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Abstract: Word embeddings are representations of words in a vector space that models semantic
relationships between words by means of distance and direction. In this study, we adapted two
existing methods, word2vec and fastText, to automatically learn Welsh word embeddings taking
into account syntactic and morphological idiosyncrasies of this language. These methods exploit
the principles of distributional semantics and, therefore, require a large corpus to be trained on.
However, Welsh is a minoritised language, hence significantly less Welsh language data are publicly
available in comparison to English. Consequently, assembling a sufficiently large text corpus is not a
straightforward endeavour. Nonetheless, we compiled a corpus of 92,963,671 words from 11 sources,
which represents the largest corpus of Welsh. The relative complexity of Welsh punctuation made
the tokenisation of this corpus relatively challenging as punctuation could not be used for boundary
detection. We considered several tokenisation methods including one designed specifically for Welsh.
To account for rich inflection, we used a method for learning word embeddings that is based on
subwords and, therefore, can more effectively relate different surface forms during the training phase.
We conducted both qualitative and quantitative evaluation of the resulting word embeddings, which
outperformed previously described word embeddings in Welsh as part of larger study including
157 languages. Our study was the first to focus specifically on Welsh word embeddings.

Keywords: Welsh language; natural language processing; human language technology; machine
learning; word embeddings

1. Introduction

Natural language processing (NLP) studies the ways in which the analysis and synthe-
sis of information expressed in a natural language can be automated. In recent years, most
breakthroughs and improvements in the field have been the result of applying machine-
learning techniques. One such case is that of word embeddings [1]. A word embedding
is a mapping from the lexico-semantic space of words to the n-dimensional real valued
vector space. Here, the dimensionality n is a hyper-parameter, i.e., a parameter whose
value is set before the learning process begins. Compared to a traditional document–term
matrix, whose second dimension will correspond to the size of the vocabulary, the dimen-
sion of the word embeddings is typically chosen to be relatively small, e.g., 300. Unlike
document–term matrices, which are sparse, i.e., have a great many zero values, word
embedding vectors are dense. The dimensions of word embedding vectors correspond to
latent variables sampled from the distribution of words in a large corpus. As such, word
embeddings tend to arrange semantically related words in similar spatial patterns. For
example, the distance between the words ‘shoe’ and ‘sock’ should be relatively small com-
pared to the distance between the words ‘shoe’ and ‘butter’. Similarly, the vectors between
‘foot’ and ‘sock’ on one hand and ‘hand’ and ‘glove’ on the other should be near equal, i.e.,
have similar direction and magnitude. Owing to these latent semantic properties, it has
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been demonstrated that in many cases the use of word embeddings improves performance
of downstream NLP tasks such as named entity recognition and sentiment analysis.

To date, there has been much research on the creation of word embeddings for the
English language [2]. In this study, however, we focus specifically on the Welsh language.
Welsh is the native language of Wales, a country that is part of the United Kingdom
(UK), in which it has the status of an official language alongside English. According to
the 2011 UK Census, 19% of residents in Wales aged three and over were able to speak
Welsh. Subsequently, the Office for National Statistics Annual Population Survey for the
year ending in March 2019 determined that 896,900 Welsh residents (30% of the total
population) aged three or over were able to speak Welsh. Nonetheless, Welsh is considered
a low resource language in the sense that relative to English there are fewer corpora and
NLP tools that are readily available. Empirical evidence suggests that the observance of
lexico-semantic patterns in word embeddings is correlated with the size of corpus used for
training [2].

Having assembled a large corpus of Welsh, the next challenge in training word em-
beddings is the recognition of words as discrete units of text, the process commonly known
as tokenisation. The relative complexity of Welsh punctuation, particularly the extensive
use of apostrophes that differs from their typical use in English, makes tokenisation chal-
lenging. Finally, Welsh is a morphologically rich language where inflection can give rise
to multiple surface forms of a single word. Moreover, Welsh words can be inflected at
their beginning as well as their ending, rendering the traditional stemming approaches
ineffective in linking together related surface forms. Arguably, word embeddings trained
on the original surface forms can capture the patterns of their inflection. However, such
an approach is not feasible for languages that are highly inflected, yet low resourced as
different surface forms may not occur frequently enough to establish a pattern of inflection.

Once these challenges are overcome, the actual process of training word embeddings
is relatively straightforward as most of the state-of-the-art algorithms are, in fact, language
independent. Several generic methods for learning word embeddings have been developed
and applied successfully to different languages. However, such a general approach is not
optimised with respect to the specific characteristics of individual languages and in turn
the resulting word embeddings may not be optimal. In this study, we describe a novel
workflow for training Welsh word embeddings that has been developed to overcome the
above challenges. Specifically, we assembled a large corpus of Welsh. We considered
several tokenisation methods including one designed specifically for Welsh. To account for
word inflection, we opted for a generic word embedding method that is based on subwords
and, therefore, can effectively relate different surface forms that share subwords.

The remainder of the paper is organised as follows. Section 2 presents a review of
the state of the art in Welsh NLP. Section 3 presents the proposed workflow for learning
Welsh word embeddings. Section 4 presents a qualitative and quantitative evaluation of
the resulting word embeddings. The quantitative evaluation required us to create a Welsh
word embedding benchmark. Finally, Section 5 draws conclusions from this study and
discusses future research directions.

