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Abstract  

1. The paradigm-changing opportunities of bio-logging sensors for ecological research, 

especially movement ecology, are vast, but the crucial questions of how best to match 

the most appropriate sensors and sensor combinations to specific biological questions, 

and how to analyse complex bio-logging data, are mostly ignored. 

2. Here, we fill this gap by reviewing how to optimise the use of bio-logging techniques 

to answer questions in movement ecology and synthesise this into an Integrated Bio-

logging Framework (IBF). 

3. We highlight that multi-sensor approaches are a new frontier in bio-logging, whilst 

identifying current limitations and avenues for future development in sensor 

technology. 

4. We focus on the importance of efficient data exploration, and more advanced multi-

dimensional visualisation methods, combined with appropriate archiving and sharing 

approaches, to tackle the big data issues presented by bio-logging. We also discuss the 

challenges and opportunities in matching the peculiarities of specific sensor data to the 

statistical models used, highlighting at the same time the large advances which will be 

required in the latter to properly analyse bio-logging data.  

5. Taking advantage of the bio-logging revolution will require a large improvement in the 

theoretical and mathematical foundations of movement ecology, to include the rich set 

of high-frequency multivariate data, which greatly expand the fundamentally limited 

and coarse data that could be collected using location-only technology such as GPS. 

Equally important will be the establishment of multi-disciplinary collaborations to 

catalyse the opportunities offered by current and future bio-logging technology. If this 

is achieved, clear potential exists for developing a vastly improved mechanistic 

understanding of animal movements and their roles in ecological processes, and for 

building realistic predictive models. 

 

Key words: Bio-logging, multi-disciplinary collaboration, movement ecology, multi-sensor 

approach, big data, data visualisation, Integrated Bio-logging Framework, accelerometer, GPS. 
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Introduction 

 

Movement is a fundamental aspect of life, intrinsically linked to almost every ecological and 

evolutionary process, from the acquisition of food, through reproduction and survival, to 

species distributions and community structure. Decades of technological developments have 

created vast possibilities in terms of data collection to study the movement of organisms, from 

VHF (Kenward, 2001), ARGOS and GPS technology (Kays, Crofoot, Jetz, & Wikelski, 2015; 

Tomkiewicz, Fuller, Kie, & Bates, 2010; Weimerskirch, 2009), to reverse GPS technology 

(Weiser et al., 2016) and dedicated satellite systems for tracking animals around the globe 

(ICARUS, see Wikelski et al., 2007), to sensor and acoustic receiver networks for animal 

tracking (Duda et al., 2018; Hoenner et al., 2018). In tandem, ecologists have driven a 

revolution in bio-logging sensor technology, motivated by the need to gather behavioural and 

ecological data that cannot be obtained through direct observation. This revolution has resulted 

in the development and use of a variety of sensors to observe the unobservable, including inter 

alia: accelerometers, magnetic field sensors, gyrometers, temperature and salinity sensors, 

further complemented by video cameras and proximity-loggers (Rutz & Hays, 2009) - see SI 

Table 1. The combined use of multiple sensors can provide indices of internal ‘state’ and 

behaviour, reveal intraspecific interactions, reconstruct fine-scale movements and even 

measure local environmental conditions (Rutz & Hays, 2009; Wilson et al., 2014). However, 

with increasing sensor possibilities comes a new challenge: pinpointing the appropriate 

information to collect, and finding efficient ways to do so. 

 

It is hardly surprising, therefore, that there is an increasing number of high-profile reviews that 

showcase the paradigm-changing opportunities offered by animal-attached technology for 

ecological research (Hussey et al., 2015; Kays et al., 2015; Wilmers et al., 2015). Within these 

reviews, however, there exists scant treatment of how best to match the most appropriate 

sensors and sensor combinations to specific biological questions. As a result, ecologists have 

tended to use statistical methods post hoc to overcome the limitations of specific sensor data, 

including smoothing methods such as Kalman filtering and state-space models or machine-

learning approaches applied to positional and accelerometer data. Similarly, although new 

analytical methods show great promise, such as the use of machine-learning to identify 

behaviours from tri-axial acceleration data (Nathan et al., 2012) or Hidden Markov Models 

(HMMs) to infer hidden behavioural states (Leos‐Barajas et al., 2017), no clear guide exists to 

promote best practices. Such a guide would allow ecologists and statisticians to strike a balance 
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between overly simplistic and complex models to deal with the vagaries of specific sensor data, 

for example the limitations of accelerometer data (see also Patterson et al., 2017). We aim to 

fill this gap by considering how to optimise the use of bio-logging techniques to answer key 

questions in movement ecology. In doing so, we identify four critical areas – questions, sensors, 

data, and analysis – and related opportunities for multi-disciplinary collaborations, and 

synthesise these into an Integrated Bio-logging Framework (IBF) to aid the decision-making 

process for ecologists. We then review the technologies and methodologies available to 

ecologists to make the links between nodes of the framework. We first consider how best to 

address biological questions using the most appropriate sensors while identifying current 

technological limitations. Second, we review the challenges and opportunities of linking new 

data types obtained from bio-logging sensors to the most adequate analytical techniques. We 

discuss issues relating to dealing with large, complex datasets, the fundamental properties of 

the new data types that can be collected, and the challenges of archiving and sharing bio-

logging data. Finally, we discuss the value of multi-disciplinary collaborative links to optimise 

the opportunities offered by current and future bio-logging technology.  

 

The Integrated Bio-logging Framework 

We connect the four areas critical for optimal study design via three-nodes in a cycle of 

feedback loops (Figure 1), linked by multi-disciplinary collaboration. Ecologists can work their 

way through the IBF to develop their study design – typically, this will start with the biological 

question, but the pathways will differ if, for example, using a question/hypothesis driven (blue) 

or data-driven (orange) approach. Figures 2 and 3 provide two such pathway examples. 

 

Furthermore, bio-logging has become so multifaceted and complex that no-one can be a 

‘master of all trades’, hence, establishing multi-disciplinary collaborations is key (as for other 

disciplines, Peters et al., 2018), and this idea is at the basis of the IBF. For example, at the study 

inception phase, dependent on the biological problem addressed, physicists and engineers can 

advise on sensor types, their limitations and power requirements, while mathematical 

ecologists and statisticians can aid in framing the study design and modelling requirements for 

specific questions (see Figure 2). Development of bio-logging tags is the result of 

collaborations between engineers, physicists and biologists, while visualisation and analytical 

methods for dealing with data are aided by interactions with computer scientists, geographers, 

statisticians and mathematicians (see Figure 3). On the other hand, ecologists can guide 
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researchers from the other disciplines towards the key methodological hurdles and 

technological limitations which are hindering progress and need to be addressed.   

 

We now review the literature regarding questions, sensors, data and analyses, and exemplify 

the links between the nodes of the IBF. We conclude by highlighting areas for future 

development. 

 

1. From questions to sensors  

Researchers can choose between an ever-increasing number of different bio-logging sensors 

(Table 1, SI Table 1). Following the adage that experimental design should be guided by the 

questions asked (e.g. Fieberg & Börger, 2012; Hebblewhite & Haydon, 2010), sensor choice 

is clearly critical. Here, we consider sensor selection within the general scheme of key 

movement ecology questions posed by Nathan et al. (2008) and provide an example for the use 

of the IBF in a question-driven approach to study design (Figure 2). 

