Experimental measurement of the isolated magnetic susceptibility
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The isolated susceptibility x1 may be defined as a (non-thermodynamic) average over the canoni-
cal ensemble, but while it has often been discussed in the literature, it has not been clearly measured.
Here, we demonstrate an unambiguous measurement of 1 at avoided nuclear-electronic level cross-
ings in a dilute spin ice system, containing well-separated holmium ions. We show that x1 quantifies
the superposition of quasi-classical spin states at these points, and is a direct measure of state

concurrence and populations.

I INTRODUCTION

Alternating current susceptometry [I, 2] is a tradi-
tional probe of magnetic response at applied frequencies
w/(27) of up to 10 Hz [3]. As w — 0, the isothermal
susceptibilty yr is measured, while historically there was
much debate as to whether the high frequency response
could be approximated as a quasi-static adiabatic sus-
ceptibility, xs [1], or a quasi-static isolated (or quantum
adiabatic) susceptibility, x1 [4H6]. The latter is a par-
ticularly interesting response function as it reveals as-
pects of a system that are not exposed by thermody-
namic measurements, yet there do not seem to be any
examples where 1 has been clearly observed [7]. Here,
we demonstrate an experimental measurement of xj at
avoided level crossings in a simple spin system, and show
how it is a direct measure of the concurrence, or superpo-
sition of two quasi-classical spin states, and can be used
to measure state populations.

The three susceptibilities, x7, xs and x1, may be pre-
cisely defined with respect to canonical ensemble aver-
ages:
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where the sum is over eigenstates ¢ of the Hamiltonian
(which are not generally simple spin states), H is the ap-
plied field, M is the equilibrium magnetization, V is the
volume, m; = —0F;/0B (with B = pugH) is the mag-
netic moment of eigenstate i, Cy is the magnetic heat
capacity at constant applied field, p; = e*Ei/kBT/Q is a

Boltzmann population and Q@ =, e~ Ei/ksT ig the par-

tition function, with kg Boltzmann’s constant. Note that
the quantum adiabatic susceptibility xr is not necessarily
equal to the thermodynamic adiabatic susceptibility xs.
Also, x1 cannot be expressed as a second derivative of
the free energy, so is not a thermodynamic property. It
has been proved that xr > xs > x1 > 0 [5].

In experiment, the frequency dependent susceptibil-
ity x(w) generally measures OM/OH = xr as w — 0.
A purely real response y(w) = x/(w) at high frequency
could equate to xg if the only effect of finite frequency
is to decouple the system from the heat bath [I], or it
could equate to xp if the state populations of the system
remain equal to those that existed before the field per-
turbation was applied. In the latter case, if the fixed val-
ues p; are not equilibrium populations for all H(t), then
the response of the system is non-ergodic. The experi-
ment measures a time (t) average, M (t)/OH (t), that is
equal to xj, but is not equal to the ensemble averaged
OM/OH = xr. However, x can still be calculated by a
different average over the canonical ensemble, as given in
Eq. 3.

To see how this may come about in practice, in Fig. [Th
we describe an idealized spin system where the driving
period 7 = 27/w is compared to well-separated spin-
lattice (71) and spin-spin (72 < 71) relaxation times [8].
At very low frequency, the magnetic system will remain
in thermal equilibrium throughout the field cycle, giving
xr as the real response. As w is increased until 7 < 71,
equilibrium with the lattice and heat bath are lost, but
spin-spin interactions retain thermal equilibrium between
spins, giving an adiabatic response, x(w) = xs []. If the
drive frequency is further increased until 7 < 75 then
equilibrium between spins is lost and the perturbing field
acts on the state populations that existed before the per-
turbation was applied, so x(w) = x1. Hence, with 7
and 7o well defined and well separated, the susceptibil-
ity x(w) takes the form of a series of decreasing plateaus
(Fig.[Th), reminiscent of a dielectric response. As w is in-
creased, the susceptibility on each plateau — x7, xs and



X1 respectively — can be calculated in a quasi-static limit
(Eq. 1-3).

