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ABSTRACT

The treatment of radiative transfer with multiple radiation sources is a critical challenge in simulations of star formation and the
interstellar medium (ISM). In this paper, we present the novel TREERAY method for solving general radiative transfer problems,
based on reverse ray-tracing combined with tree-based accelerated integration. We implement TREERAY in the adaptive mesh
refinement code FLASH, as a module of the tree solver developed by Wiinsch et al. However, the method itself is independent of
the host code and can be implemented in any grid-based or particle-based hydrodynamics code. A key advantage of TREERAY is
that its computational cost is independent of the number of sources, making it suitable for simulations with many point sources
(e.g. massive star clusters) as well as simulations where diffuse emission is important. A very efficient communication and
tree-walk strategy enable TREERAY to achieve almost ideal parallel scalings. TREERAY can easily be extended with sub-modules
to treat radiative transfer at different wavelengths and to implement related physical processes. Here, we focus on ionizing
radiation and use the on-the-spot approximation to test the method and its parameters. The ability to set the tree solver time-step
independently enables the speedy calculation of radiative transfer in a multiphase ISM, where the hydrodynamic time-step is
typically limited by the sound speed of the hot gas produced in stellar wind bubbles or supernova remnants. We show that

complicated simulations of star clusters with feedback from multiple massive stars become feasible with TREERAY.
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1 INTRODUCTION

NEED FOR FAST RT. The turbulent, multiphase structure of the
interstellar medium (ISM) is shaped by the complex and non-linear
interplay between gravity, magnetic fields, heating and cooling,
and the radiation and momentum input from stars, in particular,
massive stars (see e.g. Agertz et al. 2013; Walch et al. 2015; Kim &
Ostriker 2017; Peters et al. 2017). Therefore, an efficient treatment of
radiation transport in different energy bands (from the submillimeter
to X-rays), and of the associated heating and cooling processes,
is essential to simulate the structure and evolution of the ISM
in detail, and to compare theoretical and numerical models with
observations. A fundamental consideration is that radiation is emitted
from different types of sources: point sources such as stars, extended
sources like cooling shock fronts, diffuse sources like dust, as well
as an ambient background radiation field. Hence, a modern radiative
transfer algorithm must be able to handle multiple energy bands and
multiple sources in an efficient manner.

OVERVIEW OF ALGORITHM. There are many ways to treat the
radiation from point sources in 3D: Ray tracing (Mellema et al.
2006; Gritschneder et al. 2009) with HEALPIX schemes (Bisbas et al.
2009; Wise & Abel 2011; Baczynski, Glover & Klessen 2015; Kim
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etal. 2017; Rosen et al. 2017), long- and short-range characteristics
(e.g. Rijkhorst et al. 2006); flux-limited diffusion (FLD) (Krumbholz,
Klein & McKee 2007; Skinner & Ostriker 2013); combined schemes
which work in optically thin and thick regions (Kuiper et al. 2010;
Paardekooper, Kruip & Icke 2010; Klassen et al. 2014); moment
methods (Petkova & Maio 2012; Rosdahl et al. 2013; Kannan et al.
2019); and backward radiative transfer schemes (e.g. Kessel-Deynet
& Burkert 2003a; Altay & Theuns 2013; Grond et al. 2019), like
the one developed in this work. In comparison with ray-tracing,
FLD- and moment-based methods tend to be computationally
less expensive and their cost does not depend on the number of
sources. However, typically they do not capture certain features of
the radiation field, for example shadowing (although see Rosdahl
et al. 2013). Several code comparison projects have highlighted the
advantages and short-comings of different radiative transfer methods
(e.g. lliev & et al. 2006; Iliev et al. 2009; Bisbas et al. 2015).
Ultimately, even simple radiative transfer methods are expensive,
at least as expensive as all the other elements of a simulation —
(magneto-)hydrodynamics (M)HD), self-gravity, chemistry, heating
and cooling — together. Consequently, the numerical overhead of
radiative transfer severely limits the astrophysical problems that can
be addressed realistically in state-of-the-art 3D simulations, even on
today’s largest super-computers.

TREERAY BASICS. In response to this challenge, we have devised
TREERAY, a new tree-based, backward radiative transfer scheme,
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which can handle multiple sources at acceptable extra cost, when
running simulations that include self-gravity anyway. The compu-
tational cost of TREERAY is independent of the number of emitting
sources (as demonstrated in Section 5.2), and indeed every cell can
be a source. Therefore, TREERAY can readily treat, for example, the
ionizing radiation from multiple massive stars in a molecular cloud
(Haid et al. 2019), as well as radiating shocks or other extended
sources, on-the-fly in complex 3D (M)HD simulations. TREERAY
is an extension of the octtree-based solver for gravity and diffuse
radiative transfer described in detail in Wiinsch et al. (2018, hereafter
Paper I), which has been developed for the Eulerian, AMR code
FLASH 4! (Fryxell et al. 2000). The tree-solver of Paper I is available
with the official FLASH release. Due to its efficiency, the TREERAY
scheme allows us to treat all dynamically relevant radiative processes
in full three-dimensional simulations of the multiphase ISM with
an acceptably small error. TREERAY evolved from the original
TREECOL method (Clark, Glover & Klessen 2012) for treating the
shielding of a diffuse background radiation field in smoothed particle
hydrodynamics (SPH). The shielding method has been presented as
an OPTICALDEPTH module of the tree solver in Paper I.

TREVR. The recently published TREVR code (Grond et al. 2019),
which uses a tree data structure and reverse ray-tracing, is, we
believe, the most closely related existing code. However, the two
codes differ significantly in several respects. TREVR casts rays in
the directions of sources, resulting in some (albeit weak) dependence
of the computational cost on source number, while TREERAY casts
HEALPIX rays (strictly speaking cones) in all directions, thereby
covering the whole computational domain. These two fundamentally
different approaches result in different types of numerical artefacts.
Whilst TREERAY uses iteration to deal with regions irradiated by
multiple sources, in situations where the absorption coefficient
depends on the radiation energy density, TREVR applies limits
to the time-step and uses a special refinement criterion to take
account of the directional dependence of absorption in tree nodes.
Finally, TREVR is implemented in the SPH code Gasoline, while
TREERAY is implemented in the AMR code FLASH, although both
codes are general and could, in principle, be adapted to work with
any hydrodynamics code.

OUTLINE. The plan of the paper is as follows. In Section 2, we
present the general algorithm and describe its implementation and
coupling to the tree solver. In Section 3, we perform a suite of
static and dynamic tests to demonstrate the viability of the scheme,
and we discuss the impact of the user-specified parameters on the
accuracy. We restrict ourselves to the simple on-the-spot approxima-
tion (Osterbrock 1988) (TREERAY/ONTHESPOT module) for treating
the interaction of UV radiation from massive stars with the ISM.
The flexibility and performance of TREERAY are demonstrated in
Section 4, where we present a more complex simulation of multiple
massive stars dispersing a molecular cloud with their ionizing
radiation and winds. In Section 5, we discuss the performance and
parallel scaling of the algorithm, before summarizing in Section 6.

2 THE ALGORITHM

CODE STRUCTURE. TREERAY is implemented as a module for the
tree-solver described in Paper I. The tree-solver provides general
algorithms for building an octal tree, communicating the required

'The FLASH code is maintained by the ASC/Alliances Center for Astrophys-
ical Thermonuclear Flashes (Flash Center for Computational Science) at the
University of Chicago (http://flash.uchicago.edu/site)
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Figure 1. The tree solver flowchart and its connection to the GRAVITY and
TREERAY modules. All general tree solver routines are yellow. GRAVITY
routines are blue. TREERAY routines are green.

parts of it to other processors, and traversing the tree to calculate
quantities that require integration over the computational domain. It
is a generalization of the widely used algorithm devised by Barnes
& Hut (1986) to solve for self-gravity in numerical codes. Individual
modules (e.g. GRAVITY or TREERAY) define which quantities should
be stored on the tree, and provide subroutines to be called during
the tree-walk to calculate integrated quantities like the gravitational
acceleration or radiation energy density. TREERAY itself consists
of a general part plus submodules that treat the different physical
processes needed to solve the radiation transport equation (RTE). The
TREERAY/OPTICALDEPTH submodule (described in Paper I) is the
simplest TREERAY submodule; instead of solving the RTE, it simply
sums contributions from different directions to obtain the correspond-
ing optical depths. Here, we focus on the TREERAY/ONTHESPOT
submodule, to illustrate how TREERAY solves the RTE for ionizing
radiation.

NEW FEATURES IN TREE SOLVER. The simplified flowchart in
Fig. 1 shows the connection between tree solver and TREERAY.?
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In comparison to Paper I, two modifications have been made. First,
the three main steps of the tree-solver (tree-build, communication and
tree-walk) can be called several times (outer iteration loop in Fig. 1)
to calculate correctly absorption in regions irradiated by more than
one source. Second, the tree walk is now called on a cell-by-cell basis
(instead of block-by-block), because the temporary data structures
storing quantities needed for solving the RTE are too big to be stored
in memory for all the grid cells of a block.

ALGORITHM FLOW. The algorithm proceeds as follows. First, the
tree is built to store quantities provided by the TREERAY modules, and
appropriate parts of the tree are communicated to other processors.
Next, the tree is traversed for each cell (hereafter a target cell) and
these quantities are mapped on to a system of rays originating at
the target cell and covering the whole computational domain. Then,
the RTE is solved along each ray and the radiative fluxes arriving at
each target cell are calculated and converted into a radiation energy
density. Finally, the whole process (starting from the tree-build) is
repeated until the radiation energy density converges everywhere, i.e.
until it does not change by more than a user-defined fraction between
successive iterations. Below, we describe individual steps in detail.

2.1 Tree build

QUANTITIES ADDED TO THE TREE. The general TREERAY module
does not add any quantities to the tree; the tree-solver itself stores
four numbers on each node, its mass and centre of mass. However, the
TREERAY submodules typically need to store two or three numbers
for each energy band on each tree node (node index n). In the case
of the TREERAY/ONTHESPOT submodule, we are concerned with
Extreme Ultraviolet radiation (EUV); i.e. radiation that can ionize
hydrogen. The module stores the rate of emission of EUV photons
within the node (&g, ), the rate of recombination of hydrogen into
excited levels (o, ,), and the mean EUV radiation energy density
from the previous iteration step (e, ):

8EUV,n = max (Z ;;lEUV,c — aBn%{,chC’ O) s (1)
c

aEUV.n = max <Z OanﬁychC — l;lEUv_c, O> ) (2)
C
Crov, = ZeEUV.chC' 3)
C

Here, riigyy . is the rate at which EUV photons are emitted from hot
stars in cell ¢, ny, is the number density of hydrogen nuclei, ap
is the recombination coefficient into excited states only, ey, . is the
radiation energy density calculated for cell ¢ in the previous iteration,
and dV, is the cell volume. Note that the photons emitted and
absorbed within cell ¢ are subtracted from each other in equations (1)
and (2), as this is more accurate than doing it later, during the RTE
integration along rays, when both quantities have been modified by
the approximations inherent in mapping the tree nodes on to the rays.

MAPPING SOURCES ON TO THE GRID. In order to obtain 7igyy ., €ach
source of radiation, i, characterized by the rate at which it emits EUV
photons, NEUV,,- and its radius, 7;, is mapped on to the grid before the
tree-build. During the mapping, Neuv; is divided between the grid
cells which the source intersects, in proportion to the intersecting
volumes.

2The full scheme of the tree solver and its modules down to the level of
individual subroutines can be found at http://galaxy.asu.cas.cz/pages/treeray.
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COMMUNICATION. After the tree is built, it is communicated in the
same way as described in Paper I (Section 2.1). In summary, the code
first distributes information about all the block positions and sizes to
all the processors. Then, each processor runs a tree walk with target
points at the closest point to the local node of all the blocks of a
given remote sub-domain, and determines which local nodes will be
opened when the tree walk is executed at the processor calculating
that sub-domain. In this way, the local processor determines lists of
the nodes needed at all the remote processors, and sends the nodes
there. This ensures that all the information about the nodes to be
opened during the tree walk is present at each processor, and at the
same time it minimizes the amount of data communicated.

2.2 Structure of rays

RAY-ARRAYS. Before the tree is walked for each target cell, three
arrays (cdMaps, rays, and raysEDb) are created in order to store
the results of the tree-walk. The first one, cdMaps (standing for
column density maps), is two dimensional and has size N, x Iy,
where N, is the number of directions and /; is the number of
quantities. The directions are defined with the HEALPIX algorithm
(Gorski et al. 2005), which tessellates a unit sphere into pixels of
equal solid angle, each with a unit vector, 71, which points from
the sphere centre (target point) to the centre of the pixel. The value
N,y is specified at the outset by setting the HEALPIX level Niige,

with possible values Ngq. = 1,2,4,8, ..., corresponding to N, =
12N2%,, = 12,48,192,768, .... The cdMaps array is used by the
TREERAY/OPTICALDEPTH module and has already been described in
Paper 1.

RAYS. The second array, rays, adds another dimension repre-
senting radial distance from the target point. We define N, evaluation
points on each ray leading from the target point in the direction of
vector 7ix. Each ray is associated with a volume given by the area of
the HEALPIX pixel extended along the radial direction. Thus we create
a system of rays pointing from each target point in N, directions,
and covering the whole computational domain. The rays array has
size Ny X Ny, x mgy, where mq is the number of quantities mapped
on to the rays.