2. Related Work

This section reviews language resources that can support NLP in Welsh and, in par-
ticular, creation of word embeddings in this language. The first step in training word
embeddings is to assemble a large corpus. Corpus-based language studies provide empiri-
cally based objective analyses of patterns of language as it is actually used, using evidence
from a corpus (singular) or corpora (plural). CorCenCC (Corpws Cenedlaethol Cymraeg
Cyfoes—the National Corpus of Contemporary Welsh) is a major corpus [3] containing
10 million words of written, spoken and digital (or ‘e’) Welsh language. It contains multiple
language samples from real-life communication, allowing linguists to explore Welsh as
it is actually used. It organises data into multiple facets, which can be used to study sub-
languages as defined by [4]. All data are also annotated with different types of linguistic
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information including morphological units, tokens, part-of-speech (POS) [5] and semantic
categories [6,7]. In addition to linguistic research, the corpus can support a range of other
applications such as learning and teaching of Welsh, but also NLP. In this study, together
with other data sources, samples of data from an early release of CorCenCC were used to
train word embeddings (see Section 3.1).

Having identified the relevant sources of data, the first step towards the creation of
word embeddings is the process of identifying individual words as discrete units of text, the
process known as tokenisation. Welsh Natural Language Toolkit (WNLT) [8] implements a
set of rule-based Welsh NLP tools for tokenisation, lemmatisation, POS tagging and named
entity recognition (NER), which are embedded into the GATE framework [9]. Similar NLP
capabilities have been implemented to support pre-processing of documents stored in
CorCenCC, which are tokenised and tagged using CyTag, a rule-based POS tagger [5].
Another POS tagger, which can be used as a web service without the need to install it
locally, can tag lexical categories (e.g., verbs and nouns) as well as the features specific
to the Welsh language such as mutations [10]. The same team developed a lemmatiser,
which can be used to normalise any inflected, mutated and/or conjugated word into its
lemma [11].

Members of the CorCenCC team also developed downstream NLP methods for multi-
word term recognition [12] and semantic tagging [6,7]. These methods were originally
developed for English and successfully adapted for Welsh [13–15]. These methods can
be useful for improving the performance of the downstream task of machine translation
methods. For example, verbatim translations often deviate from the established termi-
nology in the target language. Therefore, high-quality translations, performed by either
humans or machines, require management of terminologies. Most machine translation
systems require a terminology dictionary, e.g., [16,17] and/or the ability to extract terms
dynamically [12] to support translations that use established terminology in the target
language. In general, phrase-based statistical machine translation can improve the levels
of translation quality where sufficiently large parallel corpora can be used for training
as demonstrated in the case of English and Welsh [18]. In particular, the ability to align
translated texts into paired sentences in the two languages [19] can support training of
cross-lingual word embeddings [20], which can allow existing English language resources
to be re-used for applications in Welsh.

Welsh word embeddings were first described in a study that presented a general
method for creating word embeddings that was tested across 157 languages [2]. They were
since used to support a machine-learning approach to a joint task of POS and semantic
tagging [21]. However, these embeddings were created using a generic approach, which
does not take into account specific characteristics of the Welsh language. For example,
the text was segmented by the ICU tokeniser, which is language agnostic and not entirely
appropriate for Welsh as it features an extensive use of apostrophes that differs from their
typical use in other languages. Furthermore, a single method for creating word embeddings
was considered, whereas alternative methods could prove to be more suitable for Welsh.

3. Methods

This section describes the proposed workflow for training word embeddings in Welsh.
The workflow consists of three main steps. First, we assembled a large text corpus of Welsh
language. Next, the corpus was pre-processed to identify individual words as discrete
units of language. Finally, different methods for training word embeddings were applied
to the pre-processed corpus. The following sections describe these steps in more detail.

3.1. Corpus Collection

Welsh is considered a low resource language in the sense that relative to English there
are fewer corpora that are readily available. In particular, no single Welsh text corpus is
large enough to train word embeddings. To support this goal specifically, we compiled a
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large corpus of 92,963,671 words from 11 sources. Their summaries are provided in Table 1.
Additional details are provided in the remainder of this section.

Table 1. Data sources used to collect the training corpus.

Source Number of words

CorCenCC 1,875,540
Welsh Wikipedia 21,233,177

National Assembly for Wales 1999–2006 11,527,963
National Assembly for Wales 2007–2011 8,883,970

Cronfa Electroneg o Gymraeg 1,046,800
An Crúbadán 22,572,066

DECHE 2,126,153
BBC Cymru Fyw 14,791,835

Gwerddon 749,573
Welsh-medium websites 7,388,917

The Bible 749,573

• CorCenCC—CorCenCC is the first large-scale general corpus of Welsh language. The
corpus currently contains over 10 million words of spoken, written and electronic
language and collection is still ongoing. The corpus is designed to provide resources
for the Welsh language that can be used in language technology (speech recognition,
predictive text etc.), pedagogy, lexicography and academic research contexts among
others. The development of CorCenCC was informed, from the outset, by representa-
tives of all anticipated academic and community user groups. It therefore represents
a user-driven model that will inform future corpus design, by providing a template
for corpus development in any language and in particular lesser-used or minoritised
languages. We obtained samples of some of the raw electronic text from an early
release of the corpus, which included HTML web pages, and personal email and
instant messaging correspondences, for use in the present study.

• Wikipedia—Wikipedia is a multilingual crowdsourced encyclopaedia. English ver-
sion was the first edition of Wikipedia, which was founded in January 2001. As of
29 September 2019, it consists of 5,938,555 entries covering a wide range of subjects.
Given its size and diversity, English Wikipedia is commonly used to train word
embeddings in English. Welsh Wikipedia was founded in July 2003, but it is unfortu-
nately still significantly smaller than its English counterpart. As of 29 September 2019,
it consists of 106,128 entries.

• National Assembly for Wales 1999–2006—The National Assembly for Wales is the
devolved parliament of Wales, which has many powers including those to make
legislation and set taxes. The Welsh Language Act 1993 obliges all public sector bodies
to give equal importance to both Welsh and English when delivering services to the
public in Wales. This means that all documents shared by the National Assembly
are available in both languages. By performing a web crawling, Jones er al. [18]
assembled a parallel corpus from the public Proceedings of the Plenary Meetings of
the Assembly between the years 1999–2006 inclusive. The authors used this corpus to
support the development of a statistical machine translation method. For the purposes
of our current study, we only used the Welsh language portion of the corpus.