In this paper, we will be particularly interested in
avoided level crossings (Fig. 1b) where the curvature
of the state energies with field allows a finite x; accord-
ing to Eq. 3. In this context, it is important to stress
that the isolated response is, by definition, adiabatic in
the quantum mechanical sense [9]. The Landau-Zener
effect [10] (a dynamical effect) is therefore not relevant
to this paper except insofar as it could imply a further
crossover, with increasing frequency, from the case where
the crossing is traversed adiabatically, to the case where
it is traversed diabatically (see Fig. 1b). In view of the
subsequent discussion, this would drive the susceptibility
to zero, a feature that we have illustrated in Fig. la. An
experimental example of a Landau-Zener crossover in a
rare earth complex is given in Ref. [I].

The response of real magnetic systems can be far more
complicated than implied by the simplified picture of Fig.
la, but there will always be a gradual crossover, with in-
creasing frequency, from a scenario in which state pop-
ulations change on the time scale of the field cycle, to
one in which they do not. The low frequency regime
can be treated by a master equation approach (see, for
example, Refs. [0, 12]), which accounts for state popu-
lation changes, while the high frequency regime can be
treated by a Kubo-type linear response approach [13],
which assumes fixed populations. Indeed, neutron scat-
tering, which probes the response at relatively high fre-
quencies, is very successfully treated by the latter ap-
proach [14].

In contrast to xr, which irretrievably mixes field-
induced changes in quantum states with field-induced
changes in state populations, x; may be viewed as a more
direct measure of quantum spectra. It is further a gen-
eral measure of the superposition of quasi-classical spin
states. Thus, if an energy eigenstate is say a pure ‘spin
up’ state, it will have zero isolated susceptibility because
the magnetic moment is field independent (see Eq. 3).
A finite x can, however, be observed if spin up and spin
down are superposed, which allows the magnetic moment
to evolve with field. This is confirmed by writing x1 in
the equivalent form [6]:
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where [i is the magnetic moment operator and § =
1/kgT. This contains finite matrix elements only if dif-
ferent energy eigenstates ¢,j contain both spin up and
spin down components, as occurs at avoided level cross-
ings, for example.

In this paper we demonstrate a particularly simple
magnetic system in which the isolated susceptibility can
be measured and analysed. The paper first considers rele-
vant theory and then describes our experimental results.
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FIG. 1. (a) A schematic showing the frequency dependent
decoupling of the real (black) and imaginary (red) parts of
the magnetic susceptibility in a system with well-separated
spin-lattice and spin-spin relaxation times. One can expect
three plateaus of purely real response corresponding to xr, Xxs
and x1 respectively. (b) Avoided level crossing (upper blue
curves). In this paper we are solely interested in adiabatic
evolution (blue). This is illustrated for an initial state on the
lower branch, as indicated by a black circle. Also illustrated
is diabatic evolution (pink) that could occur if there were
a Landau-Zener crossover at frequencies greater than those
studied here. The lower curves (same colour code) indicate
the corresponding isolated susceptibilities for the ensemble of
two state systems treated in Section II, where the adiabatic
case yields a peak in x1 while the diabatic case gives zero (see
Fig. 1a).

In Sec. II we solve the statistical mechanics of a sim-
ple two state paramagnetic system with an idealised spin
Hamiltonian, designed to emphasise differences between
the three susceptibilities (Egs. and to highlight the
connection between isolated susceptibility and state con-
currence. Sec. IIT shows how a variant of this Hamil-
tonian may be realised by approximating the hyperfine
Hamiltonian of dilute spin ice. In particular, there is pre-
dicted a strong isolated response and perfect state con-
currence at avoided level crossings in finite field. Sec. IV
then describes our experiments that confirm these pre-



dictions at T" > 2 K, where the system is prepared in a
state of thermal equilibrium. Sec. V describes analogous
low temperature experiments, down to 7' = 76 mK, that
reveal how, when the system cannot be brought to equi-
librium, isolated susceptibility can be used as a sensitive
probe of the non-equilibrium state populations. Conclu-
sions are subsequently drawn in Sec. VI.

