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" Department of Engineering Science, University of Oxford, Oxford, United Kingdom, 2 Nuffield Department of Clinical
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Resting state functional magnetic resonance imaging (rsfMRI), and the underlying brain
networks identified with it, have recently appeared as a promising avenue for the
evaluation of functional deficits without the need for active patient participation. We
hypothesize here that such alteration can be inferred from tissue damage within the
network. From an engineering perspective, the numerical prediction of tissue mechanical
damage following an impact remains computationally expensive. To this end, we propose
a numerical framework aimed at predicting resting state network disruption for an
arbitrary head impact, as described by the head velocity, location and angle of impact,
and impactor shape. The proposed method uses a library of precalculated cases
leveraged by a machine learning layer for efficient and quick prediction. The accuracy
of the machine learning layer is illustrated with a dummy fall case, where the machine
learning prediction is shown to closely match the full simulation results. The resulting
framework is finally tested against the rsfMRI data of nine TBI patients scanned within
24 h of injury, for which paramedical information was used to reconstruct in silico the
accident. While more clinical data are required for full validation, this approach opens
the door to (i) on-the-fly prediction of rsfMRI alterations, readily measurable on clinical
premises from paramedical data, and (i) reverse-engineered accident reconstruction
through rsfMRI measurements.

Keywords: traumatic brain injury, resting state functional magnetic resonance imaging, default mode network,
finite element simulation, machine learning

1. INTRODUCTION

Traumatic brain injury (TBI) is one of the leading causes of death in people under the age of 45
years (Maas et al., 2008). In the EU, it is estimated that 2.5 million people suffer annually from
TBI (Maas et al., 2015). While they can also result from non-impact conditions such as blast waves
arising from an explosion, most TBIs occur as a consequence of head impacts, e.g., during falls, road
traffic accidents, assaults, and sport injuries. The impact conditions can be very diverse, as expected
from the large parameter space characterizing the boundary conditions of the contact (location,
impact velocity, angle of impact, impactor shape, impactor material properties, etc.), as well as the
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FIGURE 5 | Analysis of functional connectivity (rsfMRI signal correlation) within the DMN across nine patients with varying degrees of TBI and different mechanisms of
injury. Individual patient resting data were compared to 18 controls using permutation testing. Each map shows the patient-specific threshold-free
cluster-enhancement t-statistic images, depicting all voxels with significantly lower functional connectivity (o < 0.05) than the corresponding values in healthy controls.

TABLE 5 | Proportion of functional damage in the DMN as evaluated from
functional correlation disruption.

TABLE 6 | Bagging method performance for a range of network damaged
proportion thresholds.

Cases 1 2 3 4 5 6 7 8 9
Damaged DMN (%) | 1.48 |3.2 |5.17 |14.67 | 4 |2.53 |8.93 |19.43 |6.17

an impact on the model’s sensitivity, its ability to predict the cases
that resulted in damage to the DMN. On average, the bagging
method provided improved AUC to that of logistic regression,
and was thus used subsequently.

3.2.2. Dummy Validation

In the two dummy fall scenarios, damage to the DMN
was predicted by both full FEHM simulations and the ML
model. Table8 shows the resulting damage and velocity
predictions from these two approaches. The predictions
of 64.1 and 24.9% are the proportions of elements in
the DMN region having reached the threshold of shear
energy rate of 1MJ/m’s in the direct FEHM simulations

DMN damaged proportion threshold (%)

10 30 50 70 90
AUC 0.987 0.986 0.986 0.989 0.976
Brier’s score 0.052 0.046 0.034 0.027 0.080
Sensitivity 0.752 0.702 0.790 0.829 0.731
Specificity 0.983 0.988 0.988 0.981 0.976
Accuracy 0.921 0.958 0.958 0.966 0.961
Dataset balance ~ 0.268 0.206 0.1523 0.101 0.064

for the forward and backward impacts, respectively. The
ML probabilities correspond to the predicted probability
that the two impact scenarios would lead to, at least, those
proportions, i.e., the ML layer predicts that there is 50.6 and
72.7% of chance that the impact damages at least 64.1 and
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TABLE 7 | Logistic regression method performance for a range of network
damaged proportion thresholds.