• National Assembly for Wales 2007–2011—Similarly, Donnelly [22] created a parallel
corpus from the same source but covering the period from 2007 until 2011. Again, we
used the Welsh language portion of the corpus in the present study.

• Cronfa Electroneg o Gymraeg—This corpus consists of 500 articles of approximately
2000 words each, selected from a representative range of text types to illustrate modern
(mainly post 1970) fiction and factual prose [23]. It includes articles from novels and
short stories, religious writing, children literature, non-fiction material from education,
science, business and leisure activities, public lectures, newspapers and magazines,
reminiscences, academic writing, and general administrative materials.
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• An Crúbadán—This corpus was created by [24] by crawling of Welsh text from
Wikipedia, Twitter, blogs, the Universal Declaration of Human Rights and a Jehovah’s
Witnesses website (JW.org) [25]. To prevent duplication of data we removed all
Wikipedia articles from this corpus before using it in the present study.

• DECHE—The Digitisation, E-publishing and Electronic Corpus (DECHE) project
publishes e-versions of Welsh scholarly books that are out of print and unlikely to be
re-printed in traditional paper format [26]. Books are nominated by lecturers working
through the medium of Welsh and prioritised by the Coleg Cymraeg Cenedlaethol,
which funds the project. We collected the text data from this project by downloading
all e-books available.

• BBC Cymru Fyw—BBC Cymru Fyw is an online Welsh language service provided by
BBC Wales containing news and magazine-style articles. Using the Corpus Crawler
tool [27], we constructed a corpus containing all articles published on BBC Cymru
Fyw between 1 January 2011 and 17 October 2019 inclusive.

• Gwerddon—Gwerddon is a Welsh-medium academic e-journal, which publishes
research in arts, humanities and sciences. We downloaded all articles published in
29 editions of this journal.

• Welsh-medium websites—Golwg360 [28] and O’r Pedwar Gwynt [29] are Welsh-
medium news websites. PoblCaerdydd [30] and Cylchgrawn Barn [31] are Welsh-
medium online magazines.

• Beibl.net—The website beibl.net contains articles corresponding to all books of the
Bible translated into an accessible variety of modern standard Welsh, along with
informational pages.

3.2. Pre-Processing

Given a text corpus represented as a sequence of characters, tokenisation is the task of
segmenting this sequence into tokens, which roughly correspond to words. Brute-force
tokenisation, which removes punctuation and then identifies tokens as continuous character
sequences between white spaces, oversimplifies the task and consequently achieves subpar
results [32]. For example, consider the following sentence: “Mae’r haul yn taro’r paneli’n
gyson â’n systemau’n rhedeg ar drydan wedi’i gynhyrchu yn y mis d’wetha’ ” (Engl. “The
sun hits the panels consistently and our systems run on electricity produced in the last
month”). The use of apostrophes in this example represents three different processes.
For example, ‘r is a form of the definite article which must follow a vowel (e.g., mae’r
and taro’r). Similarly, ‘n is either a function word yn reduced following a vowel (e.g.,
paneli’n and systemau’n) or a possessive pronominal, in this case ein (e.g., â‘n systemau).
Furthermore, ‘i in wedi’i is another function word ei, an agreement proclitic following
wedi. So far, these examples represent words or grammatical items separated from other
words using an apostrophe. However, the last word d’wetha’ represents a different use
of apostrophe, which represents a less conservative written variety of standard Welsh by
omitting the sounds of the full word diwethaf and shortening it to d’wetha’ as is most
commonly heard in standard speech. Clearly, one cannot assume that the apostrophe
represents a word boundary.

We considered three tokenisation methods for the Welsh language. The first tokeni-
sation method, used as a baseline, is a brute-force method consisting of the following
steps. First, all characters are converted to lowercase. Next, all punctuation characters
are removed. Finally, tokens are identified using white spaces. The second tokenisation
method considered was the one from the Gensim library. This tokeniser returns tokens
corresponding to maximal contiguous sequences of alphabetic characters. We chose not to
remove accentuation from the lowercased text. The final tokeniser we considered was the
one from the WNLT, which has been developed specifically for Welsh.

Following tokenisation, we removed rarely occurring tokens using by setting a thresh-
old at 5 occurrences. This step helps to remove misspelled words from the corpus. No
stemming or lemmatisation were performed because previous studies have found that
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these actions remove information that can be used by machine learning to create language
models [33].

3.3. Training

Traditionally, word embeddings are computed by minimising the distance between
the words that appear in similar contexts. Prominent examples of such word embedding
methods include word2vec [34], GloVe [35] and fastText [36]. Contextual word embeddings
take this approach to the next level by creating different embeddings for the same word
used in different contexts to convey different meanings. For example, the word ‘bank’
can be interpreted as either ‘financial bank’ and ‘river bank’ depending on the context.
Examples of such word embedding methods include ELMo [37] and BERT [38]. Finally,
word embeddings can be enriched with different types of information. For example,
sentiment embeddings [39] incorporate the sentiment of words into their embeddings. The
benefit of sentiment embeddings over standard embeddings is that the distance between
opposite words such as ‘good’ and ‘bad’ that tend to appear in similar contexts will become
larger to reflect their semantics more appropriately.

In this study, we focused solely on traditional word embedding methods, specifically
word2vec [34] and fastText [36]. These approaches produce one vector per word, which
enabled us to make direct comparison to the existing baseline approach [2]. Word2vec has
two versions known as skip-gram and continuous bag of words (CBOW) respectively [34,40].
Given a target word wt, skip-gram aims to predict its context. Formally, the objective of the
skip-gram method is to maximize the log-likelihood defined in Equation (1), where Ct is
the set of indices of context words surrounding the target word wt.

