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Abstract

Despite recent progress in the analysis of neuroimaging data sets, our comprehension of

the main mechanisms and principles which govern human brain cognition and function

remains incomplete. Network neuroscience makes substantial efforts to manipulate

these challenges and provide real answers. For the last decade, researchers have been

modelling brain structure and function via a graph or network that comprises brain

regions that are either anatomically connected via tracts or functionally via a more exten-

sive repertoire of functional associations. Network neuroscience is a relatively new multi-

disciplinary scientific avenue of the study of complex systems by pursuing novel ways to

analyze, map, store and model the essential elements and their interactions in complex

neurobiological systems, particularly the human brain, the most complex system in

nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is

essential to propose and adopt new empirical tools to track dynamic patterns between

neurons and brain areas and create comprehensive maps. In recent years, there is a rapid

growth of scientific interest in moving functional neuroimaging analysis beyond simpli-

fied group or time-averaged approaches and sophisticated algorithms that can capture

the time-varying properties of functional connectivity. We describe algorithms and net-

work metrics that can capture the dynamic evolution of functional connectivity under

this perspective. We adopt the word ‘chronnectome’ (integration of the Greek word

‘Chronos’, which means time, and connectome) to describe this specific branch of net-

work neuroscience that explores how mutually informed brain activity correlates across

time and brain space in a functional way. We also describe how good temporal mining of

temporally evolved dynamic functional networks could give rise to the detection of spe-

cific brain states over which our brain evolved. This characteristic supports our complex
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human mind. The temporal evolution of these brain states and well-known network met-

rics could give rise to new analytic trends. Functional brain networks could also increase

the multi-faced nature of the dynamic networks revealing complementary information.

Finally, we describe a python module (https://github.com/makism/dyconnmap) which

accompanies this article and contains a collection of dynamic complex network analytics

and measures and demonstrates its great promise for the study of a healthy subject's

repeated fMRI scans.
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1 | INTRODUCTION

An exciting and prominent approach in studying the brain's underlying

processes and physiological activity is via neural synchronisation as

observed among various brain regions. This representation is found to

unveil both short and long-range distance coordinated communication

between neural populations during cognitive and perceptual tasks.

Short-range synchronisation refers to the observed synchrony

between regions of the brain adjacent or related to a single stimulus,

while long-range to widely separated areas (see Penny, Friston,

Ashburner, Kiebel, & Nichols, 2011 for an in-depth analysis).

This synchronisation evokes complex brain networks both in struc-

tural and functional systems. Structural (also referred to as anatomical)

connectivity implies the interconnection of cortical areas: tracts physi-

cally connect different brain areas. On the other hand, functional and

effective connectivity is a byproduct of neuroimaging. There are multi-

ple methods (and modalities) to approach functional connectivity. Com-

mon strategies include measuring the electrical activity observed in the

cerebral cortex by using electroencephalography (EEG), detection of

the changes in the blood flow with the usage of functional magnetic

resonance imaging (fMRI) or recording the magnetic fields—produced

by electrical currents which occur in the brain—by using magnetoen-

cephalography (MEG). In any case, functional connectivity describes

the statistical dependence between brain regions. In comparison, effec-

tive connectivity focuses on the causation of the connectivity between

(or among) regions of interest and how they affect each other (e.g., the

activation in one area may inhibit another one). For a more in-depth

discussion, it is highly recommended that the interested reader go

through the published work of Bullmore and Sporns (2009) and

Rubinov and Sporns (2010).

The most common approach to studying these networks is the

static method. A network is constructed from the estimated connec-

tivity, commonly using Pearson's correlation coefficient between the

brain areas. However, this approach makes strong assumptions about

the spatial and temporal stationarity throughout the measured period.

In addition, a more substantial method is a dynamic approach. This

approach became evident from a resting-state (RS) fMRI study

(Chang & Glover, 2010) in which the authors observed fluctuations

over the functional connectivity over time; though it has been shown

that this variability is not RS-exclusive (Gonzalez-Castillo et al., 2012;

Kucyi, Salomons, & Davis, 2013). These findings steered a significant

number of subsequent neuroimaging studies. This fact is partially due

to the accessibility of this approach; the most well-known strategy

involves a window sliding over the time series and estimate of the cor-

relation among them. This agglomeration of connectivity matrices

make up the dynamic functional connectome (the dynamic functional

connectome) (Preti, Bolton, & Van De Ville, 2017). Other approaches

include more sophisticated methods and pipelines such as: using PCA

to identify FC-patterns (eigenconnectivities) (Leonardi et al., 2013),

ICA-derived time series (Allen et al., 2014), mutually temporally inde-

pendent dynamic connectivity patterns (Yaesoubi, Miller, & Calhoun,

2015), data-driven frameworks to capture time-frequency information

(Yaesoubi, Allen, Miller, & Calhoun, 2015) and the meta-state frame-

work (Miller et al., 2016) for defining and analyzing district states.

The developments around dynamic connectivity gave rise to a whole

new field of study in neuroimaging. The so-called ‘chronnectomics’
(Calhoun, Miller, Pearlson, & Adalı, 2014) (the junction of ‘Chronos’—the

greek word of time, and ‘omics’ describes the efficacy of objects being

categorised based on common traits) are purposed in capturing the time-

varying properties of connectivity in a spatio-temporal manner. While

the term connectome focuses on the brain's wiring (Sporns, Tononi, &

Kötter, 2005), chronnectome is used to describe a focus on identifying

time-varying, but reoccurring, patterns of coupling among brain regions.

A further notion that sparked from these engagements is the ‘dynamo’
(beyond the connectome). It is a framework that encapsulates and

advances the connectome's notion to the underlying mechanisms

involved in producing and processing signals within the brain.