RAYSEB. The last array, raysEb, adds another dimension, which
is necessary in cases involving multiple energy bands. Its size is
(N, X Nep X Ny X ng, where Ny is the total number of energy
bands for all sub-modules and ny is the maximum number of
quantities per energy band (by default 3). Typically, each sub-module
requires one or more energy bands to treat radiation at different
wavelengths (or radiation involved in different physical processes),
and each energy band uses its own emission coefficient, absorption
coefficient and radiation energy density, which are stored in the
raysEb array. For simplicity, we refer to all three arrays as ray-
arrays, considering cdMaps to be a special ray-array with
only one data point in each radial direction.

EVALUATION POINTS ON RAYS. Each ray intercepts N, evaluation
points, where the quantities mapped on to the ray (e.g. emission
and absorption coefficients) are set. Evaluation points are located so
that the distances between successive points (hereafter ray segment
lengths), are proportional to the distance from the target cell. This is
because the size of tree nodes that need to be opened also increases
— often linearly — with distance from the target point. Hence, starting

3Note that in Paper I this array had an additional dimension going through all
the cells within a block, because the tree-walk was run on a block-by-block,
rather than a cell-by-cell, basis.

1202 AINf 6z U0 Jasn [eu L A1siwayoolg JO [euinop - Yipied Jo Aysianiun Aq Z€/E8Z9/0€ LE/E/S0S/2I01E/SEIUW/WO0d"dNOOILSPED.//:Sd)lY WO} PaPEOjUMOd


http://galaxy.asu.cas.cz/pages/treeray

with the first evaluation point at the target point (1o = 0), the radial
coordinate of the i " evaluation point is

Ax i?
= .
2n%

)

Here, Ax is the size of the smallest cell in the simulation and ng
is a user-defined parameter that controls the resolution in the radial
direction. By default, ng = 2, which ensures that (if the BH criterion
for node acceptance is used, see Section 2.4) the segment lengths
correspond, approximately, to half the size of the nodes with which
the target cell interacts during the tree walk, i.e.

elim x d

>
where d is the distance between the target cell and the interacting
node. The maximum ray length, L,y is set automatically to the length
of the three-dimensional diagonal of the computational domain, and
hence the number of evaluation points along each ray is

(&)

[Figr — il ~

2Ly
Nr = ng x floor — | +1, (6)
Ax

where f1loor (x) is the largest integer less than or equal to x. Each
module M includes a user-defined parameter, Ly, by which the
user can specify the maximum distance from the target cell to which
the calculation (mapping and/or RTE solution) should be carried out.

2.3 Tree-walk

MAPPING NODES ON TO RAYS. When the tree is walked, the quantities
stored on the tree nodes are mapped on to the ray-arrays in a
two-step process. First, each mapped quantity, e.g. the node mass,
is divided amongst different rays in proportion to the volume of
the intersection between the node and the ray (see Fig. 2). This is
implemented as described in Paper I, using a pre-calculated table of
intersection volumes between a ray and a node with given angular
coordinates (6, ¢) and angular size 1. Second, the part of the node
belonging to the ray is divided between evaluation points, r;, using
a kernel function W(x) with x = (r; — d)/h,) where d is the distance
of the node mass centre from the target point, and A, is the node
linear size. This mapping also uses a precalculated table in which the
weights of the evaluation points are recorded as a function of r, d,
and h,,.

KERNELS. Three kernels are presently available, as discussed in
detail in Appendix A. The first is a Gaussian kernel, W,(x) (equa-
tion A2), truncated at x = /3 /2. The second, W,(x) (equation A3),
has the form of a piece-wise polynomial of third order and has
been obtained by fitting the mean intersection between a uniform
cubic node and a randomly oriented line. TREERAY uses W,(x) by
default for mapping the node masses and volumes. The third, Wy(x), is
tailored to the requirements of radiative transfer, and is used with the
ONTHESPOT module; the considerations informing the prescription
for the kernel coefficients are described in detail in Appendix A. Due
to its nature, Wi(x) is only used for mapping quantities related to
radiative transfer (e.g. the radiation energy); all other quantities (e.g.
mass) are mapped using W, (x).

2.4 Multipole acceptance criteria (MACs)

MACS IN THE TREE SOLVER. During the tree walk for a given target
cell, anode is accepted if it satisfies the MAC. The simplest and most
commonly used MAC is the Barnes—Hut (BH) MAC (Barnes & Hut
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Figure 2. Mapping tree nodes on to rays during the tree walk. The tree nodes
that need to be opened during the tree walk for a target point in the bottom
left-hand corner are denoted by solid line squares. The system of rays which
is cast from the target point is represented by the blue and yellow areas. The
green circles are node mass centres. The quantities that are stored in each of
the tree nodes are distributed to all rays which a node intersects (solid arrows),
weighted by the relative intersection volume. For a given ray, the quantities
are distributed to the so-called evaluation points along the ray using weights
given by the kernel function W[(r; — d)/h,] (dashed arrows).

1986). With the BH MAC, a node of size h,, at distance d from the
target cell, is accepted if

hn/d < elimv (7)

where 6}, 1S a user-specified limiting opening angle. In Paper I,
we describe several data-dependent MACs that make the GRAVITY
module calculation more efficient. Below we define two new MACs,
IF MAC (standing for Ionization Front) and Src MAC (standing for
Sources), designed for the TREERAY/ONTHESPOT module, and also
applicable to other TREERAY submodules. When these MACs are
combined with the GRAVITY module MACs to ensure accurate gravity
calculation, smaller nodes are opened in regions of dense, highly
structured gas, and this leads to an increase in the computational
cost of the tree walk. However, this does not impact the accuracy or
performance of the TREERAY RTE solution, since the small nodes
are smeared out on to the HEALPIX rays with the angular resolution
given by Ny .

BH MAC. When the BH MAC is used together with TREERAY,
a sensible choice is to set Gy =~ (471/ N, )'/2. This ensures that the
angular size of accepted tree nodes is approximately the same as the
angle assigned to each HEALPIX ray (see analysis of this criterion for
the OPTICALDEPTH module in Paper I, Section 3.3.1).

NEW MACS. Both the IF MAC and the Src MAC are controlled
by limiting opening angles, respectively 01r and Og,.. If the IF MAC
is adopted, the code records for each node, n, both the total mass,
my, and the mass of ionized gas, mjo, (defined as a threshold on the
ionized hydrogen abundance or on the temperature). Then, during
the tree walk, nodes for which §pm, < mjo, < (1 — 8p)m, (where

MNRAS 505, 3730-3754 (2021)
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81z = 107®) are assumed to include an ionization front. Such nodes
are accepted only if

hn/d < 911:. (8)

Similarly, if the Src MAC is adopted, nodes that include sources of
radiation, i.e. &, > 0, are accepted only if

hy/d < Osyc. C))

2.5 Radiation transport equation

GENERAL RTE. After the tree walk is completed, the ray-arrays
contain all the quantities needed to solve the Radiation RTE using the
reverse ray-tracing method (Altay & Theuns 2013). For frequency
band v, the RTE takes the form*

dr,
dr
where ¢, and «, are the emission and absorption coefficients. The
RTE must be solved along each of the N, rays cast from a target
point. On each ray, at each evaluation point i (at distance r; from the
target point along the ray) radiation transport is regulated by (i) the
local emission coefficient, ¢, ;; (ii) the local absorption coefficient,
«,_;; and (iii) the radiation energy density from the previous iteration
step, e, ;. These quantities have all been mapped on to the evaluation
points during the tree walk. e, ; is only required if the emission or
absorption coefficients depend on it. If the emission or absorption
coefficients do not depend on e, ;, it is straightforward to integrate
equation (10) along each of the N, rays, and thereby obtain the
(direction-dependent) radiation intensity /, o (k=1to N, ) at the
target point. These /, ¢  can then be summed to obtain a new estimate
of the radiation energy density at the target point, and this can in
turn be used to calculate radiative ionization and/or heating rates.
However, if the emission or absorption coefficients do depend on
e, i, more elaborate formulations of the problem may be appropriate,
and this is the case for the TREERAY/ONTHESPOT module.

RTE IN ONTHESPOT. In the TREERAY/ONTHESPOT module treat-
ing the EUV radiation, we use different quantities from those in
equation (10) to characterise the radiation field. ¢, , gives the rate
of emission of EUV photons from sources (i.e. hot stars) associated
with evaluation point i. ay,; gives the rate of recombination of
hydrogen into excited levels, per unit volume, at evaluation point i;
in the ONTHESPOT approximation, such recombinations are exactly
balanced by photoionizations,’ 0 e ; is also the rate at which EUV
photos are destroyed in unit volume at evaluation pointi. ., ;. gives
the rate at which EUV photons emitted into unit solid angle by the
sources associated with evaluation point j reach the spherical surface
through evaluation point i (see Fig. 3).

INTEGRATION PROCEDURE. The integration procedure first calcu-
lates

=—¢ +a,l,, (10)

& .
===, @ =0, (11)

q>EUV.i:/,j 47 EUV,i#j,j
at all the evaluation points that have sources, and sets it to zero
everywhere else. Then, for all evaluation points, j, that have sources,

4The signs on the right-hand side are reversed, as compared with the standard
form, because the radiation propagates in the negative direction with respect
to coordinate r originating at the target point.

5 Although the on-the-spot approximation does not strictly require ion-
ization/recombination equilibrium for recombinations into excited states
(Case B), it is only under extreme circumstances that the on-the-spot
approximation is valid and ionization/recombination equilibrium is not.
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starting from N, — 1, it cycles over the evaluation points from i = j
— 1 to i = 0 and calculates

By, = P — Risis (12)

EUV,i,j EUV,i+1,j

truncating it to zero if it becomes negative. R, ; is the rate at which
photons from evaluation point j are lost due to recombinations in the
ray segment between r; .| and r;, and is given by

1
Ri-/ = 2 ((XEUVJ +aEUV.z+1)dVi.j X Ldit1 X Lsit1,j X Laijs (13)
where
dVi; =10y =)’ = (rj —rig)’1/3 (14)

is the volume of the cone of radiation from source j in the segment
between r; and r;;; (see Fig. 3). The absorption rate is further
corrected by three factors ¢ iy 1., {a.i+ 1, and g ;, which are
defined below.

CALCULATION OF FLUXES. The contribution from the sources
associated with evaluation point j to the flux of EUV photons through
evaluation point i is then given by

Feovig = Peova, /= ri)’, (15)

and the total flux of EUV photons at r; from all sources j on the ray
atr; > r;is

Nr
Fopy, = Z FEUV.L]' (16)

j=i+1

CORRECTION FACTORS IN EQUATION (13). The first correction
factor in equation (13), s ;4 1,j, accounts for recombinations that
absorb photons coming along the same computed ray but from
sources other than j. It is simply the ratio of the contribution to
the flux from source j, Fj 4 1, to the total flux along the ray, Fi i,

Fovviits
Guibtj = 17

EUV,i+1
The second correction factor in equation (13), {4 ;4 1, follows a
similar logic. It accounts for recombinations that absorb photons
passing through the ray segment in other directions than along the
computed ray, and it is defined as the ratio between Fy, ., ; and the
trace of the radiation pressure tensor P, .., (expressed in photons
per unit area and time). The latter is obtained from the radiation
energy density as tr(Pyy .,,) = €gyy ., ¢/ Mgy > Where hug, is the
mean energy of an EUV photon and ¢ is the speed of light. The
correction factor ¢ ; 4 1, ; is further truncated to lie between 0 and 2 to
deliver a moderate convergence rate during the tree solver iterations,

yielding

hUEUV ) ] (18)

{a,i+1 = min (2, FovvuiMVeoy

eEUV,H—] ¢
The third correction factor in equation (13), ¢, ; j, corrects for
the geometry of the ray segments. The segment length r; | —
r;, controlled by parameter ng, can be substantially smaller than
the tangential extent of the ray ~ r; x N, . In this situation, the
flux from sources close to r;+; would be too high, leading to an
overrepresentation of these sources in equation (13). Therefore, we
add a correction of the form

. Ny (rj —ri)
;i=min (1, =<1 ) 19
{g. J 1 < er ) (19)
Note that the minimum in equation (19) ensures that the correction

is only applied to segments with r; — r; < 2r;/N,

side *
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Figure 3. Schematic view of TREERAY, depicting the solution of the RTE along a single ray (bounded by thick black lines) towards a given target cell (on the
left-hand side) after all the required quantities have been mapped on to the evaluation points (crosses). Each evaluation point is characterized by its distance
from the target point, r;, its absorption coefficient, «;, the emission coefficient of all sources mapped on to it, &;, and the local radiation energy density from the
previous time-step, e;. See Section 2.3 and Fig. 2 for details of the mapping. For the furthest two evaluation points, j — 1 and j (marked by stars, with emission
coefficients, ¢; — 1 and ¢;), the yellow (blue) shaded area represents the volume dV; ; — 1 (dV; ;) of the cone of radiation from source j — 1 (j) in the segment
between evaluation points i and i + 1 (equation 14). The procedure described in Section 2.5 calculates the photon rates ®; ; and fluxes F; ; at each evaluation
point. Fluxes Fy, ; at the target point are summed to give the radiation energy density there.