T

∑
t=1

∑
c∈Ct

log p(wc|wt) (1)

For each word w, the skip-gram method defines two vectors uw and vw in Rn, which
are learnt automatically. These vectors are commonly referred to as input and output
vectors respectively [36]. Given this, the skip-gram version estimates the probability
p(wc|wt) using the SoftMax function defined in Equation (2) where s : Rn ×Rn → Rn is
the scoring function defined in Equation (3) and u>t denotes the transpose of the vector ut.

p(wc|wt) =
exp(s(wt, wc))

∑W
j=1 exp(s(wt, wj))

(2)

s(t, c) = u>t vc (3)

This formulation of p(wc|wt) renders the learning of the vectors uw and vw impractical
because the cost of computing derivatives is proportional to the size of the corpus W. To
overcome this challenge, [40] proposed two approximations known as hierarchical SoftMax
and negative sampling.

Conversely, given a context, CBOW aims to predict the target word. Formally, instead
of modelling p(wc|wt), CBOW models p(wt|wc) [34]. The fastText method generalises
the two versions of word2vec, i.e., skip-gram and CBOW, by considering the subwords
within the words [36]. The authors argue that this method is useful for morphologically
rich languages such as Turkish and Finnish. Welsh is also morphologically rich, where
inflection can give rise to multiple surface forms of a single word. Consider, for example,
the word ‘ci’ (Engl. dog). In the phrase ‘ei gi’ (Engl. his dog), soft mutation applies to the
word ‘ci’. On the other hand, in the phrase ‘ei chi’ (Engl. her dog), aspirate mutation applies
to the word ‘ci’ [41]. Therefore, both ‘gi’ and ‘chi’ correspond to the same lemma—‘ci’.
Mutations occur frequently in Welsh. Subword information has the potential to allow
a word embedding method to relate different mutations of the same word. Therefore,
fastText represents an appropriate choice of the word embedding method for this language.



Appl. Sci. 2021, 11, 6896 7 of 17

FastText inserts special boundary characters < and > at the beginning and end respec-
tively of each word. This allows the model to distinguish prefixes and suffixes from other
character sequences. Each word w is then represented as a set Gw of character m-grams
where the original word is also included in the set. For example, consider the case where
w is the word ‘sheep’ and m = 3. In this case, {<sh, she, hee, eep, ep>, <sheep>}. For each
m-gram g in the vocabulary, the fastText method defines a corresponding vector zg, which
is learnt. Given this, the fastText method is identical to the word2vec model except that the
scoring function in Equation (3) is replaced by the scoring function in Equation (4).

s(t, c) = ∑
g∈Gt

z>g vc (4)

In our experiments, the hyperparameters of the word2vec and fastText methods
were set to the following values. For the fastText method we considered all m-grams for
3 ≤ m ≤ 6. For both word2vec and fastText, we used a value of 300 for the dimension of
the word embedding vectors n following the best practices described in [36] and trained for
20 epochs. We used the implementations of the word2vec and fastText methods available
in the Gensim library.

4. Results and Analysis

Using different combinations of methods described in the previous section, we trained
a total of 12 versions of Welsh word embeddings. We compared them against Welsh word
embeddings described by [2,42] as the baseline.

Word embeddings are commonly evaluated using a combination of qualitative and
quantitative methods. Qualitative methods involve manual selection of prototype words
and inspection of their neighbourhood in the vector space. Quantitative methods can be
divided into two categories, intrinsic and extrinsic methods [43,44]. Extrinsic methods eval-
uate word embeddings with respect to their effect on downstream NLP applications such as
NER and sentiment analysis. Intrinsic methods evaluate how accurately word embeddings
capture the semantic similarity of words under an assumption that semantically similar
words will be close spatially in the vector space. In this study, we evaluated the word
embeddings quantitatively using intrinsic methods. We considered four intrinsic methods,
which are based on similarity, clustering, synonymy and analogy, respectively. Several
the evaluation methods considered involved the creation of a corresponding dataset from
English to Welsh. In all cases the translation in question was performed by a bilingual
Welsh-English speaker. These translations were verified by a second bilingual Welsh-
English speaker where any disagreement was resolved through discussion.

The remainder of the section provides further details of the experimental setup to-
gether with the corresponding results.

4.1. Word Similarity

Similarity-based methods for evaluating word embeddings use ground-truth pairwise
semantic similarity of words, where semantic similarity is represented by a value within
a fixed range with higher values indicating greater semantic similarity. The correlation
of the semantic similarity of words and the cosine similarity of the corresponding word
embeddings is used to gauge the utility of the word embeddings. The higher the correlation,
the higher the utility of word embeddings. The ground-truth semantic similarity is typically
estimated by native speakers.

We considered two word similarity datasets. First, the WordSimilarity-353 dataset
contains a total of 353 word pairs in English [45,46]. Each word pair is associated with the
mean taken from semantic similarity estimated independently by multiple individuals on
a Likert scale from 0 to 10 inclusive. We adapted this dataset by translating it into Welsh
using bilingual Welsh-English speakers. We used Spearman’s rank correlation coefficient to
measure the correlation between semantic similarity and cosine similarity. Table 2 provides
the results. The naive tokenisation combined with CBOW performed best. In fact, all
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CBOW methods regardless of tokenisation outperformed Grave’s model. On the other
hand, all methods based on skip-gram performed worse than Grave’s model.

Table 2. The results achieved on the WordSimilarity-353 dataset.