The adoption of these newly founded frameworks was immediate

across different topics and modalities. One of the first studies (Allen

et al., 2014) introduced a complete methodological framework on the

whole-brain characterisation of regional differences in FC variability

and discrete FC states. Exploiting the notion of dynamic connectivity &

FC states, the authors in (Damaraju et al., 2014) found distinct differ-

ences within the networks among brain regions (hyperconnectivity and

reduced connectivity) in patients suffering from schizophrenia and

healthy participants. On the same topic, Cetin et al. (2016) combined
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fMRI/MEG to compare the static and dynamic connectivity and their

discrimination efficacy between patients and healthy controls. Considering

the FC states in the EEG field, Dimitriadis, Laskaris, Bitzidou, Tarnanas,

and Tsolaki (2015) examined the developmental changes in the network

organisation as observed during mental calculations and in resting-state

between children and young adults. The authors (Yu et al., 2016) did dis-

cover a different organisation in the networks between patients with the

behavioural variant of frontotemporal dementia and patients with

Alzheimer's, suggesting different pathophysiological mechanisms in these

two separate neurodegenerative disorders. Zeng et al. (2015) proposed a

biomarker that could be used to track the cognitive function of diabetic

patients. They found that the FC is decreased in amnestic Mild Cognitive

Impairment (aMCI) patients in specific frequency bands. These findings

were also reflected in the organisation of the brain networks by using the

relevant graph analysis.

A step further, and of equal importance are the studies focused

on the reproducibility and replicability of conclusions drawn from

other published studies. Allen and her colleagues (Allen, Damaraju,

Eichele, Wu, & Calhoun, 2018) performed a cross-modal EEG-fMRI

resting-state study to replicate drowsiness effects in two conditions,

eyes open and eyes closed, in a limited sample from their previous

study. In (Abrol et al., 2017), the authors analyzed 7,500 human brain

resting-state fMRI scans and successfully replicated basic time-varying

FC states and state summary measures across subjects. For a compre-

hensive review, the interested reader is highly encouraged to consult

the works of Preti et al. (2017) and Calhoun et al. (2014). In the last

decade, Python has emerged as a highly suitable environment for ana-

lysing neuroimaging data and a direct replacement for MATLAB® (The

Mathworks, Inc.) environment. Python is a high-level, general-purpose

programming language that has dramatically attracted attention from

the neuroimaging community. In this article, we present ‘dyconnmap’
(abbreviated from ‘dynamic connectome mapping’), a neuroimaging

python module. This module is specifically designed to estimate the

dynamic connectivity and analyse complex brain networks from neu-

rophysiological data of any modality. It is organised in several sub-

modules, chronnectomics and graph-theoretical algorithms, (symbolic)

time series and statistical methods. The module's development is an

ongoing effort to extend it by adding more algorithms related to graph

analysis, statistical approaches and increase transparency and ensure

replicability. Considering the increasing acceptance and usage of

Python in analysing neuroimaging data, we firmly believe that this

module will be a great addition to every practitioner's toolbox

engaged in brain connectivity analysis.

Multimodal neuroimaging has become a driving force of current

neuroimaging research due to its clinical recognition in various brain

diseases like Alzheimer's disease (Liu et al., 2014), schizophrenia

(Cooper, Barker, Radua, Fusar-Poli, & Lawrie, 2014) and so forth. Multi-

modal neuroimaging advances the fundamental neuroscience research

by overcoming the knowledge extracted by a single modality and by

untangling the associations of findings from more than one neuroimag-

ing resource (Liu et al., 2015). Neuroscientists adopted modern network

science tools to analyze brain networks constructed from most neuro-

imaging modalities, and they also developed novel network tools

tailored to brain network neuroscience (Stam, 2014). Motivated by new

findings of network neuroscience of high clinical importance with vari-

ous functional neuroimaging modalities, we developed a module where

someone can construct functional brain networks and can combine

them, revealing their association and complementarity of the tabulated

information. Our module is tailored to functional neuroimaging

(EEG/MEG/ECoG/fMRI). At the same time, we provide a set of tools to

compare structural brain networks with functional brain networks from

various modality sources.

The layout of the article is as follows. In Sections 2 and 3, we will

introduce functional brain networks and in both static and dynamic

configurations. Subsequently, in Section 4, we will discuss how to use

graphs to construct brain states. In Section 5, we will describe the dif-

ferent variants of bran networks. In Section 6, we will see how one can

compare different networks using graph distances. In Section 7, we will

dive into graph signal processing (GSP), and in Section 8, we will pre-

sent the relationship between connectomics and chronnectomics. In

the subsequent Sections 9 to 11, we will discuss a variety of applica-

tions. Finally, in Section 12, we will discuss our module and the motiva-

tion. We will close in Section 13 with a general discussion, thoughts

and plans.

2 | CONSTRUCTION OF FUNCTIONAL
BRAIN NETWORKS

A network or graph is a well-studied mathematical representation of

many complex systems. It is defined by a set of nodes (vertices) and a

collection of links (edges) between pairs of nodes. In a large-scale brain

network, nodes represent brain regions or anatomical parcellations (par-

cels), while links represent different types of connections like anatomi-

cal, functional or effective connections (Friston, 2011). A graph

representing streamline-based connectivity among regions of interest

can be created by anatomical connections using diffusion-weighted

data and tractography. The general principle is to seed within regions

of interest (ROIs), or across the whole brain, identified sets of stream-

lines that connect pairs of anatomical regions according to an atlas.

Then, one can use the properties of these streamlines to derive a quan-

titative measure of region-to-region connectivity (Chung et al., 2017) or

combine more than two into a single anatomical brain network that fur-

ther improves the reliability of the derived network metrics (Dimitriadis

et al., 2017; Messaritaki, Dimitriadis, & Jones, 2019).