 

1.1 Where is the animal going? 

ARGOS, GPS and related satellite and global navigation systems, as well as acoustic tracking 

arrays and geolocators, have revolutionised information on animal locations and movements 

(Kays et al., 2015). Bio-logging sensors, particularly in combination with such locational 

tracking-devices, can further help detect where animals move. For example, Hedenstrom et al. 

(2016) combined geolocator and accelerometer tags to record flight behaviour of migrating 

swifts, and Shipley, Kapoor, Dreelin, & Winkler (2018) used micro barometric pressure 

(altitude) sensors (<0.5 g) to uncover the aerial movements of migrating birds. A key limitation 

of telemetry devices is that transmission technology can fail, such as when canopy cover 

impedes GPS satellite fixes (Rempel, Rodgers, & Abraham, 1995). However, with the 

combined use of inertial measurement units (IMUs) and elevation/depth recording sensors it is 

possible to reconstruct animal movements in 2D and 3D using a dead-reckoning procedure, 

irrespective of transmission conditions (Bidder et al., 2015; Bramanti & Dall’Antonia, 1988). 

This uses the speed (including speed-dependent dynamic body acceleration (DBA) for 

terrestrial animals; Bidder, Qasem, & Wilson, 2012), combined with animal heading (from 

magnetometer data) and change in altitude/depth (pressure data) to calculate the successive 

movement vectors (oriented steps) from a known starting position. The process gives 

extraordinarily finely resolved relative movement (it can, for example, determine how many 

times a dog has walked around a tree in scent-marking activity) but it can accumulate errors 
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over time, especially in fluid media with current flow. Therefore, data used in dead-reckoning 

need correcting with frequent ground-truthing, such as by a GPS unit (Bidder et al., 2015). 

GPS-enabled dead-reckoning is an incredibly powerful combination of sensor systems which 

may become paradigm-shifting within animal movement studies. With this, researchers will 

have access to multiple scales of movement and seamless animal movement descriptors and 

will be able to identify true turn-points in the data (Potts et al., 2018; see Figure 2 and section 

3.3 below). In turn, the improved track trajectory should allow us to connect behaviour to 

landscape ecology and population dynamics with increased confidence (Morales et al., 2010).  

 

1.2 How is the animal moving? 

At the smallest scale (locomotion), animals move according to their anatomy and the 

biomechanics that this engenders, with obvious differences between animals operating in fluid 

media (air or water) or on the ground (Biewener & Patek, 2018). In essence, locomotion is 

manifested by particular patterns of movement by the various body parts (most notably limbs) 

so that motion-sensitive transducers can provide critical information with respect to the pattern 

and intensity of movements and thereby derive critical whole-animal movement parameters 

such as speed and direction. The primary sensors used for this include accelerometers, 

magnetometers and gyrometers (often collectively grouped within inertial measurement units 

[IMUs]; e.g. Noda, Kawabata, Arai, Mitamura, & Watanabe, 2014). Accelerometers and 

magnetometers can be used to infer the 3D posture and orientation (i.e. azimuth, elevation 

angle and bank angles; see SI Table 1 for a glossary of terms) during locomotion, whereas 

gyrometers provide direct measures of yaw, pitch and roll (see Benhamou, 2018 for the 

mathematical relationships between these parameters). In addition, various iterations of speed-

detecting systems, such as anteriorly mounted propellers (Ropert-Coudert et al., 2000; 

Watanabe et al., 2008), flexible paddles (Shepard, Wilson, Liebsch, et al., 2008), and Pitot 

tubes are also used (Taylor, Reynolds, & Thomas, 2016). Importantly, the speed at which an 

animal is moving provides information on the urgency with which the movement is being 

undertaken. When moving animals deviate from minimum cost of transport (cf. Schmidt-

Nielsen, 1972), it indicates time-based selection pressures that incite animals to move non-

optimally in energetic terms; the reasons for which may be critical for lifetime fitness and only 

become apparent post hoc (e.g. Shepard, Wilson, Quintana, Laich, & Forman, 2009). Sensors 

are thus required to record information from which we can quantify the energetics of animal 

locomotion, as well as the costs and benefits of behaviours. Several sensors provide proxies 

for oxygen consumption (𝑉𝑂2), including heart rate loggers (Green, 2011) and tri-axial 
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accelerometers through the computation of dynamic body acceleration (DBA; reviewed in 

Wilson et al., 2019). Indeed, the continued refinement of these proxies of power use, one of 

the most fundamental currencies in the animal kingdom, will be pivotal in providing critical, 

missing information within previously established movement frameworks such as optimal 

foraging (McNamara & Houston, 1986; Pyke, 1984).  

 

Sensors that detect body movements may also provide key information relating to 

biomechanical questions, such as how stroke frequency relates to stroke amplitude. For 

example, magnets used with Hall sensors (sensors detecting magnet-transducer paired 

magnetic field properties; Hall, 1879 - see S1 Table 1) can quantify the amplitude, angular 

velocity and frequency of limb movements of marine mammals (Wilson & Liebsch, 2003), 

providing insights into energy-saving mechanisms (Nassar, Jackson, & Carrier, 2001). Animal-

borne video or audio may provide similar information, for example, being able to relate flipper 

beat frequencies in green turtles (Chelonia mydas; Hays, Marshall, & Seminoff, 2007) and 

emperor penguins (Aptenodytes forsteri; van Dam, Ponganis, Ponganis, Levenson, & Marshall, 

2002), to dive strategies. Hall sensors can also measure respiration rates and extent of 

inhalation, heart rates, and even patterns of defaecation, providing information on the optimal 

breathing strategies and rates of digestion (Wilson et al., 2003, 2004), cases where mounted-

accelerometers would be limited due to movement being mainly translocational. In addition, 

these behaviours can also be detected from on-board videos. Yet few studies use these 

techniques, perhaps because researchers find the magnetic field intensity drop off with distance 

intractable and because, at the time the studies were published, it was not possible to study 

angular changes between magnet and sensor, if distances were held constant. Inertial 

measurement units (IMUs) have changed this, so we think that the future of miniature IMUs 

holds promise for researchers to document minute changes in body movement and for 

quantifying motion capacity from limb movements. 

 

1.3 What is the animal doing? 

Allocating behaviours to space is key to understanding animal niche requirements and the link 

between behaviour and fitness consequences. Since the work by Yoda et al. (1999) using 

accelerometers to determine animal behaviour, there is a rich and varied literature that 

documents increasingly successful methodologies for determining animal behaviour from 

various sensor data, especially accelerometers (Nathan et al., 2012; Shepard, Wilson, Quintana, 

et al., 2008) and magnetometers (Williams et al., 2017). Thus, it is now possible to extract a 



Optimal use of bio-logging in movement ecology 

8 

 

remarkable amount of information regarding behaviour, beyond that of limb and body part 

movement as detected from tri-axial sensors. 