DMN damaged proportion threshold (%)

10 30 50 70 920
AUC 0.979 0.981 0.978 0.988 0.979
Brier’s score 0.056 0.048 0.034 0.027 0.028
Sensitivity 0.817 0.762 0.823 0.829 0.615
Specificity 0.956 0.966 0.986 0.986 0.987
Accuracy 0.919 0.924 0.961 0.971 0.963
Dataset balance  0.268 0.206 0.1523 0.101 0.064

TABLE 8 | A comparison of FEHM and ML mechanical damage prediction for two
dummy fall scenarios: “FEHM prediction” is the proportion of the DMN region
damaged according to the finite element simulation, “ML probability” is the
ML-predicted probability that “at least that much DMN region is damaged,” “ML
velocity” is the ML-predicted velocity at which there is 95% chance that the
FEHM-predicted damaged proportion is reached.

FEHM ML ML
probability (%)

Fall motion

(impact velocity) prediction (%) velocity (m/s)

Forwards (7.12 m/s) 64.1 50.6
Backwards (7.69 m/s) 24.9 72.7 ~7.9

@ Forward fall, damaged proportion of 64.1%
©-- Backward fall, damaged proportion of 24.9%
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FIGURE 6 | ML predicted probability of damaging at least 64.1% of the DMN
region in forward fall and 24.9% in backward fall for different impact velocities.

24.9% of the DMN region, for the forward and backward
impacts, respectively.

Figure 6 offers another way to use the ML model by showing
the probabilities that these proportions are reached for a range of
potential impact velocities, for both scenarios. Both curves are
sigmoids with plateau regions of ~83% (~75% if considering
the last portion of the plateau) and ~76.5%. Assuming that
the plateau is first reached at ~ 95% of the plateau value, the
ML model predicts that reaching 64.1 and 24.9% a damaged
proportion would occur at ~8.6 m/s (~8 m/s if considering
the last portion of the plateau) and ~7.9 m/s for the forward
and backward falls, respectively (see Table 8). In this graph, the
sigmoid never reaches 100% probability. This is due to nature of
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direction
Attributes
FIGURE 7 | Improvement in ML model AUC with each additional attribute, for
ML model trained at a 50% threshold.

the ML methods, which are unlikely to estimate 100% probability
that the given network damage threshold has been reached.

While an overall good match is confirmed between the FEHM
and the ML model in this “real life” scenario, it is worth
emphasizing that, because of the nature of the sigmoid shapes,
velocity predictions for a given proportion of damaged DMN are
less subject to noise error than the probability predictions for a
given impact velocity. Another point is that the ML layer is bound
to struggle at high velocities/high proportions because of the
smallest population of training data having such large damage;
this explains why the sigmoid curves might oscillate in the upper
plateau region.

3.3. In silico Model Prediction

3.3.1. Input Sensitivity

A feature selection algorithm was implemented to identify
the most predictive model inputs. Figure7 highlights the
improvement in model performance with each additional input
when the model is trained at a 50% threshold. Velocity was
selected as the most predictive attribute, providing an AUC of
0.985 when used alone to predict network damage. Whether
the fronto-polar region was impacted, whether the impact was
perpendicular to the head, and whether the temporal region was
impacted, best improved the prediction in this order, with the
angle between impact location to closest DMN node, and impact
direction finally allowing the AUC to reach a value of ~0.988.

3.3.2. Clinical Validation
In this section, the conditions established in section 2.1.5 were
used as inputs for the ML model. The same methodology
described in section 3.2.2 was used, but instead of taking as
input the DMN damaged proportion as predicted from FEHM
simulations, the proportion of damaged DMN calculated from
the proposed functional criterion (see section 2.1.4) was used
instead. Table 9 shows the ML predicted probabilities that the
clinically predicted damaged DMN proportion (see Table 5) was
reached for the velocity ranges evaluated in section 2.1.5 for all
nine patients.

