CD8 coreceptor-mediated focusing can reorder the agonist hierarchy of peptide ligands recognized via the T cell receptor

Mathew Clementa,1,2 Lea Knezevicb,1, Tamsin Dockreea, James E. McLarena,2 Kristin Ladellb, Kelly L. Minerb,2, Sian Llewellyn-Laceyd, Anzelika Rubinab,2, Oreb,2, David K. Colea,c Andrew K. Sewellb,d, John S. Bridgemanb,2, David A. Pricea,2, Hugo A. van den Bergb,2,1 and Linda Wooldridgeb,c,1

*Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom; 1Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom; 2Immunocore Ltd., Abingdon OX14 4RY, United Kingdom; 3Systems Immunology Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom; 4Immetacyte Ltd., Manchester M13 9XX, United Kingdom; and 5Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Edited by Peter Parham, Stanford University School of Medicine, Stanford, CA, and accepted by Editorial Board Member Peter Cresswell June 8, 2021 (received for review September 17, 2020)

CD8+ T cells are inherently cross-reactive and recognize numerous peptide antigens in the context of a given major histocompatibility complex class I (MHC) molecule via the clonotypically expressed T cell receptor (TCR). The lineally expressed coreceptor CD8 interacts coordinately with MHCI at a distinct and largely invariant site to slow the TCR/pMHCI (pMHCI) dissociation rate and enhance antigen sensitivity. However, this biological effect is not necessarily uniform, and theoretical models suggest that antigen sensitivity can be modulated in a differential manner by CD8. We used two intrinsically controlled systems to determine how the relationship between the TCR/pMHCI interaction and the pMHCI/CD8 interaction affects the functional sensitivity of antigen recognition. Our data show that modulation of the pMHCI/CD8 interaction can reorder the agonist hierarchy of peptide ligands across a spectrum of affinities for the TCR.

Results

To test the notion that coreceptor-mediated effects can alter ligand specificity, we determined the extent to which CD8 modulated functional responses initiated via the MEL5 TCR, which recognizes the heteroclitic Melan-A epitope ELAGIGILTV26–35/A27L (ELA) restricted by HLA-A*0201 (abbreviated from hereon as HLA-A2). Ligand recognition in this system has been characterized previously using surface plasmon resonance (18, 19). Biophysically defined peptide ligands, including a weak agonist (3T), the wild-type epitope (ELA), and a superagonist (FAT), were selected for binding properties to test the differential focusing hypothesis experimentally. In line with earlier predictions, we found that modulation of the pMHCI/CD8 interaction reordered the agonist hierarchy of peptide ligands recognized via the TCR.

