode inside the quasi-1D lattice.

The boundary state solution of the Hamiltonian Hlattice with
energy E (i)

I is therefore of the form

ψ
(i)
I,n = rn

i ψ
(i)
I,0 (17)

with ri satisfying the destructive interference condition on the
J lattice:

H̃†
I←J + riH̃

†
J→I = 0. (18)

In summary, the modes with eigenenergy E = E (i)
I , such

that HIψ
(i)
I = EIψ

(i)
I , are the modes which are exponentially

localized on one edge and with nonvanishing amplitudes only
on the lattice sites I , with adjacent π -phase difference and
with mode distribution corresponding to ψ

(i)
I on the lattice site

I .
The delocalization of the edge modes is realized by in-

troducing an imaginary gauge field such that |ri| = 1. The
non-Hermiticity allows the change of the localization prop-
erties while keeping the spectrum unchanged.

B. Extended topological mode in 2D kagome lattice

As a concrete example, we will look at the case of the
kagome lattice as shown in Fig. 2. The Appendix provides
additional examples with the Lieb and the 2D SSH lattices.
The kagome lattice is characterized by unit cells composed of
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FIG. 3. (a) Spectrum of the kagome lattice in the rhombus ge-
ometry in the Hermitian and non-Hermitian setting. The normalized
field profile |ψn,m| of the zero-energy mode of the kagome lattice in
the rhombus geometry is plotted in panel (b) for the Hermitian case
and in panel (c) for the non-Hermitian case. Here, there are Ns = 9
sites both in the I lattice and the quasi-1D lattice. t1 = 0.02, t2 =
0.06. The Hermitian setting corresponds to the case h = h′ = h′′ = 0,
whereas the non-Hermitian setting is for h = h′ = h0, h′′ = 0.

three sites, A, B, and C, and the coupling strengths between
sites are different for intraunit cell (t1) and interunit cell (t2)
couplings.

We will specifically look at the topological zero-energy
corner mode present in the rhombus geometry of the kagome
lattice [27,28] [see Fig. 3(b) for the geometry of the lattice].
Figure 3(a) shows the spectrum of the kagome lattice in the
rhombus geometry. Figure 3(b) plots the normalized field
distribution |ψn,m| of the zero-energy mode for t1 < t2. This
shows that the mode is indeed localized on the bottom-left
corner, with vanishing amplitudes on the B and C sites as
explained later.

Applying the previous quasi-1D formalism to the kagome
lattice in the rhombus geometry, we have HI = HSSH,
HJ = diag(EB, . . . , EB). The intra- and interstacked lat-

tice couplings are (Ns × 1) matrices given respectively
by H̃†

I←J = H†
I←J = (t1, t1, . . . , t1, t1)T and H̃†

J→I = H†
J→I =

(t2, t2, . . . , t2, t2)T . Ns is the number of sites on the I lattices.
The rhombus geometry is interesting since in the e‖ direc-

tion, the I lattices, which are equivalent to the SSH lattice,
start with and are terminated by the same site (here site A).
In this configuration, we can see the zero-energy corner mode
is related to the topological zero-energy mode present in the
chiral symmetric SSH lattice. The zero-energy corner mode
can be seen as the boundary state of the kagome lattice with
eigenenergy E (i)

I = E (0)
I = 0 and can be analytically written

as [24]

ψ
(0)
I,m = rm

0,2ψ
(0)
I,0 (19)

with [ψ (0)
I,0 ]n = rn

0,1a0,0 being the nth component of the zero-

energy mode ψ
(0)
I,0 of the SSH lattice where the interference

conditions [Eq. (18)] give r0,1 = − t1
t2

and r0,2 = − t1
t2

. an,m is
the modal amplitude on the A site at the nth unit cell in the
mth lattice I . As expected, the analytical expression show that
choosing different intra- and interunit cell coupling constants,
t1 < t2 or t1 > t2, the zero mode is exponentially localized,
respectively, on the bottom-left or upper-right edge of the SSH
lattice with vanishing amplitudes on the B and C sites.

