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Abstract 

Owing to the increasing trend of additive manufacturing (AM) technologies being employed in the manufacturing industry, the issue of AM 

energy consumption attracts attention in both industry and academia. The energy consumption of AM systems is affected by various factors. 

These factors involve features with different dimensions and structures which are hard to tackle in the analysis. In this work, a data fusion 

approach is proposed for energy consumption prediction based on CNN-LSTM (convolutional neural network and long short-term memory) 

model. A case study was conducted on an SLS system by using the proposed methodology, achieving the RMSE of 8.143 Wh/g in prediction.  
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1. Introduction 

    Additive manufacturing (AM), also known as 3D printing, is 

a new manufacturing paradigm that fabricates components 

layer by layer [1].  This unique production paradigm has 

overcome several limitations of conventional manufacturing 

processes, being capable of creating near-net-shape physical 

objects with highly complex geometries. Therefore, AM 

technologies have been increasingly employed in the medical, 

automotive, and aerospace industries [2]. Typically, AM 

processes are classified into seven categories, including powder 

bed fusion, direct energy deposition (DED), material jetting, 

material extrusion, vat photopolymerization, binder jetting, and 

sheet lamination [3]. For each AM process, different 

technologies have been developed to meet the increasing 

demand of the printing capability in terms of material, structure 

and efficiency. As the increasing number of commercial AM 

systems are employed in industries, energy management issues 

become crucial for manufacturing sustainability [4]. However, 

an AM system is considered complex as it normally contains 

several subsystems with different sub-processes, leading to 

challenges when analyzing and estimating its energy 

consumption. Strategies for improving energy efficiency can be 

made if the power consumption of the system can be predicted 

before the process begins. Therefore, it is crucial to uncover 

energy-related knowledge and build accurate prediction models 

for better energy management in AM industry. 

    The energy efficiency of manufacturing processes is 

considered not only closely related to process parameters, but 

also other factors (e.g., processing time., material attributes, and 

auxiliary processes states) [5].  For AM systems, existing 

studies [6-8] has shown that the energy usage has large 

variations due to different working principles and material 

types in different AM technologies. Various approaches have 

been developed in previous researches for modelling power 

usage. However, each of these methods has advantages and 

limitations. With the facilitation of Internet of things (IoT) 

technologies and machine learning (ML) techniques, data-
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driven approaches have shown their merits and been 

increasingly used for modelling complex systems, as well as 

uncovering hidden knowledge in digital manufacturing systems 

(e.g., AM systems). Typically, in AM production, data is 

generated from the part design stage (i.e., computer-aided 

design (CAD) models) to the post-treatment stage. This data is 

heterogeneous that contains different formats, structures, and 

dimensions. It is rarely independent and hard to be jointly 

analyzed. Moreover, the CAD models normally contain highly 

complex geometries that are difficult to be described by simple 

hand-crafted features. Therefore, it is crucial to capture the 

information of part geometries more effectively and integrate 

the data collected from different sources for modelling AM 

energy consumption. 

    This paper proposed a data fusion method based on the CNN-

LSTM model for AM energy consumption prediction. In 

section 2, the existing studies on AM energy consumption 

modelling, the applications of CNN for image and geometry 

analysis in AM, and the researches of applying data fusion 

strategies in the manufacturing industry are reviewed. In 

section 3, the proposed methodology is demonstrated, where 

layer-wise geometry characteristics are captured and fused with 

process parameters data in LSTM neural networks. Section 4 

presents a case study on a selective laser sintering (SLS) system 

for validating the proposed method. Finally, the benefits and 

restrictions of the method are concluded in section 5. 

2. Literature review 

2.1. Energy consumption modelling for AM 

 The energy consumption of an AM system is difficult to 

model as it is affected by various factors during the complex 

manufacturing process. The influences of these factors are 

normally inconsistent due to different machines, processes, and 

materials. Thus, it is rather difficult to uncover and analyze all 

the energy-related factors from a single study or experiment. 