Word Embedding Method Tokenisation Version Semantic Correlation

fastText naive skip-gram 0.0495
fastText naive CBOW 0.1164
fastText Gensim skip-gram 0.0681
fastText Gensim CBOW 0.1326
fastText WNLT skip-gram 0.0632
fastText WNLT CBOW 0.1108

word2vec naive skip-gram 0.0448
word2vec naive CBOW 0.1157
word2vec Gensim skip-gram 0.0692
word2vec Gensim CBOW 0.1285
word2vec WNLT skip-gram 0.0604
word2vec WNLT CBOW 0.1067
Grave’s . . . . . . 0.0785

The second dataset we considered was SimLex-999, which contains a total of 999 word
pairs consisting of 666 noun pairs, 222 verb pairs and 111 adjective pairs in English [47,48].
Each word pair is associated with the mean semantic similarity estimated independently
by 50 individuals on a Likert scale from 0 to 10 inclusive. We adapted this dataset by
translating it into Welsh using bilingual Welsh-English speakers. Brute-force translation
may introduce minor inaccuracies or other biases into the ground truth. For example, the
word ‘bank’ has two interpretations, each being similar to the words ‘river’ and ‘money’
respectively. However, this homonymy is not observed in Welsh. Other considerations
are cultural. For example, references to American concepts such as ‘baseball’, ‘dollar’
and ‘buck’ may occur rarely if at all in the Welsh corpus. Two word pairs with no Welsh
equivalents, ‘football–soccer’ and ‘dollar–buck’, were removed from the dataset.

In addition to semantic similarity, SimLex-999 also provides the strength of free
association represented as a value in the range 0 to 10 inclusive. For example, the words
‘car’ and ‘petrol’ are not semantically similar but have high free association. The strength
of free association was calculated using the University of South Florida Free Association
Dataset [49]. This dataset was generated by presenting human subjects with one of 5000 cue
concepts and asking them to write the first word that comes to mind. Table 3 provides the
results. The baseline performed the best, although all values are very low.

Table 3. The results achieved on the SimLex-999 dataset.

Word Embedding Method Tokenisation Version Semantic Correlation Free Association Correlation

fastText naive skip-gram 0.1131 0.0263
fastText naive CBOW 0.0692 0.0415
fastText Gensim skip-gram 0.1373 0.0471
fastText Gensim CBOW 0.0967 0.0466
fastText WNLT skip-gram 0.1246 0.0358
fastText WNLT CBOW 0.0941 0.0496

word2vec naive skip-gram 0.1075 0.0265
word2vec naive CBOW 0.0700 0.0427
word2vec Gensim skip-gram 0.1374 0.0461
word2vec Gensim CBOW 0.0975 0.0452
word2vec WNLT skip-gram 0.1247 0.0321
word2vec WNLT CBOW 0.0964 0.0491
Grave’s . . . . . . 0.1466 0.0546
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Note here that the Spearman correlation coefficients obtained in all cases were very
low. This is expected, especially in the SimLex-999 dataset, with state-of-the-art English
word embeddings, which were trained on corpus (around 1000 times larger than our Welsh
corpus) also with very low correlations [47], between 0.2 and 0.45. There has also been
discussion on the problems of using word similarity metrics such as these for evaluating
word embeddings [50]. Thus, in the following sections we provide further alternative
evaluation metrics.

4.2. Word Clustering

Concept categorisations is a common method for evaluating word embeddings [51].
It checks whether words can be grouped into natural categories from their vectors only.
For example, the words ‘bear’ and ‘bull’ belong to an animal class, while cupboard and
chair will belong to a furniture class.

We adapted a concept categorisation dataset from [52] by translating it into Welsh
using bilingual Welsh-English speakers. It consists of 214 words assorted into 13 categories,
which are provided in the Appendix A of this article. The vectors for each of the 214 words
were clustered using k-means clustering combined with cosine distance and Euclidean
distance respectively, with k = 13 to match the number of categories. Ideally, the 13 clusters
should map directly to the 13 categories. Three measures were used to evaluate the
clustering results.

• Purity measures the extent to which clusters contain words of the same category. It is
calculated using Equation (5), where N is the number of words in total, M is the set
of clusters and D is the set of known categories. It is calculated as the average count
of the categories per cluster. Purity is commonly used to evaluate vector semantics,
e.g., [51,53]. Its main shortcoming is that it does not penalise a single category being
distributed over more than one cluster. For example, words belonging to an education
category being distributed over more than one cluster.

P =
1
N ∑

m∈M
max
d∈D
|m ∩ d| (5)

• Rand Index measures the extent to which pairs of words that do or do not belong to
the same category end up in the same cluster or not. For each word pair, clustering
can produce a true positive (the same category and the same cluster), true negative
(different categories and different clusters), false positive (different categories, but the
same cluster), or false negative (the same category, but different clusters). The counts
are given by TP, TN, FP and FN, respectively. These measures were used to measure
accuracy in [52]. Rand index is calculated as the proportion of correctly predicted
pairs as prescribed by Equation (6).

RI =
TP + TN

TP + TN + FP + FN
(6)

• Entropy measures how words from the same categories are distributed across the
clusters. Low entropy indicates that words of the same category tend to be grouped
within the same cluster. This measure, used in [53], is given in Equation (7).

E = − ∑
m∈M

|m|∑d∈D
|m∩d|
|m| ln

(
|m∩d|
|m|

)
N ln(|D|) (7)

Only the fastText models can be evaluated in this way. As word2vec models do not
capture subword information, vectors for unseen words cannot be implied, and so the
k-means algorithm fails. The results for the fastText models are given in Table 4.

WNLT tokenisation combined skip-gram performed best when Euclidean distance
was used for clustering, while Gensim tokenisation combined with skip-gram performed
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best when cosine distance was used for clustering. Grave’s model performed the worst in
both cases, indicating that a larger and more representative corpus yields word embeddings
that perform better at concept categorisation tasks.