Significance

Sufficient immune coverage of the peptide universe within a finite host requires highly degenerate T cell receptors (TCRs). However, this inherent need for antigen cross-recognition is associated with a high risk of autoimmunity, which can only be mitigated by a process of adaptable specificity. We describe a mechanism that resolves this conundrum by allowing individual clonotypes to focus on specific peptide ligands without alterations to the structure of the TCR.
the purposes of this work to introduce a range of TCR/pMHCI affinities (Table 1). C1R cells expressing HLA-A2 D227K/T228A, which abrogates the coreceptor interaction (20), wild-type HLA-A2, HLA-A2 A245V/Kb, which enhances the coreceptor interaction (21), or HLA-A2 Kb, which superenhances the coreceptor interaction (22), were used in parallel to introduce a range of pMHCI/CD8 affinities (Table 2). Importantly, surface plasmon resonance experiments have shown that none of these mutations, namely D227K/T228A, wild-type HLA-A2, HLA-A2 A245V/Kb relative to HLA-A2 (Fig. 1A), were enhanced in the context of HLA-A2 and HLA-A2 A245V/Kb relative to HLA-A2 D227K/T228A (Fig. 1C). As a consequence, the agonist potency of FAT was only marginally enhanced in the context of HLA-A2 relative to HLA-A2 D227K/T228A and, consistent with the notion of an optimal activation window, decreased slightly in the context of HLA-A2 A245V/Kb relative to HLA-A2 (Fig. 1A and SI Appendix, Figs. S1 and S2). Functional sensitivity was determined as the pEC50 value for each peptide combination (Fig. 1A). In the absence of a pMHCI/CD8 interaction (HLA-A2 D227K/T228A), activation was a simple function of TCR/pMHCI affinity (Fig. 1A and SI Appendix, Figs. S1 and S2). The agonist potencies of 3T and ELA were enhanced in the context of HLA-A2 and HLA-A2 A245V/Kb relative to HLA-A2 D227K/T228A (Fig. 1A). In contrast, the agonist potency of FAT was only marginally enhanced in the context of HLA-A2 relative to HLA-A2 D227K/T228A and, consistent with the notion of an optimal activation window, decreased slightly in the context of HLA-A2 A245V/Kb relative to HLA-A2 (Fig. 1A and SI Appendix, Fig. S3A). As a consequence, the agonist potency of FAT relative to the agonist potency of ELA was reduced at higher pMHCI/CD8 affinities (Fig. 1B,1), and in three of four replicate experiments, ELA was the most potent ligand in the context of HLA-A2 and HLA-A2 A245V/Kb (Fig. 1B–E). To confirm these findings, we quantified the production of IFN-γ by clonal MEL5 CD8+ T cells in response to 3T, ELA, or FAT presented in the context of HLA-A2 D227K/T228A, wild-type HLA-A2, or HLA-A2 Kb (SI Appendix, Figs. S4 and S5). Functional sensitivity was again determined as the pEC50 value for each parameter combination (Fig. 2A). The activation data were largely analogous to those obtained with MELS TCR+ CD8+ J.RT3-T3.5 cells. In particular, the agonist potency of FAT was enhanced in the context of HLA-A2 relative to HLA-A2 D227K/T228A and decreased slightly in the context of HLA-A2 Kb relative to HLA-A2 (Fig. 2A and SI Appendix, Fig. S3B), mirroring the downturn in functional sensitivity observed with MELS TCR+ CD8+ J.RT3-T3.5 cells in the context of HLA-A2 A245V/Kb relative to HLA-A2 (Fig. 1A and SI Appendix, Fig. S3A). As a consequence, the agonist potency of FAT relative to the agonist potency of ELA was again reduced at higher pMHCI/CD8 affinities (Fig. 2B, and in three of four replicate experiments, ELA was the most potent ligand in the context of HLA-A2 Kb (Fig. 2B–E). In further experiments, we quantified the production of IFN-γ and MIP-1β by clonal MEL5 CD8+ T cells in response to ELA or ILA, a superagonist characterized for the purposes of this work, presented in the context of HLA-A2 D227K/T228A, wild-type HLA-A2, or HLA-A2 Kb (Table 1 and SI Appendix, Fig. S6). Irrespective of the functional readout, ILA was the more potent agonist in the context of HLA-A2 D227K/T228A and HLA-A2, whereas ELA was the more potent agonist in the context of HLA-A2 Kb, thereby eliminating the possibility of a spurious link between the observed differential focusing effect and the anchor residue mutation present in FAT (SI Appendix, Fig. S6). To confirm these findings in another intrinsically controlled system, we used a similar approach to determine the extent to which CD8 modulated functional responses initiated via the ILA1 TCR, which recognizes the human telomerase reverse transcriptase epitope ILAKFLHWL540–548 (ILA) restricted by HLA-A2. Biophysically defined peptide ligands, including a weak agonist (5Y), the wild-type epitope (ILA), and two superagonists (3G and 3GSR), were again selected for the purposes of this work to introduce a range of TCR/pMHCI affinities (SI Appendix, Table S1). Irrespective of the functional readout, the agonist potencies of 5Y and ILA were enhanced in the context of HLA-A2 and HLA-A2 Kb relative to HLA-A2 D227K/T228A, whereas the agonist potencies of 3G and 3GSR were only marginally enhanced in the context of HLA-A2 relative to HLA-A2 D227K/T228A and decreased slightly in the context of HLA-A2 Kb relative to HLA-A2 (SI Appendix, Figs. S7 and S8). As a consequence, ILA was the most potent ligand in the context of HLA-A2 Kb, thereby validating the general applicability of differential focusing beyond the idiosyncratic properties of a singular TCR (SI Appendix, Figs. S7 and S8).