The identified energy-related attributes with their energy 

consumption model in existing studies are summarized in table 

1. For example, considering the quality of the produced parts, 

a linear regression model was developed by Tian et al. [10] to 

investigate the relationship between process parameters, part  

Table 1. AM energy consumption related attributes in literature 

quality and energy usage of the fused filament fabrication (FFF) 

process. This work provides a solution for reducing energy 

usage while simultaneously ensure the geometry-related 

quality of produced parts. Yang et al. [11] developed a 

mathematical model for estimating energy consumption of the 

Stereolithography (SLA) system by calculating the power 

consumed from three sub-consumers. The authors analyzed the 

influences of orientation, layer thickness, and the curing time 

of stable layers and transition rates on the power usage. Lv et 

al. [12] also introduced a physical-based prediction approach 

for estimating the energy consumed by a selective laser melting 

(SLM) system based on the machine subsystems, subprocesses, 

and working status. In this study, the power consumption of 

each subsystem was firstly calculated. Then, the temporal 

models for the subprocesses, including warming up, building, 

and cooling down, were developed by taking machine setting, 

product design, and process parameters as input parameters. 

This work provides solid physical insights that mainly focus on 

the investigation of the impacts of process parameters on 

energy consumption. 

Besides focusing on processing attributes and material-

relevant information for power consumption modelling, the 

geometry characteristics of the products are also found 

significant influences on the energy usage in several studies, 

such as build height [6] and part envelop volume [8]. 

Considering the influences of the geometry features, Qin, et al 

[13] introduced a data-driven modelling method to predict the 

power consumption of an SLS system. In this paper, the authors 

collected the data generated from multiple sources, including 

CAD models, material types, process parameters, and working 

conditions, during the whole AM production. In specific, 

geometry-related features were extracted manually from CAD 

models and taken as inputs with the data collected from other 

sources in the artificial neural network (ANN). Differently, 

Yang et al. [15] used the characteristics of layer-wise geometry 

for estimating the energy consumption of a mask image 

projection SLA system. The layer-wise geometry-related 

indexes were extracted from CAD models and processed with 

three feature selection methods, including sensitivity analysis, 

principal component analysis (PCA), and stacked autoencoders 

(SAE). These selected features were then fed into different ML 

models for energy consumption prediction. However, when 

Previous Studies AM System Identified Energy Consumption Related Attributes 
Energy Consumption 

Model 

Sreenivasan et al. [7] SLS 
The scan speed, layer thickness, laser power rate; road width size, material 

density 
N/A 

Watson et al. [8] Mental AM 
Deposited material volume, part envelope volume, the transported distance 

of feedstock and recycling, build platform size 
Mathematical model 

Baumers et al. [9] SLS 
Manufacturing procedures, capacity utilization, Z-height, part geometry, 

build time 
N/A 

Tian et al. [10] FFF 
Process parameters (e.g., printing resolution, printing speed, nozzle 

temperature) 
Linear regression 

Yang et al. [11] SLA 
Part orientation, layer thickness, the curing time for stable layers, curing time 

transition rate 
Mathematical model 

Lv et al. [12] SLM Different machine subsystems, subprocesses, and working status Physical-based model 

Qin et al. [13] SLS 

Part geometry, process parameters (e.g., hatch width, hatch speed, hatch 

power, dispenser), in situ temperature, material conditions (e.g., temperature, 
humidity) 

ANN 

Yang et al. [14] SLA Part geometry ML-based model 

Li et al. [15] SLS 
Part geometry, process parameters (e.g., hatch width, hatch speed, hatch 

power, recoater speed), in situ temperature, material types 
ML-based model 



 

considering the impacts of geometry characteristics, it is 

always hard to extract representative features based on hand-

crafted methods, especially for highly complex shapes and 

geometries. From the existing studies above, there are only a 

few studies that have explored to predict energy consumption 

based on geometry characteristics. Additionally, these studies 

either focus on build-level information or layer-wise 

information, which inevitably lose some critical information 

from both sides. Hence, it is crucial to explore the method to 

extract informative geometry features and capture multi-

sourced information for energy consumption prediction. In the 

next section, the applications of CNN in AM are reviewed. 

2.2. CNN for image and geometry analysis in AM 

    Convolutional neural network (CNN) is a type of deep 

learning (DL) technique to deal with the data with grid patterns 

(e.g., image). It is able to automatically learn the spatial 

hierarchies of features by several building blocks [16], 

including convolution layers, pooling layers, and fully 

connected layers. In the vision of computers, an image is 

treated as an array of numbers. In a typical CNN architecture, 

convolutional layers aim to extract and learn the highly 

representative features from input images. A kernel is applied 

across the input image matrix where an element-wise product 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. An example convolution operation in CNN 

between each element of the kernel and the input matrix is 

calculated to obtain the output feature map, shown in Fig.1. In 

this figure, the kernel size is 3×3 and the stride value is 1. After 

convolution operation, the output is passed through a nonlinear 

activation function to the pooling layer for dimensionality 

reduction.  

