
An Open-Source Multi-Goal Reinforcement
Learning Environment for Robotic Manipulation

with Pybullet (Supplementary)?

Xintong Yang1[0000−0002−7612−614X], Ze Ji1[0000−0002−8968−9902], Jing
Wu2[0000−0001−5123−9861], and Yu-Kun Lai2[0000−0002−2094−5680]

1 Centre for Artificial Intelligence, Robotics and Human-Machine Systems
(IROHMS), School of Engineering, Cardiff University, Cardiff, UK

{yangx66, jiz1}@cardiff.ac.uk
2 School of Computer Science and Informatics, Cardiff University, Cardiff, UK

{wuj11, laiy4}@cardiff.ac.uk

1 Multi-step tasks details

Initial state distribution3: Fig 1a gives a visualisation. For the block stack and
block rearrange tasks, blocks’ positions are sampled randomly within a square of
0.03 width, centred at the gripper’s x-y coordinates (red line). For the chest push
and chest pick and place tasks, they are sampled within a rectangle of length
0.04 and width 0.03, centred at the location 0.05 away from the gripper’s x-y
coordinates, nearer to the robot base (blue line). The position of the chest is
randomly sampled on a 0.03 line, 0.07 away from the robot base (brown line).
The initial pose of the gripper tip frame is fixed. For pushing tasks, it is at the
centre of the table surface, while for picking tasks, it is 0.075 above the table
centre (green line). The difference of the initial gripper tip location is for easier
exploration, a design inherited from the OpenAI Gym multi-goal tasks4.

State representation: All tasks share the same state representation for the
Kuka robot and n blocks, s = {srobot||sblock 1||...||sblock n} (‘||’ denotes vector
concatenation). The robot state includes the Cartesian coordinates and linear
velocity of the gripper tip in the world frame, the finger width and velocity in
the world frame. That is

srobot = (xgrip, ygrip, zgrip, vxgrip, vygrip, vzgrip, wfinger, vfinger)

The state of each joint is only included if joint space control is used. A block
state includes its Cartesian coordinates and Euler orientation angles in the world

? The authors thank the China Scholarship Council (CSC) for financially supporting
Xintong Yang in his PhD programme (No. 201908440400).

3 All length values used in the environment are in metres, angles in radians, unless
otherwise specified.

4 This was not specified in the paper, but we found it in the source codes of the
package.

https://github.com/openai/gym/tree/master/gym/envs/robotics/fetch
https://github.com/openai/gym/tree/master/gym/envs/robotics/fetch

2 X. Yang et al.

frame, its relative position, relative linear velocities and angular velocities with
respect to the gripper tip. That is (for the n-th block),

sblock n = (xblock n, yblock n, zblock n, rollblock n, pitchblock n, yawblock n,

xrelblock n, y
rel
block n, z

rel
block n, vx

rel
block n, vy

rel
block n, vz

rel
block n,

vrollrelblock n, vpitch
rel
block n, vyaw

rel
block n)

For tasks involving a chest, the chest state includes the Cartesian coordinates
of the three green keypoints attached on the door and how wide the door is
opened (see Fig. 1b).

(a) Initial state distribution (b) Chest state representation

Fig. 1. (a) Initial state distribution. Red line: initial block position range for tasks
without a chest. Blue line: initial block position range for tasks with a chest. Brown
line: initial position range for the centre of the chest. Green dot: initial gripper tip
position for the BlockRearrange and ChestPush tasks, the point 0.075 above is the
initial position for the other two tasks. (b) Chest state representation: the Cartesian
coordinates of the three keypoints (green dots) and the width of the door gap (red
line). One keypoint is at the end of the door handle, the other two are on the two edges
of the door.

Action space: All actions are multi-dimensional and continuous in [−1, 1] as
a common definition for continuous control reinforcement learning. For Cartesian
space control, an action is mapped to the changes of the gripper tip coordinates
in the world frame by multiplying with 0.055. For joint space control, an ac-
tion is mapped to the changes of the joint angle by multiplying with 0.05. The
finger width control dimension is mapped to the range of the finger state, such
that −1 corresponds to the fingers being fully opened (symmetric fingers). Only

5 An action of 1.0 at the x element will move the gripper towards the positive x
direction for 0.05.

This paper was submitted to Taros 2021 3

the ChestPickAndPlace and BlockStack tasks require gripper finger control. In
Cartesian space control mode, the gripper tip movement is bounded within a
box of length 0.4, width 0.3 and height 0.375, placed on the table surface centre.
In joint space control mode, the robot arm movement is bounded by the joint
limits.

Goal representation and generation: A goal consists of the Cartesian
coordinates of all the n blocks in the world frame. If a chest is involved, the goal
includes an extra scalar indicating the largest openness of the door. That is

g = (xblock 1, yblock 1, zblock 1, ..., xblock n, yblock n, zblock n)

A target is constrained to not overlap with the blocks and other targets given
a threshold (0.06 by default).

• BlockRearrange: Target block positions (desired goals) are sampled within
the same square (red line in Fig. 1a) in which the initial block positions are
sampled.

• ChestPush: Target block positions are fixed at the centre of the chest, on the
table surface. With a goal achieving distance threshold of 0.1, this means the
task is to push the blocks into a sphere of radius 0.05 centred at the chest
centre on the table.

• ChestPickAndPlace: This task is the same as the ChestPush task, except that
the robot needs to pick and drop the blocks, rather than push.

• BlockStack: This task first samples a random order in which the blocks need
to be stacked, then samples a tower position within the initial block position
square (red line in Fig. 1a).