As highlighted in section 2.3.2, the impact velocity prediction
for a given damaged DMN proportion is prone to greater error
than the damaged DMN proportion prediction for a given impact
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TABLE 9 | Proportion of functional damage in the DMN as evaluated from
correlation disruption, ML predicted probabilities that at least this proportion is
reached for the manually estimated range of impact velocities, and ML predicted
impact velocities at which 95% of the final plateau probability P is reached for the
clinical DMN damaged proportion, for the nine patients (see section 2.1.5 and
Figure 2).

Cases Functionally ML predicted probability (°P) ML predicted
(conditions) damaged range for impact velocity (V) velocity
DMN (%) range evaluation at 95% Py (m/s)
1 1.48 52% <P <91.1%
(b-iii) (224 m/s <V <12m/s) ~ 6
2 3.2 17.5% <P <70.7%
(d-iii) (4.85m/s <V < 6.75m/s) ~7.5
3 517 6.0% < P < 30.5%
(d-iii) (8.25m/s <V <4.8m/s) 7.4
4 14.67 2.6% < P < 97.0%
(d-iii) (8.52m/s <V < 9.72m/s) ~71
5 4 P~ 36.0%
(a-iii) (V ~5m/s) ~6.9
6 2.53 P~ 95.3%
(b-iii) (V' ~9m/s) ~5.9
7 8.93 P < 76.5%
(e-iii) (V < 14.1 m/s) ~7
8 19.43 56.0% < P < 77.0%
(d-iii) (6.75m/s <V < 8.94 m/s) ~7.9
9 6.17 18.0% < P < 71.4%
(a-iii) 4m/s <V <5.4m/s) ~6.9
16
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FIGURE 8 | ML predicted impact velocities at which 95% of the final plateau
probability P is reached for the clinical DMN damaged proportion; orange
bars are the velocity range estimates from the analysis of section 2.1.5.

velocity. In addition, the probability refers to the fact that at
least a given proportion of DMN is damaged. As such, while
case 1’s results point toward a velocity of impact most likely to
be toward the end of the range (12 m/s), it is not clear whether
the probability of 91.1% for 12 m/s sits in the plateau region of
the sigmoid, i.e., if a lower velocity would also reach such high
proportion. To avoid this difficulty in the interpretation of the
results, the sigmoid curves of the ML predicted probabilities of
reaching the clinically evaluated damaged DMN against different
impact velocities were plotted for all nine cases (not shown here).

For each one of them, the velocity at which 95% of the plateau
probability is reached was extracted. This value corresponds to
the velocity at which the clinically evaluated damaged DMN
proportion is first reached according to the ML model. The
results are compared against the “manually” estimated range of
velocity of section 2.1.5 in Figure 8 and Table 9.

4. DISCUSSION

4.1. Model Limitations
4.1.1. Head Model Dependence
The FEHM used here was originally developed from high
resolution anatomical T1 and T2-weighted MRI images of a
subject available from the Human Connectome Project (HCP
Subject ID: 100307) (Essen et al., 2013; Garcia-Gonzalez et al.,
2018b). Ideally, one would use a dedicated FEHM for each
individual to offer a more tailored solution to the damage
prediction by accounting for morphological differences between
patients. Because of the time it would take to develop such models
(on-the-fly in the context of clinical admission), and despite some
recent advances in this direction (Li et al., 2020), such a solution
remains impractical. Additionally, due to the very nature of the
ML layer, which first requires training on a library of FEHM
simulations, doing so would not allow for ML prediction. It is also
worth mentioning that having a morphologically correct head
model scanned before injury for any TBI patient is unrealistic. An
alternative would be to create a finite library of population-wide
representative head morphologies, which would constitute one
of the inputs of the ML layer. This would however require much
larger libraries for the training of the layer, if one were to account
for sex, age, etc. A direct comparison between three different head
models has shown significant disparities in the brain mechanical
response in nearly all brain regions of the models (with the caveat
that these head models were all idealized and not constructed
from imaging) (Ji et al., 2014). More recently, the study of more
realistic head models for different morphologies has reached
similar conclusions (Li et al., 2020). However, in the former study,
the models showed similar trends in the relationship between
mechanical response and kinematic response, indicating that a
given model can be used independently of the others for a given
set of impact conditions as long as it is used consistently. While
not excluding the possibility to include more flexibility in the
morphological variations between patients in some future work
by using, e.g., novel morphing approaches (Li et al., 2020), the
approach consisting of using only one model thus seems justified
as a first approximation, while allowing for faster ML predictions.
Each FEHM requires a set of constitutive models for the
different regions identified within the head (typically, gray
and white matter, skull, CSF as a minimum). Those need
to be chosen carefully depending on the level of detail (e.g.,
homogenized brain vs. independent white and gray matter) but
also loading conditions. For instance, blast loading conditions
would typically require equations of state to adequately capture
the volumetric response under shock waves and the viscous-
relaxation processes can a priori be ignored for very short time-
scales (Moore et al., 2009), while slow loading scenarios, such
as in the second stage of labor, when the head of the foetus
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is being compressed in the vaginal canal, would ideally require
viscoelastic laws to capture the fetal head molding of the infant
head (Ami et al, 2019). Any intermediate situation, such as
the ones considered here, would need to balance the need for
time-dependent models against the timescales involved, along
with other features more or less relevant depending on the
leading deformation mechanisms: whether viscoelastic models
are required, whether tissue damage and/or fracture should be
accounted for, whether tissue anisotropy is relevant, etc. Here, a
careful analysis of the most salient features was carried out, and
each region of the used FEHM was assigned a constitutive model
with parameters identified for the range of loading considered
in this work. While more work is required to ensure that each
chosen constitutive model and its associated material parameters
are indeed optimum, the proposed setup is believed to constitute
a first good approximation. It must finally be noted that as
better models and material parameters are identified, the overall
framework function remains the same and those new changes
would be trivial to incorporate.

