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Abstract 

X-ray Photoelectron Spectroscopy of large bandgap or insulating material surfaces relies on 

an effective mechanism that compensates for the emission (loss) of electrons by 

maintaining the material surface at a steady-state uniform potential. While a steady-state 

may be attained by utilizing an active compensation, such as low power electron emitting 

filament, there is the possibility that the surface potential is not uniform over the area 

analysed, leading to peak shifts and incorrect spectral interpretation. In this work, a spectral 

data processing method based on mapping the ZrO2 and Pd/ZrO2 surfaces utilizing 

photoemission peak binding energy is proposed, which provides information about the 

response of specific material surfaces to charge compensation. Spectromicroscopy of ZrO2 

and Pd/ZrO2 surfaces without spatial information is used to monitor the efficacy of charge 

compensation. Exploiting counts distributed over many bins require the use of procedures 

and algorithms essential to practical mapping peak positions. Iterative singular value 

decomposition is therefore introduced and utilized as a means of efficiently delivering 

spatially resolved spectra from which binding energy for peaks is computed. The concepts 

developed in this work result in robust and accurate peak models of ZrO2 and Pd/ZrO2 that 

can be applied in XPS analysis of not only ZrO2 but other large bandgap or insulating 

material surfaces.  Supporting arguments for a peak model representing signal from Zr 3p 

and Pd 3d are developed within this work are presented. 
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Introduction 

Charge compensation is an essential part of any analytical technique that involves the 

emission of charged particles [1–3]. X-ray photoelectron spectroscopy (XPS) emits electrons 

and therefore must have a means of returning electrons to the material surface to prevent a 

constant build-up of positive potential [1]. For conducting material surfaces an effective 

connection to the ground is sufficient to maintain the material surface at a constant 

potential. However, for semiconducting or insulating material surfaces, a more involved 

charge replenishment mechanism must be deployed to prevent uncertainty in peak shapes 

that can potentially invalidate the chemical state determination for these material surfaces.  

The topic addressed here is the validation of charge compensation based on the use of 

imaging XPS via spectromicroscopy to yield accurate spectral lineshapes. The method 

described relies on mapping a surface in terms of photoemission peak position and in doing 

so identify related charging problems or confirms spectroscopic data contain valid chemical 

state information rather than artifacts of the measurement process. Mapping a surface via 

spectromicroscopy involves data treatment that permits measurement times acceptable to 

users and speed of analysis that encourages the use of these techniques. The method, 

therefore, describes in detail the algorithms used to facilitate the approach proposed using 

ZrO2 and Pd/ZrO2 as case studies.   

In particular, ZrO2 possesses a large bandgap ranging from 5.0 to 5.8 eV depending on the 

measurement technique [4].  It has been extensively utilized in surface catalyzed reactions 

alone [5] or as a support for various transition (noble) metals, such as Pd [6–10].  XPS 

analysis of materials with large band gaps, such as ZrO2, requires charge compensation and 

therefore the problem of validating the quality of XPS data measured from material surfaces 

predominantly ZrO2 is used as a case study with a positive outcome for the proposed 

methods. A powder form for material surfaces is used to illustrate how spectromicroscopy is 

applied to enhance confidence in spectroscopic data. These powderous material surfaces 

are routinely assumed to be uniform in composition over the analysis area therefore the 

expectation for imaging of these material surfaces is a set of images without any spatial 

information due to material surface composition. ZrO2 also is an example of material where 

fitting of curves to data is essential. In particular, ZrO2 presents an interesting case study 

because Zr 3p is an example of a doublet peak for which a simple approach to measuring 

photoemission signal above inelastically scattered background fails to yield the correct ratio 

for Zr 3p1/2 and Zr 3p3/2 intensities. Based on counting states allocated to quantum numbers 

j=1/2 and j=3/2, the ratio of these doublet peaks is expected to be 1:2. However calculating 

a background directly from data using the widely utilized Shirley algorithm [11] the ratio for 

the Zr 3p doublet peaks is approximately 2:3, therefore Zr 3p1/2 appears to be too intense 

relative to Zr 3p3/2.  The complexity further increases when other peaks that overlap with Zr 

3p, such as Pd 3d, are present in the measured XPS spectra [6–8].   

Accurate interpretation of the Zr 3p envelope requires confidence in charge compensation 

coupled with an understanding of the shapes that must be modelled within the spectra.  
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This is explored using a successive spectromicroscopy experiments of ZrO2 surface.  The 

objective of this work is, thus, two-fold.  First, the work focuses on deriving a 

spectromicroscopy approach for ZrO2 surface charging monitoring while further developing 

a peak model accurately describing Zr 3p envelope in ZrO2 with and without overlapping Pd 

3d present is described. 

Materials and methods 

ZrO2 and Pd/ZrO2 synthesis 
The 10% wt Pd supported on ZrO2 (MEL Chemicals, XZO 632/18, 90% Monoclinic-10% 
Tetragonal) was prepared by a deposition method, using a metal precursor solution of 
Pd(OAc)2 in toluene. After heat treatment, the obtained solid was analysed by XPS. 