Reward function: Every task comes with a dense and a sparse reward
function, based on a desired and an achieved goal. The dense reward function
outputs the negative Euclidean distance of the two goals. That is

rdense = −||gachieved − gdesired||2

The sparse reward function outputs 0 when a desired goal is achieved and
−1 otherwise. A goal is regarded as achieved when the Euclidean distance of the
two goals is smaller than or equal to a given threshold δ, (δ = 0.05 by default).
That is

rsparse =

{
0 ||gachieved − gdesired||2 <= δ

−1 otherwise
(1)

Task horizon: The number of timesteps differs based on the number of
blocks involved in a task. Every task has a base number of 50 timesteps, and
adding one block increases it by 25. For example, a task of stacking two blocks
and a task of pushing one block into a chest both provide a task horizon of 75
timesteps.

4 X. Yang et al.

2 Curriculum details

The simple curriculum used in (main text) section 3.2 starts by generating easy
goals and gradually increases difficulty. It first computes the total number of
goals to be generated in the whole training process, which effectively equals the
total number of episodes. It then separates the total number of training goals
evenly into a number of difficulty levels. The difficulty levels for each task are
defined as follows.

• BlockRearrange: The number of levels is equal to the number of blocks. The
easiest one is to generate only one random target position, and other target
positions are made equal to the blocks’ positions. In other words, the cur-
riculum starts by asking the robot to push one block, and gradually increases
the number of blocks to push.

• ChestPush: The number of levels is equal to the number of blocks plus one.
The easiest level is then to open the door of the chest. The following level
starts by pushing one block, and increases to all the blocks.

• ChestPickAndPlace: The same as the ChestPush task, except that the robot
is asked to pick and drop the blocks, rather than push.

• BlockStack: The number of levels is equal to the number of blocks. The
easiest one is to push or pick-and-place the base block to a random position,
and other blocks stay unmoved. Each of the following levels then adds one
more block to be stacked.

For each episode, the method samples a level of difficulty for the goal to
generate. It maintains a record of the number of generated goals from each level.
At the beginning of a training process, the easiest level has a sampling probability
of 1.0, and other levels have 0 chances. When the number of generated goals of
a level passes half the required number of goals to generate, the method sets
the probabilities of this level and its next level to 0.5. When a level finishes
generating all the goals, its probability is set to 0 and its next level’s probability
is set to 1.0 if this next level has not passed half the number of goals to generate.
The whole process repeats until the last difficulty level is finished, which means
the training process finishes.

To reduce unnecessary training time, the task horizon changes based on the
current curriculum level. At the lowest level the task has 50 episode timesteps,
and going one level up increases it by 25 timesteps. This means the task horizon
increases as the agent is given harder and harder goals to achieve.

This method is totally based on human prior and rather simplistic. As demon-
strated by the results (main text section 3.2), it does help the algorithm to learn
at the beginning from easier goals, but it consistently fails as goals become more
difficult. This indicates that a naive curriculum alone is not enough to achieve
such long horizon multi-step manipulation tasks in an extremely sparse reward
setting.

This paper was submitted to Taros 2021 5

3 API details

This section explains the meanings of the arguments of the make env(...) func-
tion in more details. Table 1 illustrates these meanings. Table 2 lists all the
strings taken by the task argument and their corresponding tasks. Code 2 pro-
vides an example of setting up camera parameters for rendering observations
and goal images.

Table 1. Meanings and data types of the make env function arguments

Argument Type Meaning

task String The name of the task environment to create.
joint control Boolean Whether to use joint control actions.
num block Integer The number of blocks involved. Only used in multi-

step tasks.
render Boolean Whether to create a GUI window rendering the

simulation.
binary reward Boolean Whether to use sparse reward signals.
max episode step Integer The number of timesteps of an episode.
distance threshold Float The threshold used to determine whether a goal is

achieved.
image observation Boolean Whether to use images as observations.
Depth image Boolean Whether to include depth information in images.
goal image Boolean Whether to use images as goals.
visualize target Boolean Whether to render a semitransparent sphere at the

target position of the manipulated objects.
camera setup List of Dict A list of dictionary contains camera parameters,

please see Code 2 for an example.
observation cam id Integer The index of the dictionary in the camera setup

list used to render observation images.
goal cam id Integer The index of the dictionary in the camera setup

list used to render goal images.
use curriculum Boolean Whether to use the simple curriculum goal genera-

tion method, see section 2. Only used in multi-step
tasks.

num goal to generate Integer The number of goals to be generated in the whole
training process, normally equal to the total num-
ber of training episodes. Only used in multi-step
tasks.

6 X. Yang et al.

Table 2. Correspondences between the task argument and each task

task= task

‘reach’ KukaReach
‘push’ KukaPush
‘slide’ KukaSlide
‘pick and place’ KukaPickAndPlace
‘block stack’ BlockStack
‘block rearrange’ BlockRearrange
‘chest pick and place’ ChestPickAndPlace
‘chest push’ ChestPush

Code 2 A list of camera setup dictionary Meaning

camera setup = [
{

’cameraEyePosition’: [-1.0, 0.25, 0.6], the 3D coordinates of the camera
frame in the world frame

’cameraTargetPosition’: [-0.6, 0.05, 0.2], the 3D coordinates which the cam-
era looks at in the world frame

’render width’: 128, the width of the rendered image
’render height’: 128 the height of the rendered image

},
{

’cameraEyePosition’: [-1.0, -0.25, 0.6],
’cameraTargetPosition’: [-0.6, -0.05, 0.2],
’render width’: 128,
’render height’: 128

}
]

	An Open-Source Multi-Goal Reinforcement Learning Environment for Robotic Manipulation with Pybullet (Supplementary)