 

In particular, quantifying the type and amount of food ingested by animals is essential to 

answering some of the “big questions” in movement ecology such as how animals manage 

their energy budgets in the wild (cf. Krebs & Davies, 1978). For example, combining GPS and 

DBA measures derived from tri-axial accelerometers, allows us to better understand the 

energetics underlying prey capture behaviour of large terrestrial predators (Wilmers, Isbell, 

Suraci, & Williams, 2017), while the drift and buoyancy inferred from time-depth recorders 

can provide information on the foraging success of marine predators (Abrahms et al., 2018). A 

further refinement is provided by indirect parameters such as those obtained by means of 

sensors that detect stomach, oesophageal or visceral temperature, which can provide invaluable 

insights into actual prey captures (Weimerskirch, Gault, & Cherel, 2005; Weimerskirch, 

Pinaud, Pawlowski, & Bost, 2007; Wilson, Cooper, & Plötz, 1992). An intriguing alternative 

is based on attaching a Hall sensor to one mandible opposite a magnet attached on the other 

mandible (but the ethical implications and feasibility must be well considered). The inter-

mandibular angle can be determined by measuring changes in magnetic field strength (Wilson, 

Steinfurth, Ropert-Coudert, Kato, & Murita, 2002). This approach, which has been employed 

in several marine and terrestrial species, can provide information about both the number of 

food items and the type of food ingested (Ropert-Coudert et al., 2004). Indeed, such is the detail 

provided by these sensors that studies are now able to examine food acquisition within a 

probabilistic framework and thereby make predictions about how food abundance may affect 

populations (Wilson, Neate, et al., 2018). 

 

Obtaining direct observations may sometimes be essential, either because robust calibration of 

bio-logging sensors is difficult, or because the study’s aim is to document particular behaviours 

in great detail (such as prey captures and social interactions; McInnes, McGeorge, Ginsberg, 

Pichegru, & Pistorius, 2017; Pagano et al., 2018; Watanabe & Takahashi, 2013) or to prospect 

for undiscovered behaviours (such as unusual foraging techniques; Rutz, Bluff, Weir, & 

Kacelnik, 2007). Under these circumstances, video loggers are the method of choice, or still-

image loggers, if longer recording times are required and a lower frame rate is acceptable. 

Cameras may also offer the opportunity to assess what a wild animal sees in the field (Moll, 

Millspaugh, Beringer, Sartwell, & He, 2007) so that environmental information can be factored 

into foraging efficiency (Sutton, Hoskins, & Arnould, 2015) and movement patterns studied 
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with respect to visual stimuli (Tremblay, Thibault, Mullers, & Pistorius, 2014). Video loggers 

can also be combined effectively with other sensors such as accelerometers (Watanabe & 

Takahashi, 2013), and are small enough to be fitted to a wide range of species (see below).  

 

1.4 Why is the animal moving?  

Animals make behavioural decisions based on their internal ‘state’ (physiological and 

psychological condition), and external biotic and abiotic factors (Nathan et al., 2008). 

Identifying and quantifying how internal state may drive behaviour is non-trivial, and can often 

only be indirectly inferred (Getz & Saltz, 2008). Some aspects of animals’ internal state have 

been investigated using accelerometers which are sensitive to micro-movements and postures 

indicative of chemical, disease, and affective states (Downey et al., 2017; Wilson et al., 2014), 

including  vigilance behaviour, a stress-related response (Kröschel, Reineking, Werwie, Wildi, 

& Storch, 2017). Alongside accelerometers, other key sensors that can provide insights into 

internal state include heart rate, internal temperature, and neurological sensors (Rattenborg et 

al., 2016). For example, heart rate loggers to investigate the interplay between ecological 

pressures and energetic strategies were used by Bishop et al. (2015) in bar-headed geese (Anser 

indicus) and O’Mara et al. (2017) in fruit-eating bats (Uroderma bilobatum). As another 

example, Ditmer et al. (2018) used heart rate loggers to investigate how American black bears 

(Ursus americanus) perceive the risks of crossing roads. Research on humans has demonstrated 

that bio-loggers can measure a suite of physiological variables relating to internal state (Nikita, 

2014; Yang, 2014) and the development of similar systems for wild animals is increasing; 

examples include animal-borne blood sample collection devices for stress hormones in seals 

(Takei et al., 2016), other hormonal sensors (Landry et al., 2014), and internal chemical 

detection nanosensors for freely moving animals (Lee et al., 2018) . 

 

The greatest insight into state-driven movement is likely to be gained from multi-sensor 

approaches (e.g. Wilson, Littman, Halpin, & Read, 2017), especially combining both 

physiological and/or neurological sensors with position-determining systems (Figure 2). For 

example, Vyssotski et al. (2006) simultaneously measured pigeon (Columba livia) movement 

and electrical brain activity using a miniaturised GPS combined with an 

electroencephalography logger, while Dunn et al. (2016) obtained a brain-wide mapping of 

neural activity of zebrafish (Danio rerio) during movement. The use of neurological sensors to 

monitor brain activity in freely moving animals is a relatively new advancement (e.g. 

Rattenborg et al., 2016; Skocek et al., 2018). Such multi-sensor developments are helping to 
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meet the challenge of linking internal state, as a proximate cause of movement, to ultimate 

evolutionary causes (Nathan et al., 2008). However, there are important ethical considerations 

to be raised, especially for surgically implanted sensors (e.g. the example of frigatebirds, 

Rattenborg et al., 2016). 

 

Alongside the internal state, what is happening in the environment is the other prime driver of 

animal movement. Global environmental data can be recorded through satellite remote sensing, 

and bio-loggers now routinely collect local environmental data both biotic and abiotic (Table 

1; SI Table 1), thus a major aspiration is to link such data to movement. Though whilst 

ecologists can access an increasing amount of remote-sensed environmental data, linking them 

to location data is usually difficult, as environmental data are obtained at different, generally 

coarser, spatiotemporal scales than movement data (Dodge et al., 2013). Remelgado et al. 

(2019) recently developed a new pixel-based approach, combined with data mining and 

visualisation, to help ecologists efficiently deal with differences in the spatial, temporal and 

thematic resolutions between environmental data from remote sensing and GPS location data; 

yet the problem persists with high frequency bio-logging data.   

 

Depending on the question asked, it may be necessary to use modelling to derive high-accuracy 

dynamic maps of environmental conditions (e.g. vertical wind; see Scacco, Flack, Duriez, 

Wikelski, & Safi, 2019), or to use drones or LiDAR, to build ultra-high resolution, 2- and 3-

dimensional maps of the study area (e.g. to investigate movement costs due to elevation or to 

quantify vegetation quality for optimal foraging questions). Importantly, bio-loggers allow the 

collection of high-frequency environmental data at the local scale experienced by the animals, 

such as temperature, light intensity, and wind or current velocity (Block, 2005; Dodge et al., 

2013; Piersma & Lindström, 2004). This may be complemented by implanted sensors such as 

core body temperature sensors (e.g. when studying heat stress questions), combined with 

sophisticated use of meteorological data to estimate the so-called wet bulb globe temperature 

index (WBGT), a key measure of heat stress (Dimiceli, Piltz, & Amburn, 2011).  

 

In terms of the biotic environment’, an animal’s movement decisions are likely to be influenced 

by interactions with conspecifics and heterospecifics and again, there are certain combinations 

of sensors that can record and help identify these interactions. There are two main approaches 

to remotely record the social contact between free-ranging animals: indirect and direct 

encounter mapping (see Bettaney, James, St Clair, & Rutz, 2015; Krause et al., 2013). Indirect 
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encounter mapping can be achieved either with high-resolution tracking of subjects, or with 

the use of tags that transmit to, or that are detected by, fixed receiver stations at specific 

locations (e.g., coded VHF radio-tags or PIT/RFID tags). In both cases, the co-occurrence of 

animals is inferred at the data analysis stage. Direct encounter mapping, on the other hand, 

requires the use of proximity loggers (transceiver tags that both transmit and receive radio 

signals between animals) or camera tags (Hooker, Barychka, Jessopp, & Staniland, 2015), to 

create reciprocal records of social encounters (Bettaney et al., 2015; Krause et al., 2013). 