The functional brain networks represent patterns of cross-

correlations between electro-magneto-encephalographic (EEG; MEG)

and BOLD signals (fMRI), quantified from these temporal fluctuations

by adopting proper connectivity estimators, like correlation, partial

correlation, mutual information, phase locking values (PLV) (Lachaux,

Rodriguez, Martinerie, & Varela, 1999), phase lag index (PLI) (Stam,

Nolte, & Daffertshofer, 2007), the imaginary part of phase locking

values (iPLV) (Dimitriadis et al., 2015). The effective brain network

represents functional patterns of causal interactions—as computed

with conditional mutual information, transfer entropy—which corre-

spond to vital connectivity measures of directed information flow. All
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these types of networks are represented by their connectivity (adja-

cency) 2D matrices. Rows and columns in these matrices denote brain

areas (nodes), while matrix entries denote links between pairs of

brain areas. Any type of estimation over these brain networks remains

unaltered by the ordering of nodes, although the visualisation is affected.

2.1 | Definition of nodes in brain networks

The nature of brain nodes and the relevant links in subject-specific

brain networks is determined by the adaptation of brain mapping

methods of an atlas that drives the parcellation scheme and estima-

tors of functional connectivity. Every possible combination of the

choices mentioned above could lead to an extensive repertoire of

experimental setups (Horwitz, 2003; Dimitriadis et al., 2018).

We cannot stress enough that neuroscientists carefully choose the

right combination because the nature of both nodes and functional links

shape the neurobiological interpretation of a subject's cognition, health

status and the overall network topology (Butts, 2009). Parcellation

schemes ideally smooth brain areas heterogeneously into single ones in a

one-to-one mapping. More often, they divide the brain cortex into non-

spatially overlapped brain areas. Similarly, the source localisation of brain

activity recorded with MEG and EEG sensors leads to similar brain map-

ping using famous source localisation algorithms (Van Veen, van

Dronglen, Yuchtman, & Suzuki, 1997). However, in general, the EEG and

MEG sources could not be spatially aligned with brain areas' boundaries

(Ioannides, 2007).

2.2 | Definition of functional links in brain
networks

Additionally, on the definition of brain nodes, functional links could be

classified regarding their functional coupling strength and the exis-

tence or lack therefore of directionality, based on the adaptation of

the relevant connectivity methodology. Brain networks with binary

links capture the presence or absence of connections, while weighted

brain networks also keep the existing links' functional coupling

strength. In anatomical networks, weights may represent any feature

related to anatomical tracts like fractional anisotropy (FA) and mean

diffusivity (MD) (Dimitriadis, Sallis, Tarnanas, & Linden, 2017). Simul-

taneously, weights in functional and effective brain networks may

represent the magnitude of functional association or causal interac-

tions, respectively. Many studies eliminate the functional weights by

applying arbitrary thresholding schemes, like absolute or proportional

thresholds. This is a substantial drawback in neuroimaging analysis

under a network neuroscience framework that leads to non-

reproducible results (van den Heuvel et al., 2017). Recently, a data-

driven topological filtering method has been introduced called orthog-

onal minimal spanning tree (OMST) (Dimitriadis, Antonakakis, Simos,

Fletcher, & Papanicolaou, 2017; Dimitriadis, Drakesmith, et al., 2017),

which provides denser brain networks than the minimal spanning tree

(MST) (Tewarie, van Dellen, Hillebrand, & Stam, 2015).

Functional links may also be differentiated by the presence or

absence of directionality adopting proper connectivity estimators, like

transfer entropy, conditional mutual information, Granger causality.

Effective functional connections may conceptually be represented

with directed links. In contrast, effective anatomical connections are

not a valid representation proved by tract-tracing studies that indicate

the existence of a substantial portion of reciprocal structural connec-

tions between many brain areas in the cortex.

2.3 | Evaluation of functional/effective
connectivity with various measures

Functional connections correspond to magnitudes of temporal correlations

in activity and may occur between pairs of anatomically unconnected

regions (Friston, 2011). Depending on the measure, functional connectivity

may reflect linear or non-linear interactions, based on the amplitude (corre-

lation, partial correlation), on the spectrum (coherence) or in phase domain

(PLV, PLI, wPLI) (Zhou, Thompson, & Siegle, 2009). Effective connections

represent direct or indirect causal influences of one brain area into another

and may be estimated from observed from either directly from empirical

data with transfer entropy, conditional mutual information, Granger causal-

ity (Lindner, Vicente, Priesemann, & Wibral, 2011) or model-based like

DCM or SPM (Friston, Harrison, & Penny, 2003). Apart from the within-

frequency functional connectivity estimators, the between-frequency or

cross-frequency coupling (CFC) estimators are also important to quantify

interactions among brain areas oscillating in different frequency. For fur-

ther reading, see the next section, while for identifying ‘true’ functional/
effective interactions in both within-frequency and CFC, a surrogate analy-

sis is important (see Section 3).

Many approaches have been proposed to reduce the leakage

effect introduced after source localisation of brain activity. This

approach involves the orthogonalisation of virtual time series in a

bivariate or multivariate mode (Hipp, Hawellek, Corbetta, Siegel, &

Engel, 2012; Brookes, Woolrich, & Barnes, 2012). A solution to ghost

interactions has been introduced via a hyperedge bundling procedure

(Palva et al., 2018; Wang et al., 2018), while a motif-based have been

proposed to reveal true CFC interactions (Siebenhühner et al., 2020).

These methods will be future additions to our module.