We use an imaginary gauge field to change the localization
property of this corner mode [18,22]. Figure 2(b) sketches the
gauge potential considered where eh, eh′

, and eh′′
represent the

phase factor in the couplings between the sites A and B, A
and C, and B and C, respectively. Conditions on h, h′, and h′′
are imposed given an imaginary gauge field A = (A1,A2).
From the Peierls phase corresponding to eh, we have A1 =
−ih, with dl = e1. Similarly, eh′

gives A2 = −ih′, using dl =
e2. These two conditions on A mean that for eh′′

we must have

h′′ = −h + h′ (20)

using dl = e2 − e1. With the imaginary gauge field,
the coupling matrices are then modified, and particu-
larly H̃†

I←J = (t1eh′
, t1eh′′

, . . . , t1eh′
, t1eh′′

) and H̃†
J→I =

(t2e−h′
, t2e−h′′

, . . . , t2e−h′
, t2e−h′′

). The interference conditions
now yield

r0,1 = − t1
t2

e2h (21)

and

r0,2 = − t1
t2

e2h′
. (22)

Delocalization over the e1 direction is achieved by
requiring |r0,1| = 1, namely choosing h = h0. Similarly, delo-
calization over the e2 direction is realized with h′ = h0 so that
|r0,2| = 1. One can notice that there is no further condition
on h′′ to delocalize the mode in the quasi-1D lattice. This is
because of the vanishing amplitudes on the B and C sites. Fig-
ures 4(a) and 4(b) show the normalized field profile |ψn,m| of
the zero-energy mode using h = h0, h′ = h′′ = 0, and h′ = h0,
h = h′′ = 0, respectively. In Fig. 4(a), the mode is localized on
the bottom edge while being extended over the e1 direction.
On the other hand, Fig. 4(b) shows that the mode is localized
on the left edge while being extended along the e2 direction.
It is worth noting that for the values of h, h′, and h′′ chosen
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FIG. 4. Normalized field profile |ψn,m| of the zero-energy mode
of the kagome lattice in the rhombus geometry with (a) h = h0, h′ =
h′′ = 0 and (b) h′ = h0, h = h′′ = 0. The other parameters are the
same as in Fig. 3.

for drawing Fig. 4, the spectrum has been changed compare
to the Hermitian case.

Provided Eq. (20) holds, the introduction of the imaginary
gauge field will only affect the localization property of the
mode while keeping the spectrum unchanged. Therefore, in
this case, the condition |r0,i| = 1 does not correspond to band
touching with the edge band and the bulk band [23].

Combining the two results obtained above for the delo-
calization of the zero-energy mode, we have h = h′ = h0

and, from Eq. (20), h′′ = 0. Figure 3(a) shows that the nu-
merically calculated spectrum of the kagome lattice in the
rhombus geometry does not change when the imaginary gauge
is introduced. Figure 3(c) plots the normalized field distribu-
tion of the zero-energy mode using h = h′ = h0 and h′′ = 0.
This topologically protected zero-energy mode is therefore
extended over the whole bulk of the kagome lattice: It is a
topological bulk mode in the 2D kagome lattice.

Generalization to higher dimensional lattices can be
achieved using a similar procedure, namely starting by
delocalizing a topologically protected mode over a low-
dimensional bulk and repeating this step with the higher
dimension.

IV. LASING IN THE NON-HERMITIAN KAGOME LATTICE

The peculiarities of this extended topological mode are its
vanishing amplitudes on the B and C sites, but most of all,
that it is topologically protected over a 2D bulk and has a
π -phase difference between nonvanishing sites. This hints at
the possibility to realize phase-locked broad-area topological
lasers in 2D lattices.

FIG. 5. (a) Spectrum of the active kagome lattice in the rhombus
geometry. (b) Normalized field profile |ψn,m| of the zero-energy
mode. We have Ns = 9 sites both in the I lattice and the quasi-1D
lattice, t1 = 0.02, t2 = 0.06, g = 0.03 and h = h′ = h0, h′′ = 0.