SUM OVER DIRECTIONS. Finally, the fluxes F, ,, incident on the
target point (i.e. i = 0) from the directions of all the HEALPIX rays
(k=1to N, ) are summed to give a new estimate of the radiation
energy density v 1t is assumed that the target point is a small
sphere with radius rtp.6 Using the approximation of single direction

radiation, the radiation energy density is

PIX F l’lV

new EUV,0,k EUV . (20)

2.6 Iterations and error control

NEED FOR ITERATIONS. If the absorption or emission coefficients de-
pend on the ambient radiation field — as in the TREERAY/ONTHESPOT
sub-module, where photons coming from different directions com-
pete to be absorbed balancing recombinations — the code must iterate
to find an acceptable estimate of the EUV radiation energy density,
€.,y Modules and sub-modules that do not need iterations are
executed only once, during the first iteration step, to save computing
time. The first iteration starts with the radiation field ey, from
the previous hydrodynamic time-step. This significantly reduces the
number of iterations needed, because changes in the distribution of
gas and sources between time-steps are typically small. In most cases,
fewer than ten iterations are needed.

ERROR CONTROL. Iteration is terminated once the fractional change
in the radiation field between successive iterations, (SEEUV , falls below
a user-defined limit €y, (default value is 1072). Currently, two
ways of determining the fractional change in the radiation field are
implemented. The first considers the total radiation energy,

o 2(Semav- Sewdv)
TS eney W+ 3 ey dVe

EUV.c

, @n

Gr[p is half of the grid cell size (if the target point is a grid cell) or the sink
particle accretion radius (if the target point is a sink particle).

where subscript ¢ denotes the quantity in a grid cell with volume
dV., and the sums are taken over all grid cells in the computational
domain. This criterion is similar to the one adopted by Dale, Ercolano
& Bonnell (2012), who checked for the fractional change in the total
mass of ionized gas; it works well when there are a few sources with
comparable luminosity. The second criterion considers the change in
the radiation field on a cell-by-cell basis,

elew o

EUV.c

8e cell = Max (M> s (22)

EUV® ¢ e
EUV,norm,c

where the maximum is taken over all grid cells ¢ in the computational

domain, and the normalizing energy is

€EUV,norm,c = max(eEUV.(»v eEUVAmed)' (23)

Here, €guv, mea is the median of all the e, . values over the whole
computational domain. The median is used to avoid zero or nearly
zero normalizations, because e, can have arbitrarily small values.
The second criterion, using BEEUV cell» 18 safer and is set as the default.

INTERACTION WITH GAS. The calculated radiation energy density
is used to modify the properties of the target point. If the target
point is a grid cell, the code can for instance update the temperature
or the chemical composition (including the ionization degree). If
€xuy, 18 non-zero, the TREERAY/ONTHESPOT module implements
two possible treatments: (i) the temperature and ionization degree
are given user-defined values (e.g. 10* K and 1.0, respectively), or
(i) eyyy, 1s passed to the CHEMISTRY module (see Haid et al. 2018,
for details, and Section 4 for a test case including chemistry).

2.7 Sources of radiation

SOURCE PROPERTIES. For some TREERAY sub-modules, the emission
coefficient ¢, . in cell ¢ is derived directly from the quantities
that describe the gas in the cell. Other sub-modules, including
TREERAY/ONTHESPOT, use radiation sources that are independent
of the grid (e.g. sink particles representing stars or star clusters).
Such sources are characterized by their position, luminosity (e.g.
in the case of the TREERAY/ONTHESPOT module, number of EUV

MNRAS 505, 3730-3754 (2021)
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photons emitted per second), and radius. These properties can either
be read from a file at the start of a simulation and stay constant for
the whole run, or they can be obtained from sink particles. In the
latter case, the sinks move and their luminosities (and in principle
also their radii) can vary with time. The FEEDBACKSINKS module can
be used to calculate the luminosities of the stars and stellar clusters
that sink particles represent, as functions of their age, mass and mass
accretion history (see Gatto et al. 2017; Peters et al. 2017, for details).

MAPPING ON TO THE GRID. At each call of the tree solver, before
the tree is built, all sources are mapped on to the grid, assuming that
the sources are uniform spheres. In this way, the emission coefficient
in each grid cell, which geometrically intersects with the volume of
the source is set to a fraction of the source luminosity proportional to
the intersection volume. In order to keep the mapping process fast,
it is performed in two stages: creating a list of sources intersecting
with each block, and then calculating the intersection of each cell
with each source on the list.

2.8 Boundary conditions

BOUNDARY CONDITION TYPES. Three types of boundary condition
are available for the tree solver; they are independent of the boundary
conditions for the hydrodynamic solver. The first two types (isolated
and periodic) have already been described in Paper I, the third one
(corner of symmetry) is newly implemented and described in more
detail below. Isolated boundary conditions assume that all source
quantities (e.g. for gravity or emission of radiation) are zero outside
the computational domain. Periodic boundary conditions invoke
periodic copies of each tree node during the tree walk, and use
only the closest copy to the target point. The GRAVITY module uses
the Ewald method to take into account all the periodic copies, but
calculations with the TREERAY sub-modules are presently limited to
the nearest periodic copy.

CORNER OF SYMMETRY. Corner of Symmetry boundary condition
allow the user to simulate one-eighth of the problem under investi-
gation, if the problem has the appropriate symmetry. We refer to the
truly simulated part of the computational domain as the original, and
we specify one corner of it as the corner. During the mapping of the
tree on to the rays we reconstruct the entire problem by spawning
seven ghosts of the original. The first three ghosts are copies of the
original mirrored in the faces adjacent to the corner. The remaining
four ghosts are point reflections of the first four ghosts through the
corner. One can show that if the MACs discussed in Section 2.4
hold for the original, they also hold for all seven ghosts. One useful
application of this boundary condition is to problems with spherical
symmetry such an the Spitzer test (see Section 3.1, model (p)), giving
us as an effective resolution of level n while actually only computing
atleveln — 1.

2.9 Tree solver time-step

ABU IN TREERAY. In Paper I we introduced the adaptive block
update (ABU) method, which improves the code performance by
only updating blocks where the quantities calculated by the tree
solver change significantly; we also illustrated the benefits when
ABU is used with the GRAVITY or TREERAY/OPTICALDEPTH mod-
ules. However, ABU does not deliver such significant benefits with
the TREERAY/ONTHESPOT module, or any other module where the
absorption or emission coefficients depend on the local radiation
energy density. This is because calculating the radiation energy
density couples together large regions of space, thereby requiring
the code to update many blocks.

MNRAS 505, 3730-3754 (2021)

TREE SOLVER TIME-STEP. However, in many applications, the
time-scale for the physical processes which are calculated by the
tree solver is much longer than the hydrodynamic time-step. For
example, in calculations with a multiphase ISM, the dense cold/warm
gas is the main contributor to the gravitational potential as it contains
most of the mass in the system and absorbs most of the radiation,
and this gas typically moves with velocities smaller than 10 km s~
(e.g. Girichidis et al. 2016). On the other hand, the hydrodynamic
time-step calculated from the Courant condition can be very small,
because it is defined by the hot gas (with sound speeds > 300 kms™!)
or stellar winds (with velocities > 1000 km s~!), but the contribution
of this hot or fast gas to the calculation of gravity and radiation is
typically negligible. Since the tree solver is used to calculate the gas
self-gravity and the EUV or longer wavelength radiation field, it may
not need to be called at every hydrodynamic time-step; the decision
whether this approximation is reasonable depends on the nature of
the phenomena being simulated, and is left to the user. The frequency
of calls to the tree solver is regulated by setting the time-step, Af,
which can be longer than the hydrodynamic time-step. A convenient
way to set At is to define a parameter

Visde = AX /Al 24

where Ax is the size of the smallest grid cell. vq then sets the
maximum velocity with which the gas and/or sources relevant to the
tree solver can move. By default, we set v = 00 and hence At
= 0, in which case the tree solver is called at each hydrodynamic
time-step. Examples of how setting v, to a finite value impacts the
code performance and accuracy are given in Section 4.

2.10 Load balancing

WORKLOAD PROBLEM. The computational cost of the tree solver is
almost always dominated by the tree walk, and the most expensive
operation is mapping the tree nodes on to the system of rays. If no
radiation passes through a node, this operation is omitted, and as a
result, the tree walk can be significantly cheaper in regions where
no radiation is present. However, this may lead to a non-optimal
distribution of the work load among different processors if each
processor computes the same number of blocks (which is the default
in FLASH).

LOAD BALANCING SCHEME. Therefore, we implement a simple
load balancing scheme, based on measuring the wall clock time
needed to execute a tree walk for all grid cells in a block, ;1 pi. After
each tree solver call, we collate the #,, pix measurements and calculate
their median value, #y), mea. Then we increase the workload weights,
Wpik, Of blocks with fy ik > tw1, mea bY the factor ty, pik/twi, med- These
workload weights are then used by FLASH in the next redistribution of
blocks amongst the processors; each processor is assigned a number
of blocks such that the sum of their weights is approximately the
same for all processors. Note that this scheme improves the code
performance only if the computational time is dominated by the tree
solver. Therefore, we use this scheme, in combination with the tree
solver time-step, only for time-steps when the tree solver is called. All
other time-steps are calculated with a default flat block distribution,
i.e. the same number of blocks on each processor.

3 ACCURACY AND PERFORMANCE TESTS

In this section, we describe four tests of the TREERAY algorithm
illustrating its strengths and weaknesses, using idealized configura-
tions of gas and sources. A more complex test, involving physical
processes commonly included in astrophysical simulations of star
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formation and its feedback, is presented in Section 4. All tests in
Sections 3 and 4 have been run on the IT4l/Salomon supercomputer
cluster’ consisting of 1008 compute nodes, each equipped with two
12-core Intel Xeon E5-2680v3 @ 2.5 GHz processors and 2GB of
RAM per core. The nodes are interconnected with the InfiniBand
FDR56 network using the 7D Enhanced hypercube topology.

3.1 Spitzer test

SPITZER BUBBLE. The Spitzer bubble is one of the simplest models
of the interaction of ionizing radiation with gas. In this model,
the UV radiation from a young, massive star ionizes and heats
the surrounding gas, creating an HII region, i.e. an overpressured,
expanding bubble of photoionized gas bounded by a sharp ionization
front (e.g. Spitzer 1978; Whitworth 1979; Deharveng et al. 2010).
For a typical O-star, the radiative energy input can be very large,
> 10* L. However, only a small fraction of this radiative energy
is converted into kinetic energy (<0.1 per cent; Walch et al. 2012).
The expanding ionization front drives a shock into the surrounding
neutral gas, sweeping it up into a dense cold shell, and this may
trigger the formation of a second generation of stars (e.g. Elmegreen
& Lada 1977; Walch et al. 2013). H1I regions are able to disrupt
low-mass molecular couds long before the massive stars explode as
supernovae (Whitworth 1979; Dale et al. 2012; Walch et al. 2012;
Haid et al. 2019)

SPITZER BUBBLE EXPANSION. The Spitzer test describes the
spherically symmetric expansion of an HII region into a uniform
ambient medium with density p,, which supposedly resembles a cold
molecular cloud. It is used as a standard test for radiative transfer
schemes (e.g. Mellema et al. 2006; Krumholz et al. 2007; Iliev et al.
2009; Mackey & Lim 2010a, 2011; Raga, Canté & Rodriguez 2012;
Rosdahl et al. 2013; Bisbas et al. 2015; Raskutti, Ostriker & Skinner
2017). The analytic solution for the time evolution of the D-type
ionization front is given by (Spitzer 1978)

7 et \M7

Ripani(t) = Rs | 1 + -~ , 25

TFanl () S( +4Rs) (25)
where

. 1/3
3N, ,.m?

Re = | — 25 P 26

s (47raBX2p02 (26)

is the Strgmgren radius (Stromgren 1939); ¢; is the sound speed
in the ionized gas inside the bubble; NLyC is the rate at which
the central star emits hydrogen-ionizing photons (i.e. photons with
energy E, > 13.6eV); my, is the proton mass, X is the mass fraction
of hydrogen; and ag=2.7 x 1073 cm’s~! is the Case-B recom-
bination coefficient for an isothermal H1I region with temperature
T; =10* K. We assume that the gas is composed of hydrogen, with
mass fraction X = 0.70, and helium, with mass fraction ¥ = 0.30;
ionization of helium is ignored.