Table 4. The results for the concept categorisation task.

Word Embeddings Euclidean Distance Cosine Distance
Method Tokenisation Version Purity Rand Index Entropy Purity Rand Index Entropy

fastText naive skip-gram 0.4860 0.8305 3.3298 0.6542 0.9178 2.2509
fastText naive CBOW 0.3832 0.7451 4.2892 0.5140 0.8826 3.4872
fastText Gensim skip-gram 0.5701 0.8811 2.8500 0.7242 0.9319 2.1092
fastText Gensim CBOW 0.4533 0.6958 3.9220 0.5140 0.8984 3.1224
fastText WNLT skip-gram 0.5794 0.8689 2.8448 0.6636 0.9225 2.2045
fastText WNLT CBOW 0.3972 0.7479 4.2486 0.5514 0.8692 3.2374
Grave’s . . . . . . 0.2383 0.5640 5.3069 0.4486 0.7965 3.9540

4.3. Word Synonyms

The ability to link synonyms has been used to evaluate word embeddings [44,51] as
well as other machine-learning tasks [54]. A dataset similar to the one based on multiple-
choice synonym questions used in the Test of English as a Foreign Language was created for
Welsh [55]. This is not a case of simple translation of English data, as synonymy is unique
to a language and cannot be mapped easily from one language to another. Therefore, a new
dataset was constructed with 50 questions (including nouns, adjectives, and verbs), given
in the Appendix A of this article. Given a word (e.g., rusty) and a set of related words one
of which is a (near)synonym (e.g., {corroded, black, dirty, painted}), an answer is selected as
the word with the closest cosine distance. We measured the percentage of questions where
the correct synonym (in this case corroded) was chosen.

Again, only the fastText models can be evaluated in this way, as those without subword
information will be biased (will have fewer word choices) if presented with words not in
the original dataset. The results for the fastText models are given in Table 5.

WNLT tokenisation combined with skip-gram performed the best on synonym predic-
tion, while Grave’s model performed the worst.

Table 5. The results achieved on the synonymy detection task.

Method Tokenisation Version % Correct

fastText naive skip-gram 38%
fastText naive CBOW 32%
fastText Gensim skip-gram 36%
fastText Gensim CBOW 30%
fastText WNLT skip-gram 42%
fastText WNLT CBOW 30%
Grave’s . . . . . . 28%

4.4. Word Analogies

Word analogies can be used to evaluate whether the semantic relationships between
words correspond to the mathematical relationships between their respective embeddings.
For example, the relationship between the word ‘king’ and ‘queen’ should be identical
to the relationship between the words ‘actor’ and ‘actress’. Therefore, if xking, xqueen,
xactor and xactress are the trained vectors for the words ‘king’, ‘queen’, ‘actor’ and ‘actress’,
respectively, then we would expect:

xactor − xking + xqueen ≈ xactress (8)

Given a set of examples of various language-specific relationships, the Gensim li-
brary allows us to measure the proportion for which the above equation holds, where
the proximity is calculated using five nearest neighbours of the vector to the left. We
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translated language-independent relationships such as those between nations and na-
tionalities to Welsh. A dataset of grammatical relationships was constructed by a native
Welsh speaking linguist and included adjective-opposite (435 pairs), adjective-comparative
(55 pairs), adjective-superlative (55 pairs), adjectives-equative (55 pairs), nationalities
(210 pairs), languages (120 pairs), noun-plural (6555 pairs), noun-singular (105 pairs), noun-
gender (703 pairs), adjective-gender (105 pairs), adjective-plural (528 pairs), verb-nonfinite
(325 pairs), verb-past-1st-singular (45 pairs), verb-past-3rd-singular (45 pairs), verb-past-
impersonal (45 pairs), verb-present-impersonal (45 pairs), inflectional-preposition-1st-
singular (36 pairs), and inflectional-preposition-2nd-plural (36 pairs).

The accuracy over all 9503 pairs, for each of the models, are given in Table 6. All
models perform much better than Grave’s model. There are also obvious rankings between
tokenisation and training methods: gensim tokenisation performed better than WNLT,
which in turn performed better than naive tokenisation; CBOW yields much more accurate
models than skip-gram here; and, surprisingly, word2vec performs marginally better than
fastText in all cases.

Table 6. The results achieved for the word analogy task.

Method Tokenisation Version Accuracy

fastText naive skip-gram 16.64%
fastText naive CBOW 23.67%
fastText Gensim skip-gram 18.75%
fastText Gensim CBOW 28.01%
fastText WNLT skip-gram 17.97%
fastText WNLT CBOW 25.37%

word2vec naive skip-gram 16.66%
word2vec naive CBOW 23.88%
word2vec Gensim skip-gram 19.43%
word2vec Gensim CBOW 28.22%
word2vec WNLT skip-gram 18.21%
word2vec WNLT CBOW 25.21%
Grave’s . . . . . . 9.00%

4.5. Qualitative Evaluation

We considered 30 nearest neighbours of a small set of prototype words. All prototype
words were present in the text corpus used in training the word embeddings. Nearest
neighbours were identified using the cosine similarity measure, which was calculated
using the formula in Equation (9).

similarity(u, v) =
u · v
‖u‖‖v‖ (9)

Given the cost of inspecting the neighbourhood manually, we limited this aspect of
evaluation to comparison of a single model, namely the fastText skip-gram model with
WNTL tokenisation, to the baseline. This model was chosen as it demonstrated the best
results in our quantitative evaluation presented above. The following are a small selection
of the words used for comparison and comments on the performance of the models:

• nofio (to swim): Both models list several sports and water-related activities as nearest
neighbours although each model gives different words, including beicio (cycling),
caiacio (kayaking), syrffio (surfing), plymio (diving), nofwyr (swimmers) and pwll (pool).
Grave’s model also lists several mutations and misspellings of bwrcini (burkini), which
may indicate a small or un-diverse training corpus.