X-ray Photoelectron Spectroscopy (XPS)  
XPS was performed on a Kratos Axis Ultra-DLD photoelectron spectrometer, using a 
monochromatic Al Kα radiation source operating at 144 W (12 mA × 12 kV) power. The 
Kratos Axis Ultra is equipped with a dual hemispherical analyser (HSA) arranged so that data 
can be collected either in energy dispersive mode (lower HSA) making use of the DLD as 
multiple detectors recording energy separated signal in parallel or operating as a spherical 
mirror (upper HSA) with the DLD operating as a 2D spatially resolved image detector acting 
as a single energy channel. Hybrid lens mode using a slot selected area aperture was used to 
acquire spectra via the lower HSA of the dual analyser Kratos Axis Ultra. High resolution and 
survey scans were performed at pass energies of 40 and 160 eV, with step sizes of 0.1 and 1 
eV respectively. A magnetically confined charge compensation system was used to minimize 
material surface charging. Images were acquired making use of the upper HSA operating in 
lens mode FoV1 pass energy 40 eV.  
 
Powder samples were mounted using carbon tape. Survey spectra show minimal C1s 
intensity suggesting the powder covered the tape sufficiently not to expose it. 
 
Energy for electrons as recorded is dependent on the settings used for the charge 
compensation on Kratos Axis Ultra instruments.  All spectra are displayed using the 
apparent binding energy for the given charge compensation settings. The exception occurs 
for data which are overlaid using a common binding energy scale. These overlaid data are 
systematically offset in energy to align the peak maximum for Zr 3d5/2 or Zr 3p3/2 as 
appropriate. Charge correction based on C 1s was not deemed appropriate as there was no 
evidence to support a ubiquitous uniform layer of adventitious carbon was present to 
provide a meaningful reference energy for calibrating the energy scale.  Offsets in energy, 
when necessary, are consistently achieved through the use of Zr photoemission to provide a 
shift in energy appropriate for comparison of Zr spectral shapes. 
 
Analysis of Zr 3p was performed using true Voigt line shapes formed via a convolution 
integral between Lorentzian and Gaussian functions. The relative width of the Gaussian with 
respect to the width of the Lorentzian is specified by the second parameter b in the line 
shape description LA(1,b) as defined by CasaXPS [12]. Bell shaped components 
representative of photoelectron intensity and satellite loss peaks are defined with respect to 
a Linear Shirley background defined by CasaXPS. A Linear Shirley background parameter 
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specifies a delay in the characteristic Shirley background shape, which for a standard Shirley 
background would occur directly below peak maxima. The use of the Linear Shirley 
background allows for a band gap expected for ZrO2. 

Mapping XPS Photoemission Peak Position 

Spectromicroscopy XPS data were acquired using stigmatic imaging of the analysis area. 

Signal was recorded with the material surface in a fixed position concerning the stage and 

stigmatic images were acquired over an energy interval using steps in energy between 

measurements equivalent to steps in energy performed during the measurement of spectra.  

Collection of such spectromicroscopy data is capable of creating large data sets and 

therefore requires special consideration compared to conventional spectroscopy data.  The 

application of spectromicroscopy to understanding the effectiveness of charge 

compensation is subject to at least two problems that must be addressed to allow routine 

use of spectromicroscopy. First, collecting data sets of this nature is time-consuming and 

acquiring spectra at pixels in an unprocessed form with an appropriate signal to noise for 

understanding charge compensation would deter many from following the advice offered in 

this work. Similarly, large data sets making use of processing algorithms are limited by user 

tolerance for extended elapse times between initiating a procedure designed to recover 

spectral shapes and obtaining results. A solution to both these issues is presented here 

where an algorithm is described that permits shorter acquisition times by enhancing signal 

relative to noise and the algorithm is fast enough to prevent impatience for a solution 

deterring the use of these procedures. The effort, however, is the need for informed use of 

these techniques. The following is intended to provide insight into the algorithm to permit 

an informed use thereof. 

 

Singular Value Decomposition(SVD) 

The basis for reducing acquisition times for spectromicroscopy is robust procedures for 

identifying and separating signals from noise. Singular Value Decomposition (SVD) has long 

been the basis for robust analysis of data sets into Principal Components (PCA) [13]. The 

approach described here makes use of iterative singular value decomposition (iSVD) [14] to 

perform two tasks that 1) permit the sorting of information within spectromicroscopy data 

sets [15] and 2) calculation of principal components characteristic of signal only. The 

temporal advantage of iSVD is achieved by sorting operations. The sorting of information 

allows the reduction in the size of the initial data set. An application of the transformations 

used throughout iSVD is used to collect a subset of images from the full data set, which 

possesses the essential information contained within the entire image set. Once a 

sufficiently reduce set of images is identified, the application of full precision iSVD to the 

subset of images generates a set of principal component abstract factors that can be used to 

reconstruct each image in the original data set.  A consequence of these processing steps is 

spectra-at-pixels are created with spectral shapes from which an image is computed that 
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maps surface changes in apparent binding energy. Assuming a material surface is 

homogeneous in composition, charge compensation is assessed in terms of uniformity of 

potential by making use of these binding energy maps. The approach based on these maps 

used to understand charge compensation is one of the classifications of pixels with common 

binding energy from which spectra summed directly from raw data are used to demonstrate 

the range of possible shifts in energy over the analysis area. 