A. An active and non-Hermitian kagome lattice

The design presented above can be extended to present
a topological laser by considering optical pumping of semi-
conductor ring resonators with gain (g) and loss (−g), as
the sites. The imaginary gauge field can possibly be made
using auxiliary ring resonators with different losses strength
between the upper and lower half perimeter of the ring [18].
The values of the imaginary gauge field h, h′, and h′′ would
then mainly depend on the losses contrast by depositing lossy
materials with different thickness on top of the auxiliary rings
or using different materials [11,13,29,30].

The gain and loss configuration is chosen based on the SSH
sublattices since we are looking for topological modes in the
kagome lattice that originate from the topological mode in the
SSH sublattice. In the literature, it is well known that the SSH
lattice in a PT -symmetric configuration [11,12] (gain on A
sites, EA = ig, and loss on C sites, EC = −ig) can preserve
the topological protection of the zero energy. In particular,
if the SSH lattice is in the unbroken PT -symmetric phase,
i.e., g < |t2 − t1|, then the gap does not close in the presence
of gain or loss and the zero-energy mode remains well sepa-
rated from the bulk [11,14]. When the energy is complex, we
refer to the zero energy as the real part of the energy being
zero.

Since the only nonvanishing terms of the extended topo-
logical mode are located in the A sites [as shown in Eq. (19)
and Fig. 3(c)], we would like lasing to come from these
sites. Therefore, we set gain on site A, EA = ig, and lossy
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FIG. 6. Time evolution of (a) the instantaneous spectrum of the kagome lattice in rhombus geometry, (b) the amplitudes of all the A sites,
and (c) the phase differences between the adjacent A sites when there is no disorder. Similarly for panels (d), (e), and (f) when asymmetric
disorders is introduced. The parameters used are τp = 40ps, α = 3, τs = 80ns, pA = 0.02, gBτp = gCτp = 0.05, δBτp = δCτp = 0.01, t1τp =
0.02, t2τp = 0.06.

rings on the B and C sites, (EB = EC = −ig), as shown in
Fig. 2(b).

Figure 5(a) shows the spectrum in the complex plane,
numerically calculated with EA = ig, EB = EC = −ig, h =
h′ = h0, and h′′ = 0. This demonstrates that the zero mode
is present. Because of the gain on the A sites, i.e., where
the zero-energy mode is nonvanishing, the zero-energy mode
has higher gain compared to the other modes. Figure 5(b)
displays the normalized field profile |ψn,m| of the zero-energy
mode. This shows that although active design has been con-
sidered, the delocalization of the zero-energy mode is not
altered.

B. Temporal dynamics of the zero-energy mode

Time-domain modeling of the mode dynamics is essen-
tial for determining whether the lasing mode is stable. In
the frequency analysis, we have shown it is possible to
have an active non-Hermitian kagome lattice with an ex-
tended topological mode. However, the previous analysis
provides only a simple physical model of the active non-
Hermitian kagome lattice. Indeed, it has been shown that
temporal instabilities in the laser array may prevent phase
locking and reduce the laser quality or even dominate and

suppress the topological signature of the corresponding lasing
mode [18,20].

We consider the laser rate equation for modeling the gain
in the active rings A [18,31,32]. Optical pumping are assumed
to be small enough to leave the lossy ring resonators (rings
B and C, and auxiliary rings) in the linearized regime below
their threshold point. Linear losses are thus chosen, and the
losses and imaginary gauge field are considered to be carrier
independent. The laser rate equation in the kagome lattice,
with h = h′ = h0 and h′′ = 0, is then

i
dan,m

dt
= 1

τp
(1 − iα)Zn,man,m + t1e−h0 bn,m + t1e−h0 cn,m

+ t2eh0 bn,m−1 + t2eh0 cn−1,m, (23)

i
dbn,m

dt
= −igBbn,m + t1eh0 an,m + t1cn,m

+ t2e−h0 an,m−1 + t2cn−1,m+1, (24)

i
dcn,m

dt
= −igCcn,m + t1eh0 an,m + t1bn,m

+ t2e−h0 an+1,m + t2bn+1,m−1, (25)