Proximity-loggers can be used for addressing a variety of biological questions, and have the 

advantage over cameras (e.g. Takahashi et al., 2004) that they survey in all directions (even 

though precise directional and distance information is often not collected), but their key 

strength lies in charting social associations of a large number of subjects of known identity, to 

reconstruct group, community, or even population-level social networks. Proximity sensors 

can also be used to record interspecific encounters, for example between predators and their 

prey, between different disease hosts, or in mixed groups of foraging or migrating animals. 

Some systems are set up as wireless sensor networks where animal-mounted sensors not only 

communicate with other sensors, but also with (a large number of) stationary receiver (base) 

stations (Rutz et al., 2012). This enables near real-time data transmission, which is key to 

evaluating system performance and to planning and monitoring experimental manipulations 

(St Clair et al., 2015). 

 

A particular type of interspecific interaction occurs when animals interact with human 

activities, which can strongly affect animal movements (e.g. Tucker et al., 2018). An 

interesting development is animal-borne radar detectors, which detect signals from emitting 

radars in the surroundings and can be used in combination with a tracking device to log the 

occurrence of structures along an animal’s movement path (Table 1; SI Table 1). This has 

facilitated the study of seabird-fishing vessel interactions, quantifying attraction, attendance 

and foraging behaviour (Weimerskirch, Filippi, Collet, Waugh, & Patrick, 2018).  

 

2. From sensors to data 

Data collection and analysis issues must be addressed alongside sensor selection when 

approaching a specific ecological question. The first challenge concerns finding the most 

appropriate experimental/sampling design to answer a given ecological question. More broadly 

(see the internal data node of the IBF), this concerns the closely related issues of tag design 

and data management (which includes planning for data archiving and sharing) – all of which 
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must be defined prior to tag deployment. The experimental design will strongly benefit from 

interdisciplinary collaborations to find the best solution, ensuring that the data-gathering is both 

feasible and will lead to sufficient data to answer the questions using available analytic 

techniques. 

 

2.1 Experimental design 

Consideration of an appropriate sampling regime prior to tag deployment, so as not to over-, 

or under-sample and maximise battery duration (and minimise tag weight), is a crucial aspect 

(note that battery power is required both to interrogate the sensors and write the data to 

memory, and possibly send the data). To do so, researchers should apply the Nyquist or 

sampling theorem, which states that the sampling frequency should be at least twice the fastest 

frequency of interest; e.g. consider wingbeat frequency vs. amplitude as focus of interest. This 

holds true in temporal and spatial domains (see discussion in Ropert-Coudert & Wilson, 2004). 

An obvious consequence of this trade-off is the use of smart sampling, whereby the sensors 

record at a frequency able to elucidate the relevant aspect properly, but no more. We do note, 

however, that highly prescribed, low frequency sampling may miss serendipitous observations 

of importance and may preclude the detection of new, never observed behaviours. Furthermore, 

derivation of body motion or measures of energy expenditure (DBA) requires smoothing of 

accelerometer data at an appropriate frequency (Shepard, Wilson, Halsey, et al., 2008), albeit 

the latter could indeed be processed on-board without storing the high frequency data (e.g. Cox 

et al., 2018). For example, a high frequency recording of raw data (> 20 Hz) may be necessary 

to compute animal posture and DBA (see also Brownscombe, Lennox, Danylchuk, & Cooke, 

2018); however, higher frequencies draw more current (doubling the frequency from 20 Hz to 

40 Hz might require to double or more the battery size/capacity, and hence weight, depending 

on the specifics of the sensors), thus a balance between behaviour resolution, information gain, 

and current draw is a key stage of experimental design. Equally important, when using IMUs 

featuring multiple sensors, might be to set different frequencies for different sensors, such as a 

higher frequency for accelerometers (40 Hz), a lower frequency for magnetometers (20 Hz), 

and an even lower frequency for temperature or pressure sensors (e.g. 4 Hz). Such settings can 

more than double the time a logger can record on a given battery size (note also that differences 

between battery types in the capacity to respond to peak current demands from the sensors can 

further affect the longevity of loggers), but preliminary studies for different study species, and 

interactions with engineers, might be required to find the best settings. Another area of current 

research (e.g. see Cox et al., 2018) is focussing on finding clever ways to store on-board only 
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sub-sampled or summary data, rather than the raw high-frequency data, thereby reducing data 

storage requirements and, ideally, allow remote transmission of the data (often the latter is 

precluded for field studies due to the high power requirement). Closely related is the choice of 

sensor resolution (bit resolution, see discussion and examples in Ropert-Coudert & Wilson, 

2004). The number of bits with which the data are stored directly determines the quality of the 

data obtained. For example, past loggers used an 8-bit resolution, meaning the sensor can 

obtain an absolute resolution given by the maximum resolution range divided by 256. In the 

case of a depth pressure transducer with a maximum range of 50 Bar this means a maximum 

resolution of circa 0.2 Bar, equal to resolving dive differences of 2 m (a 16-bit resolution allows 

instead to resolve steps of 0.008 m, see Ropert-Coudert & Wilson, 2004). Low resolution may 

preclude recording key information such as prey capture events. Equally important is the 

measurement range of the sensor. For example, an accelerometer which records up to 8 g will 

miss any data of animals moving more dynamically (e.g. head impacts) and unless the animals 

are known to be only relatively slow moving and good preliminary data exist, researchers 

should set the range to at least 16 g for initial studies (for terrestrial systems; a lower range 

may be sufficient for aquatic systems as, due to friction, movement speed may change less 

fast), and record this information in the metadata. Equally important are trade-offs between the 

quantity of data collected and the time a tag collects data on an individual, as well as trade-offs 

between the amount of data collected on single individuals against the number of different 

animals monitored across time and space (see also Hebblewhite & Haydon, 2010). 

Collaborations across disciplines are crucial to make such decisions. 

 

2.2 Tag design 

Reducing battery consumption not only extends the life of a bio-logging device, but has 

implications for tag size and attachment that should also be considered for both optimal study 

design and animal welfare. Reduction of tag size is paramount, yet even with recent advances 

in the reduction of sensor size, it is still battery size that limits that of the device. Note also that 

further evidence demonstrates that for some applications the total mass of the tag together with 

the animal is more important than the relative tag mass (Tomotani et al 2019). For cameras for 

example, current available loggers are small enough, at approximately 10 g, to be fitted to a 

wide range of species (Rutz et al., 2007). However, even state-of-the-art camera loggers remain 

severely battery limited, hence duty cycling is advisable for most applications, as this allows 

targeted data collection during periods of peak activity and/or repeated short-term recording 

over the course of several days (Rutz & Troscianko, 2013). An exciting recent development is 
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the use of event-triggering technology that allows cameras to be switched on whenever 

particular behavioural states or environmental conditions are detected (see analysis section 

below). To provide an example, whilst miniature VHF tags weighing 0.5g may allow to track 

the movements of an animal for up to a month, a battery one or two orders of magnitude heavier 

would be required to record high-frequency accelerometer and magnetometer data for the same 

duration. On the other hand, a GPS running at 1 Hz may require between 30-50 mA of current, 

where as a modern IMU recording tri-axial acceleration and magnetometer data at 40 Hz 

requires only 5-10 mA of current (Bidder et al. 2014). More generally, close attention in 

required on how size, longevity, and attachment differ among different tags/sensors. Body et 

al (2017) provide a useful key for assessing device impacts prior to tag deployment, and a 

growing body of literature now highlights the importance of tag shape and attachment in terms 

of affecting an animals drag in aerial and marine environments (e.g. Kay et al 2019, Lear et al 

2018, Vandenabeele et al. 2014).  