SPITZER TEST SETUP. In Bisbas et al. (2015) and Haid et al.
(2018), we have already demonstrated that TREERAY/ONTHESPOT,
as implemented in the FLASH code, delivers high accuracy in the
Spitzer test. Here, we explore how the code behaviour depends on
the various control parameters. We set up a cubic computational
domain of size 30 x 30 x 30 pc3, which is filled with cold, dense
molecular gas, having uniform temperature, 7, = 10 K, and uniform
density, py = 7.63 x 10722 gcm™3; the hydrogen is assumed to be

"https://docs.itdi.cz/salomon/
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molecular, and the helium atomic, so the mean molecular weight is
2.35, and the total number-density of gas particles ny ~ 195 cm™.
At t = 0, a radiation source at the centre starts emitting ionizing
photons at rate NLYC = 10*s7!. In the ionized gas the temperature
is set to 7; = 10* K and the mean molecular weight to u; = 0.678,
corresponding to ionized hydrogen and atomic helium. All the gas has
adiabatic index, y = 5/3. If, during the evolution, the temperature in
the neutral gas exceeds 300 K, it is instantaneously cooled to 300 K;
consequently the shell of shock-compressed neutral gas immediately
ahead of the expanding IF is effectively isothermal at 7; = 300 K
(strictly speaking, the adiabatic index should be slightly below y =
5/3 at this temperature, because the rotational degrees of freedom
of H, are starting to be excited, but we ignore this detail). This
temperature limit is chosen in order to resolve the thickness of the
shell and prevent numerical instabilities in the hydrodynamic (PPM —
piecewise parabolic method) solver that would otherwise occur. The
sound speeds in the molecular cloud, the shell and the H 11 region, are
¢y =0.187kms™ !, ¢, = 1.30kms™!, and ¢; = 14.3kms™!, respec-
tively. These parameters result in a Strgmgren radius of 1.434 pc.

VARIED PARAMETERS. We present results for 16 models, denoted
(a)—(p) (see Table 1) with different combinations of the following six
parameters: the radiation-field error control limit (Sfauv cell OF ‘Sfeuv
see Section 2.6), the grid resolution (given by the refinement level /),
the angular resolution (given by the limiting opening angle 0y, the
number of HEALPIX rays N, , and the limiting opening angles 6 ¢ and
Osr for the IFMAC and Src MAC, respectively), the radiation-energy
error limit (€);y,), the radial resolution of rays (nz), and the source
radius (Ry.). In model (1), the single radiation source is replaced by
100 sources with luminosities N, . = 10* s~! distributed in a sphere
of radius eight grid cells, instead of a single source of that radius.
This is done to demonstrate that TREERAY can faithfully handle a
large number of radiation sources. The last model (p), is calculated
with the corner of symmetry boundary condition, i.e. only one octant
of the total domain is computed (see Section 2.8). For each model,
we evaluate the error in the ionization front position, ejr = (Rir, num
— RiE anl)/RIE, ani, at the end of the run (1.5 Myr), the processor time
for a single iteration step, ti.r, and the processor times in the tree
solver, t;, and in the hydrodynamic solver, fyyqro, for the whole run.

FIDUCIAL RUN. Fig. 4 shows the evolution of model (a), the fiducial
run, displaying the radial profiles of the gas density, pressure and
temperature, averaged over all directions, at three times throughout
the evolution. By the end of the evolution (f = 1.5 Myr), the pressure
in the shell approaches the value within the H1I region indicating
that the shell thickness is approximately resolved. Fig. 5 shows the
position of the ionization front, Rig num, as a function of time, and
compares it with the prediction of equation (25). The fractional error
in the ionization front position, el = |RIE num — RIF anl|//RIF, an1» at
t=1.5Myr, is shown in Table 1. For the fiducial run, this error
is ~2.5 per cent. Fig. 6 shows the radial profile of the radiation
energy density, e, , and compares it with the analytically obtained
radiation energy density, e, .., denoted by the black lines. The latter
is determined by combining equations (25) and (26), and replacing
po With the density in the HII region, p;, which is assumed to be
uniform between r = 0 and Ryg:

r3 7 c;t —12/7

ERROR CONTROL. Figs 7 and 5 show that most of the other models
(all but models (e), (i), and (m)) also agree very well with the
analytic solution: the error in the ionization front position is better
than 5 per cent (corresponding to ~1.7 grid cells at the standard

,tots

E, N,
47tr2c

€EUV. anl (r,n)=
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Table 1. Accuracy and performance of the Spitzer test.

Model Ly Olim O1F, Osrc Npix 56EUV €lim nR Rire €IF Titer Iy Ihydro
(a) fiducial 5 0.5 00 48 cell 1072 2 1 0.025 0.24 158 34
(b) SeEUV = tot 5 0.5 00 48 tot 1072 2 1 0.024 025 78 34
©1 =4 4 0.5 o0 48 cell 1072 2 1 0.011  0.03 9.2 0.3
(d1, =6 6 0.5 00 48 cell 1072 2 1 0.040 2.5 3100 44
(e) Ny =12 5 1.0 00 12 cell 1072 2 1 0.173  0.05 65 5.6
(f) Ny =192 5 0.25 00 192 cell 1072 2 1 0.046 1.5 940 34
(g) €fim = 107! 5 0.5 o0 48 cell 107! 2 1 0.024 024 125 3.4
(h) €jjm = 1073 5 0.5 00 48 cell 1073 2 1 0.025 0.24 250 34
AH)ngp=1 5 0.5 00 48 cell 1072 1 1 0.203  0.21 180 3.5
G nr=38 5 0.5 00 48 cell 1072 8 1 0.033  0.39 260 34
(k) Rge =4 gc 5 0.5 00 48 cell 1072 2 4 0.026 0.24 150 34
(1) 100 sources 5 0.5 00 48 cell 1072 2 8* 0.023  0.24 240 4.5
(m) O = 0.5, Ny = 12 5 1.0 0.5 12 cell 1072 2 1 0.034  0.11 100 4.1
(n) 6 = 0.5, Ny =48 5 1.0 0.5 48 cell 1072 2 1 0.029 0.12 90 3.7
(0) Ol = 0.25, Ny = 192 5 1.0 0.25 192 cell 1072 2 1 0.048 0.34 240 3.7
(p) COS 4 0.5 00 48 cell 1072 2 1 0.065 0.12 80 0.8

Notes. Column 1 gives the model name. The following columns list:

(i) 1,: the refinement level defining the grid resolution(4 — 643,5 — 1283, 6 — 256%)

(ii) Ofim: limiting opening angle for BH MAC

(iii) O1F, Osrc: limiting opening angles for IF MAC and Src MAC, respectively (see Section 2.4)

(iv) Npp: number of rays (defining the angular resolution)

) (SeEUV : error control method (either SeEUV cell given by equation (22), or 5eEUV tot given by equation (21); see Section 2.6)

(vi) €1im: maximum allowed relative error

(vii) ng:resolution in the radial direction; ng is inversely proportional to the distance between evaluation points on rays (see equation 4)

(viil) Rgy: size of the source (in grid cells)
(ix) erp: relative error in the ionization front position at t = 1.5 Myr
(X) titer: processor time for a single iteration step (in core hours)

(xi) t; processor time spent by the tree solver in the whole run (in core hours)
(xii) thydro; processor time spent by the hydrodynamic solver in the whole run (in core hours).

*in model (k), 100 sources of radius 1 grid cell were distributed randomly in a sphere with radius 8 grid cells.
**model (p) uses corner of symmetry, i.e. only one octet is calculated, the grid cell size is the same as in model (a)
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Figure 4. Spitzer test: the evolution of the fiducial run (model a). The
green, red and blue lines show the mean radial variation of, respectively,
the gas particle density, the pressure and the temperature. Different line
types distinguish different stages in the evolution: initial conditions (dotted),
0.5 Myr (dashed) and 1.5 Myr (solid).

resolution), and the discrepancy in the radiation energy density is
negligible. Models (b), (g), and (h) evolve almost identically to model
(a), indicating that the choice of error control method has almost no
impact, and that the calculation is accurate even with the fractional
error limit €y, = 0.1. All three models use the same processor time

MNRAS 505, 3730-3754 (2021)

per iteration, fy, as the fiducial run, which is to be expected since
the error control condition does not affect the calculation within an
iteration. The total time spent in the tree solver, f, is approximately
two times lower for model (b), as 8eEUV,m requires fewer iterations.
Conversely, model (h) has 7, approximately ~60 per cent higher
than model (a), because the lower error limit leads to a larger number
of iterations. In the case of model (g), with increased €, = 0.1, 7,
drops by ~20 per cent relative to model (a), reaching approximately
two iterations per hydrodynamic time-step.

GRID RESOLUTION. A comparison of model (a) with models (c)
and (d) shows that a lower (higher) resolution leads to a smoother
and more blurred (denser and better resolved) shell. However, even
the low-resolution model (c), where Rig yum 1s only resolved with 17
grid cells at = 1.5 Myr, and with ~3 grid cells at r = 0, results in
an HII region with the correct radius and shape. The processor time
per iteration, f;, scales with the number of grid cells to the power
~1.1, between models (c), (a), and (d) (i.e. slightly superlinearly).
Similarly, the total time in the tree solver, 7, scales with the number of
grid cells to the power ~1.4 between the same models (again, slightly
above the theoretical (4/3)-power, where the extra (1/3) derives from
the shorter time-steps required by the Courant condition at higher
resolution).

ANGULAR RESOLUTION. Models (e) and (f) test the dependence
on the angular resolution by varying N, and 6y, setting them
so that the typical tree node angular size is similar to the angular
size of the rays, as suggested in Paper I. Model (f) evolves in
a similar way to model (a), but #, and #, are ~6 times larger.
This shows that the fiducial run is well converged with regard
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Figure 5. Spitzer test: the evolution of the ionization front radius. The top
panel shows models (a)—(f); the middle panel shows models (a) and (g)—(k);
and the bottom panel shows models (a) and (1)—(p). The black line shown on
all three panels is the analytic solution given by equation (25).

to angular resolution, and that the scaling is in agreement with
Paper I where we found that 7, scales with 0y;;, somewhere between
~0;2 and ~0>. On the other hand, model (e), with very low-
angular resolution, N,, = 12, exhibits significant departures from
the analytical solution. The volume of the HII region reaches only
~53 per cent of the correct value, and the radiation energy is
distributed non-spherically, with lower values along the Cartesian
diagonals. Consequently, the shell expands more slowly along the
diagonals than along the axes. Along the axes, the faster expansion
is also accelerated by numerical instabilities in the inadequately
resolved shell. The main reason for the depressed radiation-energy
density along the diagonals is that the very large 0y, allows the
acceptance of very large tree nodes by the BH MAC. Such large nodes
include the source in one corner and a part of the shell in the opposite
one, leading to a poor estimate of the rate of absorption of photons
within the node, and hence poor estimates of the radiation fluxes and
energies.

NEW MACS. The new criteria for accepting nodes in the tree walk,
IF MAC and Src MAC, also control the angular resolution, setting
it higher in regions where increased resolution is needed. The new
MAC:s are tested in models (m), (n) and (0). Model (m) with 6p = 0 g,
= 0.5 and N, =12 demonstrates that it is not worth increasing the
angular resolution in the tree walk without also increasing the number
of rays. Even though model (m) does not suffer from the problem
of accepting too large tree nodes (unlike model (e)), the radiation
field shows significant departures from spherical symmetry, and its
computational cost is similar to the much more accurate model (n).
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Figure 6. Spitzer test: the mean radial profile of the radiation energy density
at 1.5Myr. The top panel shows models (a)—(f); the middle panel shows
models (a) and (g)—(k); and the bottom panel shows models (a) and (1)-
(p). The black line on all three panels is the radiation energy density in the
analytical solution (equation 27).

Model (n) with 61 = 05, = 0.5 and N, =48 evolves in a similar way
to the fiducial run (a), and its computational cost is approximately
40 per cent lower. Model (o), with even higher angular resolution,
O = Ose = 0.25 and N, =192, shows improvement in the
spherical symmetry of the radiation field, like model (f), but it is
calculated in approximately one quarter of the time. This demon-
strates the benefits of the new MACs, particularly at higher angular
resolution.

RADIAL RESOLUTION. Models (i) and (j) explore the code be-
haviour at different radial resolutions, controlled by the parameter 7.
Model (j), with four times more evaluation points on the rays, gives
almost identical results to model (a), indicating that the fiducial run
with ng = 2 is well converged. The much higher density of evaluation
points results in an ~40 per cent increase in the computational time.
On the other hand, model (i), with ng = 1, takes almost the same
amount of time as model (a), and the error in the position of the
ionization front increases to 7 per cent.

SOURCE SIZE. Models (k) and (1) show that the H1I region still
evolves correctly if the source of ionizing radiation is distributed
throughout a larger volume. Model (1) exhibits moderate departures
from spherical symmetry; these are attributable to significant depar-
tures from spherical symmetry in the ionizing flux from 100 discrete
sources distributed randomly in a sphere of radius 1.9 pc. The time per
iteration, f;, is essentially the same as in model (a), demonstrating a
unique property of our algorithm, namely that the computational cost
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Figure 7. Spitzer test: the distribution of the radiation energy (blue—green) and the gas density (yellow-red), in the plane z = 0, at time 1.5 Myr, for models
(a)—(p), as noted in the top left-hand corner of each panel; see Table 1 for the model parameters. The logarithm of the radiation energy is shown in the region
with non-zero ionization degree, the logarithm of the gas density is shown in the remaining parts (i.e. for the neutral gas only).

does not depend on the number of radiation sources (see Section 5.2
for a more detailed discussion).

CORNER-OF-SYMMETRY.  Finally, model (p) tests the special
’Corner of Symmetry’ boundary conditions, which allow the user
to simulate one-eighth of a spherically symmetric problem (see
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Section 2.8). Model (p) runs at approximately twice the speed
of model (a), and produces broadly similar results. However, the
shell exhibits numerical artefacts along the axes resulting from the
directionally split hydrodynamic solver. As a result, the error on the
radius of the ionization front is greater, ejp ~ 6.5 per cent.
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Figure 8. Blister-type H I region test, at times = 18, 70, 140, and 380 kyr. The top panels show the logarithm of the gas column density. The bottom panels
show the logarithm of the radiation energy in the region with non-zero ionization degree, and the logarithm of the gas density in the remaining parts (i.e. for the
neutral gas only). Note that the computational domain has dimensions 8 x 4 x 4 pc?, and is much larger than the region shown in these maps.