• glaw (rain): Our model lists a variety of weather phenomena including eira (snow),
gwyntoedd (winds), cawodydd (showers), cenllysg (hail), gwlyb (wet), stormydd (storms),
corwyntoedd (hurricanes), and taranau (thunder). Grave’s model does list some related
words such as monswn (monsoon), but mainly lists derivations of the original word
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e.g., glawiog (rainy), and other unrelated words such as car-boot and sgubai (sweep),
although this may relate to rain sweeping across the land.

• hapus (happy): Our model lists several synonyms or related adjectives, including lwcus
(lucky), falch (glad), ffodus (fortunate), and bodlon (satisfied). Grave’s model list some
of these, but contains many other less similar words that could appear in the same
context, such as anhapus (unhappy), eisiau (want), teimlon (felt), and grac (angry). It
also lists words of similar spelling, but unrelated semantically: siapus (shapely) and
napus (brassica napus; a species of rapeseed), which may indicate their model is relying
too heavily on subword information.

• meddalwedd (software): Both models list many words related to computing and tech-
nology here, including salwedd (malware), amgryptio (encrypting), cyfrifiadurol (compu-
tational), metaddata (meta-data), telegyfathrebu (telecommunication), and rhyngwyneb
(interface). Our model provides a greater variety of words, while Grave’s model
provides some English words and product names e.g., DropBox. This may be due to
the fact that a more recent corpus was used by our model, as there will have been
more technological articles published, and more technological terminology developed,
in recent years.

• ffrangeg (the French language). There was a stark difference in the lists produced by the
two models. Our model returned several other western European languages including
llydaweg (Breton), isalmaeneg (Dutch), galaweg (Gallo) and sbaeneg (Spanish). Grave’s
model however gives several compound names, e.g., Arabeg-Ffrangeg (Arabic-French)
and FfrangegSaesneg (French-English), while also returning several foreign words.

• croissant (the loan word ‘croissant’): Again, there was a stark difference between
the models here. Our model listed other foreign or loan words for food including
gefrüstuckt, brezel, müsli and spaghetti, along with some unrelated foreign words.
Grave’s model lists several unrelated foreign words, many with similar spellings to
the original word, e.g., Eblouissant, Pourrissant, and Florissant, again indicating the
model’s possible over-reliance on subword information.

• gwario (spend): Here Grave’s model seems to group related words better. Our model
lists mutations and conjugations of the original verb in addition to verbs formed
by prefixation, e.g., orwario (overspend) and tanwario (underspend), and some other
related words e.g., wastraffu (waste), arbed (save), and talu (pay). Grave’s model lists
other words related to finance including Bitcoins, miliwnau (millions), arbedir (to have
saved), chyllidebu (budgeting) and arian (money).

An additional interesting observation was found by exploring the models manually.
In our model, the nearest neighbours of some geographical places in Wales correspond to
their geographical nearest neighbours:

• Caerfyrddin, a large town in West Wales has nearest neighbours made up from other
towns in West Wales, for example Llanelli, Aberteifi, Hwlffordd, Llambed, Penfro, Bwlch-
clawdd, Castellnewyddemlyn, Aberystwyth and Ceredigion.

• Caernarfon, a large town in North Wales, has nearest neighbours made up from other
towns in North Wales, for example Dolgellau, Cricieth, Porthmadog, Llanllyfni, Pwllheli,
Llangefni, Llandudno, Felinheli and Biwmares.

• Pontypridd, a large town in the South Wales valleys, has nearest neighbours made up
from other towns in the South Wales valleys, for example Pontypŵl, Aberdâr, Pontyclun,
Rhymni, Pontygwaith, Rhondda, Tonypandy, Abercynon and Trefforest.

This pattern is not evident in Grave’s model, which gives nearest neighbours to
these towns most commonly as mutations and misspellings of the original word, and less
commonly as Welsh towns further afield.

5. Conclusions

In this paper, we have presented a systematic evaluation of Welsh word embeddings
trained using different combinations of word embedding and tokenisation approaches.
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Although Welsh word embeddings have been created in the past, this is the first study that
focuses solely on Welsh language and evaluates the embeddings with respect to its own
patterns of syntax and semantics. In this respect, our model outperformed the only other
existing model and as such sets the new baseline for the Welsh NLP community. To train
the embeddings, we assembled the largest corpus of Welsh language. Although the corpus
itself cannot be re-shared publicly due to data access restrictions, they can be collected from
the original sources and used to re-create the corpus. Nonetheless, the word embeddings
are made publicly available together with the associated code at [3].

Based on accuracy and consistency of performance on a wide variety of tasks, the
recommendation arising from this study is to use fastText embeddings trained on WNLT-
tokenised text using the skip-gram method. The only exception is word analogy for
which word2vec embeddings trained on Gensim-tokenised text using the CBOW method
performed better. These observations need to be taken into account when selecting the type
of embeddings to support specific downstream tasks. For example, tasks such as document
similarity may benefit from using word2vec embeddings, whereas tasks such as named
entity recognition, which may require reasoning about newly encountered words, may
benefit from using fastText embeddings.

In addition to this resource, we also created several datasets for the evaluation of
word embeddings in Welsh. This study laid a foundation for developing cross-lingual
word embeddings in which the vector space is shared between words in Welsh and En-
glish [56], where we demonstrated how NLP tools originally developed for English can
be re-purposed for Welsh. Our future work will focus on learning contextual word em-
beddings in Welsh using approaches such BERT [57], where the same word can have a
different vector representation depending on the current context. In addition, BERT gen-
erates embeddings at a subword level, which would help the out-of-vocabulary problem
associated with small training datasets. In particular, using BERT to learn cross-lingual
embeddings could effectively address the problem of code-switching and especially intra-
word switching.
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Appendix A

Table A1. Concept categorisation dataset.