    Due to the superiority of CNN in learning hidden patterns, it 

is increasingly applied in various domains, especially in AM 

systems for defect detection and geometry analysis. Patel et al. 

[17] developed a CNN-based method for recognizing dross 

based on the cross-section images that are captured from each 

printed layer of the build in the laser powder bed fusion (L-PBF) 

system. In their experiments, the dross was bounded by a 

specific coordinate system and the images taken from the 

bounded area were used for training CNN to identify the dross. 

For real-time monitoring, Li et al. [18] proposed an analytical 

model where a deep CNN was used to extract features and 

classify thermal images that were collected from the DED 

process. The raw image data were shrunk and extracted in a 

proper size in this work for computational efficiency and noise 

reduction. Another study on real-time classification of melt 

pool images based on CNN was demonstrated in [19], where 

CNN was used to distinguish melt pool changes for close loop 

control.  

Some researchers have also tried to analyze 3-dimensional 

(3D) data through convolution operation in AM systems. In 

addition to the recognition and classification of 2D images, 

CNN is able to extract 3D geometric features. Ghadai et al. [20] 

proposed a local feature identification framework to determine 

the drilled holes of manufactured products. The augmented 

voxel data was trained in a 3D-CNN to support the design for 

manufacturability. The 3D-CNN was able to recognize 3D 

objects and learn hidden patterns directly from the voxel-based 

models. This framework can also be applied in other 

manufacturing processes (e.g., milling). Adding support 

structure plays a vital role in fabricating overhanging structure 

in 3D printing [21]. However, traditional techniques (e.g., 

normal-based techniques) are hard to generate accurate support 

positions due to the loss of topology. Therefore, a CNN-based 

support detection method was proposed [22], which used the 

surface elements defined by the layered depth-normal images. 

The input images represented the local topological information 

of the entity in the CNN model. This research pointed out that 

the proposed CNN-based method was superior in accuracy and 

robustness. Through existing studies above, CNN-based 

methods have been demonstrated effective in AM for images 

processing and analysis, which normally superior to 

conventional methods. In the next section, the studies on 

applying data fusion technologies and strategies in the AM 

industry are reviewed and discussed.  

2.3. Data fusion in the AM industry 

Data fusion is a framework [23], fit by an ensemble of tools, 

for integrating and analyzing the data from multiple sources or 

modalities to produce more reliable results and uncover hidden 

information. Generally, depending on the stage where fusion is 

implemented, data fusion strategies are categorized as data 

level, feature level, and decision level. In recent year, deep 

learning has been demonstrated effective in wide applications 

as it has strong capabilities of learning hidden patterns within 

big data automatically. Strategies of using deep learning-based 

algorithms to fuse data are also referred to as deep fusion. Many 

researchers have applied this fusion method and obtained 

considerable performances for regression and classification 

tasks [24-26]. 

In AM, some researchers have made efforts to apply data 

fusion strategies for detecting defects and monitoring [27-29]. 

Kim et al. [28] introduced a data-driven method for fault 

diagnosis of FDM process states. Accelerometer and acoustic 

emission sensors were used to obtain real-time signals under 

healthy and faulty process states. Features were extracted from 

raw signal data and then fed into a support vector machine 

(SVM) model for state classification. To improve the surface 

integrity of the products produced by the FFF process, Li et al. 

[30] proposed a decision-level data fusion approach that used 
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an ensemble learning algorithm to fuse the prediction results 

from six different ML algorithms for surface roughness 

prediction. In this paper, time and frequency-domain features 

that were extracted from real-time multi-sensor signals were 

selected based on the feature importance ranking. According to 

the experimental results, the ensemble model outperforms the 

individual base ML models.  

Apart from the fusion of multi-sensor signals, fusion is also 

considered significant when dealing with data that has different 

types, dimensions, and structures. The data collected from real-

world manufacturing scenario is normally massive, 

heterogeneous, and noisy, building up barriers for joint analysis. 