 

2.3 Data management 

A further consideration for optimal experimental design is that of data management and 

processing. The data provided by sensors often do not correspond directly to the information 

we look for, but to a proxy, which needs to be converted. For instance, a depth recorder is 

designed to provide a measure of pressure rather than a measure of depth, but underwater depth 

being linearly related to pressure, the conversion is straightforward. For other sensors, this is 

not so obvious, and raw data therefore require being pre-processed. For example, acceleration 

data do not provide a direct estimate of energy expenditure or oxygen consumed while moving. 

First, the dynamic component has to be extracted from the raw acceleration values, then 

converted to DBA, which finally has to be correlated with energy or oxygen through controlled 

lab experiments (reviewed in Wilson et al., 2019). Pre-processing is also required for 

integrating data provided by different sensors, possibly at different rates, and often based on 

separate clocks (exposing systems to clock drift); although inertial measurement units (IMUs) 

effectively deal with temporal synchronisation within any one logger. Notably, data recorded 

at high frequency are both noisy and highly serially auto-correlated. Noise can be reduced by 

filtering, e.g. by taking a running mean, or may involve more complex approaches such as 

Fourier transformations or Kalman filtering (e.g. Alam & Rohac, 2015). A simple and efficient 

solution consists of sub-sampling the processed data to a level (or deriving averages) to accord 

with the Nyquist frequency. Pre-processing should be performed before subsampling, although 

there is an element of feedback depending on the desired end-point, which may also need to be 
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considered when selecting the sampling frequencies for the different sensors and their data 

types, which also has important implications for data archiving (see next section).  

 

2.4. Data archiving and sharing 

Bio-logging data also present considerable challenges for data sharing and replicability. One 

challenge lies in the lack of standardised protocols for data recording from animal-borne 

sensors (Campbell, Urbano, Davidson, Dettki, & Cagnacci, 2016). Logging data require very 

detailed metadata on the attachment type and position on the animal of the loggers, as 

otherwise, establishing a close relationship between the output from sensor data (such as tri-

axial accelerometer) and the orientation and posture of the animal, will be near impossible. 

Furthermore, whether or not to keep both the pre- and post-processed versions of the data 

(particularly before or after filtering and subsampling) is something to consider in terms of not 

only the current question and analyses, but also for the long-term goals of archiving data in the 

best format available to allow long-term use of those data. Thus, there is an urgent need to 

improve data protocols and database standards for bio-logging data. Indeed, the International 

Bio-Logging Society is actively working towards that goal. Efficient data sharing and archiving 

across many studies and authors will be key to answer the big questions in movement ecology, 

e.g. global responses to environmental change (Figure 3), and will reduce the need to collect 

new data (see also section 4). 

 

3. From data to analysis 

Data analysis issues must be addressed upfront alongside sensor selection and experimental 

design, to ensure the resulting data are sufficient for the proposed mathematical models and 

statistical tests used to infer biological information from the data. This requires strong inter-

disciplinary collaborations between empiricists and theoreticians from the outset of the project. 

The first major challenge for the link between data collection and analyses in the IBF is the 

‘big data’ problem. Rapid advances in bio-logging technology now provide information-rich, 

big data sets, even from single individuals, thus the challenges in data analyses are similar to 

those of ‘big data’ and ‘data science’ problems in ecology and other scientific disciplines 

(Hampton et al., 2013; Lewis, Vander Wal, & Fifield, 2018; Thums et al., 2018). There is an 

urgent need for the use and development of more sophisticated and computationally efficient 

data visualisation and exploration methods, as well as mathematical models that incorporate 

multidimensional bio-logging data. 
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3.1 Data Visualisation 

A key part of exploratory data analysis consists in devising efficient ways to visualise and 

display quantitative information (Tukey, 1977), especially to aid exploration in this data-rich 

era. Data visualisation converts complex patterns in data into a visual display, capitalising on 

the extraordinary capacity of the human visual system to pick out patterns in complex 

landscapes, and thereby provide insights into data relations (Ware, 2012). While ecologists 

often develop their own visualisation tools, many methods come from other disciplines such 

as geographic information science (Demšar et al., 2015; Li, Wu, Song, & Zhou, 2016), 

medicine and neuroscience (with complex fMRI data e.g. de Ridder, Klein, & Kim, 2017). 

 

Conventionally, acceleration data tend to be visualised as time series plots (Figure 4A), with 

analyses based on summary statistics (derived from ethograms; Figure 4B) and the application 

of data transformations. While such approaches are useful for classification of time series data 

(Walker et al., 2015), integration of multi-sensor data are poorly covered by this approach (Lee 

& Jeong, 2017; Li et al., 2016; Walker, Borgo, & Jones, 2016), primarily due to time taking up 

one axis and constraining all other data to lie within its scaling and bounds. Other visualisations 

may bypass the time scaling factor by having spherical plots that present 3-dimensional 

scatterplots, histograms, clustering data by behavioural state (Grundy, Jones, Laramee, Wilson, 

& Shepard, 2009; Williams et al., 2017; Wilson et al., 2016; Figures 4C-E). The value in these 

spherical plots is that they are also multi-layer and present environmental data such as pressure 

and temperature as well as metrics of energetic expenditure (Roberts, Laramee, & Jones, 2015). 

In addition, time can also be represented, if necessary, by glyph or line colour (Figure 4E). 

Thus, such visual analytics systems can be linked interactively to allow different aspects of the 

same data to be explored, with and without temporal and spatial scales. In terms of sensor data 

this includes plots in tri-axial space with further dimensions related to movement and 

performance metrics (e.g. Roberts et al., 2015) and those that combine multi-dimensional 

trajectory visualisations on a map with environmental data (e.g. Buchin et al., 2015; Shamoun-

Baranes et al., 2016; Figure 4F) and temporal visualisations (Demšar et al., 2015) such as 

DynamoVis (Dodge, Xavier, & Wong, 2018; Xavier & Dodge, 2014) and trackplot (Ware, 

Arsenault, Plumlee & Wiley, 2006) or flow visual analytics systems (Andrienko, Andrienko, 

Chen, Maciejewski, & Zhao, 2017; Graser, Schmidt, Roth, & Brändle, 2017; Figure 4G). Time 

is also commonly visualised through animation and there are two R packages that support this 

(albeit for traditional location-only data, not logger data): moveVis (Schwalb-Willmann, 2018) 

and anipaths (Scharf, 2018). See supplementary information for a detailed list of current 
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visualisations (SI Table 3). Current developments indicate that it may be possible to bring these 

multi-dimensional plots into an interactive 3-dimensional lab space beyond a digital screen, 

which would dramatically help exploration of data and even advance behavioural studies 

through the manipulation of the virtual world (see Stowers et al., 2017). Equally important will 

be the development of improved ways to display results from machine-learning methods (see 

below); again, an area for which multi-disciplinary collaborations will be crucial. 