τs
dZn,m

dt
= pA − Zn,m − (1 + 2Zn,m)|an,m|2, (26)
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FIG. 7. Stability diagrams of the topological extended mode. The color corresponds to the probability of the system being in the stable
regime over 200 realizations in the random initial conditions of the mode amplitudes. The fixed parameters are the same as in Fig. 6.

where an,m, bn,m, and cn,m are the modal amplitudes on the
sites A, B, and C and in the (n, m)-th unit cell, respectively.
n and m stand for the unit-cell index in the SSH lattice and
quasi-1D lattice, respectively. Zn,m is the normalized excess
carrier density in the active ring A, τp and τs are the pho-
ton and spontaneous carrier lifetimes, respectively, α is the
linewidth enhancement factor, pA is the normalized excess
pump current in the ring A, and gB and gC are the linear losses
in the rings B and C, respectively.

Here we show that a broad-area and phase-locked laser
can be realized. The parameters are chosen similar to
Refs. [18,31,32] and are typical for semiconductor lasers. The
coupled-mode equations are integrated using random noise
of field amplitudes between [0, 0.01] and equilibrium carrier
density Zn,m = pA as initial condition. The random noise as
initial condition is chosen to trigger nonlinear behavior and
see whether the mode is stable. Figure 6(a) shows that after a
transient time, the system reaches a single laser mode regime.
The laser mode is the topological zero-energy mode with
Im(E ) = 0. Figures 6(b) and 6(c) show that after a transient
regime, only the zero-energy mode survives and reaches a
steady state. The amplitudes of all the A sites are equally
distributed over the bulk and have a fixed π -phase difference.
The laser system obtained is therefore broad area and phase
locked.

The laser mode is topologically protected in addition
to being broad area and phase locked. Figure 6(d) shows
the spectrum of the system when a spatially varying and
random asymmetric perturbation on the couplings, δt1± ∈
[−0.12t1, 0.12t1], is added: t1eh → (t1 + δt1+)eh and t1e−h →

(t1 + δt1−)e−h. This asymmetric perturbation accounts for
perturbation in the coupling strength as well as for the imag-
inary gauge field. One can see that the zero-energy mode
is still present. However, Figs. 6(e) and (f) show a slightly
different behavior in the time series of the field amplitudes
and the phase difference between the A rings. They do not

FIG. 8. Total intensity against pump amplitudes pA for the lo-
calized and delocalized topological mode with Ns = 9. The triangles
(circles) correspond to the topological edge (bulk) laser. The colors
indicate if the system in the unstable (blue) or stable (red) regime.
The inset shows the dependency of the slope efficiency with respect
to Ns. The parameters are the same as in Fig. 6.
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FIG. 9. Stability diagrams of the topological [(a), (c)] compact mode and [(b), (d)] extended mode. The color corresponds to the probability
of the system being in the stable regime over 200 realizations in the random initial conditions of the mode amplitudes. The fixed parameters
are the same as in Fig. 6 except here pA = 0.01.

reach the same values in amplitudes and phase differences.
The amplitudes are not equally distributed but have slightly
different offsets because of the different couplings between
each sites: A single choice for the imaginary gauge field h
and h′ cannot satisfy the |r0,i| = 1 conditions between each
sites. Similarly, the phase differences are no longer equal to
π due to the nonlinear Henry factor α. Nevertheless, here,
the addition of perturbation in the coupling strengths does not
give rise to unstable behavior in the amplitudes and phases of
the topological extended mode.