4.1.2. Kinematics

In the approach followed here, the kinematic behavior
immediately after impact is assumed to be solely driven by
the inertia of the head, i.e., the contribution of the rest of the
body, and in particular, the neck is not accounted for. This
approach has been proven to be deficient in some cases (Wang
et al,, 2020). While it could be argued that it could still be
considered as valid in cases where the inertia of the body does
not contribute to the impact (e.g., if one falls sideways, and/or
is hit directly at the head), or when the neck does not hamper
the movement of the head (e.g., during and immediately after
the impact of an unaware or unconscious individual), it remains
an inaccurate representation of the real-life impact. An ideal
simulation would couple a multibody dynamics simulation
to the proposed FEHM to ensure that the kinematic behavior
of the head is more accurately modeled. It must, however, be
emphasized that the more complex the underlying mechanistic
model is, the more inputs a given ML layer would have to
incorporate. Therefore, while having a set of impact conditions
on the head, as done here, can easily be incorporated in the
ML layer, incorporating inputs related to the entire body based
on clinical information from the scene is realistically currently
unworkable.

4.1.3. Skull Fracture

A final limitation of the FEHM is that, while the onset of skull
fracture was predicted, its mechanical deformation post-fracture
was not modeled. As such, the choice was made to train the
ML layer exclusively on simulations which did not result in
skull fracture. However, five out of the nine patients studied in
this work experienced skull fracture (cases 1, 6, 7, 8, and 9),
and, while those were not judged to be important enough to
influence significantly the brain deformation in those cases (e.g.,
left zygoma fracture for case 1), it is clear that better predictions
would be expected with additional fracture mechanistic features
embedded in the FEHM for a more general applicability.

4.2. Predictive Accuracy

The ML layer has been shown to be very effective in the
prediction of the simulation behavior (with AUC values all
above 0.97 in the worst case), especially considering the reduced
number of simulation scenarios. This prediction could be enough
for some preliminary clinical assessment. An eventual high-
fidelity ML prediction with additional inputs could be leading
to some overfitting, owing to the relatively general nature of
the mechanistic model. The proposed approach is a trade-
off between the descriptive power of the simulation and the
granularity of the ML predictions. According to this, the number
of features and the feature selection procedure are tailored to
the overall complexity of the ML tasks (in number of instances
and features). As seen in section 3.3.1, a single feature already
provides a reasonable high accuracy level. Additionally, the
characteristics of the data also constrain the use of a given ML
algorithm. More advanced techniques, such as neural networks
(e.g., deep learning as an extreme case) are designed for two or
more higher orders of magnitude in the number of simulations
to analyze.