Class Words

anifail arth, tarw, camel, cath, buwch, carw, ci, eleffant, ceffyl, cath bach, llew, mwnci, llygoden, wystrysen, ci bach,
llygoden mawr, dafad, teigr, crwban, sebra

adeilad ladd-dy, canolfan, clwb, dortur, tŷ gwydr, cyntedd, ysbyty, gwesty, tŷ, tafarn, llyfrgell, meithrin, bwyty, ysgol,
nendwr, tafarndy, theatr, fila, puteindy

dillad trôns, blows, cot, costiwm, megyg, het, siaced, jîns, mwclis, pyjamas, cochl, scarff, crys, siwt, trywsus, gwisg

crëwr pensaer, arlunydd, adeiladwr, lluniwr, crefftwr, dylunydd, datblygwr, ffermwr, dyfeisiwr, crëwr,
gwneuthurwr, cerddor, cychwynnwr, paentiwr, ffotograffydd, cynhyrchydd, teilwr

afiechyd acne, anthracs, arthritis, asthma, canser, colera, sirosis, clefyd siwgwr, ecsema, ffliw, glawcoma, hepatitis,
lewcemia, camfaethiad, llid yr ymennydd, pla, cryd cymalau, brech wen

teimlad dicter, awydd, ofn, hapusrwydd, llawenydd, cariad, poen, angerdd, pleser, tristwch, sensitifrwydd, cywilydd,
rhyfeddod

ffrwyth afal, banana, aeron, ceirios, grawnwin, ciwi, lemwn, mango, melon, olewydd, oren, eirinen wlanog, gellygen,
pinafal, mefys, dyfrfelon

dodrefn gwely, silf llyfrau, cwpwrdd, cadair, cowtsh, crud, desg, tresel, lamp, lolfa, sedd, soffa, bwrdd, cwpwrdd
dillad

corff pigwrn, braich, clyst, llygad, gwyneb, bys, troed, llaw, pen, coes, trwyn, ysgwydd, byd troed, tafod, dant,
addwrn

cyhoeddiad atlas, llyfr, llyfryn, pamffled, catalog, llyfr coginio, geiriadur, gwyddoniadur, llawllyfr, cyfnodolyn, cylch-
grawn, seinglawr, llyfr ffôn, cyfeirlyfr, gwerslyfr, llyfr gwaith

teulu bachgen, plentyn, cefnithr, merch, tad, geneth, ŵyr, tadcu, nain, gŵr, crwt, mam, epil, sibling, mab, gwraig

amser canrif, degawd, oed, noswaith, hydref, awr, mis, broe, nos, goramser, chwarter, tymor, semester, gwanwyn,
haf, wythnos, penwythnos, gaeaf, blwyddyn

cerbyd awyren, llong awyr, cerbyd, beic, cwch, car, criwser, hofrennydd, beic modur, tryc, roced, llong, lori, fan

Table A2. Synonym detection dataset.

Question Synonym Related Words

doeth call twp, ffôl, hapus
budr brwnt glân, gwyn, du

cyflym clou araf, hir, byr
bwrw taro mwytho, cyffwrdd, cicio
llefrith llaeth cwrw, caws, buwch
hawdd rhwydd anodd, arferol, rhydd
hynod mor tipyn, eithaf, bach

adnabyddus enwog dieithr, cerddor, amlwg
dolur poen moddion, salwch, meddyg

distaw tawel swnllyd, uchel, cyffroes
mân bach mawr, lled, cul

hogyn bachgen menyw, gwraig, myfyriwr
teyrngar ffyddlon celwydd, diafol, duw

merch geneth dyn, disgybl, gwr
blinedig cysglyd egnïol, gwelu, cysgu

creu cynhyrchu dinistrio, torri, adeiladu
rhyfel brwydr heddwch, byddin, milwr

rhwystro atal gadael, caniatáu, eisiau
edrych sbio clywed, methu, dweud
rhyfedd anarferol normal, lliwgar, doeth

anibendod llanast taclus, ystafell, brwnt
cnoi brathu bwyta, yfed, dannedd
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Table A2. Cont.

Question Synonym Related Words

ceisio trio llwyddo, methu, cysgu
ffeindio canfod colli, nofio, chwilio

lleol agos pell, estron, gwyrdd
cwtogi lleihau ehangu, plygu, ymestyn
ehangu tyfu neidio, magu, meithrin

mur wal drws, ffenest, to
diogel saff peryglus, agored, rhwystredig

cyflawni cwblhau methu, gwagio, colli
deunydd defnydd dillad, pren, gwydr
gweiddi bloeddio sibrwd, siarad, peswch
pili pala glöyn byw pryfed, prycopyn, morgrugyn

teisen cacen bara, bisced, tost
digalon trist siriol, doniol, hwyl
cweryla dadlau cytuno, cusanu, bloeddio

hybu hyrwyddo digaloni, rhwystro, cynyddu
hardd prydferth hyll, esmwyth, caled

cymorth help rhwystr, moddion, athro
ffug afreal gwirioneddol, ffeithiol, stori

gwagle gofod llawn, awyr, bydysawd
bad cwch awyren, car, hofrennydd
dryll gwn cyllell, cleddyf, arf

cyfarfod cwrdd croesawi, siarad, ffarwelio
swydd gwaith gwyliau, rheswm, grym

holi gofyn ateb, gorymateb, meddwl
hanfodol angenrheidiol diangen, gwreiddiol, gwahanol
lleoliad man sefyllfa, amser, ystafell
creulon cas cwrtais, neis, crac

oherwydd achos rheswm, pam, esboniad
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