 

3.2 Behavioural Classification 

Behavioural classification involves identifying particular behaviour-linked signals within 

complex datasets, such as accelerometer and magnetometer data. This may involve searching 

for behaviour-linked thresholds, such as an increase in pressure to indicate diving (Kooyman, 

1964) but more commonly will involve consideration of multiple data streams (Viviant, Trites, 

Rosen, Monestiez, & Guinet, 2010; Yoda et al., 2001), which makes the process more complex. 

For this reason, much emphasis has recently been placed on machine learning algorithms 

(including K-Nearest Neighbour [KNN], Support Vector Machines [SVMs], Classification and 

Regression Trees [CART], and Artificial Neural Networks [ANNs]) to classify behaviours 

automatically (Nathan et al., 2012). Supervised machine-learning models are trained with 

segments of data that have been manually labelled according to behaviour (Carroll, Slip, 

Jonsen, & Harcourt, 2014; Watanabe & Takahashi, 2013). The convenience of machine-

learning systems is that they require little specialist knowledge and information about the data 

streams from the researcher. Against this, there is a tendency to put all primary data streams as 

well as derived elements (such as DBA metrics) into the process. Because the machine does 

not know which data streams are most relevant at the outset, processing times can be 

prohibitively long. An approach that attempts to deal with this uses a Boolean framework and 

requires that the researchers have enough specialist knowledge to be able to pick out a sequence 

of features in behaviours (systematic variation and direction in data streams over defined time 

periods) to be able to define the behaviour in a series of key elements. These are then defined 

in an algorithm and the computer made to search for exactly those conditions to define the 

behaviour (Wilson, Holton, et al., 2018). The obvious downside to this approach is the level of 

expertise of the user and familiarity with the meaning of the data streams, which highlights the 

crucial role ecologists and biologists have to play in making sure analyses remain biologically 

sound and relevant. On the other hand, bio-logging sensor data allow for the discovery of 

behaviours never seen before in animals (Wilson et al., 2014), thus both exploratory and 

confirmatory analyses, as well as supervised and non-supervised data analysis methods will be 
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equally important for ecologists (see also Leos‐Barajas et al., 2017). Behaviour classification 

using logger data can also inform the usage of limited, or previously collected, GPS and track 

data to identify different behaviours (e.g. Browning et al., 2018). 

 

3.3 Movement analyses in the bio-logging era 

There is a long history of theoretical investigation into the reasons and rules underpinning 

animal movement (Nathan et al., 2008) including, for example, optimal foraging theory 

(Houston, Clark, McNamara, & Mangel, 1988; Pyke, 1984). However, historically, there have 

been inadequate data on the energetics and the details of movements to embrace optimality 

properly. Consequently, theoretical movement ecology has tended to focus on statistical 

descriptions of movement that are agnostic to the underlying life-history needs that govern 

movement decisions. Step-selection analysis, for example, examines environmental features 

that are correlated to movements from one location to the next (Avgar, Potts, Lewis, & Boyce, 

2016; Fortin et al., 2005; Thurfjell, Ciuti, & Boyce, 2014). As another example, there are a 

variety of techniques that use movement to infer changes in behaviour, by observing how 

features such as speed, or tortuosity change over time (Hooten, Johnson, McClintock, & 

Morales, 2017). These are categorised under various names such as state-space models (Jonsen 

et al., 2013; Morales, Haydon, Frair, Holsinger, & Fryxell, 2004; Patterson, Thomas, Wilcox, 

Ovaskainen, & Matthiopoulos, 2008), hidden Markov models (Langrock et al., 2012; 

McClintock & Michelot, 2018), continuous time models (reviewed in Patterson et al., 2017), 

and behavioural change-point analyses (Edelhoff, Signer, & Balkenhol, 2016; Gurarie, 

Andrews, & Laidre, 2009). Similarly, there has been significant interest in inferring broad-

scale movement patterns, such as home range, migratory or dispersal patterns, from squared 

displacement statistics (Börger & Fryxell, 2012). There is also a long history of mathematical 

models for inferring space-use patterns from general features of movement, such as advective 

and diffusive components (Moorcroft & Lewis, 2006; Moorcroft, Lewis, & Crabtree, 1999; 

Potts & Lewis, 2014). All of these examples model movement in a descriptive fashion, where 

the biases and correlations (Benhamou, 2014; Codling, Plank, & Benhamou, 2008) represent 

hypothesised behavioural features of the movement path and the aspects of the movement that 

we either do not have direct knowledge of or are unable to test, as ‘random walks’, or ‘hidden 

states’. Incorporating high-resolution information from bio-logging studies can change this, as 

well as enable us to answer questions that link movement decisions to the life-history needs of 

animals.  
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Step selection analysis (SSA) is one of the most widely-used techniques for inferring the 

environmental drivers behind observed movement patterns. New bio-logging technologies 

enable us to build upon SSA in two important ways. First, the ultra-high frequency locations 

given by dead-reckoned IMU data enable us for the first time to find the precise points at which 

an animal changes direction (Potts et al., 2018), rather than assuming (implicitly) that changes 

in direction occur at the points where locations are acquired (which is typical in SSA studies 

based on GPS data, although there are exceptions; e.g. Merkle, Fortin, & Morales, 2014). 

Second, this approach can be extended to examine broader changes in the state of the animal, 

rather than simply its location, and without having to recur to statistical models trying to infer 

a ‘hidden state’. As such, we might parametrise a model containing not only the locations of 

the animal, but also any of the other aforementioned features that we can measure (or infer 

from metrics of movement) from bio-logging technology, such as head-position, heart-rate, 

movement “mode” (running/eating) or even interaction variables related to the movement of 

others in the environment (SI Box 1).   

 

For example, by modifying step selection analysis and similar techniques to incorporate the 

energetic costs and benefits derived from detailed bio-logging data (acceleration and heart rate 

loggers), we may be able to uncover the bio-energetic reasons behind animal movement 

choices, rather than simply describing landscape aspects that co-vary with animal movement. 

This would help us re-visit old questions about the optimality of foraging decisions, and give 

important behavioural insights into animal decision-making at fine scales as they move through 

their energy landscape (Shepard et al., 2013). Quantifying the effects of the environment on 

movement costs in this way could help also derive a proxy of energy cost based on 

environmental conditions, to use with movement data without bio-logging information (e.g. 

Figure 3).  

 

An interesting development in that direction is by Hooten, Scharf, & Morales (2018), who 

present a new approach to analyse movement data, including explicit mechanistic links to 

physiological dynamics, to better model decision making and movement in heterogeneous 

environments. Notably, this approach can be extended to accommodate additional data such as 

those provided by bio-loggers. Similarly, state-space models and behavioural change-point 

analysis would be enhanced greatly by careful incorporation of data on acceleration or energy 

expenditure. Indeed, the behavioural states in these models are often “hidden” (as in “hidden 

Markov model”) but the sort of bio-logging data described in this review may be able to shed 
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light on these states more directly. This will be a major change in the field and allow markedly 

improved and biologically relevant understanding to be obtained; compared to any of the even 

most sophisticated modelling approaches currently used. 

 

4. Future developments for optimising the use of bio-logging 

So far, we have reviewed the current technologies and techniques available in the bio-logging 

toolbox, and how we may optimise their use to answer the big questions in ecology through 

collaborations within the IBF. Here we highlight potential key future developments, across all 

nodes of the IBF, which would markedly advance the fields of bio-logging and movement 

ecology. 