2.4 | Different types of CFC estimators

Electro- and MEG (EEG, MEG) is a complex signal enriched with different

frequency components that interact with each other. Within-frequency

interactions include time-frequency transformations via Hilbert, wavelet or

Gabor transform. They can integrate amplitude, frequency or phase modu-

lations between brain areas oscillating within-the-same-frequency across

experimental time. It is well-known at the microscopic level, neuronal cell

assemblies oscillate at different frequencies. Simultaneously, they synchro-

nise their activity when different brain areas demand exchange, retrieval

of information and a quick response to natural stimuli (Buzsáki &

Draguhn, 2004). Thus, CFC is a substrate mechanism that bridges brain
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activity of distinct brain areas with a different frequency content

supporting local and global processes and directly linked to the integra-

tion of distributed information.

Jensen and Colgin (2007) described different types of CFC interac-

tions: (a) amplitude (power) to amplitude (power) (AAC), (b) phase to phase

(PPC) and (c) phase to amplitude (power) (PAC). There is high evidence that

phase-to-amplitude coupling occurs in both humans and animals in many

brain structures, like in prefrontal cortices, in entorhinal, in the hippocam-

pus and in a more distributed set of brain areas (Mormann et al., 2005;

Cohen, 2008; Tort et al., 2008; Cohen et al., 2009,b; Axmacher et al. 2010,

b; Voytek et al., 2010). A recent study reported a framework for detecting

genuine CFC in human resting-state using MEG in source reconstructed

activity (Siebenhühner et al., 2020). Their research focused on n:m phase-

to-phase and phase-to-amplitude interactions supporting the evidence of

those two types of phase-based CFC in human brain activity.

A well-known estimator for quantifying AAC is the correlation of

the envelope extracted after applying Hilbert transform on the ban-

dpass filter time series. n :m PPC can be estimated for specific ratios

of n :m factors after first extracting phase time series with the Hilbert

transform with PLV or iPLV estimators. PAC CFC can be analyzed in

two scenarios:

1. (a) bandpass filtering of time series in low and high frequencies,

(b) extracting the phase and the envelope of the amplitude of low

and high frequencies via Hilbert transform, (c) adopting a proper esti-

mator for the quantification of PAC using the phase of the slow oscil-

lation and the envelope of the high frequency (Bruns et al., 2004;

Canolty et al., 2006; Penny et al., 2008; Tort et al., 2008) or extracting

the phase from the envelope of the high frequency and adopting PLV

(Lachaux et al., 1999), iPLV (Dimitriadis et al., 2015).

2. (a) bandpass filtering of time series in low and high frequencies,

(b) extracting the phase and the envelope of the amplitude of low

and high frequencies via Hilbert transform, (c) bandpass filtering

the envelope of the high frequency within the frequency range of

the slow frequency, (d) extracting the envelope of the slow oscilla-

tion within the high frequency via Hilbert transform, (e) adopting a

proper estimator for the quantification of PAC (Bruns et al., 2004;

Canolty et al., 2006; Penny et al., 2008; Tort et al., 2008), or

extracting the phase from the envelope of the high frequency and

adopting PLV (Lachaux et al.,1999), iPLV (Dimitriadis et al., 2015).

Our module includes all the CFC types and estimators mentioned

above, with the primary goal to provide a common framework for

exploratory analysis for neuroscientists. In a future version of the

module, we will implement a new statistical framework for detecting

true CFC and simultaneously PAC—AAC (Nadalin et al., 2019).

3 | FROM STATIC TO DYNAMIC
CONNECTIVITY

Representing brain connectivity as a graph structure, through the lens

of graph theory, is only a natural outcome. Graph theory provides a

robust mathematical framework to analyze the spatio-temporal aspects

of brain connectivity.

In general, a graph can be directed or undirected, weighted or

unweighted (binary). A complex brain network can be interpreted as a

collection of nodes, the brain regions and edges, the functional or

structural connectivity between these nodes.

The definition of the nodes is related to the definition of the

regions of interest. Depending on the study, the nodes may be as sim-

ple as the individual voxels themselves or, in some instances, the result

of a parcellation pipeline (automatic or by the intervention of an

expert). As we have already discussed in short, the edges are deter-

mined by measuring the interaction between the nodes. However, this

further depends on the kind of complex network. In the case of struc-

tural networks, the edges represent physical, cordial interconnections.

Moreover, in functional networks, there is an array of methods to

choose from and build the statistical dependence among brain regions.

The one commonly used is Pearson's correlation. Finally, effective con-

nectivity concentrates on the direction of those interactions.

It is common to approach structural, effective or functional con-

nectivity through computation of statistical inter-dependencies

among all brain regions, capturing the whole temporal dynamics into

one single graph structure (Figure 1a).

The transition to dynamic connectivity can be as simple as

segmenting the original time series according to a strategy and esti-

mating the connectivity within each of these temporal partitions. The

most well-used method is the one of a temporal (sliding) window of

length l, being shifted T number of samples. This yields multiple con-

nectivity graphs capturing the connectivity evolution over the tempo-

ral intervals (Figure 1b).

There are a few considerations to decide upon when opting-in a

dynamic functional connectivity approach. In the case of the sliding

window, the most apparent of them are the parameters of the

sliding window, the width, the number of samples to use, and the

stepping size; how many samples the window will slide over the time

series. Both parameters affect the captured dynamics. A good rule of

the thumb would be to consider the sampling frequency (fs) in

the EEG/MEG modalities and the repetition time (TR) in the context

of fMRI.

Our module has been developed around dynamic connectivity

and provides implementations to both the classical method of the slid-

ing window and the time-varying framework. In the previous para-

graphs, we discussed the method of the sliding window.