3.2 Blister-type H1I region

BLISTER H 11 REGION. In order to test the algorithm in a situation that
is not spherically symmetric, we model a spherical cloud with an
ionizing star located inside it, but not at its centre. This model was
first discussed by Whitworth (1979) and Tenorio-Tagle (1979) who
suggested that, as soon as the ionization front reaches the edge of
the cloud on one side, the HII region bursts out of the cloud and the
remainder of the cloud on the other side is accelerated by the rocket
effect (Kahn 1954). This scenario was later studied numerically by
Bisbas et al. (2009) (hereafter B09), Gendelev & Krumholz (2012)
and others. Here, we set up the cloud and the radiation source with
the same physical parameters as in B09, and compare our results
with theirs.

INITIAL CONDITIONS. The radiation source is at the centre of the
coordinate system and emits ionizing photons atrate N, . = 10%s~".
The spherical cloud has mass My, = 300 Mg, radius Ry = 1pc
and uniform density py = 4.85 x 1072! gem™3; its centre is at
(0.4,0,0)pc. The cloud is embedded in a rarefied ambient gas
with density pam, = 1072* gcm™3, and the computational domain
has dimensions 8 x 4 x 4 pc3. The neutral gas has temperature T},
= 100K, but otherwise both neutral and ionized (i.e. irradiated)
phases have the same properties (molecular weights, adiabatic index,
hydrogen mass fraction) as in Section 3.1. All the gas that is not
irradiated is immediately returned to the temperature 7, at each
time-step. Self-gravity is switched off. The simulation is run for
0.5 Myr, corresponding to 1574 time-steps, and the computational
cost is ~10000 core hours.

NUMERICAL PARAMETERS. The model is calculated on an AMR
grid with minimum and maximum refinement levels of 4 and 6,
respectively (i.e. the highest resolution corresponds to 512 x 256
x 256). A simple density-based criterion is used to refine/derefine
blocks wherever the maximum density exceeds 1072! gcm™, or
drops below 5 x 10722 gcm™>. The hydrodynamic boundary con-
ditions are set to outflow. The parameters controlling the TREERAY
accuracy are set as follows: the tree solver uses both the IF MAC
and the Src MAC with 6 = 0.25, 6y = 0.25, and 0y;,, = 1.0; the

number of rays is N,, = 192; the radial resolution is ng = 2; and
the maximum allowed relative error is €}, = 0.01.

BLISTER EVOLUTION. The evolution of the blister-type H Il region
is shown in Fig. 8. The ionized region expands spherically until
t = 18 kyr, when it reaches the edge of the cloud on the left-hand
side. After that time, the ionized gas flows out of the cloud on this
side, while opening a growing cavity within it. On the right-hand
side, the H1I region continues to expand into the remainder of the
cloud, opening a growing cavity. The originally spherical shell of
swept-up gas is at first converted into an hemispherical shell (at ¢
~ T70kyr), and later into an almost flat layer (after r ~ 140 kyr).
When all the cloud material has been swept up in a given direction
from the source, accretion on to the shell stops and the shell starts
to accelerate and become Rayleigh—Taylor unstable. As a result, the
layer breaks into a large number of cloudlets. These cloudlets were
called ‘cometary knots’ in B09, due to their almost spherical core
and a tail created by ablation by the ionized gas streaming around
them and away from the source.

COMPARISON WITH B09. A qualitative comparison with the SPH
simulation of the same model in B09 (see their Figs 13 and 14)
shows an almost perfect agreement. The location and the shape
of the ionization front and other large-scale features are indistin-
guishable. The formation of cometary knots is also reproduced
remarkably well, given that the angular resolution of the TREERAY
simulation (6 = 0.25) is more than an order of magnitude coarser
than in B09, where the angular separation between neighbouring
rays is set by the local SPH-particle smoothing lengths, typically
0 < (0.1pc)/(4pc) = 0.025. This demonstrates the ability of the
reverse ray-tracing method to deliver high spatial resolution of the
radiation field at the ionization front, even with relatively large angles
between neighbouring rays. However, there are some differences in
the small-scale structures. First, the TREERAY simulation generates
larger perturbations of the shell along the grid axes, and the higher
noise there seeds the Rayleigh—Taylor instability through the odd-
even decoupling mechanism identified by Quirk (1994). Second, by
t = 380 kyr, the number the cometary knots is substantially lower
than in B09, because many of them have evaporated, due to their
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lower density, which in turn is caused by the lower spatial resolution
of the grid code.

3.2.1 Rabbit hole test

PENETRATION DEPTH PROBLEM. If the ionization front has a complex
structure, as in the previous test, it is questionable whether the
radiation field computed by a code with limited angular resolution
can properly follow the ionization front geometry. A particularly
difficult configuration for TREERAY is a radiation source shining into
a deep, narrow hole. Such holes form frequently in astrophysical
applications, for instance when a swept-up shell becomes unstable
and breaks apart (e.g. as in Walch et al. 2013). In order to quantify
the accuracy of the code in this situation, we implement a test called
the rabbit hole, in which we measure the penetration of the radiation
field as a function of the width of the hole.

RABBIT HOLE SETUP. To mimic a hole within a dense shell, we
set up an elongated box containing two media: the walls of the hole
are formed of cold dense gas with sound speed ¢, = 0.25kms~! and
pc =107"8 gcm™3; the inside of the hole is filled with warm rarefied
gas with ¢, = 10km s~ and p,, = 1072* gcm™>. The two media are
not in pressure equilibrium, but, since we only calculate the first time-
step, this is irrelevant. However, the extreme density contrast renders
this test particularly difficult, because nodes that are far away from
a given target point are large. Hence, the denser the cold medium is,
the more mass will be accumulated in these large and distant nodes,
and this can lead to an artificial blocking of the radiation.

TEST PARAMETERS. The computational domain is 6 x 2 x 2 pc>.
The hole has a square cross-section with side /,, and stretches from 0
to 6 pc. The ionizing source is placed at the entrance to the hole, (x,
¥, 2) = (0, 0, 0), and emits ionizing photons at rate Ny,c = 10% s7".
The test is performed with the hole pointing in the x-direction and
then in the z-direction (as illustrated in Fig. 9, top panels), and with
uniform resolution (384 x 128 x 128 ~ 6.3 x 10° cubic cells with
side length ~0.16 pc).

PENETRATION DEPTH MEASUREMENT. The Strgmgren radius
for a star with Ny =10*s™", in a uniform medium with
pw=10"2*gcm™3, is 72pc (see equation 26), i.e. the radiation
should shine right through the rabbit hole. However, for narrow holes
(small /y,), TREERAY is unable to obtain the correct solution without
reducing the angular resolution to intolerably low values. This is
shown in Fig. 9 (bottom panel), where we plot the maximum depth,
14, up to which we measure a non-zero radiation energy density as a
function of /,, for two different settings of the control parameters.

EXPECTED PERFORMANCE. Theoretically, we expect /; to fall in
the range 1,,/(2604im) < 1y < 1,,/6im- The lower limit corresponds to
the situation where the HEALPIX cone widens symmetrically from the
target cell towards the source, and touches the walls on both sides
of the hole at distance /,, /(20jim ). The upper limit corresponds to the
situation where one border of the cone is parallel to the wall of the
hole and the opposite border touches the wall at ,, /Oyim.

ACTUAL PERFORMANCE. To test this behaviour, we use two
settings. In the first setting, we adopt a constant opening angle of 6y;,,
= 0.25 corresponding to N, =192. For this Oct-Tree resolution,
we expect ly = ly/0im = 4ly, which is slightly better than the
performance actually achieved. Moreover, simply using more rays
without implementing the source and ionization-front MACs does
not improve this result. In the second setting, we adopt a larger 0y,
= 1.0 but also implement the physical MACs, with 61 = 0. = 0.125,
corresponding to HEALPIX level 8, i.e. N, = 768 rays. Despite the
large value of 6y, the results with the additional physical MACs
outperform the more expensive simulations with 0y;,, = 0.25 (see the

MNRAS 505, 3730-3754 (2021)

x [pc]
T : T
ft

X [pc]
S
i
ﬁ[
[
L

I
o

I I |
[
&
log Jegyy dy [normalized]

x [pc]

A

x[pc]
oo
ok
M (T [T T

gL
=

-0.2

-0.4

-0.6

0.6 -5
0.4 4

— 0.2 -

g o0 .

x -0.2 4
-0.4 -
-0.6 L -6

0 1 3
z[pc]

6 T :

—— Olim =0.25

— Oy = 1.0, 015 = Ogc = 0.125
5L e slope=2 ]

—————————— slope=4

slope=8

4L ]

o

B 3t 1

-

Figure 9. Top five panels: The radiation energy density integrated along the
line of sight (y-direction) with 0}, = 1.0, O1p = Oy = 0.125 and — from the
top to bottom panel -/, =0.2,0.4, 0.6, 0.8, and 1.0 pc. Radiation only reaches
the end of the computational domain (z = 6 pc) for /,, =1 pc. Bottom panel:
The range of depths up to which the radiation propagates as a function of the
width of the rabbit hole. The ‘error-bars’ indicate the minimum and maximum
depth, as found by different simulations with the hole pointing in the x- or
z-directions. The dotted lines show Iy = mly, with slopes m =2, 4, and 8; m
=4 corresponds to the theoretical expectation, lq = ly/0}im With O}, = 0.25,
and m = 8 corresponds to the theoretical expectation, Iy = /01 with O
= Ogc = 0.125. The results with physical MACs are significantly better than
those obtained with 6};,, = 0.25, but a slope of m = 8 cannot be achieved for
the high density contrast simulated here.

bottom panel of Fig. 9), and in the run with /,, = 1 pc the radiation
field reaches the end of the computational domain. However, the
theoretical scaling of /4 = 8/, is not achieved, due to the high density
contrast (a factor of 10°) between the warm gas within the hole and
the surrounding cold gas.

3.3 Radiation driven implosion (RDI)

In this test, we study a compact, dense, neutral cloud illuminated
by ionizing radiation from a single direction. The astronomical
motivation is the cometary globules, commonly observed in Galactic
H1l regions, with bright rims on the side irradiated by a nearby
hot star star (or stars) and tails pointing in the opposite direction
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(see e.g. Lefloch & Lazareff 1995; Deharveng et al. 2010; Getman
et al. 2012; Schneider et al. 2012). It has been suggested that, in
such a configuration, star formation can be triggered by the RDI
mechanism (Bertoldi 1989) and this mechanism has been extensively
studied analytically (e.g. Mellema et al. 1998; Miao et al. 2009;
Mackey & Lim 2010b) and numerically using SPH codes (e.g.
Kessel-Deynet & Burkert 2003b; Gritschneder et al. 2010; Bisbas
et al. 2011; Dale et al. 2012, and references therein), grid-based
hydrodynamic codes (e.g. Lefloch & Lazareff 1994; Mellema et al.
1998) and magnetohydrodynamic codes (Mackey & Lim 2010b).

RDI AND TREERAY. It is usually assumed that the size of the
cloud is small, compared with the distance to the radiation source.
Technically, this can be arranged, either by using a plane—parallel
radiation field (as in the Lefloch & Lazareff setup), or by setting a
large distance between the source and the cloud (as in Bisbas et al.
2009, hereafter B09). We choose the latter option here, even though
TREERAY can easily be modified to treat a plane—parallel radiation
field, and we postpone description of this feature to a future paper.
This test is relatively hard for algorithms with the limited angular
resolution, due to the small angular size of the cloud, as seen from the
source. This is why it was chosen by B09, to demonstrate the ability
of their algorithm to split rays adaptively, so that the ray separation
is everywhere similar to the resolution of the hydrodynamic solver.
TREERAY achieves a similar resolution at the irradiated border of the
cloud, by using reverse ray-tracing, which ensures a small separation
between neighbouring rays at the point of the flux calculation.

RDI SETUP. We use a similar setup to B09, which was chosen
to resemble as closely as possible the setup defined by Lefloch &
Lazareff (1994). A spherical cloud with mass M = 20 M, radius R =
0.5 pc, and uniform density py = 2.6 x 1072 gcm™3, is illuminated
by a source at distance D = 3.5 pc, emitting ionizing photons at rate
N,,c = 3.2 x 10*¥s7". The neutral gas (i.e. the cloud and the gas in
its shadow) has temperature 7, = 100K and is composed of pure
atomic hydrogen, i.e. i, = 1. The ionized gas has temperature 7;
= 10*K and p; = 0.5. The computational domain is 2 x 2 x 6 pc.
Initially, the source is located at (x, y, z) = (1, 1, O)pc, and the
cloud centre at (1, 1, 3.6) pc. The whole computational domain (apart
from the cloud) is filled with a rarefied gas having density p,mp =
10%* gem™3. We calculate six models denoted (a)—(f), for which
we vary the angular resolution (parameters i, and N, ), the grid
resolution (refinement level /,) and the MAC criterion (IF MAC on or
off; see Table 2). Models (a)—(e) use a uniform grid, i.e. the minimum
and maximum refinement levels are the same, while model (f) uses
AMR with refinement levels 4 to 6, so the coarsest grid is 64% x
192 and the finest one is 256> x 768. The AMR criterion refines a
block if the maximum density within it exceeds 107" gcm™3, and
de-refines it if the maximum density drops below 5 x 10722 gcm™,
thereby ensuring that only the cloud and its immediate surroundings
are calculated on the highest resolution. A typical grid structure can
be seen in the bottom right-hand panel of Fig. 10. We evaluate the
morphology of the cloud and its shadow, and compute the mass of
the neutral gas as a function of time, comparing these quantities with
B09 and Lefloch & Lazareff (1994). The error in the neutral gas mass
is ey = (M, — My, 8o9)/M,, oo, Where M, is the neutral gas mass at ¢
= 0.5 Myr and M, oo is the reference value from B09.