 

New sensors: from speed measurement to skin-patches 

As speed is a key parameter of movement, there is an urgent need for reliable speed sensors 

without the disadvantages (such as fouling) or limits of propellers, flexible paddles, and Pitot 

tubes (cf. Shepard, Wilson, Liebsch, et al., 2008). Speed of movement exposes animals 

differentially to conditions and equates to (the square root of) power. New sensors need not be 

limited to external sampling systems either. Animal skin-associated ‘patches’ are being 

increasingly used in lab scenarios to look at physiological variables such as stress hormones 

and other chemicals (Lee, Bakh, Bisker, Brown, & Strano, 2016), something that would find 

great resonance in wild animal studies. We see huge scope for cross-fostering between these 

fields, but there are substantial challenges as many of these applications, such as those 

developed for human studies (Nikita, 2014; Yang, 2014), require powerful readers that operate 

at close range, and tend to be severely battery limited. Finally, tags need to be able to drop off 

more routinely and be recovered reliably over large spatial scales, to obtain the large amount 

of recorded data. This may also save the animal the stress of being recaptured and having to 

carry the tags for longer than necessary, with all the tag detriment issues that this engenders. 

 

Improved ethical and animal welfare methodologies 

Although sensor technology is advancing rapidly, the ethics of bio-logging is still a major 

concern both in terms of fitting the device, which often requires capture, and the effects of 

carrying a bio-logger for the study subject. Advancing methodology in capture and 

consideration of stress by the animal is something that ecologists can work on. Be it reducing 

handling times, protecting a nest from predators or competitors while the animal is unable to, 

or even advancing remote tagging methods where the animal does not need to be handled. An 
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additional limitation, is that most devices store data on-board, necessitating recapture of 

animals and the recovery of the units. Improving the ability of these devices to remotely 

transmit data would improve their applicability and reduce invasiveness, though may require 

additional weight in terms of electronics and battery. Of greater concern are tags which require 

surgical implantation, including heartrate and internal temperature loggers. Though, recent 

advances have led to the development of surgically implanted sensors even measuring 

neurological activity, which may further our understanding of the mechanisms behind 

behaviour, but at what cost for the animal?   

 

A related key limitation to current bio-logging devices is expressed by the ‘measurement 

effects performance’ paradigm (Wilson, Grant, & Duffy, 1986) via, for example, increased 

movement costs for the animal through additional mass loading or the ‘drag’ of the device 

(Barron, Brawn, & Weatherhead, 2010; Vandenabeele et al., 2015) producing non-

representative data. There are also other important moral and ethical considerations to animal 

detriment (Cooke et al., 2017; Wilson et al., 2019), such as cumulative effects (as a result of 

re-tagging) and long-term effects (decreased survival and/or lifetime reproductive success, 

which may not be easily evident from short term changes in movement and activity patterns). 

Thus the current ‘rule of thumb’ based on 3-5% body weight (for aerial and terrestrial animals 

respectively) is naïve (Bodey et al., 2018), and will need to be improved using more 

comprehensive information on tag effects based on physical principles (e.g. via computational 

fluid dynamics to account for drag; Kay et al., 2019), considering also the often neglected 

effects of tag attachment itself (Vandenabeele et al., 2014). In the meantime, certainly 

researchers will have to better exploit the ongoing miniaturisation to reduce the relative mass 

of the devices attached to animals (Portugal & White, 2018). Equally important, researchers 

should consider if a new tagging study is necessary, or if the question can be answered using 

existing published data or through data sharing, which will require the development of 

markedly improved data standards for bio-logging data (see previous section; Figure 3). 

 

Lifetime tracking, real-time processing and remote data transmission 

As bio-logging technology continues to advance, the ability to study an individual or 

population throughout their entire life from conception to death becomes a more realistic 

possibility. Such large-scale tagging has major ethical implications, as not only a small subset 

is affected but an entire group, community or population. Especially for similar large-scale 

questions, researchers would benefit from enhanced bandwidth for transmitting data (cf. 
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O’Donoghue & Rutz, 2016), an element that is already being trialled within the ICARUS 

system (Wikelski et al., 2007). In tandem with this comes smart on-board data-processing (e.g. 

Cox et al., 2018) which has the potential to markedly increase the temporal and taxonomic 

range of data which can be collected. The combination therein of real-time processing and 

transmission of data will not only enable scientists to dynamically adapt experiments, but has 

applications in conservation and management.  

 

Improving the theoretical and mathematical foundations of movement ecology 

Perhaps the most exciting aspect of bio-logging is that the data-rich approach driven by animals 

will not only help us to understand why animals do what they do, pinpointing drivers that range 

from internal state responses to pan-ocean basin atmospheric conditions, but thanks to an 

improved mechanistic understanding, we might actually be able to predict animal responses to 

future conditions. To do so will require a large improvement in the theoretical and 

mathematical foundations of movement ecology, to include the rich set of high-frequency 

multivariate data, which greatly expand the fundamentally limited and coarse data that could 

be collected using location-only technology such as GPS. In particular, there is a clear synergy 

between local (small-scale) information provided by sensors and large-scale information 

provided by, for example, remote sensing data. How to link and predict processes occurring 

across different scales is a central question in ecology (Levin, 1992) yet difficult to address, 

with the key issues being to identify the correct mesoscopic scale connecting microscopic 

processes to macroscopic patterns. This is the case even for ‘simple’ physical systems 

constituted of identical particles, whereas biological systems are instead fundamentally 

characterised by additional intra- and inter-specific heterogeneity. Movement ecologists 

therefore have to deal with processes which span multiple scales of spatio-temporal and 

biological complexity (Torney, Hopcraft, Morrison, Couzin, & Levin, 2018). Hence, 

demanding yet exciting challenges lie ahead for integrating novel bio-logging data with 

ecological questions. We may now have access to vastly improved information for wild animal 

biologists to predict processes.  

 

Improved multi-disciplinary collaborations 

Collaboration is key to the framework’s success as a tool for optimisation of bio-logging 

studies. At the same time, ecologists can feed new developments back to other disciplines, e.g. 

as inspiration for new theorems (Cohen, 2004; Sturmfels, 2005), or for biologically inspired 

engineering (Bionics), such as new models of navigation inspired by ants (Esterley, McCreery, 
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& Nagpal, 2017) or improved collective decision making in robot swarms (Ebert, Gauci, & 

Nagpal, 2018). Indeed, actions to bring together multi-disciplinary groups of experts are 

gathering momentum in movement ecology; these include the EU COST actions from MOVE 

to develop improved methods for knowledge discovery from moving objects and big data 

(www.cost.eu/COST_Actions/ict/IC0903) with similar initiatives in the European Network for 

Radar Surveillance of Animal Movement (http://www.enram.eu/), the Special Interest Group 

in Movement Ecology of the British Ecological Society 

(www.britishecologicalsociety.org/membership-community/special-interest-

groups/movement-ecology/) and the International Bio-Logging Society (www.bio-

logging.net/). 

 

 

Conclusion 

We have i) reviewed how to optimise the use of bio-logging techniques for ecologists to be 

able to take full advantage of the paradigm-changing opportunities of bio-logging sensors for 

ecological research and ii) synthesised this into an Integrated Bio-logging Framework (IBF) 

for movement ecology research. We highlighted the many new and often unexplored 

opportunities to address biological questions using the most appropriate sensors and sensor-

combinations, especially using multi-sensor approaches, a new frontier in bio-logging research. 