The following is presented to provide a mathematical basis for the process applied to 

spectromicroscopy data used to enhance signal at the expense of noise. From an 

applications perspective, these signal enhancing steps are described as PCA, but from a 

mathematical perspective, PCA is implemented as the singular value decomposition of a 

matrix. The following expresses the essential features of SVD and the intimate relationship 

between PCA and linear least-squares approximations [16]. 

Given a matrix 𝒁 a singular value decomposition expresses 𝒁 in terms of three matrices 𝑼, 𝑽 

and 𝑾 as follows. 

𝒁 = 𝑼𝑾𝑽𝑇 

These three matrices have the properties that  𝑼 and 𝑽 are orthogonal matrices (𝑽𝑇𝑽 = 𝑰 

and 𝑼𝑇𝑼 = 𝑰, 𝑰 is the identity matrix) and 𝑾 is a diagonal matrix. Such a decomposition of 

𝒁 is useful for two reasons. Firstly the inverse matrix for 𝒁 is easily obtained as follows. 

𝒁−𝟏 = 𝑽𝑾−𝟏𝑼𝑇 

The inverse 𝑾−𝟏 is simply a diagonal matrix formed from the reciprocal of the diagonal 

elements of  𝑾 and forming the transpose of a matrix is a simple matrix operation. Thus the 

only issue in finding the inverse matrix 𝒁−𝟏 can occur if diagonal elements of 𝑾 are zero or 

close to zero in machine-precision terms. This observation leads to the second reason SVD is 

useful, namely, it is always possible to obtain a solution to a linear least-squares problem by 

SVD, even if the solution is of limited value. 

The matrix 𝑾 can be adjusted to allow a solution by avoiding division by zero that might 

occur when forming 𝑾−𝟏. The problem of dividing by a number that is either zero or a 

number that contains sizeable loss of significant digits is accommodated by singular value 

decomposition by setting to zero problematic diagonal elements of 𝑾. Setting troublesome 

elements of  𝑾 to zero creates �̅̅̅� which implies the alternative matrix �̅� = 𝑼�̅̅̅�𝑽𝑇 that 

approximates the original matrix by projecting rows or columns of 𝒁 onto a subspace closest 

to the original subspace in the least-squares sense. This second point may not be intuitive to 

all, but by considering these concepts in three dimensions it is perhaps possible to visualize 

the essence of these ideas. The relationship to least squares can be visualized in terms of a 

three-dimensional vector and the relationship between the three-dimensional vector and a 

two-dimensional subspace (Figure 1). 
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Figure 1: A vector 𝒚 = 𝑐1𝒂𝟏 + 𝑐2𝒂𝟐  is a least-squares approximation to a vector 𝒅 provided 

𝒚 − 𝒅 is parallel to the direction of the normal vector for the plane defined by vectors 𝒂𝟏 

and 𝒂𝟐. 

The logic for linear least-squares approximations depicted in Figure 1 can be restated as 

follows. The vector 𝒅 is expressed in terms of three vectors 𝒂𝟏 , 𝒂𝟐 and 𝒂𝟑 = 𝒚 − 𝒅, where 

𝒂𝟑 is orthogonal to both 𝒂𝟏 and 𝒂𝟐. Assuming three coefficients are determined such that 

𝒅 = 𝑐1𝒂𝟏 + 𝑐2𝒂𝟐 + 𝑐3𝒂𝟑, the least-squares principle yields the approximation 𝒚 to 𝒅 by 

setting 𝑐3 = 0. 

SVD can be explained by analogy to the construction in Figure 1. SVD is an algorithm that 

accepts as input vectors 𝒂𝟏 , 𝒂𝟐 and 𝒅, then returns three new vectors 𝒖𝟏 , 𝒖𝟐 and 𝒖𝟑 that 

are mutually orthogonal and satisfy the following inequalities involving the vector cross 

product with corresponding unit vectors �̂�𝟏 , �̂�𝟐 and �̂�𝟑. 