The zero-energy mode shown in Fig. 6 does not suffer from
nonlinear instabilities. Indeed, with the chosen parameters, the
system reaches a stationary state which does not evolve into
random oscillation in their amplitudes and phase differences.
Even though the spatial stability of the topological mode may
be guaranteed by its topological invariant, it is worth looking
at its temporal stability in the parameter space to delimit the
region where temporal instabilities arise due to the nonlinear
terms. In the following, we will refer to the stable regime,
the regime of single-mode lasing in the topological extended
mode. Therefore, we say the system to be unstable (or stable)
if oscillations are present (or not) in their amplitudes or phase
differences.

Stable phase locking of the non-Hermitian gauge laser
array is possible in a relatively large region of the parameter
space. Figure 7 shows the stability diagram of the topologi-
cal extended laser mode for different slices of the parameter
space. The numerical results show the stability of the topo-
logical extended mode requires a minimum coupling strength
[Figs. 7(a) and 7(b)]. One reason is that the PT -symmetric

phase of the SSH lattice is broken when the couplings are too
small compared to the gain and loss [11]: The system is no
longer in the single lasing mode regime. The second reason
is that the nonreciprocal dissipative couplings need to be high
enough in order to reach a (soft) synchronization [33]. On the
other hand, instabilities arise when the detunings δb and δc are
too high [Fig. 7(c)]. The major critical case is with positive
detunings [Figs. 7(c) and 7(d)]. However, stability is retrieved
if the dissipation is large enough to compensate the detunings
in the rings B and C.

Extended lasing modes present an important advantage in
getting a better slope efficiency compared to the compact las-
ing mode. Figure 8 plots the total intensity, I = ∑

m,n |ψn,m|2
against the pump amplitudes pA for the compact and extended
lasing mode where the color plot corresponds to the system
being in the stable or unstable regime. The numerical results
show that the compact mode has lower slope efficiency com-
pared to the extended mode. The remarkable difference is the
scaling of the slope efficiency with the size of the system
for the delocalized mode while it remains constant for the
compact mode, as shown in the inset of Fig. 8. This is because
of the extended nature of the mode whose contribution to the
lasing intensity increases with the size of the system.

The imaginary gauge field helps to stabilize the system
in the zero-energy lasing mode. The extended nature of the
topological mode over the bulk allows the zero-energy mode
to carry all the gain of the system while suppressing all the
other bulk modes. The color plot in Fig. 8 indicates that
the compact mode reaches an unstable regime for relatively
low values of pump intensity whereas the extended mode is
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FIG. 10. Slope efficiency against disorder strength δt1± (for Ns =
9). The blue (red) dots correspond to the topological edge (extended)
laser. For each disorder strength, the slope efficiency is average over
800 random realizations of the disorder. The parameters are the same
as in Fig. 6.

unstable for higher pump intensities. The stability diagrams
for the compact mode are shown in Figs. 9(a)–9(c). Com-
pared to the extended mode in Figs. 9(b)–9(d), these diagrams
demonstrate that extended modes have, indeed, larger regions
of stability in the parameter space than compact modes.

Figure 10 shows the slope efficiency is robust against
asymmetric disorder in the couplings, for both the compact
and extended modes, due to the topological nature of the
lasing mode. The compact mode has a relatively constant
slope efficiency with increasing disorder strength. While the
extended mode gives varying slope efficiency because of vary-
ing field distribution of the extended mode in the bulk as
explained before, its slope efficiency remains higher com-
pared to the compact mode. However, for high values of
disorder strength in the couplings, the slope efficiency of the
extended mode starts to decrease. This is explained because
the delocalization of the topological mode, originating from
nonreciprocal couplings, is highly perturbed by the asymmet-
ric perturbation δt1± in the couplings: The topological mode
may not be completely delocalized anymore.

V. CONCLUSION

To summarize, we have shown a procedure to obtain topo-
logical modes extended over a d-dimensional bulk using an
imaginary gauge field. In particular, we have demonstrated
the existence of a topological extended mode in the kagome
lattice in the rhombus geometry. This topological extended
mode in the kagome lattice has been studied in the context
of a lasing system where the laser rate equation is included to
take into account nonlinear effects. By investigating its tem-
poral stability, we proved that stable topological broad-area
phase-locked laser operation is possible in a large region in
the parameter space.