Another interesting aspect is the stability of the results
independently of the DMN damage proportion threshold (see
Tables 6, 7). Indeed, from 10% threshold up to 90% threshold,
there is a x4 factor in the ratio of the minority class (0.064-0.268
for 90 and 10%, respectively). In all cases, neither the AUC nor
the sensitivity or the specificity are compromised.

The stability of the sensitivity and specificity is of particular
importance in the clinical setting. Sensitivity would be crucial
to enable identification of network damage within the DMN
in the acute or hyper acute phase following injury. Specificity
would allow clinicians to rule out the possibility of injury
enabling decisions regarding discontinuation of neuro protective
interventions. Tables 6, 7 show that the specificity consistently
performs higher than the sensitivity for both models. Future
ML models could be tuned to ensure that the specificity is not
maximized at the expense of the sensitivity.

In the future, both the mechanistic simulations and the
ML layer should become more detailed. This also means that
the number of required simulations should become larger but
also the number of descriptive features (now constrained to
the primary characteristics: velocity, location, and angle). In
addition, other derived indicators shall be obtained and other
topological and spatial considerations shall be included.

4.3. Clinical Data

One of the main limitations of this work is the relative scarcity
of clinical data. However, the data were acquired within the first
24 h of head trauma, including severe injuries. This quick-paced
availability requires a specialist center, able to acquire data in
patients who are ventilated and intubated. For logistical reasons
such data are therefore exceptionally difficult to acquire in large
volumes. While our sample size is limited for this reason, the
type of data presented here is precisely what is required to make
realistic predictions in a clinically meaningful (“hyper-acute”)
time period. As such, balancing data quality and data quantity
was a necessary challenge in this work. By providing here a
novel framework with proactively gathered (albeit limited) data,
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the goal of this work is to emphasize the need for established
widespread protocols for data curation in a proactive model
driven fashion, as opposed to models making use of limited
data available after their independent retrieval, usually from
much later time-periods after injury, and likely brain recovery
processes, have occurred.

It is finally worth emphasizing that our patients were followed
for 6-9 months, which could offer further development to the
model predictions in future work.

4.4. Resting State Network Relevance for
TBI Prediction

Despite advances in the care of patients suffering TBI, long-
term clinical and neuropsychological outcomes are often poor,
irrespective of apparent injury severity (Brooks et al., 2013;
Stocchetti and Zanier, 2016). MRI studies performed in the
days, weeks, and months following TBI have uncovered a
crucial role played by diffuse axonal injury (DAI) in the
long term clinical, functional and neuropsychological outcome
(Tong et al., 2004; Li and Feng, 2009; Skandsen et al., 2010).
Midline structures, including the corpus callosum and cingulum
bundle are particularly susceptible to the shearing forces causing
DAI (Yount et al, 2002; Chan et al, 2003). Since high level
cognitive functions such as memory, attention and executive
function require the integration of information processing across
spatially distinct brain regions, it has been proposed that DAI
induces cognitive impairment by disconnecting distributed brain
networks (Inglese et al., 2005; Niogi et al., 2008; Kinnunen et al.,
2010; Bonnelle et al., 2011).

rsfMRI is not, per se, optimum to measure functional activity,
given that one cannot be certain of what function is being
measured (this applies especially in the context of the DMN,
which “shuts off” during tasks). However, this remains to date
the only method available for use in severely head injured
patients, many of whom were intubated and ventilated during
scanning. rsfMRI allows measurement of slow neuronal signal
fluctuations without the need for a task, enabling the study of
functionally relevant brain networks in TBI patients regardless
of the severity of injury. In this way, the use of rsfMRI enabled
us to measure functional brain networks in patients among our
cohort who were intubated and ventilated during MRI scanning.
Among brain networks known to be disrupted following TBI
(Stevens et al., 2012), the DMN has received particular interest
due to its proposed role in the development of attentional deficits
(Raichle, 2010; Bonnelle et al., 2011; Sharp et al., 2011) which
often follow DAI (Scheid et al., 2003; Povlishock and Katz,
2005). The brain regions that make up the DMN (Raichle et al.,
2001) are particularly susceptible to DAI, including notably the
midline posterior cingulate cortex, precuneus, and ventromedial
prefrontal cortex alongside the inferior parietal lobe, lateral
temporal cortex, and hippocampal formation. Crucially, the
regions of the DMN show highly correlated brain activity at rest.