[EQU SVD1] |�̂�𝟏 × 𝒂𝟏|𝟐 + |�̂�𝟏 × 𝒂𝟐|𝟐 + |�̂�𝟏 × 𝒅|𝟐 ≤ |�̂�𝟐 × 𝒂𝟏|𝟐 + |�̂�𝟐 × 𝒂𝟐|𝟐 +

|�̂�𝟐 × 𝒅|𝟐 ≤ |�̂�𝟑 × 𝒂𝟏|𝟐 + |�̂�𝟑 × 𝒂𝟐|𝟐 + |�̂�𝟑 × 𝒅|𝟐 

Since |�̂� × 𝒗|2 is the square of the perpendicular distance between the position vector 𝒗 

and a line in the direction of �̂� through the origin (Figure 2), the least-squares principle 

underlies the construction steps leading to an SVD in the following sense. 

𝒚 

𝒚 − 𝒅 

𝒂𝟏 
𝒂𝟐 

𝒅 
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Figure 2:  Perpendicular distance 𝑝 of a point P in 3D space to a line L in the direction of the 

unit vector �̂�. If 𝒗 is a position vector to the point P then the perpendicular distance is 

computed using the vector cross product. The line L approximating a set of points in 3D is 

obtained by minimizing the sum of square distances calculated for the set of points. If three 

vectors 𝒂𝟏, 𝒂𝟐 and 𝒅 define three points in 3D, then the process of computing �̂�𝟏 as a step 

in SVD is the same as minimizing the sum of square distances defined in Equation SVD1. 

Given these SVD vectors 𝒖𝟏 , 𝒖𝟐 and 𝒖𝟑 then expressing 𝒅 in the form  𝒅 = 𝑏1𝒖𝟏 + 𝑏2𝒖𝟐 +

𝑏3𝒖𝟑 is an equivalent statement to 𝒅 = 𝑐1𝒂𝟏 + 𝑐2𝒂𝟐 + 𝑐3𝒂𝟑 with the difference that, if as 

part of the SVD calculation the vector 𝒖𝟑 is associated with an element of 𝑾 that is set to 

zero, then the SVD solution results in 𝒅 ≅ 𝑏1𝒖𝟏 + 𝑏2𝒖𝟐. Thus setting an element of 𝑾 to 

zero conforms to a least-squares principle by projecting 𝒅 onto the plane defined by the 

vectors 𝒖𝟏 and 𝒖𝟐. Setting an element of 𝑾 to zero occurs whenever the calculation 

encounters a problem inverting the matrix 𝒁 as a result of attempting to compute the 

coefficient 𝑏3. Hence the least-squares principle is applied in computing precise SVD results 

and the fix for imprecise results is to invoke a least-squares principle. 

While it is clear, perhaps, that mathematically SVD is a remarkably useful concept, however, 

how to compute SVD for a matrix is not so clear. There are several approaches to computing 

SVD for a matrix which include techniques for computing partial SVD. That is if the intention 

is to obtain a least-squares solution that involves neglecting a proportion of the calculated 

matrices there is little point in expending time on calculations that will be ignored. Some 

algorithms such as NIPALS specifically target the first few columns of  𝑼 and 𝑽, but others 

require all columns to be computed before discarding columns to satisfy the requirements 

for a solution. The approach adopted in CasaXPS software is iterative SVD which is capable 

of both targeting a limited number of columns in  𝑼 and  𝑽, and also, when required, 

computing all columns of 𝑼 and 𝑽  together with 𝑾 to machine precision. 

L 

z 

y 

x 

𝑝 

𝒗 
�̂� 𝑃 

𝑝2 =  |�̂� × 𝒗|2 

⇔ 𝑝2 = ሺ|�̂�||𝒗|𝑠𝑖𝑛𝜃�̂�𝒊ሻ. ሺ|�̂�||𝒗|𝑠𝑖𝑛𝜃�̂�𝒊ሻ 

|�̂�|2 = 1 

|�̂�𝒊|2 = 1 

𝜽 
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While a discussion based on three-dimensional vectors may seem remote to a discussion 

aimed at vectors formed from images, the link between these two concepts is obtained by 

observing SVD applied to three data vectors { 𝒅1, 𝒅2, 𝒅3 }, where 𝒅𝑖 ∈ ℝ𝑛 and 𝑛 equals the 

number of pixels in an image, is as simple as computing a 3x3 covariance matrix for a data 

matrix 𝑫𝟑 = [ 𝒅1, 𝒅2, 𝒅3 ] 

𝒁𝟑 = 𝑫𝟑
𝑇𝑫𝟑 

or 

𝒁𝟑 = [

𝒅1. 𝒅1 𝒅1. 𝒅2 𝒅1. 𝒅3

𝒅1. 𝒅2 𝒅2. 𝒅2 𝒅2. 𝒅3

𝒅1. 𝒅3 𝒅2. 𝒅3 𝒅3. 𝒅3

] 

Computing the eigenvectors for 𝒁𝟑 creates a set of vectors 𝑼 = [�̂�1, �̂�2, �̂�3], where 𝒖𝑖 ∈

ℝ𝑛, satisfying the conditional relationship EQU SVD1. Indeed, the eigenvector equation for 

the covariance matrix is derived by calculus to impose the conditional relationship EQU 

SVD1. The critical point to observe is these three vectors can be ordered by the magnitude 

of eigenvalues to achieve the inequalities in EQU SVD1. Effectively these new vectors have a 

natural ordering that permits the movement of vectors within the data set based on 

eigenanalysis for three vectors at a time and it is in this sense that SVD sorts information 

content in data vectors. 