The other method that we provide in the module is the time-

varying functional connectivity graphs (TVFCGs) (Dimitriadis

et al., 2010; Astolfi et al., 2008). This framework introduces the idea

of processing overlapping segments of neuroelectric signals by defin-

ing a frequency-dependent time window (cycle criterion, CC) in which

the synchronisation is estimated. It regulates the amount of the oscil-

lation cycles that will be considered in measuring the phase syn-

chrony. A time-window with width twice the lower period (CC¼2:0)

(Cohen, 2008) was initially proposed in the literature. On the other

hand, TVFCGs, consider the given lower frequency that corresponds

to the possibly synchronised oscillations of each brain rhythm and the
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sampling frequency. The overlapping is determined by an arbitrary

step parameter. Given some neurophysiological recording data Xm�n

(where m denotes the number of ROIs and n the number of samples

in the neural time series), a frequency range with Fup and Flo the upper

and lower limits, fs the sampling frequency, step the stepping, and CC

the cycle criterion. The length of the sliding window is given by CC
Flo
fs

and the whole framework results in n
step adjacency matrices. Figure 1b

illustrates how TVFCG is constructed by sampling the functional

recordings via the sliding-window method.

3.1 | Statistical—Topological filtering

Both, static and dynamic approaches, produce fully connected graphs—

no matter the configuration (i.e., modality, connectivity estimator)—,

potentially comprised of numerous spurious connections. It is a stan-

dard method to employ statistical methods to filter out these spurious

connections (Aru et al., 2015). In the literature, quite a few approaches

have been proposed. The most common one is that of surrogate analysis,

according to which randomised connections are generated based on the

original ones' profiles and a p-value is assigned. Then, these p-values

are trimmed (thresholded) according to some criterion, such as false-

discovery rate (FDR) to control for type I errors. Numerous topological

filtering schemes have been proposed so far spanning from arbitrary

absolute thresholding up to data-driven orthogonal spanning trees

(OMSTs) (Dimitriadis and Salis, 2017; Dimitriadis et al., 2017).

3.1.1 | Surrogate analysis of functional brain
networks

In order to detect true functional couplings at resting-state or during

cognitive tasks, it is essential to design proper surrogates of the origi-

nal recordings. Then, one should reestimate the functional coupling

with the adopted functional connectivity estimator between pairs of

surrogates and build a distribution of surrogate functional connectiv-

ity values. Parametric and non-parametric approaches can compare

the original functional connectivity strength between every pair of

time-series or brain areas (atlas) to the surrogate values by assigning a

p-value to the observed coupling strength. Then, at network level, one

can adjust for multiple comparisons using false discovery rate at a spe-

cific q-value.

In brain connectivity analysis, we adopted three basic surrogates'

types for testing phase synchronisation and coupling between oscilla-

tors using various measures, such as PLV, PLI, iPLV, mutual informa-

tion (MI) and so forth. The following surrogate types were proposed

for testing non-linearity in data: Fourier transform (FT), amplitude

adjusted Fourier transform (AAFT), and iterative amplitude adjusted

Fourier transform (IAAFT) surrogates. FT, AAFT and IAAFT have been

extensively studied in many applications (Theiler et al., 1992;

Schreiber and Schmitz, 2000).

In a multi-trial paradigm, Lachaux et al., (1999) suggested a trial-

based surrogates' analysis. For every pair of time series reflecting the

activity of two brain areas, we can shuffle the order of the trials of

F IGURE 1 The two aspects of brain connectivity. (a) Static connectivity; all the samples are considered to estimate the interactions between

the ROIs, and (b) a sliding and overlapping temporal window is used over the time series and ROIs. The connectivity is estimated for every
temporal segment between the ROIs. The number of produced connectivity matrices depends on the size of the window and the overlap
parameters
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the second brain activity and estimate the trial-based surrogate func-

tional coupling strength. Then, the procedure of correcting the

observed coupling strengths is the same as the one aforementioned.

A suitable surrogate construction is debatable for functional interac-

tions within-the-same-frequency and CFC. An optimal surrogate algo-

rithm tailored to CFC should remove cyclo-stationaries related to the

true CFC effect while keeping non-linearities and non-stationarities of

the original data (Aru et al., 2015). This is an optimal scenario for surro-

gate construction which removes the effect of interest, but some surro-

gates algorithms are more conservative. In experimental paradigms with

repetitive events, for instance, in events/trials that are locked to an

external stimulus shuffling the whole phase or amplitude time series

between events/trials is the most logical approach. However, an event-

related potential means that some pairs of frequency components will be

locked simultaneously to the stimulus and between themselves. Shuffling

trials/events cannot detect the source of modulation, and it is one of the

most significant drawbacks of this method. Another surrogate approach

used in many studies is the phase scrambling (shuffling) across experi-

mental time. This approach returns stationary surrogates by removing

specific and non-specific non-stationarities to the physiological mecha-

nism and produces measures CFC (Nakamura et al., 2006). Such

approaches that introduce surrogate-based false-positive CFC in the

original data do not preserve the non-stationarity profile of the underly-

ing data not directly linked to the physiological nature of the production

of CFC. An additional surrogate method suggested the block resampling

a continuous time series was cut at several points, and the resulting tem-

poral segments/blocks permuted randomly (Canolty et al., 2006). This

method, again, suffers from the issue as Nakamura et al., (2006). Another

approach could be to cut the original time series at a single point—

located at a random location or over the middle of the time series—and

exchange the two resulting temporal segments/blocks. Repetition of this

procedure could produce a set of surrogates that would minimise the dis-

tortion of the original phase/amplitude dynamics. This surrogate type

could be used in the three basic CFC types: phase-to-phase, phase-to-

amplitude and amplitude-to-amplitude. This conservative surrogate con-

struction approach could minimise the number of false-positive CFC.

A recent statistical framework supports the detection of true CFC

by considering both PAC – AAC simultaneously (Nadalin et al., 2019).

This method will be implemented in an upcoming version of our mod-

ule. This statistical framework for CFC should be further tested

against the surrogate null models in multiple experimental paradigms

and modalities.