Collectively, these results can be interpreted and understood in biological terms if two key assumptions are made: 1) functional sensitivity depends nonmonotonically on the TCR/pMHCI dissociation rate (13); and 2) the pMHCI/CD8 interaction affects the TCR/pMHCI dissociation rate by an invariant factor, equivalent to translation on a logarithmic scale (Fig. 3). In this scenario, ligands that are recognized poorly in the absence of a pMHCI/CD8 interaction become more potent in the presence of a physiological pMHCI/CD8 interaction and achieve optimal agonist potency in the presence of a supraphysiological pMHCI/CD8 interaction, whereas ligands that are recognized strongly in the absence of a pMHCI/CD8 interaction straddle an optimum in the presence of a physiological pMHCI/CD8 interaction and become less potent in the presence of a supraphysiological pMHCI/CD8 interaction. Accordingly, the agonist hierarchy of peptide ligands, which is dictated in isolation by the TCR/pMHCI interaction, can be reordered as a function of coengagement by CD8.

Discussion

CD8+ T cells are inherently promiscuous and can recognize more than a million different peptide ligands via the TCR (23–26). It is well established that CD8 can enhance the functional sensitivity of antigen recognition, but in any given monoclonal system, it does not necessarily follow that CD8 will affect the agonist potency of every cognate ligand in a similar manner. Indeed, theoretical studies have suggested that the agonist hierarchy of peptide ligands can be modified or even reversed across a range of pMHCI/CD8 affinities, such that a differential focusing effect acts to optimize the recognition of particular ligands in the context of an individual TCR (9, 10, 15). Our data provide experimental confirmation of these predictions.

Table 1. TCR/pMHCI dissociation constants and kinetics for agonists of the MELS TCR

<table>
<thead>
<tr>
<th>MHC1</th>
<th>Epitope</th>
<th>Koff (s−1)</th>
<th>Ka (M−1s−1)</th>
<th>Kp (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-A2</td>
<td>ELTGIGILTV (3T)</td>
<td>~1.2×104</td>
<td>~1</td>
<td>82 ± 4</td>
</tr>
<tr>
<td>HLA-A2</td>
<td>ELAGIGILTV (ELA)</td>
<td>~4.4×104</td>
<td>~0.75</td>
<td>17 ± 1</td>
</tr>
<tr>
<td>HLA-A2</td>
<td>FATGIGILTV (FAT)</td>
<td>~1.2×105</td>
<td>0.36</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>HLA-A2</td>
<td>FLAGIGILTV (II)</td>
<td>~1.3×105</td>
<td>~1.3</td>
<td>10.2 ± 7*</td>
</tr>
</tbody>
</table>

*Surface plasmon resonance data are shown in SI Appendix, Fig. S6A.

Table 2. pMHCI/CD8 dissociation constants for variants of HLA-A2

<table>
<thead>
<tr>
<th>MHC1</th>
<th>Mutation</th>
<th>Kp (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-A2 D227K/T228A</td>
<td>MHCI α3 domain</td>
<td>>10,000</td>
</tr>
<tr>
<td>HLA-A2 WT</td>
<td>N/A</td>
<td>137 ± 9.7</td>
</tr>
<tr>
<td>HLA-A2 A245V/Kb</td>
<td>MHCI α3 domain</td>
<td>27 ± 1</td>
</tr>
<tr>
<td>HLA-A2 Kb</td>
<td>MHCI α3 domain</td>
<td>11</td>
</tr>
</tbody>
</table>

N/A, not applicable.
The biological relevance of differential focusing remains unknown, but hypothetical considerations suggest that such an effect may be advantageous in vivo, especially if accompanied by feedback mechanisms that enable the process of specificity adjustment to converge on a foreign antigen. Optimal recognition of a particular agonist in this manner would maximize immune efficacy during the process of clonal expansion and simultaneously minimize the risk of autoimmunity. Affinity maturation subserves an equivalent function in B cells. In more general terms, differential focusing also provides a solution to the “Mason paradox,” allowing a high degree of immune specificity alongside sufficient coverage of the peptide universe within a relatively small naïve repertoire via the incorporation of degenerate TCRs (17).