When the number of data vectors is 𝑚 ≥ 3 iterative SVD is performed to obtain the SVD for 

𝑚 data vectors 𝑫𝒎 = [𝒅1, 𝒅2, 𝒅3, ⋯ , 𝒅𝑚] by an iterative scheme computing one eigenvalue 

and corresponding eigenvector at a time. 

initialize a set of vectors 𝒚1, 𝒚2, 𝒚3, ⋯ , 𝒚𝑚 equal to the set of data vectors 𝒅1, 𝒅2, 𝒅3, ⋯ , 𝒅𝑚 

repeat “while current approximation to largest eigenvector has not converged” 

     loop 𝑖 = 𝑚 down to 3 do 

“replace the vectors 𝒚1, 𝒚2 and 𝒚𝑖 by transformed vectors corresponding to 

the eigenvectors of covariance matrix computed from 𝒚1, 𝒚2 and 𝒚𝑖 in the 

order of magnitude of the eigenvalues and return the largest eigenvalue.” 

on exit 𝒖𝟏 =  𝒚1 

The success of iterative SVD is due to the generalization of a Jacobi rotation performed as 

part of the Jacobi algorithm that determines eigenvectors for a real symmetric matrix [16]. 

The covariance matrix 𝒁𝒎 is a real symmetric matrix. A Jacobi rotation is simply a matrix 

operation computed from two vectors at a time that is mathematically equivalent to 

determining the eigenvectors for a 2x2 covariance matrix. Iterative SVD extends the Jacobi 

rotation from 2x2 to 3x3 by performing a transformation of a real symmetric matrix 
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analogous to a Jacobi rotation, but zeros six matrix elements per transformation rather than 

zeroing only two elements achieved per Jacobi rotation. 

Results and discussion 

The basis for the inaccuracies of ZrO2 spectral envelopes obtained using XPS 

High-resolution Zr 3d and O 1s spectra are shown in Figure 3.  The Shirley algorithm applied 

to data from a sample with a sizeable bandgap is one source for error in measured peak 

intensity [17,18]. While a Shirley-type response of inelastically scattered electrons to a 

sample without an appreciable band gap has some merit, a material with a bandgap means 

that there is threshold energy below which energy loss is unlikely. In the case of ZrO2, by 

considering the background associated with O 1s it can be inferred photoemission signal 

when inelastic scattering occurs creates background signal offset in energy from electrons 

recorded without energy loss. A Shirley background computed in the most basic form 

applied to Zr photoemission from ZrO2 raises the background prematurely (reducing the 

measured peak area) compared to a background that delays the Shirley step and hence a 

basic Shirley background is a poor approximation to the true background beneath Zr 

photoemission peaks. Relative sensitivity factors used to compare photoemission peak 

intensity reduces the consequences of using a basic Shirley background when comparing Zr 

photoemission only. However, since the O 1s photoemission background from ZrO2 is flat no 

step occurs in the background computed via the basic Shirley algorithm, therefore the cost 

of using a basic Shirley background is felt the most when comparing Zr photoemission to O 

1s photoemission. 

 

Figure 3: (Right) O 1s spectrum measured from ZrO2. Evidence that supports a wide bandgap 

of about 6 eV is the flat response of background intensity beneath the O 1s photoemission 

peak. (Left) A basic Shirley background computed from data applied to Zr 3d photoemission. 
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When estimating photoemission intensity from Zr 3p a second source for error is introduced 

by ignoring resonant shapes in the background signal. The evidence for interference from 

loss peaks with Zr 3p is the background shapes associated with Zr 3d. The importance of 

correctly accounting for loss peaks can be seen by considering how a region might be 

defined for Zr 3p and Zr 3d. A loss peak obvious and separate from Zr 3d is located at about 

13 eV to lower kinetic energy than the Zr 3d doublet (see Figure 5). A region defined for Zr 

3d would typically extend over an interval that did not include the loss structure. Assuming 

similar loss structures are associated with Zr 3p, then Zr 3p3/2 would be responsible for a loss 

structure located in energy close to Zr 3p1/2. The existence of a loss structure beneath Zr 

3p1/2 is supported by calculating the ratio of Zr 3p1/2 to Zr 3p3/2. The expected ratio for these 

two peaks forming the Zr 3p doublet should be close to the ratio 1:2, which is not the case 

for Zr 3p. Hence a region defined over an interval including both doublet peaks of Zr 3p 

would not be equivalent to the region defined for Zr 3d. 