Given the technological complexities and rapid pace of advancement of the field, however, 

establishing multi-disciplinary collaborations will be paramount for ecologists – and at the 

same time, the latter can thereby more efficiently guide future technological and 

methodological advancements to address biological questions. Closely linked to the issue of 

matching ecological questions with sensors, is devising a good experimental design up front. 

This involves multiple closely connected challenges, from tag design and sampling regime, to 

the important related ethical and animal welfare considerations, and the challenges of data 

sharing. Linking new bio-logging data types to the most adequate analytical techniques 

presents many new and often unsolved issues in particular, and will require multi-disciplinary 

collaborations to tackle the ‘big data’ problem, and improve the theoretical and mathematical 

foundations of movement ecology. The tasks ahead are challenging, but a clear potential exists 

for a vastly improved mechanistic understanding of animal movements and their role in 

ecological processes, from which we can build unprecedented and realistic predictive models. 

 

 

http://www.cost.eu/COST_Actions/ict/IC0903
http://www.britishecologicalsociety.org/membership-community/special-interest-groups/movement-ecology/
http://www.britishecologicalsociety.org/membership-community/special-interest-groups/movement-ecology/
http://www.bio-logging.net/
http://www.bio-logging.net/
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Tables and Figures 

 

Table 1: Summary table of the current bio-logging sensors available, beyond classic location 

sensors. The detailed application and description of sensors is provided in SI Table 1.  

 

Sensor type Examples Description Relevant 
questions 

Optimisation 

Location Animal-borne 
radar, pressure, 
passive acoustic 
telemetry, 
proximity sensors 

Location based on 
receiver location 

Space use; 

interactions 

 

Use in combination with the 
behavioural sensors below; 

Create visualisations to 
facilitate interpretation of 3D 
space use and interactions 

Intrinsic Accelerometer, 
magnetometer, 
gyroscope, 
(gyrometer)  

Patterns in body 
posture, dynamic 
movement, body 
rotation and 
orientation.   

 

Behavioural 
identification; 

internal state; 

3D movement 
reconstruction 
(dead-reckoning); 

energy 
expenditure; 

biomechanics; 

feeding activity; 

space use 

 

Use in combination with other 
intrinsic sensors to build up 
detail of behaviour and/or 3D 
path reconstruction; 

Increased sensitivity to detect 
micro-movements or stress-
related activity;  

high resolution (temporal and 
spatial) environmental data 
may improve accuracy of path 
reconstruction (e.g. in relation 
to environmental flow, wind or 
current data) 

Heart rate loggers,  

stomach 
temperature 
loggers, 
neurological 
sensors, flexible 
speed paddle, pitot 
tube, speed 
paddles 

Measures of 
activity. 

 

Microphone, hall 
sensors, 

Specific behaviour 
e.g. limb 
movement and 
vocalisations 

Environment Temperature Ambient Space use; 

energy 
expenditure;  

external factors; 

interactions 

In situ remote sensing; 

arrays to localise animals; 

visualisations to provide 
context and understanding of 
interactions 

Microphone, 
proximity sensors, 
video loggers 

Record external 
environment e.g. 
soundscape 
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Figure 1: The Integrated Bio-logging Framework (IBF) for optimal use of bio-logging in 

movement ecology. Researchers may take a question-driven approach, beginning with a 

hypothesis, then selecting the appropriate sensor and analysis techniques. Alternatively, a 

data-driven approach can be taken, by allowing existing data to inform further hypotheses and 

data collection. The framework operates via collaboration between disciplines in a system of 

feedback loops, though these collaborative links are not exclusive to any particular node. 
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Figure 2: A question-driven approach to the IBF for optimal study design using bio-logging. 

In this example, ecologists begin with their question of focus (top of Figure 1), in this case an 

investigation into the effect of internal state on movement decisions, and select the appropriate 

external and internal sensors for data collection. Here, sensors should be sensitive to different 

aspects of an animal’s movement that relate to their internal state, perceived information and 

the movement that may result from a particular decision. Selection of the sensors requires 

strong collaboration between ecologists and engineers (right-hand symbols). Simultaneously 

(bottom of Figure 1), ecologists should work with those analysing the data (e.g. physicists, 

mathematicians, statisticians, computer scientists) in the process of designing the data 

collection, to ensure the correct data are gathered that can answer the question using the 

analytic tools available.  
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Figure 3: A data-driven approach to the IBF for optimal study design using archived bio-

logging data. In this example, ecologists begin by selecting appropriate data types for the study 

of movement patterns in relation to environmental measures at local and global scales. 

Understanding and predicting how animals respond to global change, including climate and 

land-use change, requires multiple data collected over a range of temporal and spatial scales. 

In this case, ecologists start at the central nodes of the IBF (Figure 1) to collate archived data 

and collaborate with mathematicians, statisticians and geographers (right-hand symbols) to 

implement the appropriate processing and analytical techniques to interrogate the data and 

identify patterns by which several questions may be approached. Following this, ecologists 

may work with other disciplines to deploy additional bio-logging sensors to collect data that 

complement the shared data.  
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Figure 4: Visualisation of sensor and location data. A number of schematic plots of varying 

axes and information types to visualise data of a seabird in flight that plunge-dives in pursuit 

of prey. A) Logged sensor outputs (acceleration (g), magnetometry (µT), altitude above sea 

level (m) derived from pressure data (kPa) and the inter-mandibular angle sensor IMASEN 

output (µT)) in a time series plot. Peaks in dynamic acceleration are associated with wing 

beats during take-off (red) and in flight (yellow), as well on impact with the sea surface in 

plunge-dives (aqua blue). During the dive, as indicated by the negative altitude above sea level 

(ASL; purple) the bird may pursue prey (dark purple), as indicated by increased variation in 
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acceleration and heading, from the magnetometer output. A successful prey capture attempt is 

evident in the peaks in the IMASEN signal output, as the bird opens its bill to capture the prey 

(yellow asterisk). B) The behaviours are classified and presented in an ethogram to show 

temporal variation in behaviour (this serves as a key for the schematic). Further to these time 

series plots, different sensor outputs can be combined, along with derived metrics, in various 

multi-axes visualisations to reveal patterns in behaviour. We present three examples (C-E) for 

data visualisation in multi-dimensional space and two for geographic space (F-G): C) a 

circular plot of heading on an m-sphere (magnetometry; Williams et al., 2017), where height 

of the bar is the magnitude of the extent of movement (DBA), the most active behaviours for 

this bird are foraging and diving, which occur at opposite headings; D) a g-sphere (static 

acceleration data) or Dubai plot, where a frequency histogram of static acceleration is 

resolved in tri-axial space (Wilson et al., 2016) and peaks show the most common postures for 

each behaviour; E) a g-sphere where distance from the surface of the sphere is relative to the 

depth below sea level, where colour indicates different behaviours in the dive, so that through 

the dive there is a shift in posture, and a greater variation in posture and depth during the prey 

pursuit (coloured by time in greyscale, bottom right); F) 3D movement path during for the 

foraging trip; G) 2D flow visualisation of foraging path, where thicker paths are more 

commonly used for the different behaviours (Verbeek, Buchin, & Speckmann, 2011).  
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