RDI EVOLUTION. We select model (f) as the fiducial model, since
— along with model (e) — it gives the best accuracy at reasonable
computational cost. Fig. 11 shows the logarithms of column density
(top) and radiation energy density (bottom) for model (f) at a
sequence of times. The column density can be compared directly
with fig. 15 in B09, and we see good agreement between the two
codes. Qualitatively, the cloud evolves in the same way as in previous
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Table 2. Accuracy and performance of the RDI test.
Model L Bim  Nyx O em i lir
(a) Ny, = 12 5 1 12 oo 024 049 840
(b) Ny =48 5 0.5 48 co 022 11 1900
(€) Npy, = 192 5 025 192 co 012 6.1 10500
(d) 61 = 0.25 5 1 192 025 0.1 26 4800
@1 =6 6 1 192 025 0.05 26 45000
(f) Fiducial 4,6 1 192 025 005 1.7 6300

Notes. Column 1 gives the model name. The following columns list:

(i) I, the refinement level defining grid resolution ‘5° — 1282 x 384; ‘6° —
2562 x 792; ‘4,6° — AMR with minimum and maximum refinement levels
4 and 6, respectively.)

(i) @1im: the limiting opening angle for the BH MAC

(iii) Npx: the number of rays (defining the angular resolution)

(iv) 61r: the limiting opening angle for the IF MAC

(v) em: the relative error in the neutral gas mass at f = 0.5 Myr

(Vi) titer: the processor time for a single iteration step (in core-hours)

(vil) t; the processor time in the tree solver for the whole simulation (in
core-hours)

studies. Initially, the radiation ionizes the outer layers of the cloud
in the direction of the source and a shock starts to propagate into the
remaining neutral gas, compressing it from the sides. At ~130kyr,
a dense core is formed on the cloud axis near the ionization front
and it re-expands due to its internal thermal pressure, while at the
same time being ablated by radiation on the side facing the source.
Eventually, a cometary tail is formed at ~200 kyr. The bottom panels
show the radiation energy density and the shadow behind the cloud.
Even though a certain amount of radiation diffuses artificially into
the shadow region (due to smoothing the edges of the cloud into
larger tree nodes), the overall shape of the shadow looks reasonably
good. The mass of neutral gas (see Fig. 12) follows almost exactly
the curve from B09 up to # >~ 0.25 Myr, and then becomes slightly
higher, leading to a discrepancy ~35 per cent at + >~ 0.5 Myr. This
discrepancy is due to insufficient spatial resolution of the dense core,
which starts to be ablated by the ionizing radiation after 200 kyr. The
rate at which gas is ionized is very sensitive to the density of the
neutral gas close to the ionization front, and the SPH code used in
BO09 uses many more resolution elements to describe the core density
profile; in our simulation, it is only a few grid cells in diameter.
RDI comPARISON. Fig. 10 shows the logarithms of the column
density (top panel) and the radiation energy density (bottom panel),
for models (a)—(f), at + = 180kyr. Models (a)—(c) explore the
effect of changing the angular resolution. As expected, a relatively
high angular resolution is needed to compute this configuration
faithfully. In Model (a), with 6}, =1, N, =12, the radiation energy
is incorrect by tens of percent, which is mainly due to the very large
sizes of tree nodes. In model (b) with 6;,=0.5, N, =48, the
radiation field is approximately correct in the ionized regions, but
the shadow is too wide, and the irradiated side of the cloud is too
flat. In both models (a) and (b), the mass of neutral gas is higher than
in BO9 by ~20 per cent. In model (c), with 0y, =0.25, N, =192,
the shape of the cloud and its shadow closely match the results of
B09, and the error in the neutral gas mass is about 10 per cent. The
computational cost increases by a factor between 5 and 6 for each
reduction of 6}, by a factor of 2. Model (d) behaves almost exactly
like model (c), but computationally it is almost five times cheaper,
demonstrating how effective the IF MAC can be. Model (e) refines
the spatial resolution by a factor of 2 in each direction (as compared
with models (a)—(d)), and this reduces the error to ey ~ 5 per cent
but increases the computational cost by a factor of ~48 relative to
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Figure 10. RDI test, comparison of models (a)—(f). The top panels show the logarithm of the gas column density. The bottom panels show the logarithm of the
radiation energy density on the mid-plane. All models are plotted at time 180 kyr.
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Figure 11. RDI, evolution of the fiducial model (f). The top panels show the logarithm of the gas column density at times 0, 36, 130, 180, 210, and 270 kyr.
The bottom panels show the logarithm of the radiation energy density on the mid-plane at the same times.

model (d). Part of this (a factor of ~16) is due to the higher number of
grid cells and the shorter time-step. The remainder (a factor of ~3) is
partly due to the higher number of tree nodes that need to be opened,
and partly due to the larger number of evaluation points on each ray.

3.4 Cloud irradiated by two sources

TWO-SOURCE MOTIVATION. This test assesses the fidelity of the code
when treating a cloud that is irradiated by two identical sources, from
different directions. Similarly to the previous tests (Sections 3.2.1
and 3.3), it is sensitive to the angular resolution, represented by 6,
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and N, and to the choice of MAC. Additionally, it evaluates the
iteration and error control procedures (see Section 2.6), since their
failure would corrupt the symmetry of the radiation field with respect
to the plane perpendicular to the line connecting the two sources.
TWO-SOURCE SETUP. The computational domain is —2 <x <4 pc,
—2<y<4pc,and —3 <z <3 pc. The two sources are located at (x, y,
7) =(—2,0,0)pc and (0, —2, 0) pc, and each emits ionizing photons
atrate N, . = 3.2 x 10* s=!. The cloud has mass M = 20 M, , radius
R = 0.5 pc, density 2.6 x 1072!gcm ™3, and is located at the centre
of coordinates. Outside the cloud, the computational domain is filled
with rarefied gas with density 1072* gcm™>. The other parameters
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Figure 12. RDI: evolution of the neutral gas mass for models (a)—(f),
compared with BO9 and Lefloch & Lazareff (1994).

Table 3. Accuracy and performance of the two-source test.

model Iy Olim Np[x O1F, Osrc Titer
(@) Npy = 12 5 1 12 0 0.095
(b) Nppy = 48 5 05 48 0 03
(©) Npy = 192 5025 192 0 17
(d) Or =0.25 5 1 192 0.25 0.65
@15 =6 6 1 192 0.25 6.8
(f) AMR 4,6 1 192 0.25 0.2
(2) O = 0.125 5 1 768 0125 2.1

Notes. Column 1 gives the model name. The following columns list:

(i) 1, the refinement level defining the grid resolution (‘5> — 1283;
‘6> — 256°; ‘4,6° — AMR with minimum and maximum refinement
levels 4 and 6, respectively.)

(ii)  6yim: the limiting opening angle for the BH MAC

(iii) Ny : the number of rays (defining the angular resolution)

(iv)  O1F, Osrc: the limiting opening angles for the IF MAC and the
Src MAC, respectively

(V) firer: the processor time for a single iteration step (in core-hours)

are given in Table 3 for all seven calculated models, (a)—(g). Models
(a)—(f) have the same parameters as the corresponding models for
the RDI test; model (g) has a very high angular resolution given by
01 = Ose = 0.125 and N, = 768 (as used in the Rabbit hole test,
Section 3.2.1). All the models were run for a single time-step to let
the TREERAY iteration process converge; the time-evolution was not
explored.

TWO-SOURCE RESULTS. We only evaluate this test qualitatively,
by comparing the computed radiation field with the analytic solution.
Fig. 13 shows the radiation energy density on the z = 0 plane for all
models, and for the analytic solution, assuming a completely opaque
cloud. We see that none of the models exhibit significant deviation
from symmetry about the line x = y. Model (a), with the lowest
angular resolution, exhibits the largest deviations from the analytic
solution. The shadow behind the cloud has the wrong shape, some
radiation leaks into the shadowed region, and the radiation energy
drops to zero at distances D = 3 pc from the cloud. The last effect is
caused by the large tree opening angle 0y;,, = 1: at large distance from
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a target cell, the two sources and parts of the cloud are merged into
a single node with high absorption coefficient. The incorrect shadow
geometry is the result of both a low number of rays and a high 6. In
model (b), the drop to zero disappears, but distortion of the shadow
geometry is still significant. The shadow geometry is approximately
correct in model (c) with 6}, = 0.25 and 192 rays. Nevertheless, even
this relatively high angular resolution is not sufficient to reproduce
the radiation energy in the top right-hand corner, which should be
relatively high, because this region is irradiated by both sources.
Model (d) shows that almost the same radiation field as in model
(c) can be obtained at lower computational costs by invoking the
physical MACs with 61 = 05, = 0.25. Models (e) and (f) show
that the grid resolution and the AMR have a negligible effect on the
radiation field. Finally, model (g) with very high angular resolution
(shown in the top right-hand corner) better reproduces the radiation
field (though not perfectly) showing that the method converges to the
correct solution with increasing angular resolution.

4 STAR FORMATION AND FEEDBACK WITH
TREERAY

STAR FORMATION AND FEEDBACK MOTIVATION. The purpose of the
final test is to demonstrate the combination of TREERAY with other
physical modules that are often used in simulations of star formation
with feedback, and to evaluate the code performance under realistic
conditions. We derive this test setup from model CNM 60 (i.e. 60 Mg,
star located in the cold neutral medium) of Haid et al. (2018), who
explore the relative impact of radiation and stellar winds in different
environments. In the CNM 60 model, a source of radiation and stellar
wind representing a 60-Mg, star is placed in a dense cold neutral
medium, resulting in the formation of an expanding H 11 region with
a stellar wind bubble at its centre. A challenging aspect of this test is
the combination of relatively complex physics (related to radiation
and cold gas chemistry) with the high velocity of stellar winds,
> 1000 kms~! (obliging the hydrodynamic solver to take very short
time-steps, due to the Courant—Friedrichs—Lewy criterion). In order
to demonstrate the ability of TREERAY to deal efficiently with a
large number of sources, we split the single source used by Haid
et al. (2018) into 100 smaller sources, which together emit ionizing
photons at the same net rate, and together deliver the same total
wind power (with the same wind velocity, so the mass-loss rate from
each individual star is simply divided by 100). The 100 sources are
distributed randomly in a sphere of radius 8 pc, within a cloud of
radius 10 pc, to represent a toy-model star cluster.

PHYSICAL PROCESSES. The physical processes included in this
test and the corresponding FLASH modules are the following.
In addition to the standard FLASH PPM hydrodynamic solver,
we use the tree solver to calculate the gas self-gravity, and the
TREERAY/OPTICALDEPTH module to include the ambient interstellar
radiation field (see Paper I for both modules). The ionizing radiation
is treated using the TREERAY/ONTHESPOT module described here,
and its coupling to the chemistry module is given in Haid et al.
(2018). The CHEMISTRY module implements a network with seven
active species (Hy, H, H*, CO, C*, O, and ¢~ ; see Walch et al. 2015;
Glover et al. 2010; Nelson & Langer 1997 for details). The sources
are modelled as FLASH sink particles (Federrath et al. 2010), and move
under the influence of the gravitational field, but accretion on to sinks
is switched off. Stellar winds are treated with the procedure described
by Gatto et al. (2017) and implemented in the FEEDBACKSINKS
module.

PHYSICAL PARAMETERS. Apart from the number of sources, the
parameters are similar to Haid et al. (2018). The computational
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Figure 13. A spherical cloud irradiated by two sources. The top left-hand panel shows the radiation energy density on the z=0 plane, calculated analytically.

The remaining panels show the same quantity for models (a)—(g).

domain is a 30 x 30 x 30pc? cube and the grid is uniform with
refinement level /, = 6 (corresponding to 2563 grid cells). The hydro-
dynamic boundary conditions are set to ‘diode’, and the gravitational
boundary conditions are ‘isolated’. The interstellar radiation field,
from which the heating is calculated by the TREERAY/OPTICALDEPTH
module, has strength Gy = 1.7 (Habing 1968; Draine 1978). At the
centre of the computational domain is a cold neutral cloud with
mass 1.3 x 10* M, radius 10 pc, density 2.1 x 10722 gecm™3, and
temperature 20 K. The remainder of the computational domain is
filled with a rarefied ambient medium having density 107>* gcm ™.
The sources are positioned randomly in a sphere of radius 8 pc,
centred on the centre of the cloud. Each of the 100 sources has
ionizing output Njyc = 2.4 x 10%¥ 57!, surface temperature 7 =
45000 K, wind mass-loss rate 3 x 1078 M, yr~!, and wind velocity
2700kms~!.