Further interpretation of spectroscopic ZrO2 data 

The stability of spectra concerning repeat measurements demonstrates steady-state charge 

compensation has been achieved. These same repetitious spectra also demonstrate the 

sample is not changing chemistry with time. The assumption regarding this latter statement 

is that the lack of energy shifts or changes in peak shapes implies an element is unchanged 

in chemical character.  Hence the first experiment involved measuring the sample multiple 

times in spectroscopic mode.  The survey data shown in Figure 4 are two spectra measured 

sequentially from the same location on the ZrO2 sample in the same area. These spectra 

demonstrate the repeatable nature of photoemission peaks measured at either extreme of 

the energy range. Comparing these two survey spectra support an assertion that, with the 

aid of charge compensation, ZrO2 powder on carbon tape attains a steady-state potential. 
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Figure 4: Comparison of two survey spectra (Hybrid lens mode pass energy 160) showing the 

stability of peak position between these two measurements. If the sample failed to arrive at 

a steady-state (for electrons emitted from the sample and electrons returned to the sample 

by charge compensation) then the relative position of photoemission peaks would evolve 

with time. 

The anomaly described for Zr 3p doublet peak intensities was further examined using 

narrow scan data. Spectra measured over a narrow energy interval allow a smaller step size 

than is typical of survey-type data and the dwell-time can be tailored to the sensitivity of a 

particular photoemission peak. Narrow scan spectra for O 1s, Zr 3p, Zr 3d, Zr 4s and Zr 4p 

are acquired using Hybrid lens mode operating at pass energy 40 eV. These narrow scan 

spectra are used to 1) demonstrate the stability of spectral shapes concerning time and 2) 

verify the stability of sample chemistry concerning the measurement process.  Thirty-two 

spectra were measured per narrow scan for a given photoemission peak. After charge 

correction based on Zr 3d5/2, these four narrow scan spectral regions are displayed overlaid 

in Figure 5. The stability of these spectra is evidenced by plotting three Principal Component 

Analysis (PCA) abstract-factors per narrow-scan interval in Figure 6. These abstract factors 

are the second, third and fourth abstract factors and, for the most part, show no significant 

structure other than variations about peak maxima which is expected for Poisson 

distributed noise. The exception is O 1s data where the second abstract factor includes 

evidence of alterations in O 1s peak shape or energy, but all zirconium photoemission 

suggests little change in spectral form during these experiments. 

Results shown in Figure 5 and Figure 6 rely on applying an offset in energy for individual 

measurements for each narrow scan based on aligning Zr 3d peak maxima. The assumption 

when making such adjustments to the energy scale is the sample (during exposure to X-rays 

and charge compensation) has achieved a balance of potential at the surface. While these 

results are encouraging, there is still the possibility these data are measured from a sample 

in a steady-state, but a steady-state that may include zones within the analysis area for 

which different potentials are nevertheless present. 
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Figure 5: Narrow scan spectra measured from the same location on the sample. These data 

are all shifted in energy by an offset determined from Zr 3d3/2 to align the maximum 

intensity defined by fitting two components to the data shown in the display tile labeled Zr 

3d. 

 

Figure 6: Principal Component Analysis (PCA) of data in Figure 5 yields a set of abstract 

factors for each narrow scan spectra. The first and most significant abstract factor in each 

case is a shape similar to the shape obtained by averaging of spectra over 32 spectra per 

narrow scan. Higher abstract factors are a measure for the deviation from the shape 
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obtained for the first abstract factor. These display tiles show three abstract factors, 

ordered by significance, omitting the first and most significant abstract factor. These plots 

for each Zr photoemission state show variations consistent with Zr spectra that are 

essentially identical in shape and position. Small increases in oscillations correspond to peak 

maxima and are consistent with data containing noise varying as the square root of counts 

per bin. 

Analysis of spectromicroscopy data of ZrO2 surfaces 

The success of charge compensation assessed purely based on spectroscopic evidence is 

open to question. Charge correction based on aligning C 1s line at 284.8 eV is also 

questionable [2,3,19,20]. This is particularly true for spectra with peaks of significant width 

or shapes formed from chemically shifted component peaks. Information about the 

interaction of a charge compensation mechanism and particular material surfaces is in this 

work obtained via measuring spectromicroscopy data sets based on a particular 

photoemission line. In particular, images were collected using steps in energy over an 

interval corresponding to Zr 3d with the objective for an imaging experiment applied to a 

powder such as ZrO2 to verify spectra calculated from image pixels are identical over the 

analysis area. Ultimately, these images measured from a powder should be uniform. The 

signal to noise for data measured using spatially resolved XPS tends to be low compared to 

spectra collected using multiple energy channels in parallel, hence the processing of image 

data is an important step in understanding spectra gathered from image data sets. 

Processing of image data may be as simple as grouping pixels geometrically or creating a 

grouping of pixels using assigning false colors to pixels based on intensity or other criteria. 