Furthermore, it has been shown that the topological ex-
tended mode presents clear advantages over the topological
localized mode. The extended nature of the former topological
mode over the bulk enhances its temporal stability and yields
higher slope efficiency that scale with the size of the system.

In terms of footprint, a higher dimensional extended mode is
also more advantageous compared to their lower dimensional
one since at equivalent slope efficiency, for example, the sys-
tem occupies a smaller region in real space when increasing
the dimensionality of the system. This can lead to applications
where transport of high energy density is possible. In addition,
the lattice and material configurations are not limited to those
studied in this paper. We believe that our work will provide
a new route to achieving broad-area phase-locked high-power
lasers.
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APPENDIX: EXTENDED TOPOLOGICAL MODE IN LIEB
LATTICE AND 2D SSH LATTICE

This Appendix provides additional examples about the de-
localization of modes over a d-dimensional bulk: the Lieb
lattice and the 2D SSH lattice.

1. Lieb lattice

This section focus on the anisotropic Lieb lattice [34],
which is described by three sites by unit cell and intracell
couplings (t1, t2) and intercell couplings (t3, t4) as shown in
Fig. 11.

Specifically, we will delocalize the zero-energy corner
mode present in the truncated Lieb lattice (see Fig. 12 for
the finite size of the lattice). Figure 12(a) plots the normal-

FIG. 11. Schematic of a non-Hermitian (anisotropic) Lieb lattice
drawn in the quasi-1D lattice formalism. The solid and dotted lines
represent the intracell couplings t1, t2, respectively. The short and
long dashed lines denote the intercell couplings t3, t4, respectively.
eh1 , eh2 correspond to the imaginary gauge field.
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(a)

(b)

FIG. 12. The normalized field profile |ψn,m| of the zero-energy
mode of the truncated Lieb lattice is plotted in panel (a) for the
Hermitian case and in panel (b) for the non-Hermitian case. Here,
there are Ns = 9 sites both in the I lattice and the quasi-1D lattice.
t1 = 0.02, t2 = 0.06, t3 = 0.03, and t4 = 0.045. The Hermitian set-
ting corresponds to the case h1 = h2 = 0, whereas the non-Hermitian
setting is for h1 = h0, h2 = h′

0.

ized field distribution |ψn,m| of the zero-energy corner mode
obtained for t1 < t2 and t3 < t4.

Applying the recipe given in the main text to the (Her-
mitian) truncated Lieb lattice, we have HI = HSSH, HJ =
diag(EB, . . . , EB). H̃†

I←J = H†
I←J = (t3, . . . , t3)T and H̃†

J→I =
H†

J→I = (t4, . . . , t4)T are the (Ns × 1) matrices corresponding
to the intra- and interstacked lattice couplings, respectively. Ns

is the number of sites on the I lattices.
The zero-energy corner mode is analytically written as

ψ
(0)
I,m = rm

0,2ψ
(0)
I,0 (A1)

with [ψ (0)
I,0 ]n = rn

0,1a0,0 being the nth component of the

zero-energy mode ψ
(0)
I,0 of the SSH lattice, and where the inter-

ference conditions [Eq. (18) in the main text] give r0,1 = − t1
t2

and r0,2 = − t3
t4

. an,m is the modal amplitude on the A site at
the nth unit cell in the mth lattice I .

We use an imaginary gauge field in order to delocalize
the corner mode. Figure 11 sketches the gauge potential
considered where eh1 and eh2 represent the phase factor
in the couplings between the sites A and C and sites A
and B, respectively. The coupling matrices are then mod-
ified, and we have H̃†

I←J = (t3eh2 , . . . , t3eh2 ) and H̃†
J→I =

(t4e−h2 , . . . , t4e−h2 ). The interference conditions now yield

r0,1 = − t1
t2

e2h1 (A2)