For the DED process modelling and control, Vandone et al. [31] 

introduced a data-driven method that fused the features 

extracted from online and offline data, including sensor signals, 

melt pool images, 3D scan geometries, and machine parameter 

settings. Similarly, Zhang, et al. [32] also took into account the 

in-process signatures and static factors for tensile strength 

prediction of the parts manufactured by the FDM process. In 

this work, the in-process variation and layer-wise interaction 

were captured by multi-sensors. A long short-term memory 

(LSTM) network was used to process the in-process data and 

then fused with other factors (e.g., material properties) for final 

prediction. 

    It can be seen from the previous studies that data fusion 

technologies show their advantages in dimensionality 

reduction, uncovering hidden information, and improving 

model performance, especially in dealing with multi-source 

data. In the next section, a data fusion strategy based on deep 

learning models is proposed for energy consumption prediction 

in AM.   

3. Methodology 

3.1. Data sensing and collection 

  Typically, the data generated from AM production is 

mainly from 4 sources [13], including product, process, 

working conditions, and material. The collected raw data is 

heterogeneous and is categorized as different levels, layer-level 

and build-level. For example, the process control parameters 

are categorized as build-level as they are set before the AM 

process starts and not changed during one build. The 

information of working conditions is considered layer-level as 

it normally keeps changing during each layer. In order to 

predict the energy consumption before the process begins, the 

information of part geometries and process parameters are 

taken into account in this study. The process parameter settings 

(e.g., hatch power, hatch speed, hatch width) are collected from 

machine log files. Layer-wise images of the products, 

considered as the layer-level data, are generated and obtained 

from the sliced CAD models in AM software. After data 

collection, the layer-wise images are firstly analyzed by CNN, 

where geometry characteristics of each layer can be obtained. 

Then these layer-level geometry features are fused with the 

data of process parameters in the LSTM neural networks for 

energy consumption prediction. The diagram of the introduced 

methodology is presented in Fig. 2. 

Fig. 2. Diagram of the proposed methodology 

3.2. Deep fusion for energy consumption prediction based on 

CNN-LSTM 

As described previously, it is essential to integrate the multi-

sourced data for AM energy consumption prediction. However, 

due to the hierarchies of the collected raw data, it is hard to 

simply and directly integrate this data for analysis. Therefore, 

to capture both the layer-wise geometry information and build-

level processing information, a data fusion method based on 

CNN-LSTM is developed to fuse the data collected from CAD 

models and process parameters. The 3D models of the products 

normally have various shapes and geometries. Some of these 

geometries are highly complicated that is hard to describe by 

hand-crafted features. Conventional feature extraction methods, 

such as extracting statistical features, are capable of extracting 

general information of the geometries while some detailed 

information of the inner structures is inevitably neglected. In 

AM, 3D models are sliced into layer-wise models with 

predefined layer thickness for producing physical objects layer 

by layer. This enables the analysis of 3D geometries by 

transforming the sliced models into layer-wise images. 

Researchers have explored and demonstrated the feasibility of 

using CNN to analyze the sliced geometries in AM [22]. In 

convolution operations, kernels are used as feature detectors 

that slide over the input image to form output feature maps. The 

convolution operation is used for extracting high-level features 

from images and is defined as, 

   1( )n n n nX f X W B−= +                             (1) 

Where n represents the layer number, Xn and Xn-1 denote the 



 

outputs of the nth and (n-1)th layers, f represents a nonlinear 

activation function, Wn and Bn are the weights and bias term of 

the nth layer respectively. Pooling operation is used for 

reducing the dimensionality of feature maps while still retains 

significant information. Max pooling is a typical pooling 

function in CNN structure that replaces the sub-region of 

feature maps by the maximum value in the region, 

       1 1( , ) max( { , })n nx i j x i j+ +=                         (2) 

Where xn {i, j} represents the elements in the neighbourhood of 

(i, j) on the feature map at the nth layer, xn+1(i, j) is the output at 

(i, j) of the (n+1)th layer. The illustration of the convolutional 

feature learning process of the layer-wise images is presented 

in Fig.3. 