TECHNICAL PARAMETERS. We evaluate this test by comparing
runs computed with different TREERAY parameters. The model is
most interesting, and computationally most demanding, when (i)
a significant fraction of the cloud is ionized, and (ii) there is hot
shocked stellar-wind gas. This happens after several hundred kyr, and
therefore we only compare the runs during the time period from 500
to 600 kyr. The first 500 kyr are only calculated once, with model (a).
The parameters of the fiducial model (a) are selected as a compromise
between accuracy and performance. Model (a) uses moderate angular
resolution with N, = 48 and TREERAY-specific MACs with O =
0.5 and Og,. = 0.5. This allows us to adopt a large general opening
angle 0y, = 1.0. Since the presence of very hot gas results in a
very short hydrodynamic time-step, we apply the tree solver time-
step (see Section 2.9) and set the velocity limit to vq, = S0 km sl
Model (b) does not use the tree solver time-step (vg = 00) and the
tree solver is called at each hydrodynamic time-step; hence, (b) is
by far the most expensive model. Model (c) differs from the fiducial
model by invoking higher angular resolution, with N,, = 192 and

PIX

O1r = Osc = 0.25. Models (d) and (e) explore the behaviour when
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the low velocity limit for the tree solver time-step is reduced to
Vit = 25kms™!; model (e) also adopts the less demanding error
control criterion involving the total radiation energy. Finally, model
(f) involves only a single source of radiation and stellar wind, located
at the centre of the cloud, with a total photon emissivity and mass-
loss rate equal to the sum of the 100 sources of the fiducial model;
this model is intended to reproduce model CNM 60 from Haid et al.
(2018). The parameters of all models are summarized in Table 4.

MODEL EVOLUTION. Fig. 14 illustrates the first Myr of evolution
for the fiducial model (a). At early times, H II regions appear around
the sources and start to expand at ~6kms~', in agreement with
the Spitzer solution (equations 25 and 26). The H1I regions around
neighbouring sources eventually merge. At ¢ >~ 70 kyr, some hot gas,
resulting from shocked stellar winds, appears and quickly expands
due to its high pressure; consequently, the H 11 regions are squeezed
between the hot wind bubbles on the inside and the surrounding
shells of swept-up cold neutral gas on the outside. The bubbles
and H1I regions continue to expand and merge, and at the same
time the cloud slowly collapses due to its self-gravity. Eventually,
at r ~ 250 kyr, some bubbles reach the cloud edge and break out,
in the process known as a champagne flow (Tenorio-Tagle 1979).
Thereafter, the warm photoionized H11, and the shocked hot wind-
gas, start to flow out of the cloud, with the shocked hot wind—gas
also being accelerated by the buoyancy force. The remainder of the
cloud decays into a network of filaments, which expands slowly
outwards, accelerated by the pressure of the warm and hot gas, and
by the rocket effect (Oort & Spitzer 1955). Some structures formed
in the later stages of evolution resemble the elephant trunks that
are frequently observed in star-forming regions (see e.g. Hillenbrand
et al. 1993; McLeod et al. 2015).

COMPARISON OF MODELS. Fig. 15 compares the evolution of
models (a)—(e) between 500 and 600 kyr. The thin lines show the total
radiation energy in the computational domain (E,q); its maximum
fractional difference relative to model (a), eg,,, is given in Table 4.
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Table 4. Star formation and feedback test.
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model Nre Iy Olim Npix O1F Vtsdt 8"EUV Nsteps Nyr CErad CMy+ Ihydro Ichem Ipart I Tiot

(a) Fiducial 100 6 1.0 48 0.5. 50 cell 4253 309 - — 1430 1000 980 950 4600
(b) vggr = 00 100 6 1.0 48 0.5. 00 cell 4227 36278 0.005 0.011 2030 1520 1180 89000 94500
(c) N =192 100 6 1.0 192 0.25 50 cell 4997 358 0.12 0.085 1700 1160 1140 4500 8800
(d) vigar = 25 100 6 1.0 48 0.5. 25 cell 4253 180 0.008  0.016 1460 990 960 630 4300
(e) SEEUV = tot 100 6 1.0 48 0.5. 25 tot 4288 22 0.01 0.032 1440 1010 970 240 3900
(f) 1 source 1 6 1.0 48 0.5. 50 cell 2690 156 - - 890 670 370 2000 4060

Notes. Column 1 gives the model name. The following columns list:

(i) Ngc: the number of sources

(ii) [, the refinement level defining grid resolution (‘5° — 1283; ‘6> — 256°; ‘4,6° — AMR with minimum and maximum refinement levels 4 and 6,
respectively.)

(iii) Ojim: the limiting opening angle for the BH MAC

(iv)  Np: the number of rays (defining the angular resolution)

(v) Or, : the limiting opening angle for the IF MAC, parameter 6. of the Src MAC is set to the same value

(Vi)  vgsar: the velocity limit in kms™! for the adaptive tree solver time-step
(vii) 86EUV : error control method (either (SEEUV cell given by equation (22), or SeEUV Lot by equation (21); see Section 2.6)
(viii)  ngeps: the number of hydrodynamic time-steps for the whole run

(ix) ng: number of tree solver iterations for the whole run
(X)  eErad: the maximum fractional difference in the total radiation energy, relative to model (a)
(xi) €Myt ! maximum relative difference of the total mass of the ionized gas with respect to model (a)

(Xii)  thydro: the processor time spent in the hydro module, for the whole run (in core-hours)
(xiil) Zchem: the processor time spent in the chemistry module, for the whole run (in core-hours)
(Xiv)  tpart: the processor time in the particles module, for the whole run (in core-hours)
(xv) ty: the processor time spent in the tree solver, for the whole run (in core-hours)
(xVi)  tior: the processor time in all modules, for the whole run (in core-hours)
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Figure 14. Star formation and feedback test: the fiducial model (a) at times ¢ = 10, 250, 570, and 1000 kyr (from the left to right-hand panel). The top row
shows the logarithm of the column density. The middle row shows the logarithm of the radiation energy, in the region with non-zero ionization degree, and the
logarithm of the gas density, in the remaining parts (i.e. for the neutral gas only). The bottom row shows the logarithm of the gas temperature. Panels in the
middle and bottom rows show the quantities on the z = 0 plane.
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Figure 15. Star formation and feedback: the evolution of the total radiation
energy, Erag, (thin lines, right-hand ordinate), and the mass of ionized gas,
My+, (thick lines, left-hand ordinate), in the whole computational domain,
for models (a)—(e). The main figure shows the first 500 kyr of evolution for
model (a) only (black lines). The inset shows the evolution between 500
and 600 kyr for all models. Note that, even at the resolution of the inset, the
differences in E;,g between models (a), (b), (d) and (e) cannot be resolved.

Models (a), (b), (d), and (e) have almost the same E,,q with relative
differences of order 1 per cent or smaller. For model (c), Eq is
higher by ~10 per cent, because its higher angular resolution allows
the radiation to follow better the curved surfaces of irregular shells,
resulting in slightly larger H1I regions. The thick lines in Fig. 15
show the total mass of ionized gas, My+, and its fractional difference
relative to model (a), ev,, , is again given in Table 4. For model
(¢) My+ is higher than for model (a) by ~8.5 per cent, again
because of higher resolution. Models (a), (b), (d), and (e) show
Mpy+ differing by of order 1 per cent, with higher My+ for models
with a shorter time between calls to the tree solver (i.e. higher vgq).
This is because during time-steps when the tree solver is not called,
the shells continue to expand and a small fraction of the ionized
gas gets into regions that are not irradiated, where it recombines
and so My+ drops unphysically (see periods of decrease in the saw-
tooth pattern of models (d) and (e)). We conclude that the angular
resolution (i.e. parameters N, , O1r, and fs,.) has an impact on the
accuracy of calculations of this type. In contrast, the tree solver time-
step parameter, vq, seems to have little impact, provided vig =
50kms~!. Indeed, even models (d) and () with vy =25 km s~! give
satisfactory results, and would be suitable for quick tests scanning
the parameter space.

PERFORMANCE. Table 4 shows the total CPU times spent in the
four computationally most demanding modules: the hydrodynamic
solver (fhydro), the CHEMISTRY module (Zehem), the particle module
(tpar), and the tree solver including TREERAY (#;). In model (a),
the times taken by these four modules are comparable, with #, ~
2thyaro/3. The small #, is largely due to setting a finite vq; the tree
solver is called only 309 times, while the hydrodynamic solver is
called 4253 times (columns ny and ngep in Table 4, respectively).
The benefits of setting a finite v are further illustrated by model
(b), where v, 1s not set to a finite value, and therefore defaults to co;
the results are indistinguishable from model (a) but the tree solver
takes ~90 times more time than in model (a). Model (c), with finer
angular resolution, is approximately two times slower than model (a),
and the tree solver takes approximately three times longer than the
hydrodynamic solver. In models (d) and (e), the tree solver is called
less often than in model (a), and #, is proportionally smaller; model
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Figure 16. The effect of load balancing in the star formation and feedback
test. Top panel: the number of blocks on each processor for model (a) with load
balancing off (red, flat distribution), model (a) with load balancing on (blue),
and model (b) with load balancing on (magenta). Bottom panel: the duration of
the tree walk on each processor for the same three cases. The measurements
shown have been made at time ¢ = 500 kyr, but are representative of the
majority of the time.

(e) uses the total radiation energy as the error control, and TREERAY
does not need to iterate at all. Model (f), with a single source of
radiation and wind, needs almost two times fewer hydrodynamic
time-steps, due to the lower maximum temperature of the hot shocked
gas. This also results in a smaller number of tree solver calls than
in model (a). However, each tree solver iteration takes more time,
because the ionization front has larger surface area, and consequently
a higher number of tree nodes must be opened.

LOAD BALANCING. Models (a)—(f) have been calculated with load
balancing switched on (see Section 2.10). In order to evaluate the
impact of load balancing on the tree solver performance, we calculate
afew time-steps of model (a), starting at 500 kyr, with load balancing
off. The top panel of Fig. 16 compares the number of blocks per
processor for model (a) with load balancing on and off, and for
model (b) with load balancing on. The bottom panel shows, for
the same three cases, the time spent in a single tree walk on each
processor. It can be seen that models with load balancing on have
smaller variations in the tree walk time, and that the variation is
much smaller for model (b) where the tree solver is called at every
time-step. Since processors that finish the tree walk earlier have to
wait for the slowest processor, we estimate that in model (a) the load
balancing decreases the tree walk time from ~ 60 to ~40s, saving
approximately 30 per cent of the tree solver time.

5 SCALING TESTS

5.1 Weak and strong scaling

HARDWARE FOR SCALING TESTS. We carry out weak and strong
scaling tests for the TREERAY algorithm based on the Spitzer test (see
Section 3.1). The tests are run on the HPC system COBRA, hosted
by the Rechenzentrum Garching at the Max-Planck Computing and
Data Facility. COBRA has Intel Xeon ’Skylake’ processors. In total,
there are 3188 compute nodes with 40 cores @ 2.4 GHz each and
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Figure 18. Log-linear plot showing the results of a weak scaling test on 40
to 20480 cores. The scaling within one node is not ideal, but for more than
40 cores, the scaling is close to ideal. A power-law fit gives a very weak
dependence on the number of cores oc N %073,

core

a memory of more than 2.4 GByte per core. The available memory
per core is thus at least 2.2 GByte.

STRONG SCALING. Fig. 17 shows the results of the strong scaling
test. We plot the time in seconds measured for the tree build,
communication, walk, and radiative transfer calculation as measured
for 10 time-steps during the Spitzer test. The spatial resolution is
set to 5123 cells, and therefore the average number of blocks per
core changes from 819.2 on 320 cores, to 25.6 on 10240 cores. The
scaling is very good, showing an almost ideal, linear speedup with
the number of cores.

WEAK SCALING. Fig. 18 shows the result of the weak scaling
test. The simulations are chosen such that there is the same average
number of blocks per core of 102.4. In order to achieve this, we
change the resolution of the Spitzer test from 128° cells on 40 cores
to 5123 cells on 2560 cores. The processor time in the tree solver
only depends very weakly on the number of cores, N_ ., and can
be approximated by a power law, o< N££75. This is close to an ideal
weak scaling for which the same amount of wall-clock time should
be used for all simulations.
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Figure 19. Scaling with the number of sources. The setup consists of a
uniform density medium that contains from Ny = 10 up to 10* randomly
distributed ionizing sources. The log-linear plot shows the integration time
normalized to the time it takes to calculate 10 time-steps for only 10 sources,
i.e. 10 Spitzer bubbles (left-most point). As Ny is increased by a factor of
1000, the integration time only increases by ~5 per cent. This means that the
integration time is almost independent of the number of sources.