FIG. 13. Schematic of a non-Hermitian 2D SSH lattice drawn in
the quasi-1D lattice formalism. The solid and dashed lines denote the
intracell (t1) and intercell couplings (t2), respectively. eh1 , eh2 , eh3 , and
eh4 correspond to the imaginary gauge field.

and

r0,2 = − t3
t4

e2h2 . (A3)

Delocalization over the ei direction is achieved by requir-
ing |r0,i| = 1, namely choosing

h1 = h0 := −1

2
ln

( t1
t2

)
(A4)

and

h2 = h′
0 := −1

2
ln

( t3
t4

)
. (A5)

Figure 12(b) show that the zero-energy mode is indeed ex-
tended over the whole bulk of the Lieb lattice.

2. 2D SSH lattice

Here, we study the 2D SSH lattice [35], which is charac-
terized by four sites by unit cell, and intracell (t1) and intercell
(t2) couplings, as shown in Fig. 13. The method follows simi-
larly to the two examples already provided previously.

We will delocalize the zero-energy mode present in the 2D
SSH lattice [see Fig. 14(b) for the finite size of the lattice].
Figure 14(a) plots the normalized field distribution |ψn,m| of
the zero-energy corner mode which is exponentially localized
on the bottom-left corner for t1 < t2.

For the (Hermitian) truncated 2D SSH lattice, we have
HI = HSSH, HJ = HSSH. The intra- and interstacked lattice
couplings are (Ns × 2) matrices given respectively by

H̃†
I←J = H†

I←J =
⎛
⎝

t1 t1
...

...

t1 t1

⎞
⎠ (A6)

and

H̃†
J→I = H†

J→I =
⎛
⎝

t2 t2
...

...

t2 t2

⎞
⎠. (A7)

Ns is the number of sites on the I lattices.
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FIG. 14. The normalized field profile |ψn,m| of the zero-energy
mode of the truncated 2D SSH lattice is plotted in panel (a) for
the Hermitian case and in panel (b) for the non-Hermitian case.
Here, there are Ns = 9 sites both in the I lattice and the quasi-1D
lattice. t1 = 0.02, t2 = 0.06. The Hermitian setting corresponds to
the case h1 = h2 = h3 = h4 = 0, whereas the non-Hermitian setting
is for h1 = h2 = h3 = h4 = h0.

The zero-energy corner can be written as

ψ
(0)
I,m = rm

0,2ψ
(0)
I,0 (A8)

with [ψ (0)
I,0 ]n = rn

0,1a0,0 being the nth component of the zero-

energy mode ψ
(0)
I,0 of the SSH lattice where the interference

conditions [Eq. (18) in the main text] give r0,1 = − t1
t2

and
r0,2 = − t1

t2
. an,m is the modal amplitude on the A site at the

nth unit cell in the mth lattice I .
We use an imaginary gauge field to change the localization

property of the corner mode. Figure 13 sketches the gauge
potential considered where eh1 , eh2 , eh3 , and eh4 represent the
phase factor in the couplings between the sites A and D, A
and B, B and C, and D and C, respectively. The values for
eh1 , eh2 , eh3 , and eh4 are not independent of each other. For the
spectrum to remain unchanged, one need to satisfy

h3 = h1 (A9)

and

h4 = h2. (A10)
With the imaginary gauge field, the coupling matrices are

then modified. In particular, we have

H̃†
I←J =

⎛
⎝

t1eh2 t1eh4

...
...

t1eh2 t1eh4

⎞
⎠ (A11)

and

H̃†
J→I =

⎛
⎝

t2e−h2 t2e−h4

...
...

t2e−h2 t2e−h4

⎞
⎠. (A12)

The interference conditions read

r0,1 = − t1
t2

e2h1 (A13)

and

r0,2 = − t1
t2

e2h2 . (A14)

Delocalization over the ei direction is achieved by requir-
ing |r0,i| = 1, namely choosing

h1 = h2 = h0 := −1

2
ln

( t1
t2

)
. (A15)

Figure 14(b) show that the zero-energy mode is indeed ex-
tended over the whole bulk of the 2D SSH lattice.
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