We have proposed an integrated dynamic functional brain graph

that encapsulates both the dominant coupling mode, either within-

frequency or CFC (DoCM model), and their strength (Dimitriadis

et al., 2017, 2018). This integrated temporal network informs us how dif-

ferent brain systems communicated within and between each other

across experimental time. The semantic information of dominant cou-

pling modes encapsulates enriched information that can be summarised

by the probability distributions of dominant coupling modes across brain

structure and experimental time. Flexibility and complexity indexes can

also be estimated over the symbolic time series that encode the

dominant coupling modes per pair of brain areas across experimental

time (Dimitriadis et al., 2017, 2018).

3.1.2 | Topological filtering of functional brain
networks

Topological (or spatial) methods go beyond the traditional statistical

approaches and define operations that are being applied on the con-

nectivity graphs by considering the structure of the graph, locally or

globally. Topological thresholding can be applied subsequently after

statistical filtering to highlight essential network structures stemming

from neuroscience (Bullmore and Bassett, 2011; Van Wijk et al.,

2010; Fallani et al., 2017). The most common method is to filter out

the edges based on an arbitrary value criterion. For example, given

the absolute values of a graph, one can filter out those below a

threshold (i.e., 0.5); based on upper-density limits, keeping only the

strongest 10% of the total connections; or retaining as many as con-

nections needed for the mean degree of the graph to reach a mini-

mum threshold (Dimitriadis et al., 2010).

In the literature, these thresholding schemes have been studied

and compared with each other regarding their possible effect on clini-

cal connectomic biomarkers (van den Heuvel et al., 2017) and their

stability (Garrison et al., 2015) between groups. These crucial findings

make up a strong argument for the need for data-driven methods.

Stemming from graph theory, Minimum Spanning Trees (MST) and

Orthogonal Minimum Spanning Trees (OMST) (Dimitriadis et al.,

2017) are unbiased, assumption-free methods that identify significant

links within a weighted graph, diminishing the need for statistical

methods. MST produces a graph that connects N nodes through N�1

edges by minimising the total cost of information flow and without

introducing cycles. An essential effect of MST is the sparsity of the

resulting trees that have been deemed unreliable for discrimination

between two (Antonakakis et al., 2016; Dimitriadis et al., 2015) or

more groups (Khazaee et al., 2016). OMSTs address this issue through

an iterative optimisation procedure that computes an MST and esti-

mates the Global Cost Efficiency. The objective function is given by:

JOMSTs
GCE ¼GE�cost, where GE denotes the Global Efficiency of the net-

work, a measure (as its name imply) of efficient information exchange.

The cost is the ratio of the sum of an MST's weights over the total

sum of the initial, fully weighted graph. The superiority of OMST over

several conventional filtering schemes has been recently demon-

strated in both EEG and fMRI modalities (Dimitriadis et al., 2017,

2018). Figure 2a illustrates a Pearson correlation brain network from a

healthy control male subject of age 8 using BOLD activity from

a resting-state condition. The atlas used was based on bootstrap anal-

ysis of stable clusters (BASC) (Bellec et al., 2010) with 64 ROIs leading

to a 64�64 fully-weighted brain network. Applying the OMST data-

driven topological filtering over this functional brain network, we get

a threshold brain network (Figure 2c) where its economical wiring is at

the maximum (Figure 2b). OMST stops when global cost efficiency—

cost versus cost gets a global maximum peak.
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3.2 | Network metrics time series

After the construction of static (structural or functional) or dynamic

functional connectivity patterns, the next natural step is the estima-

tion of global (whole network) or nodal (per node) network metrics.

These network metrics—adopted from social network analysis—can

be classified in those that detect functional integration and segrega-

tion, quantify the centrality or hubness of brain areas, characterising

the shortest pathways among brain areas. The application of network

metrics over a dynamic functional connectivity brain network can

result in network metric time series (NMTS) that describes a network

metric's temporal evolution across experimental time (Dimitriadis

et al., 2010). Figure 3a shows the original temporal network con-

structed from fMRI resting-state activity from a healthy control male

of age 8 with 200 samples. We adopted a sliding-window approach

with a width of 20 TR and a step of 5, leading to 36 temporal seg-

ments and the PLV estimator. Then, the temporal network was statis-

tically filtered with 1,000 surrogates using the single-point cut

criterion of every ROI based time series, producing two temporal seg-

ments that exchanged their order. We set the FDR criterion to 0.01.

For topologically filtering, we employed OMST (Figure 3b). Nodal

Local Efficiency (LE) was estimated per ROI and temporal segment,

producing the image illustrated in Figure 3c based on NMTSLE. These

NMTS can also be used to detect brain states (see next section;

Dimitriadis et al., 2015). An exciting feature that can be extracted

from these NMTS is its characteristic spectrogram using a fast Fourier

transform (Figure 3d). Taking the dominant frequency from every ROI

based NMTS, we can get the dominant oscillatory profile of every

brain area related to how fast functional segregation changes over

experimental time (Figure 3e).

NMTS is a matrix of size ROIs� temporal segments. This matrix

can be used in two complementary scenarios. Firstly, identifying net-

work similarity across an experimental time where high similarities can

be interpreted as time instances with similar functional segregation

profile. Secondly, for detecting groups of edges with a similar co-

fluctuation pattern of functional segregation. A cosine similarity

matrix of size temporal segments� temporal segments has been esti-

mated for examining network similarity across time instances using

36 NMTS row-vectors (Figure 3f). Higher/lower values are related to

transient stability/instability of NMTSLE. Secondly, to detect nodes

communities, a cosine similarity matrix has been designed using the

64 NMTS column-vectors (Figure 3g), expressing each one the tempo-

ral evolution of LE (Figure 3e). This similarity matrix was fed to a

graph-partition algorithm producing four clusters of nodes demon-

strating in Figure 3h.