II A TWO STATE SYSTEM

We start by considering a simple two-state system in
which the difference between the three susceptibilities of
Egs. 1-3 may be made explicit. The system consists of
an ensemble of non interacting spins, each with S =1/2
and Hamiltonian

H = 2uBS* + 2A5%. (5)

Here, p is the size of the magnetic moment of the pure
spin up or down states, A is a perturbation and the spin
(S) operators are defined to be dimensionless. The first
term in Eq. [f]is the Zeeman interaction and the second
term mixes magnetic (‘spin up’ and ‘spin down’) states.
This Hamiltonian is easily diagonalized, with eigenvalues
characteristic of an avoided level crossing at B = 0 (see
Fig. 1b, blue lines):
Ei = :I:g;
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characteristic of a gradual superposition of spin up and
spin down as the crossing is approached. The two quasi-
classical states are completely superposed at the level
crossing in zero field, but are not superposed far from
that point.

To characterise this behaviour quantitatively, following
Ref. [I5] we may introduce the ‘concurrence’ C of a state
|1} as its overlap with its spin-reversed equivalent |1/~J>

c() = |@wld)] - ®)

This takes the value C = 0 for the non-superposed states
[t) and |}) which are the eigenstates corresponding to
E4 in sufficiently strong fields |B|, and C = 1 for the
fully superposed states ¢+ = (|1) % [1)) /v/2, which are
the eigenstates at the zero field avoided level crossing. It
is then easy to show that the isolated susceptibility is a
direct measure of concurrence as a function of field C(B),
given by
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where C(B) = A/y/A? + B2u? and py represent the nor-

malized state populations. Using Boltzmann probabili-
ties, this becomes
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where the right hand approximation is valid in the high
temperature limit. The isolated susceptibility is then a
Lorentzian function of field:
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With knowledge of the exact eigenstate energies as a
function of field, all three susceptibilities of Eqgs. 1-3 can
therefore be calculated. The isolated response is a maxi-
mum at B =0 when C = 1 and x1(0) = xs(0) = x7r(0) =
poV ~1Bu?. The closely spaced eigenstates of the system
with energy F4+ = +/A have precisely zero magnetic mo-
ment at the avoided crossing in zero field, only gaining a
moment through their mixing by the second order Zee-
man effect as the field is applied. However with increasing
field, the three susceptibilities diminish at different rates,
such that oV —"Bu* > x1(B) > xs(B) > x1(B).

The more complex Hamiltonian considered subse-
quently will retain many of the characteristics of this
simple example, though some important differences of
detail arise from the fact that in the more complex case,
the avoided level crossings occur at finite applied field.

IIT1 HYPERFINE HAMILTONIAN

A model Hamiltonian similar to that considered may
be realized experimentally in the dilute limit of an Ising-
like spin system, such as very dilute samples of spin ice,
le'9975H00.0025T‘igO77 studied here. Flg illustrates
the spin ice geometry where every fourth (apical) spin is
parallel or antiparallel to the field, while the other three
(basal) spins have only a small parallel or antiparallel
component. We will be interested mainly in the response
of the apical spin, but the three basal spins also need to
be considered as they provide an important correction.

The non-Kramers holmium (Ho*") ion with nuclear
spin I = 7/2 would be expected to afford a weakly ‘split’
electronic spin doublet with effective spin S = 1/2 [16]
and z = (111) quantization axis ensured by the large trig-
onal crystal field [I7]. For an ideal non-Kramers doublet
of this sort, neglecting the quadrupole term, the hyper-

fine Hamiltonian may be written
A J)
A= — 12
9| (g'] (12)

where A;/g; should be essentially the same for all Ho
salts (note that Ho has a single isotope). For Ho®** in
the spin ice environment, the parallel g-factor is g ~ 19

Hpyper = AS*I*
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FIG. 2. (a) The four Ising like (111) spin orientations of Ho®" with respect to the [111] direction of the applied field (blue),
with the basal plane shaded (apical spin in red, basal spins in magenta). In the dilute sample only one or zero magnetic sites are
likely to be occupied by magnetic Ho®*" in any given tetrahedron of the crystal structure. (b) Energy diagram of the hyperfine
levels of an apical Ho®" ion as a function of magnetic field with an effective splitting of A/kg = 0.013 K, showing direct and
avoided level crossings. (c) The effective electronic spin-1/2 Ho3" ion has eight Zeeman split levels which are degenerate in zero
field (gray arrows). As the frequency is increased only four transitions (red arrows) are allowed, such that only the electron
spin reverses. When brought into resonance by applied field, superposed £mys states have finite isolated susceptibility.