Although it remains to be determined how differential focusing could operate in vivo and to what extent this might occur throughout the lifespan of any given clonotype, elegant studies have already provided important mechanistic clues. For example, double-positive thymocytes can transcriptionally down-regulate CD8 (27), and antigen encounters in the periphery can dynamically modulate clonal responsiveness via the selective internalization of CD8 (28). In addition, coreceptor use can be switched between the functionally distinct isoforms CD8αa and CD8αβ (29), which are further modifiable via glycosylation (30–32), and cytokine signals can transcriptionally alter the expression of CD8 (33). All of these processes affect the signaling threshold for activation via the TCR in a manner akin to affinity variation in the pMHC/CD8 interaction (12, 34). Accordingly, functional sensitivity depends on the kinetics of signalosome development (9, 10), which is determined by agonist potency and regulated by CD8β (35).

In line with earlier theoretical predictions, the data presented here show that agonist potency, quantified in terms of functional sensitivity, can be differentially modulated across a range of TCR/pMHC affinities by CD8. If this phenomenon occurs in vivo, as suggested by previous mechanistic studies, then immune reactivity could be focused on individual peptide ligands in the context of antigen-driven clonal expansions. On the basis of these collective observations, we propose that specificity adjustment operates at the level of individual clonotypes to safeguard the host in the face of an ongoing immune response, simultaneously facilitating the targeted delivery of effector functions and mitigating the risk of bystander damage, which can be triggered by inherently degenerate and therefore potentially autoreactive TCRs.

Materials and Methods

Cells. MELS TCRα+CD8β+JR3-T3.5 cells were maintained in Roswell Park Memorial Institute (RPMI) 1640 medium containing 100 U/mL penicillin, 100 μg/mL streptomycin, 2 mM L-glutamine, and 10% heat-inactivated fetal calf serum (all from Thermo Fisher Scientific) (R10). Clonal MELS and ILA1 CD8β+ T cells were maintained in R10 supplemented with 200 IU/mL IL-2 and 25 ng/mL IL-15 (both from PeproTech). The MELS TCR is specific for the heteroclitic HLA-A2-restricted Melan-A epitope ELA (18, 36), and the ILA1 TCR is specific for the HLA-A2-restricted human telomerase reverse transcriptase epitope ILA (37). Human embryonic kidney (HEK) 293 cells were grown in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich) supplemented with 100 U/mL penicillin, 100 μg/mL streptomycin, 2 mM L-glutamine, 10% heat-inactivated fetal calf serum, and 10 mM HEPS (all from Thermo Fisher Scientific). C1R cells expressing comparable levels of HLA-A2 or variants thereof were generated and maintained as described previously (38).

Peptides. All peptides were synthesized at >95% purity using standard Fmoc chemistry (BioSynthesis Inc.).