5.2 Scaling with the number of sources

NUMBER-OF-SOURCES SCALING TEST SETUP. To test the extent to
which the performance of the code degrades as the number of ionizing
sources is increased, we set up a 30 x 30 x 30 pc® computational
domain, containing atomic hydrogen with uniform density p =
7.63 x 10722 gcm ™ and uniform temperature 7=10 K. Ny, sources
are placed randomly in the computational domain, and each source
emits ionizing photons at rate Niyc = 5 x 10*® s7! into an injection
region with radius rj,; = 0.32 pc (which corresponds to about 1.4
cells). Ny is set to 10, 32, 100, 316, 1000, 3162, and 10000. All
setups are evolved for 10 time-steps, on 32 cores, in order to measure
the exact integration time.

NUMBER-OF-SOURCES SCALING RESULTS. Fig. 19 shows the re-
sulting simulation times as a function of Ny, normalized to the
simulation time for Ny, = 10. For Ng. < 103 there is essentially no
difference in the simulation times. For Ny, > 10°, the simulation
time increases slightly and becomes ~5 per cent longer for Ny, =
10* than for Ny, = 10. We conclude that the simulation time is very
nearly independent of the number of sources, as expected from the
algorithm design. Therefore, it is an excellent basis for implementing
radiation transport schemes where every grid cell represents a source
of radiation, e.g. emission from hot gas or dust.

6 SUMMARY

In this paper, we describe TREERAY, a new, fast algorithm for treating
radiation transport in gaseous media. It is based on the combination
of reverse ray tracing (e.g. Altay & Theuns 2013) and a tree-based
(Barnes & Hut 1986) accelerated integration scheme. In general,
the incident flux of radiation is computed for every grid cell, but it
can also be computed for any other target point in the computational
domain, for example the position of a sink particle. From every target
point, reverse ray tracing is executed in N, directions (hence the
angular resolution is user defined), and the directions are interpreted
as cones with equal solid angle, based on the HEALPIX scheme (G6rski
etal. 2005). Due to the equal solid-angle pixelation, every direction’s
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contribution carries equal weight. In the limit of infinite angular
resolution, TREERAY converges to the long characteristics method,
which is very accurate but usually prohibitively expensive for time-
dependent astrophysical simulations.

TREERAY treats all the gas in the computational domain, and
can capture the shadows of even quite small and dense objects,
with the limitation that structures at large distances from a target
point are smoothed out over a solid angle ~47/N,,. The smooth-
ing is controlled by the HEALPIX resolution (user-specified N,)
and the limiting opening angles set for the MAC (user-specified
Blim, OiF, Osrc). The number of evaluation points at which the radiative
transfer equation is integrated, along a given ray, is of secondary
importance.

A key strength of TREERAY is that its computational cost is
essentially independent of the number of radiation sources. This
enables TREERAY to treat big star clusters with many radiation
sources, and extended sources like radiatively cooling shock fronts
or cool dust clouds, without incurring an unacceptable computational
overhead.

Furthermore, TREERAY scales extremely well with the number of
processors, which is due to the communication and local tree-walk
strategy of the scheme (see also Paper I). We demonstrate both an
almost ideal weak scaling up to ~2.5 x 10? cores, and an almost
ideal strong scaling on up to ~10* cores (which is usually even harder
to achieve).

TREERAY can easily be extended to include additional radiative
transfer sub-modules. Additional sub-modules that are already in
preparation include the transfer of non-ionizing radiation includ-
ing the emission from dust and the associated radiation pressure
(Klepitko et al., in preparation); the multiwavelength transfer of
X-rays originating from point sources such as high-mass X-ray
binaries (Gaches et al., in preparation., based on the diffuse X-
ray radiative transfer scheme with the TREERAY/OPTICALDEPTH
module developed by Mackey et al. 2019); and the multiwavelength
transfer of Far Ulraviolet (FUV) and EUV radiation, including the
dissociation of molecules (Walch et al., in preparation). We plan
in future to include the option to have directionally dependent
absorption coefficients, similar to those introduced in (Grond et al.
2019).
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APPENDIX A: KERNELS FOR RADIAL MAPPING OF NODES ON TO RAYS

In general, any kernel depends on three tree parameters: the distance from the node mass centre to the target point, d, the node linear size, h,,
and the distance from the ith evaluation point on the ray to the target point, r;. It is convenient to combine them into a single parameter

x = (ri —d)/hy.

(AD)

Kernel evaluation is a performance-critical operation because it is carried out during the tree walk for each target point, each tree node and
each intersecting ray. Therefore, it is useful to tabulate the kernels. This is easy to do, because the parameters 7; and £, can have only a small
number of discrete values. The possible values of r; are given by equation (4); the possible values of &, are given by the AMR octal tree and
their number is the binary logarithm of the ratio of the computational domain size to the size of the smallest grid cell. Parameter d can have an
arbitrary value between 0 and the 3D diagonal of the computational domain, and we sample it similarly to r; but with ten times more points.
The kernels are normalised so that, for each tabulated combination of d and h,, the sum of the values at all r; is unity.

The left-hand panel of Fig. A1 shows the three implemented kernels, W, (Gaussian), W, (piece-wise polynomial), and W; (flux conserving),
as functions of r; for two combinations of d and A,,. The right-hand panel of this figure displays the error in the radiation energy density when
these kernels are used to calculate a model similar to the two-source model described in Section 3.4. However, here the dense cloud is missing,
i.e. the whole computational domain is filled with rarefied gas (0 = 1072* gcm™?), and the two sources are located closer to each other [at (x,
¥,z) =(— 0.4, 0, 0)pc and (0, —0.4, 0) pc]. The latter modification was made to increase the fraction of target cells for which the two sources
are located in the same tree node. Otherwise, all the parameters are the same as for model (b) described in Table 3. The right-hand panel of

Fig. Al shows the discrepancy between the numerically obtained radiation energy density, ey ., and the corresponding analytical value,

€uy.an» NOTMalized by ey, ., at the point (x, y, z) = (= 0.2, —0.2, 0) pc, along the line of the symmetry between the sources (y = x, z = 0).
0.45 T T 0.5 T T
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Figure Al. Left-hand panel: the three implemented kernels W, (magenta), W, (blue), and Wt (red) plotted as functions of r; for two combinations of d and hj:
d=4pc, h, = 1.875pc (x symbols), and d = 15 pc, hy = 7.5 pc (+ symbols). The positions of the evaluation points r; are calculated from equation (4) with ng
=2 and Ax = 0.23 pc corresponding to model (a) of the Spitzer test (Section 3.1). Right-hand panel: the error in the radiation energy density along the line y =
x, z = 0 in the test with two radiation sources as calculated using the three kernels W¢, W,,, and W. The meaning of colour is the same as in the left-hand panel.
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Figure A2. The radiation energy density ey ,,, calculated using the three kernels W (left-hand panel), W}, (middle panel) and W, (right-hand panel).

The corresponding radiation energy density on the z = 0 plane for all three models is displayed in Fig. A2. We can see that the smallest error
and the least pronounced numerical artifacts (visible as discontinuities in the radiation field) are obtained with the flux conserving kernel W.
Conversely, the Gaussian kernel W, yields the worst results. Detailed descriptions of the kernels are given below.

A1 Gaussian kernel

The Gaussian kernel is
exp(—x?), for x <+/3/2;
W,o(x) = (A2)
0, for x > /3/2.

A2 Piece-wise polynomial kernel

Kernel W, is derived under the assumption that the emission and/or absorption coefficients — or generally any field that the kernel represents —
are distributed uniformly within a cubic tree node. The tree node intersects with randomly oriented, randomly positioned rays (i.e. they do not
have to pass through the node center) and the kernel represents the average cross-section taken over all ray positions and orientations. With
this motivation, the kernel is obtained by summing up a large number of top-hat functions with extents given by the intersection of a unit cube
and a randomly oriented line. The sum is then normalized and fitted with a third-order piece-wise polynomial consisting of two parts W}, |
between x = 0 and 1/2 and W,, » between x = 1/2 and V/3/2. The central value is W, 1(0) = M and the kernel drops to zero at V3/2. We
require that the kernel be continuous, and hence W,, 1(1/2) = W,, 2(1/2) = A. Furthermore, we require that its derivative is zero at the center
and at the edge, i.e. WQ,I(O) =0and Wéyz(\/? /2) = 0. The resulting kernel has the form

ax® —(a1/2+4M — A)x* + M, for x <1/2;

W) = arx? = (a(1 +2v/3)/2 = 2A(V/3 + 2)x?— w3
(9a2/4 — ar(v/3 + 6) + 2AQ2V/3 + 3))x + 33/3ay/4 — 3ax(1 +24/3)/8 + 3A(V3 +2),  for 0.5 <x < /3/2;
0, for x> +/3/2

with

a =121, a,=-635 A=408 andM =1.184. (A4)

A3 Flux conserving kernel

To illustrate a limitation of the preceding kernels, we consider the situation in which a point source is located in a single node, as seen from
a target cell, and the gas is so rarefied that the absorption is negligible. During the tree walk, individual nodes are mapped on to rays, and
the location of the sources of radiation within the node is approximated by the node mass centre. The smoothing kernels have large wings
spanning from |r; — d| — ~/3h, /2 to |r; — d| + ~/3hy /2, which together with the typical condition for node acceptance d > yimhy, and with
the typical value of the limiting angle 0y, = 0.5, means that the source is spread out so that it contributes to evaluation points significantly
closer to (and further from) the target cell than the original point source. When the emission coefficient is mapped on to a ray using a wide
kernel, the source is often spread over many ray evaluation points and each of them becomes a source of radiation. It is then very unlikely that
the flux at the target cell due to these multiple ’sources” at the ray evaluation points is the same as the flux due to the original single source
at distance d. Moreover, as the RTE is integrated along the ray from the source, the flux at the evaluation point r; is the sum of contributions
from the flux coming through the evaluation point ; 4 |, and from the possible source term at the evaluation point ;. This is clearly not equal
to the situation where the flux is coming from a single-point source.
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Figure A3. Histograms of relative errors in the radiation flux, e, ; (see equation A6) at evaluation points r; for the three variants of the flux-conserving kernel
and the polynomial kernel (see equation A3).

To overcome this limitation, we consider a kernel which conserves the flux at the target point by construction. In the following, we neglect
the ionization rates for the sake of simplicity, so the radiation transport reduces to the situation in the absence of the absorption. Consider a
kernel which is so narrow that a single source is only mapped on to two evaluation points along a ray. Hence, the emission coefficient, ¢, of a
source at distance d must be divided between just two evaluation points, ; and 7; ;. 1, such that the flux Fjy at r = 0 is as close as possible to the
correct value &/(47td?). We seek a numerical solution, since a general analytic solution for wide kernels with many evaluation points probably
does not exist. The above condition for the emission coefficients €; and €; 1 1, at r; and r; ;. |, respectively, gives

3 & Eit1
ooty ol A5
d>  r? ra_, (AS5)

A second condition is needed to find the particular values of ¢; and ¢; ;. ;. It can be formulated by minimizing the relative error of the flux, e Fs
at the remaining evaluation points 7,

(rj—d? |& | & €
e, = — |5+ -, (A6)
= € rjz.i rjz.i+1 (rj —ad)?

where rj ; =y — ryand rj ;4 | = r; — ri + 1. We explore three possible variants of the flux-conserving kernel.

The first variant, W¢ 1, is constructed using the second condition of the form ¢; 1 1/e; = (d — ri)/(ri+1 — d), where the evaluation points
satisty the constraint ry <d <rj 4.

The second variant, Wy 5, is based on a second condition of the form &;/(r; — r; _ 1)> + &; - 1/(ri 4 1 — ri—1)> = &/(d — r; _1)*, which means
that the flux is exact at the evaluation point ; _ ;. Since the flux is then exact at two points along the ray (at r = 0 and r = r; _ 1), it should be
close to the correct value everywhere else on the ray between 0 and 7; _ ;.

The third variant, Wy, 3, uses a simple second condition of the form &; + &; 1| = ¢.

If the kernel spans of larger number of evaluation points, &, the two conditions defining the generalized kernel W 5 are

¢ JEN-1
il D=2 (ATa)
i=j

JH+N—1

e= 3 (ATb)
i=j

A further N — 2 conditions are then required, and these are generated by setting a linear relationship between the emission coefficient &; and
its index j,i.e. & =& x (a4 b(j —i)) fori <j <i+ N — 1, where i is the lowest index for which the kernel yields a non-zero value. With this
prescription, equations (A7a) and (A7b) give

1 A (N=DA, 1"
b=(——-") 4, - — 1 A8
(dz N)[ . ] (ASa)
1 bN-—1
_ 1 _w-n (ASb)
N 2
with
j+N—11
A = =, A9
| §rz (A9a)
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JHN-1 i1
Ay = Z —. (A9b)

Vo
i=j+1 i

Note that this kernel is non-local in the sense that the positions of all the evaluation points over which the kernel is non-zero have to be known
to obtain the kernel coefficients at a certain point. This is straightforward in TREERAY, because the positions of all the evaluation points on all
the rays are known a priori (see equation 4).

Fig. A3 compares the relative error in the radiation flux, €, ;, calculated using the three variants of the flux-conserving kernel, W; 1 (green),
Wt 2 (cyan), and Wy 3 (red). For reference, the relative error obtained using the polynomial kernel, W, is also shown (blue). Each histogram
was obtained by placing a source at 10* different positions on a ray with 10 evaluation points placed according to equation (4). W 5 leads to
the most accurate results, but W; 3 also leads to acceptable results and is much simpler. Therefore, we use W 5 as the default in TREERAY.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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