PCA-based noise reduction is necessary when deriving spectra at pixels suitable for 

measuring the variation of position or FWHM, for example. Figure 7 presents results 

obtained from images measured over an energy interval corresponding to Zr 3d where pixel 

values are gathered from the binding energy recorded for each spectrum-at-pixels peak 

maximum of Zr 3d5/2. Colors in the processed image, therefore, reflect energy differences 

over the analysis area defined by the field of view 650 um2. Once a binding energy map is 

obtained, spectra integrated from pixels with identical colors similarly demonstrate shifts in 

the energy of less than 0.3 eV. The depth of the valley between the doublet peaks for Zr 3d 

is an indication of energy resolution. 
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Figure 7: An image formed from Zr 3d spectra-at-pixels is partitioned in binding energy (BE) 

using a false-color scale from which integrated spectra-at-pixels result in a ten look-up table 

(LUT) spectra. The color scale used to display pixel colors spans binding energies between 

180.2 and 180.5 eV. Shifts in Zr 3d5/2 seen in integrated spectra reflect the color variation in 

the image. 

Energy shifts of the nature shown in Figure 7 may result from several reasons. One reason 

might be a variation of photon energy with position over the field of view. Another may be 

localized variation in the efficiency of charge compensation. Regardless of the reason for 

these shifts, these spectra gathered from a spectromicroscopy data set suggest the material 

surface is behaving reasonably well given the nature of the material surface and the 

limitations of stigmatic imaging. Specifically, Zr 3d spectra measured directly from the 

material surface (Figure 6) using PE 40 compare favorably with the best energy resolution 

spectra measured indirectly by imaging (Figure 7). The evidence suggests investigating the 

relative intensities for doublet peaks due to Zr 3p based on these measurements is 

appropriate. 

Peak model for Zr 3p in ZrO2 

When fitting Zr 3p, the correct ratio for two peaks forming the doublet is obtained only if a 

component in the peak model accounts for a loss structure present in Zr 3d photoemission 

(Figure 8).  
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Figure 8: Comparison of Zr 3d and Zr 3p illustrating the influence of background loss 

structures obvious for Zr 3d that must also play a role for Zr 3p photoemission. Specifically, a 

loss peak shape due to Zr 3p3/2 coincides with Zr 3p1/2. These data are collected using 

conventional spectroscopy with pass energy 40. In particular, Zr 3d data shown here are 

comparable to Zr 3d shown in Figure 7. 

The peak model in Figure 9 illustrates features of Zr 3p that not only correspond to loss 

structures but also allows for inelastic scattering via the use of an offset in energy applied to 

the sigmoid Shirley shape in a background approximation. Such an offset in the onset of a 

Shirley response to a photoemission peak is justified based on a significant bandgap 

associated with ZrO2. 

A test for the peak model shown in Figure 9 is the application of the peak model to 32 

similar spectra measure from the same material surface (Figure 10). If a peak model is well-

formed then the response of fitting the peak model when fit to different spectra should be 

small variations for each component concerning all spectra used in the test. Figure 10 

suggests the peak model is robust in the sense that after optimization applied to equivalent 

spectra the outcomes are independent of the spectrum to which the model is applied. 

 

 



17 
 

Figure 9: Peak model for Zr 3p doublet where the predicted ratio for Zr 3p1/2 to Zr 3p3/2 is 

obtained only when a loss component corresponding to Zr 3p3/2 is included beneath signal 

corresponding to Zr 3p1/2. 

 

Figure 10: Variation of peak model results when applied to 32 spectra measured from the 

same material surface of ZrO2. 
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The conclusion from the analysis of Zr 3p is that even apparently simple doublet spectra 

require careful consideration and the most obvious approach to fitting such data is not 

always the most appropriate. Placing Zr 3p spectra in the context of other photoemission 

peaks is essential when constructing a more physically meaningful peak model for Zr 3p. 

Application of verification procedures to complex ZrO2 supported materials 

The material surface considered up to this point is expected to be homogeneous ZrO2. The 

peak model in Figure 9 demonstrates little other than the types of shapes that are possible 

with Zr 3p. However, such a peak model becomes useful when considering ZrO2 containing 

different proportions of palladium. For small amounts of palladium in a predominantly ZrO2 

material surface requires the analysis of the same energy interval involving component 

peaks representative of Pd 3d and Zr 3p. Without appreciating the loss structures due to Zr 

3p3/2 it would be easy to overestimate the amount of palladium in a material surface and/or 

misinterpret the chemical state for palladium. There is one further danger to an analysis of 

material surfaces including Zr and Pd, namely, if for any reason a material surface 

responded badly to charge compensation, for small proportions of Pd in a material surface, 

charge shifted Zr 3p could prevent a clear understanding of Pd 3d. Verification of a material 

surface’s response to charge compensation is therefore significant to the study of catalysts. 