(see below) and the hyperfine parameter is A/kp ~ 0.3
K. If higher states are relevant, they can induce a further

transverse term A’(S71*+SY]¥) with A’ = g, (%), but
here, any perpendicular g-factor g, is certainly extremely
small [I7] and is henceforth assumed to be zero. More
importantly, Abragam and Bleaney [16] recommend the
addition of a term 2A(S” + S$¥) with a distribution of
parameters A arising from local strains. We can suppress
the y-term without loss of generality, and including the
Zeeman term for the field B applied parallel to [111], the
effective Hamiltonian for the apical spins becomes:

Hapical = 2A17 5% + 2uBS* + 2A5%, (13)

where = (1/2)g us ~ 10 pp. A similar Hamiltonian
may be constructed for the basal spins:

Hpasal = 241787 +2(11/3)BS* +2A8%,  (14)

The factor (1/3) in this equation arises from the angle
arccos(1/3) that the basal spins subtend with the applied
field.

Taking H apical s an example, these Hamiltonians may
be represented in the basis of states |mg)|my), where
the only off diagonal terms are those with m; —m/ =
0 and mg — mly = £1. Here mg = £1/2 and m; =
+7/2,4£5/2,43/2,41/2. Hence the Hamiltonian can be
separated into a series of 2 x 2 blocks of the type

rr |Amp+ B A
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one for each value of m;. The Hamiltonian is thus easily
diagonalized, as above, with eigenvalues:

Epy+ =+ (Amy + uB)? + A2, (16)

Hence energies and magnetic moments of the Hamilto-
nian Eq. [I§ map to those of Eq. [p]- 7, with B replaced
by Amj + uB: the nuclear spin acts as an effective field
that adds to the applied field. It is then straightforward
to evaluate the partition function corresponding to Eq.
and then derive the susceptibilities using Eqs. 1-3 with
the magnetic moment defined as m; = —0F;/0B.

The consequent energy diagram for the apical spins
as a function of magnetic field is shown in Fig. 2p, illus-
trating the field dependent direct and avoided level cross-
ings. There are two degenerate ladders of energy levels,
each corresponding to mg = +£1/2, with m; defining the
rungs of the ladder, as is depicted in Fig. [2k. Starting
from the zero field as depicted in the figure, as a mag-
netic field is applied, and neglecting its weak coupling
with the nuclear moment, the two sets of states shift by
the electronic first order Zeeman energy difference. This
gives, in principle, eight values of the applied field where
energy level crossings occur. However, the isolated sus-
ceptibility x1(H) strongly peaks only at the subset of four
avoided level crossings where the nuclear spin state does
not change (see Fig. ) At these points, the ‘up’ and
‘down’ electronic spin states, [1) and |]), respectively, are
fully superposed and show complete concurrence, C = 1,
while off-resonance, the spin states tend towards simple
spin up or down with C = 0 (see Eq. 7,8). However, in
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FIG. 3. Calculated values of the three susceptibilities (Egs.
13) at 7= 2.1 K for the apical spin Hamiltonian Eq. with
spin concentration equal to that of the sample studied.

contrast to the simpler case considered above, even at the
special points of resonance, xi is suppressed by a signif-
icant factor with respect to xr (see Fig. [3]). Physically,
the reason is that, at a given avoided crossing, the iso-
lated susceptibility is only finite for electronic states as-
sociated with a single nuclear spin state, a small fraction
(~1/(2I4+1) at high temperature) of the total available.
One might say that the field-driven system is ergodic for
one nuclear spin state, but non-ergodic for the rest, in
contrast to the simpler case of Eq. 9, where the system
is fully ergodic at the B = 0 resonance and xr = X1 as
envisaged by Kubo [13].