Brain connectivity toolbox (BCT) provides an extensive list of net-

work metrics in many programming languages, including Python

(Rubinov and Sporns, 2010). Our contribution to this topic is a set of

network metrics tailored to analyzing the temporal and spatial (struc-

tural) dimension of networks under community detection, network

analysis and their significance. This dynamic network sub-module

involves the multiscale and multiplex community detection algorithm

(Mucha et al., 2010), community laterality that quantifies the extent in

which a community is localised to the left or right hemisphere or in

targeted sets of brain areas like the default mode network (Doron

et al., 2012), the radius and diameter of a temporal community, the

F IGURE 2 Data-driven
topological filtering of a
functional brain network. (a) A
fully-weighted correlation map
derived from 64 BOLD time
series of a resting-state condition.
(b) Maximisation of global cost-
efficiency (global cost-efficiency—
cost) parameter over iterative

orthogonal minimum spanning
trees tills it gets its maximum
value. (c) The threshold
connected functional brain
network as a sparser version of
the original fully-weighted brain
network showed in (a)
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flexibility index that quantifies how many times a node changes com-

munity assignment between consecutive temporal segments (Bassett

et al., 2011), cohesiveness strength which counts if two or more

nodes change community assignment across experimental time

together in conjunction to flexibility index (Telesford et al., 2017) and

an inter-slice γ coupling that quantifies how the strength of every

node changes across time between consecutive temporal segments

(Guillon et al., 2017). Temporal centrality, the shortest path length and

the related small-worldness index are also part of this sub-module.

Significance levels of these network metrics and the ones closely

linked to temporal community assignment demand proper surrogate

null models (see next section).

F IGURE 3 Network metrics time series of functional brain networks. (a) Original fully-weighted dynamic functional connectivity brain graph.
(b) Statistically and topologically filtering of dynamic functional connectivity brain graph. (c) Estimation of nodal local efficiency (LE) across time
and ROIs producing the network metric time series. (d) An example of a nodal local efficiency and its spectrogram. (e) The characteristic dominant
frequency of nodal local efficiency. (f) Cosine similarity matrix between every temporal pair of networks' nodal local efficiency. The higher the
cosine value, the more similar are the temporal local efficiency nodal profiles. (g) Cosine similarity matrix between every pair of ROIs using their
nodal local efficiency and its reordering according to the graph-partition clustering algorithm to reveal the four nodal communities. (h) The
demonstration of the four communities detected in G via a circular layout of the 64 ROIs
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3.3 | Surrogate null models for temporal networks

While the estimation of network metrics in static and temporal net-

works offer important information about the studied network struc-

ture, it is straightforward to assess if the observed network

architecture deviates from statistical surrogate null models. For static

graphs, well-known null models include the Erdös-Rényi random

graph model (Erdos and Rényi, 1960), the ring lattice (Watts and

Strogatz, 1998), and the configuration model (Newman, 2003), a ran-

dom graph model that preserves the degree distribution and the con-

nectedness of the network (Maslov and Sneppen, 2002).

The design of proper surrogate null models for static graphs is

straightforward. However, in temporal networks, we must consider

both edge weights between pairs of nodes at every time instance

(intra-network links), edge weights between pairs of nodes across tem-

poral segments (inter-network links) and temporal segments (time win-

dows). All these alternative scenarios can be adopted one by one or

simultaneously, producing an adequate number of null models

(e.g., 1,000) and comparing the surrogate modularity, size—number of

temporal modules and other temporal network metrics with the original

ones (Figure 4). In fully-weighted temporal networks, intra-network

links will exchange their functional strength and not their connectivity

profile. We suggest that researchers should explore the three different

surrogate null models independently and simultaneously.

4 | FROM DYNAMIC FUNCTIONAL
CONNECTIVITY GRAPHS TO BRAIN STATES

The first mining approach of spatiotemporal electroencephalographic

(EEG) activity has been introduced by Lehmann et al., (1987).

Lehmann's microstates (Lehmann, 1990; Lehmann et al. 1987, 2010)

summarise quasi-stable scalp EEG potential maps lasting from tens to

hundreds of milliseconds. Brain EEG activity revisits these microstates

supporting their complex behaviour. EEG microstates focused on the

analysis of the EEG sensor or virtual sensor broadband activity.

Motivated by Lehmann's approach, we introduced a framework for

the analysis of functional connectivity brain patterns (Dimitriadis

et al. 2013, 2015, 2017, 2019). These newly represented microstates,

called functional connectivity microstates (FCμstates), proved valuable

descriptors of whole-brain inter-areal functional synchronisation during

ERP responses (Dimitriadis et al., 2013), during cognition (Dimitriadis

et al., 2015) and at resting-state (Dimitriadis et al., 2017). This approach

proved valuable for designing a reliable connectomic biomarker tailored

to mild cognitive impairment (Dimitriadis et al., 2019).

Simultaneously, a pioneering study introduced brain states' notion in

functional magnetic resonance imaging (fMRI) using an extensive study

and adopting the k-means clustering algorithm (Allen et al., 2014). Since

then, many methods have been proposed to mine temporal networks

that lead to brain states and their temporal evolution following a whole-

brain procedure (Cabral et al., 2017; Deco et al., 2019). A study similar to

Lehmann's approach adopted Hidden Markov modelling to reveal the

transient non-random behaviour of brain activity using fMRI resting-state

recordings (Vidaurre et al., 2017).

The construction of functional connectivity brain networks can

be realised via the adaptation of the sliding-window.