Previous studies report differing DMN functional connectivity
according to severity of injury and timing of imaging (Zhou
et al., 2012; van der Horn et al., 2017). Here, we show that
DMN disruption can be identified within the first 24 h following

trauma, using an objective statistical metric sensitive to network
disruption at the single patient level. We propose that our
damage load metric offers advantages over typical group-based
studies in understanding and predicting the effects of trauma.
Group-based or population average studies, by definition, aim
to identify features that are common across patients. Such
approaches consequently discard the fundamental heterogeneity
in head injury mechanisms and their downstream network
impact that likely account for vast differences in outcomes among
individuals.

4.5. In silico TBI Prediction

4.5.1. Coupling of Causality and Correlation

Figure 7 shows the five more important attributes in the ML layer
per increased order of contribution to the prediction of the layer
when used at a 50% threshold. Unsurprisingly, the velocity of
impact is the most important factor. Whether or not the impact
location is in the fronto-polar region or the temporal region
are the second and fourth most important attributes, with the
third being whether the impact was perpendicular to the head.
Finally, the angle between impact location to closest DMN node
and impact direction allows for a slight increase in the predictive
ability.

From a geometrical perspective with respect to the DMN
nodes, an impact location in the fronto-polar should indeed a
priori have a stronger influence on the DMN than a temporal
impact. The relative importance of the angle to DMN (by
0.3%) is slightly more surprising, especially considering the
fact that the binary attribute indicating whether the impact
is perpendicular or not was already selected as the third
most important attribute. This particular trait demonstrates the
advantage to couple mechanistic simulations with ML. In this
case, the mechanistic FEHM simulations incorporate indirectly
information related to the angle between impact direction with
respect to the closest DMN node. A ML layer on its own
would not be able to incorporate information of this kind
without additional preprocessing of the head morphologies and
mechanical features of stress wave propagation with respect to
impact direction. Such complementarity of causality (through
the mechanistic simulations) and correlation (through the ML
layer) has already been advocated as an ideal way to incorporate
physical mechanisms in a scalable fashion (Baker et al., 2018).
This work demonstrates that additional information driven by
a mechanistic understanding of the physical processes at play
during tissue damage can indeed allow for additional predictive
power in the ML layer.

It is worth noticing that, for each given damaged DMN
proportion, a new training session is needed. This means that,
while Figure 7 only shows the results for a 50% threshold, each
new threshold, and thus each curve in Figure 6, will select a new
set of attributes to work with. For two of the nine patients of this
study, training did not use the angle to DMN but selected the
fact that the impactor is or is not perpendicular (results not show
here). In all cases however, the velocity of impact was the main
attribute followed by either the shape of the impactor or the angle
to DMN.
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Overall, this dynamic feature selection offers an individualized
prediction of the impact on brain function based on a given head
injury. These predictions shed light onto the nature and extent
of likely associated tissue disruption in an individual patient
that is not captured by current clinical assessments. In this way,
models able to predict down-stream functional outcomes from
early paraclinical metrics offer potential to optimize treatment at
a time when crucial clinical decisions need to be made.

4.5.2. Predictive Performance

The method proposed here postulates a direct relationship
between mechanical damage and functional damage. It can be
used in two ways: (i) it can assess the probability that the DMN
has been damaged to the extent measured clinically for a given
impact, (ii) or it can predict a velocity at which such extent
of damage can be reached, assuming one knows the remaining
boundary condition attributes (impact location, angle, etc.). This
approach was tested for nine patients whose impact conditions
were estimated from paramedical and clinical notes in a manner
consistent with medico-legal methodology.