Lentiviruses. The α and β chains of the MELS TCR were engineered to contain mouse constant domains (39) and cloned into a single psf–Lenti–EF-1α lentiviral vector (Oxford Genetics) separated by a P2A sequence (Genewiz). The α and β chains of CD8 were cloned similarly into a single psf–Lenti–EF–α lentiviral vector (Oxford Genetics) separated by an internal ribosomal entry site sequence (Genewiz). HEK 293 cells were cotransfected with the MELS TCR or CD8-α/β lentiviral vectors and the packaging plasmids pMDLg/pRRE, pRSV-Rev, and
CD8 reorders the agonist hierarchy of peptide ligands that induce the production of IFN-γ. Clonal MELS CD8+ T cells were activated for 4 h with C1R cells expressing comparable levels of HLA-A2 D227K/T228A (KO), wild-type HLA-A2 (WT), or HLA-A2 Kb (Kb) pulsed with various concentrations of 3T (blue), ELA (black), or FAT (red). Secretion of IFN-γ was measured using an enzyme-linked immunosorbent assay. (A) Functional sensitivity (pEC50) for each peptide ligand in the context of each MHC. Four replicate experiments are shown. Values below the limit of estimation were set to zero for graphical purposes and treated as missing data for statistical purposes. P = 0.0042 for the ligand effect and P = 0.00069 for the MHC effect (two-way ANOVA with Tukey’s post hoc test). (B) The agonist potency of FAT relative to the agonist potency of ELA expressed as pEC50^FAT - pEC50^ELA, which is equivalent to the logarithm of the fold difference in functional sensitivity. Four replicate experiments are shown. Horizontal bars indicate median values. *P < 0.05 (one-way ANOVA with Tukey’s post hoc test). (C–E) Representative peptide titration experiment used to calculate the parameters in A and B. Curves were fitted in Mathematica. All four replicate experiments are shown in SI Appendix, Figs. S4 and S5.

Fig. 2. CD8 reorders the agonist hierarchy of peptide ligands that induce the production of IFN-γ. Clonal MELS CD8+ T cells were activated for 4 h with C1R cells expressing comparable levels of HLA-A2 D227K/T228A (KO), wild-type HLA-A2 (WT), or HLA-A2 Kb (Kb) pulsed with various concentrations of 3T (blue), ELA (black), or FAT (red). Secretion of IFN-γ was measured using an enzyme-linked immunosorbent assay. (A) Functional sensitivity (pEC50) for each peptide ligand in the context of each MHC. Four replicate experiments are shown. Values below the limit of estimation were set to zero for graphical purposes and treated as missing data for statistical purposes. P = 0.0042 for the ligand effect and P = 0.00069 for the MHC effect (two-way ANOVA with Tukey’s post hoc test). (B) The agonist potency of FAT relative to the agonist potency of ELA expressed as pEC50^FAT - pEC50^ELA, which is equivalent to the logarithm of the fold difference in functional sensitivity. Four replicate experiments are shown. Horizontal bars indicate median values. *P < 0.05 (one-way ANOVA with Tukey’s post hoc test). (C–E) Representative peptide titration experiment used to calculate the parameters in A and B. Curves were fitted in Mathematica. All four replicate experiments are shown in SI Appendix, Figs. S4 and S5.
Statistics. Functional assay data were processed using simultaneous nonlinear least squares parameter estimation encoded in Mathematica (23). Functional sensitivity (pEC50) was expressed as the decimal logarithm p of the 50% efficacy concentration (EC50). Assay-derived estimates of pEC50 were treated as input data for subsequent analyses of variance. Data were analyzed using a one-way or two-way ANOVA with Tukey’s post hoc test in Mathematika or Prism software version 8 (GraphPad).

Data Availability. All study data are included in the article and/or SI Appendix.

7. G. F. Gao et al., Classical and nonclassical I major histocompatibility complex molecules exhibit subtle conformational differences that affect binding to CD8αα. J. Biol. Chem. 275, 15232–15238 (2000).
30. M. A. Daniels et al., CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity 15, 1051–1061 (2001).

ACKNOWLEDGMENTS. We thank Andrew Herman and Lorena Ballesteros for assistance with cell sorting at the University of Bristol Flow Cytometry Facility. This work was funded by the Wellcome Trust (Grants WT079848MA and WT099067AIA). Additional support was received from the Horizon 2020 Research and Innovation Programme of the European Union via Marie Sklodowska-Curie Grant Agreement 721358 and from the Biotechnology and Biological Sciences Research Council (Grant BB/H001085/1). A.K.S. and D.A.P. were supported by Wellcome Trust Senior Investigator Awards.