 

Fig. 3. Illustration of convolution feature learning process 

After obtaining the flattened feature maps of each layer-wise 

image, LSTM is adopted to treat the flattened features as time 

series data and fused with process parameters. LSTM is a type 

of recurrent neural networks (RNNs) that consists of a number 

of cells that capture the temporal information of previous cells. 

It is widely used for learning the sequential patterns within data. 

In the LSTM model, there are three gates, including the input 

gate, forget gate, and output gate, that are used to control 

memory in each cell. The basic RNNs model is expressed as, 

1( )n v n h nc W v W c b −= + +                         (3) 

In equation (3), vn is the nth input, cn and cn-1 are the outputs of 

the nth and the (n-1)th recurrent neuron layers, respectively. Wv 

and Wh are weight matrices, b is the bias term, and  is the 

activation function. Finally, the developed CNN-LSTM model 

is trained for AM energy consumption prediction. 

3.3. Validation of the predictive model 

As is known, the energy usage of an AM system largely 

depends on manufacturing. Hence, the unit energy 

consumption Eu (Wh/g) is adopted for the evaluation of the 

energy consumption level and expressed as, 

p

U

p

E
E

M
=                                      (4) 

In equation (4), The Ep and Mp denote the energy consumed for 

printing the objects and the weight of the printed objects, 

respectively. Root Mean Square Error (RMSE) is used as an 

evaluation metric that calculates the error between predicted 

and actual values. RMSE is calculated as, 

   
2

1

1
= ( )

n

i i

i

RMSE P T
n =

−                            (5) 

Where n denotes the number of samples, Pi and Ti are the ith 

predicted value and true value, respectively.  

4. Case study 

In the case study, an SLS machine (EOS P700) was 

employed as the target system where the data was collected for 

over 2 years. The datasets include different formats of data and 

information of more than a hundred production processes with 

thousands of manufactured products. The produced products 

were designed by different commercial companies, containing 

various geometries and structures for different applications. 

4.1. Data collection and pre-processing 

The data was collected from an SLS system, including 

thousands of layer-level information and more than a hundred 

of build-level information. By using AM analysis software 

(Autodesk Netafbb), the geometry information of different 

products was obtained from CAD models. The layer-wise 

images (more than 10000 layer-wise images in total) were 

obtained from sliced models and saved in BMP format. The 

dataset of process parameters recorded information of 6 

attributes, including hatch speed, hatch space, hatch power, 

recoater speed, and the values of the dispenser. The actual 

energy consumed by the SLS system was measured by a power 

meter. In the dataset, the unit energy consumption for printing 

each layer ranges from 4 ~ 200 (Wh/g) due to different 

geometry characteristics and process parameters.  

4.2. Results and discussion 

The experimental study aims to validate the proposed 

methodology for energy consumption prediction in AM. After 

training, the model was validated on 3129 samples, shown in 

Fig. 4. In the figure, the red line represents the actual energy 

consumption of the SLS system for each printed layer. The blue 

line represents the predicted values by the trained CNN-LSTM 

model. Overall, it can be seen from the figure that the model  

Fig. 4. The comparison between predicted values and actual values 
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is effective in predicting the energy consumed by the SLS 

system based on the proposed deep fusion strategy, with an 

RMSE of 8.143 Wh/g. The predictions made by the developed 

model can generally follow the changes of the actual values. 

However, when the actual unit energy consumption values 

reached a relatively high level, the CNN-LSTM model was 

hard to predict the value accurately. This is possibly due to the 

low capacity utilization rate of the working platform (i.e., the 

sliced images are less informative), leading to considerable 

information loss during the convolution feature extraction 

process. Moreover, working conditions and material conditions 

will also affect energy efficiency. Further exploration will be 

made to optimize the feature extraction process especially 

dealing with the images that have less geometric information. 

5. Conclusions 

In this paper, a data fusion method based on the CNN-LSTM 

model is introduced to fuse data from CAD models and process 

parameters for AM energy consumption prediction before the 

manufacturing process begins. The CNN model can effectively 

learn the hidden patterns from the layer-wise images of the 

sliced models and make relatively accurate predictions through 

the LSTM neural networks. Additionally, this work provides a 

strategy for fusing data from different sources with different 

dimensions in AM energy consumption modelling. For future 

work, optimization for a more effective convolution feature 

extraction process will be explored. Additionally, 

computational efficiency will be considered for a more 

efficient energy prediction model.  
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