The shear energy rate damage criterion was taken to be at
~ 1 MJ/m>s (see section 2.2.4). The quantitative evaluation
of DMN damage proposed here is a novel approach whose
correlation with mechanical damage has never been attempted.
Garcia-Gonzalez et al. (2018b) successfully observed a correlation
with oxidative stress in the context of blast injury for a much
larger value of the shear energy rate damage criterion, but as
loading conditions and damage pathways are different (blast
injuries and impact injuries have very different injury signatures),
another value needed to be estimated. The proposed threshold
of ~ 1 MJ/m?s is interestingly close to the axonal deformation
energy rate threshold of 1.5 MJ /m3s for oxidative stress in
blasted white matter (Garcia-Gonzalez et al., 2018b). While white
matter damage was not predicted here for lack of experimental
comparison (rsfMRI measures gray matter activity), indirect
damage of white matter might also directly influence the rsfMRI
results, and the proposed model could be benchmarked in future
work against DT data to assess damage in the white matter tracts.
This could also be done indirectly by measuring the correlation
(or lack thereof) of the DMN with the rest of the brain. It is finally
important to note that the results obtained here intrinsically
depend on this threshold calibration. However, to confirm with
sufficient significance that the value chosen here is indeed the
right one, a much larger dataset of patients would be needed.
Future work shall focus on gathering such data.

The two predictions made by the ML method are assessed
in Table9 and Figure 8. Firstly, the model should be able to
assess the probability that the DMN exceeds a given threshold.
When the threshold of the model was set to the clinically
observed network damage, an ideal model should provide a high
probability that the network is damaged for the given scenario.
In Table 9, seven out of nine cases produce a probability of
damage over 70%, however some probabilities of damage range
from small to large values, for example in cases 2 and 4. This
reflects the difficulties faced in estimating the impact scenarios
from parametric data, which often resulted in a large range of
possible impact velocities.

The model also provides an estimate of the velocity at which
the clinically observed network damage was met. As shown in
Table 9 and Figure 8, four out of nine patients’ ML predicted
velocity is within the range manually estimated. As indicated
earlier, a few of these cases did not have enough information
to allow for a confident estimation; very rough values were still
proposed in the interest of discussion. All patients presented
significant TBI and the model predicts that the range of velocity
expected to lead to such TBI is much narrower than manually
evaluated. In particular, values of impact velocity between 6
and 8 m/s for all nine patients are expected, while the manual
estimation of the range was six-fold larger. Note, however, that
different ML training designs could be used to better estimate
velocities. In particular, a backward estimator (from the damage
to the characteristics of the impact) could be used instead of the
forward model proposed here (from the features to the predicted
damage).

4.5.3. Forensic Relevance

Establishing whether a traumatic head injury is a result of an
accidental or non-accidental cause is a fundamental question in
forensic investigations. Often, practitioners are provided with
only a brief third-party description of a causal event and struggle
to establish a sufficiently detailed understanding of a cause
and effect relationship with which to make a differentiation.
Current medical understanding, acquired by training, anecdote,
and experience is supplemented with scientific evidence, drawn
from specialities such as pathology, radiology, and population-
based epidemiology. The head and central nervous system may
be injured by many different mechanisms; therefore, developing
a necessary understanding of the cause from practical experience
and epidemiology alone is a significant challenge, since there are
very many biomechanical variables that require consideration.

A retrospective biomechanical engineering analysis can
assist a forensic investigation by providing cause and effect
understanding with regard to a stated or inferred injury-
causing event. This can be undertaken by characterizing
the biomechanical loading environment during the event
in question, quantifying the physical loading conditions
and evaluating their potential to produce injury by, where
possible, drawing comparisons with injury tolerance and/or
epidemiological data.

Given the wide range of velocities, locations, angles, and
materials associated with head injury mechanics, it is unrealistic
to anticipate that a single injury risk metric can exist for every
possible scenario. Specific to the head, one primary reason is
the very many different motions that can occur when a head is
struck with an object, or when a head strikes a surface and/or
is whiplashed, since the complex variety of potential responses
makes each injury-causing event potentially unique.

General characterization of the biomechanical loading
environment can, however, assist in developing a better
understanding of the mechanisms of injury in question. In
particular, the approach proposed here has a direct forensic
value in the analysis of image based evidence, e.g., CCTV
video footage, from which more accurate measures of velocity,
location, and angle of impact might be obtained.
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