Considering just the isolated susceptibility, we refer
to Fig. [3] and label the four isolated susceptibility peaks
(left-right) as 1-4. A similar calculation (not shown) may
be carried out for the basal spin Hamiltonian, Eq.
The basal spins are found to contribute a small peak coin-
cident with 2 and another small peak at three times that
field (to the right of 4 in Fig. [3)). The reason these fea-
tures are relatively small is that the susceptibility scales
as the moment squared and the projected moment of the
basal spins is 1/3 that of the apical ones, but they have
three times the population so the peaks are only one third
(= 3 x (1/3)2) the height of the apical spin peaks. The
basal spins therefore represent a small correction to peak
2 and a small rising background correction to the right
of peak 4.

More generally, a strongly structured nuclear-
electronic response is indeed a long established behav-
ior [I8] of dilute Ho®T ions in crystals, which have been
impressively analysed with master equation-based ap-
proaches in several works [T9H23]. In general, various
transitions are possible depending upon coupling with
the local environment of the effective spins, which gener-
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FIG. 4. Temperature dependence of the d.c. field cooled sus-
ceptibility of Y1.9975H00.0025 Ti2O7 measured along the [111]
axis (blue points) compared to a Curie law fit summed with
a small temperature independent component (red line).

ates a combination of intrinsic and interaction-induced
direct and avoided level crossings, respectively. Our
Hamiltonian, Eq. describes a highly simplified lim-
iting case where the response is mapped on to the quasi-
static isolated susceptibility, Eq. [3]

IV EXPERIMENT

A single crystal of Y1 .9975H00.0025Ti2O7 was grown by
the optical floating-zone technique [24]. It was aligned
with the applied field along the cubic [111] axis. a.c. and
d.c. susceptibility measurements were made at T > 2
K using a Quantum Design Physical Property Measure-
ment System and at T < 2 K using a low-temperature
SQUID magnetometer developed at the Institut Néel in
Grenoble [25].

To confirm the stoichiometry x and the paramagnetic
approximation, the bulk susceptibility was measured, af-
ter cooling in a field of 0.1 T. The data were fitted to
the sum of a Curie law xr = C/T and a very small
temperature-independent component. The Curie con-
stant C' was specified for density x = 0.0025 while the
g-factor g entering into the theoretical expression for
C [26] was treated as a fitting parameter. This gave
gy = 19.0, which we use in subsequent analysis. The
excellent fit shown in Fig. 4 confirms that the nominal
x = 0.0025 is accurate. A splitting between field cooled
and zero field cooled susceptibility (not shown) was ob-
served below T = 3.6 K. This shows that the spins are
already falling out of equilibrium on the time scale of
this ‘static’ measurement. It is consistent with our ob-
servations of the frequency dependent susceptibility, as



FIG. 5. Frequency and magnetic field dependence of the real
part of the susceptibility measured at 2.1 K with an a.c. am-
plitude of 0.2 mT, demonstrating a gradual reduction to four
peaks as the frequency is increased.

described below.

The a.c. susceptibility x'(w) measured at 2.1 K (with
a probe field of 0.2 mT) is shown in Fig. [f] At low fre-
quency and zero field x’(w) approaches xr of Fig. |4} and
while it still falls short by some 25% at the lowest ap-
plied frequency, the ‘x7’ plateau of Fig. la can safely be
presumed to exist at lower frequencies than those applied
here. In finite field, multiple peaks evolve with increas-
ing frequency to become four distinct peaks by 10 kHz.
The spectrum and amplitude of these four peaks cor-
respond closely to the isolated susceptibility of Fig.
and we may therefore identify the distinctive plateau in
their frequency evolution with the ‘x1’ plateau of Fig. 1la.
As anticipated, the high frequency susceptibility on the
peaks is essentially a real response with any imaginary
component being only a few percent of the real part (see
Fig. 6a). At intermediate frequencies the ‘xs’ plateau
of Fig.1a is not clearly resolved at any value of applied
field, presumably because spin-spin and spin-lattice times
are not sharply defined or separated in this system. The
multi-peak structure in the intermediate frequency range
is similar to that described for other Ho systems [20].

It is clear from Fig. 5 that transitions at high frequency
are of the type |1/2) |my) — |—1/2) |m ), consistent with
our effective Hamiltonian for spins parallel to the field.
Also, as well as showing the four peaks associated with
the apical spins, the experimental spectra evidence the
expected additional small component on peak 2 from the
basal spins: that is peak 2 is approximately 1/3 higher
than the other peaks. There is also what seems, at first
sight, like an unexpected ‘nonzero background’ that fills
in the gaps between the peaks. However the fact it is

mainly real (see Fig. 6a) identifies it as part of the iso-
lated response itself.