A ZrO2 material surface prepared with palladium 10% by weight is measured using the 

protocol described in Materials and methods. Mapping the energy of Zr 3p3/2 demonstrates 

a systematic shift in binding energy from bottom-left to top-right of the imaged area (Figure 

11 top-left). The maximum shift identified by spectromicroscopy is 0.3 eV. Shifts of this 

nature are possibly due to instrumental factors. The systematic shift within this energy 

range is observed for silver material surfaces measure by stigmatic imaging on a Kratos Axis 

Ultra [21]. Therefore, the results shown in Figure 11 support the use of these data to assess 

the relationship of Pd to Zr using peak fitting.  

The peak model is shown in Figure 11 (bottom-right) is prepared for data collected in 

spectroscopic mode. Spectroscopic mode on a Kratos Axis Ultra makes use of an analysis 

area defined by the slot selected area aperture that limits recorded photoelectrons to ca. 

300x700 µm2 which is a proportion of the imaged area shown in Figure 11 (top-left).  The 

spectrum in the bottom-left panel is computed from spectromicroscopy data. All pixels 

within the spectromicroscopy data set are used to compute a spectrum by utilizing the 

spectra shown in Figure 11 top-right after aligning Zr 3p3/2 component peaks followed by 

the summation of energy-adjusted spectra to form the spectrum in the bottom-left panel. 

The same peak model applied to the spectrum computed from spectromicroscopy and the 

spectrum measured in spectroscopy mode shows consistency of outcome. Note that the 

quality of fit for spectromicroscopy data is best judged by the residual plot. These data in 

Figure 11 bottom-left were acquired in a mode that modified raw counts per bin, therefore 

the residual standard deviation is about five times larger than expected. Hence the evidence 
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from spectromicroscopy data in Figure 11 supports the use of a peak model in Figure 11 

bottom to interpret signal in terms of Pd and Zr. 

  

 

Figure 11: Top-left: Surface of Zr/Pd material surface mapped in terms of peak position for 

Zr 3p3/2. Top-right: Spectra calculated from spectromicroscopy data set corresponding to 

pixel classification by color shown in the top-left image. Bottom-left: Spectromicroscopy 

spectrum computed from data shown in Top-right panel by aligning LUT spectra in energy 

concerning Zr 3p3/2 component before summing to form the total spectrum.  Bottom-right: 

ZrO2/Pd material surface analyzed by peak model applied to spectroscopic data following 

verification of data quality using spectromicroscopy. 
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On the evidence of data shown so far one might conclude these analyses are academic as a 

positive outcome appears typical. Unfortunately, charge compensation interactions with 

material surfaces of different compositions, structure and conductivity may not behave as 

well as these examples involving ZrO2. Figure 12 is an example of a material surface that 

responded to charge compensation by creating a steady-state potential but unfortunately, 

the potential at each point on the material surface is not uniform. A map of the position for 

N 1s photoemission shown in Figure 12 illustrates the cause of the problem.  

However, for this case, the magnitude of these shifts is such that an issue would be 

recognized in spectroscopic data. A greater problem occurs when changes in potential 

across the analysis area are less severe and therefore less obvious in spectra. Under these 

more subtle situations, the importance of chemical state analysis of spectromicroscopy is 

more apparent. 

  

Figure 12: An example of failure for charge compensation. The sample and charge compensation 

failed to create a uniform steady state potential for the sample. Problems easily demonstrated by 

mapping the surface in terms of peak binding energy are so server that these would be recognised in 

spectroscopic data without too much trouble. A greater issue occurs where shifts of this nature 

occur but not to the same extent and therefore are difficult to detect without spectromicroscopy. 

 

Conclusions 

The application of spectromicroscopy to understanding the effectiveness of charge 

compensation is subject to at least two problems that must be addressed to allow routine 

use of spectromicroscopy. First, collecting data sets of this nature is time-consuming and 

acquiring spectra at pixels in an unprocessed form with an appropriate signal to noise for 

understanding charge compensation would deter many from following the advice offered in 

this paper. Similarly, for large data sets making use of processing algorithms is limited by 

user tolerance for extended elapse times between initiating a procedure designed to 

recover spectral shapes and obtaining results. A solution to both these issues is developed 
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here where an algorithm is described that permits shorter acquisition times by enhancing 

signal relative to noise and the algorithm is fast enough to prevent impatience for a solution 

deterring the use of these procedures. The cost however is the need for informed use of 

these techniques. The following is intended to provide insight into the algorithm to permit 

an informed use thereof. 

The examples presented in this paper illustrate how XPS imaging, coupled with techniques 

for enhancing signal in spectromicroscopy data, allows chemical state analysis of 

conventional spectroscopic data with confidence that shapes, in spectra, are without 

artifacts due to charge compensation. While spectroscopy remains the focus of many 

papers containing XPS data, chemical state interpretation of spectra measured from 

insulating materials is always open to criticism relating to charge compensation. While far 

fewer papers address scientific problems using XPS imaging, an important role for XPS 

imaging is in supporting outcomes presented from spectra, particularly where charge 

compensation may be less than perfect. This paper demonstrates how spectromicroscopy 

can be used to allay such doubts.  
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