We now consider how these data can be fitted quantita-
tively. The theoretical isolated susceptibility is found by
summing the susceptibilities x1 of the apical and basal
spins calculated as described above, using Eq. with
Boltzmann probabilities for the nuclear-electronic spin
states and the hyperfine parameter refined to A/kp =
0.2945 K by fitting the experimental peak positions.

With this, the fits have no adjustable parameters ex-
cept those connected with the distribution of A, which
can only be estimated empirically [16]. Fig. 6a compares
the experimental data with a single value of A/kg =
0.015 K. The peaks are quite well described, but the re-
gions between them are underestimated. The broadened
bases of the peaks suggest a contribution to the distri-
bution from A/kg =~ 0.1 K. There is also the possibility
of some ions experiencing a very small A which raises
a complication. For sufficiently small values of A, the
apparent response in an a.c. susceptibility experiment
with finite probe field will approach zero, because of the
nonlinearity (and eventual saturation) of the magnetic
moment with field. Our experiment used a probe field of
0.2 mT from which we can estimate A/kg < 0.002 K as
the point beyond which the response will be suppressed.

To capture these properties in an empirical, parame-
terized, distribution, we consider one consisting of three
delta functions (one at zero, and one each at the lower
and upper values of A discussed above):

P(A) = fod(A)+f16(A—0.015 K)+ f20(A—0.1K), (17)

(where we have suppressed factors of Boltzmann’s con-
stant for clarity). The delta function at zero does not
contribute any response, but is relevant through the nor-
malisation condition on the frequencies: >, f; = 1. With
this, we have two independent parameters to fit the data:
f1 and f2.

Fig. 6b compares fits to the data taken either at the
same temperature (2.1 K) with a larger probe field (1
mT) or at a larger temperature (4 K) with the same
probe field (0.2 mT). For the larger probe field, as would
be anticipated, the ‘invisible’ part of the response (rep-
resented by fp) is increased as more of the nonlinear re-
sponse is sampled over the field cycle. As expected, the
susceptibility derived at 1 mT falls below that of the 0.2
mT measurement and fo = 1— f; — f> derived from the fit
was found to increase accordingly from 0.13 at 0.2 mT to
0.23 at 1 mT. Changing temperature, on the other hand
yields parameters in close agreement with those found at
T = 2 K, again as expected.

Referring to Fig. 6b, the apical response is clearly
very well fitted by the model Hamiltonian. The basal
response is slightly less well described, as a small
imaginary component is detectable on peak 2. However
this part of the response is far too small to warrant
introducing extra parameters into the model. The fact
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a. The real (blue points) and imaginary (grey points) part of the measured susceptibility at 2.1 K, 10 kHz and

probe field 0.2 mT compared to the theory, with a single value of A/kg = 0.015 K (black line). b. Experiment versus theory
with an empirical distribution of A (Eq. 18). The fitted parameters are f; = 0.511(6), fo = 0.352(3) for 2.1 K, 0.2 mT,
f1 =0.455(6), fo = 0.312(3) for 2.1 K, 1.0 mT; f1 = 0.52(1), fo = 0.335(4) for 4 K, 0.2 mT. These parameters affect the peak
shape, not peak heights and are expect to evolve with probe field, but not significantly with temperature.

that a quite accurate fit is already obtained using a sim-
ple empirical distribution of A points to the conclusion
that the model is essentially correct.

V LOW TEMPERATURE BEHAVIOUR

Because the isolated susceptibility separates popula-
tion changes from state vector changes, the decline of
peak intensity with increasing field (having allowed for
the basal spin contribution on peak 2) is a measure of the
decline in population with increasing energy, and hence
a measure of the temperature. This gives an interesting
method of directly investigating the effective tempera-
tures reached when spin ice falls out of thermal equilib-
rium at T < 0.6 K [27]. Fig. [7| shows the temperature
dependence of X’ at a fixed frequency of 11 Hz as the
dilute sample is cooled. As the temperature is lowered to
the base temperature of 76 mK, the four peaks indicative
of isolated response again appear, but there are two fea-
tures that mark these as reflecting non-equilibrium popu-
lations. First, at 76 mK, direct calculation shows that all
peaks should have zero intensity if equilibrium is main-
tained, yet their observed intensities suggest a temper-
ature of order 1 K. Second, peak 4 is now anomalously
intense, which is a signature that the system, initially

zero field cooled, does not fully re-equilibrate as the field
is applied. Thus, referring to the energy level diagram
of Fig. 2b, if the system retains the equilibrium pop-
ulations of zero field, then the I = 7/2 resonance (a
former ground state) will have the strongest intensity,
not the weakest. We deduce that, in contrast to higher
temperatures where the state populations are thermally
equilibrated before the a.c. probe field is applied, at low
temperature the system does not fully equilibrate in re-
sponse to the changes in temperature and applied mag-
netic field that take place before the measurement. Yet
it is clear that Eq. [3] is valid, regardless of whether or
not the p;’s are Boltzmann populations, so observation
of the isolated susceptibility can be used to measure how
the actual p;’s depend on energy. To analyse the details
of this behavior theoretically is an interesting challenge
that is beyond the scope of this paper. We also remark
that there is potential for the control of non-equilibrium
state populations by pumping and then subsequent mea-
surement by susceptometry.

VI CONCLUSION

In conclusion, although there has been much work on
the susceptibility of isolated rare earth ions, including
detailed master equation based analyses of experimen-
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FIG. 7. The real part of the susceptibility at 11 Hz as a func-
tion of field and decreasing temperature, demonstrating that
the isolated response is revealed by low temperature as well as
high frequency, and that the distribution of peak intensities
is no longer that of a Boltzmann distribution (contrast Fig.
6).

tal data [T9H23], it appears that a simple reduction to
a well defined isolated susceptibility has not been previ-
ously observed. Our observation of it in dilute spin ice
has been enabled by the unique local environment of the
Ho3*, which allows a very simple effective Hamiltonian
to be enacted.

Our results highlight the difference between the pro-
cesses imagined when one formulates the thermodynamic
adiabatic and quantum adiabatic (isolated) susceptibili-
ties (Egs. [2| and [3) to describe the response of the sys-
tem to a change in applied field, B — B + dB. In the
thermodynamic case, the process is thermodynamically
reversible: the state of the system in the field B + dB
is a thermal equilibrium state. In the quantum case the
process is only mechanically reversible: the system is out
of thermal equilibrium in the field B + dB. This begs
the question, if state populations cannot respond to a
change in field, how could a Boltzmann population be
prepared in the first place? The answer is that one needs
the equilibrium state in a field B to be prepared on some
time scale that is sufficiently long for equilibrium to be
established, but the perturbing field dB to be applied
on a time scale that is sufficiently short that changes
in state population do not occur. Our experiments fur-
nish examples that achieve this condition (here at higher
temperature) as well as examples that do not (here at
lower temperature). In the latter case our results indi-
cate that a Boltzmann population cannot be prepared,
and we would expect that the actual distribution (and
hence response) will show a complicated history depen-
dence: our initial measurements confirm this expecta-

tion, but to fully characterise this behaviour will be a
major project. Here we confine ourselves to the conclu-
sion that the isolated susceptibility may potentially be
used to directly measure the non-equilibrium state pop-
ulations. This indicates a promising avenue of research
in the context of spin ice and other rare earth magnets,
as it suggests a way to test non-equilibrium theories, the
concept of effective temperature [28], and so on.

Finally, we have shown how the isolated susceptibil-
ity is a direct measure of concurrence C between spin
states, with C = 1 at the avoided level crossings. This
infers that the apical spin population in our dilute spin
ice sample shows complete, or nearly complete, concur-
rence at these special points. We are not aware of any
other examples of an experimental measurement of state
concurrence in a real magnetic system. Whether or not
this ability to measure concurrence translates to more
strongly interacting systems is an open question, but a
strongly interacting system showing these effects may be
afforded by bulk (concentrated) spin ice, where spin flip-
ping associated with ‘monopole’ excitations gives similar
peaks in the high frequency susceptibility [29] [30].
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