4.1 | Mining Time-Resolved functional brain
networks

It is often required to identify recurrent patterns of functional connec-

tivity (FC) across time, subjects and populations. Given a data set of

DFCGs, a typical data-driven (Allen et al., 2014) framework includes

the k-means clustering algorithm's employment (Lloyd, 1982) to mine

for common patterns. Then, the original DFCGs are reconstructed

using these ‘k-learned’ prototypes, based on some similarity metric

(i.e., Euclidean distance, Pearson's r correlation). The number of k

F IGURE 4 Temporal dynamics of
modular architecture. (a) A static network
toy example composed of four nodes.
(b) A Multilayer network toy example
composed of four time windows which
are linked in pairs by connecting
homologues nodes between adjacent
time windows. (c) A statistical framework
tailored to temporal networks that can be

classified into a connectional null model
(Top), a nodal null model (Middle), and a
temporal null model (Bottom). These
surrogate null models randomly permute
the intra-network links, internet-work
links, and time-windows, of the original
real temporal network. We show all the
types of randomised links in red

10 MARIMPIS ET AL.



brain states is usually decided based on some secondary estimates,

such as the elbow rule with the Silhouette index, mean square error

(MSE), distortion, etc. However, these estimates heavily rely on the

users' expertise (Vergara et al., 2019).

The notion of these ‘FC states’ (brain states) is usually compared

with that of the EEG microstates (Lehmann 1990; Pascual-Marqui

et al. 1995), according to which the brain topography remains quasi-

stable across a period of time. The focus of the research community on

brain states have spiralled out a vast number of research studies. In the

original article (Allen et al., 2014), the authors observed the mined brain

states' replicability across the cohort at hand using the k-means clustering

algorithm. In the same spirit, Abrol and his team identified a small number

of repeatable brain states across 28 independent groups with 250 sub-

jects each (more than 7,000 fMRI data sets) (Abrol et al., 2016, 2017).

K-means is the most popular clustering algorithm in the literature.

However, by default, it is a non-deterministic algorithm which practi-

cally means that we can get a different number of clusters (here brain

states), at every run. This drawback is explained by its gradient

descent nature which characterises its sensitivity to the initial assign-

ment of cluster centres. Many different approaches have been intro-

duced so far to address this issue, with the primary aim to transform

k-means in a deterministic algorithm. Tens of studies adopted the k-

means algorithm to detect brain states taking advantage of the first

study by Allen and her colleagues (Allen et al., 2014), which intro-

duced this approach. We recommend to the researchers to pay atten-

tion to the usage of k-means in general and specifically for the

detection of brain states. A solution to this issue is to run the k-means

algorithm multiple times, summarise the results into a consensus clus-

tering and then repeat the clustering with a deterministic graph-based

approach or adopt, by the beginning of the analysis. K-means++

could be an alternative solution, because it provides clusters with

more independence from the random initialisation of centroids than

the original k-means (Arthur and Vassilvitskii, 2007).

We, as a group, introduced the detection of brain states which is a

summarisation of functional connectivity patterns called FCμstates, by

adopting neural-gas (NGAS) algorithm (Martinetz et al., 1993). The

neural-gas algorithm is a non-deterministic algorithm by default, but we

transformed it in a deterministic by small adjustments. It proved its capa-

bility to describe temporal networks into a small repertoire of FCμstates

in multiple data sets and experiments (Dimitriadis et al., 2013, 2015,

2017, 2019). In a recent study, using magnetoencephalographic resting-

state recordings from multiple scans, we proved the replicability of brain

states across brain frequencies (Dimitriadis et al., 2018).

In a recent EEG music study (Marimpis et al., 2016), we further

enhanced the descriptive power of the extracted FCμstates by pre-

learning the manifold of dynamic functional connectivity patterns with

non-negative matrix factorisation (NNMF) (Lee and Sung, 1999). It

was the very first time that NNMF was applied to dynamic functional

connectivity patterns. We employed NNMF to approximate the origi-

nal dynamic functional connectivity patterns via a two-dimensional

vectors approximation which then fed to NGAS to detect a k number

of brain states (prototypes; FCμstates) (Marimpis et al., 2016). This

approach proved valuable for the design of chronnectomic brain age

index (Dimitriadis et al., 2017). NNMF has proved a valuable tool for

identifying connectivity patterns related to autism (Zhou et al., 2020).

Alternative algorithmic scenarios of studying dynamic functional

connectivity patterns are the usage of principal component analysis

(PCA) and singular value decomposition (SVD) (Leonardi et al., 2013).

Both PCA and SVD revealed the so-called eigenconnectivity proto-

types accompanying their time-dependent eigenconnectivity profile.

The above usage of the algorithms is the conversion of dynamic

functional connectivity brain networks into a discrete set of symbols,

one per FCμstate, leading to a symbolic time series. This time series

describes the temporal evolution and transition of brain states across

experimental time in a similar temporal detail as the original dynamic

functional connectivity brain network.

Figure 1b illustrates the construction of time-dependent functional

connectivity brain graphs and their modelling to brain states. Figure 5

shows how the algorithms of PCA, SVD, k-means, NGAS and NNMF per-

form. Before processing any TVFCG (Figure 5a) with these algorithms, we

must vectorise it. In the case of undirected TVFCG, the number of the first

dimension equals the total number of pair-wise connections: Nx
N�1
2 where

N denotes the number of ROIs (Figure 5b). The second dimension

refers to the total number of subjects multiplying by the total number

of time windows. Figure 5c illustrates how these algorithms process

the vectorised TVFCG. PCA/SVD demands a demeaning process that

practically is performed by subtracting the static functional connectiv-

ity graph of every subject from every time-dependent functional con-

nectivity graph. Then, we can project the feature matrix to a new

feature space that includes the eigenonnectivities and their temporal

weights. The outcome of PCA/SVD is a set of eigenconnectivities

with the related time-dependent magnitude that expresses the weight

of every eigenconnectivity across experimental time (Leonardi

et al., 2013). K-means and NGAS decompose the vectorised TVFCG

to a repertoire of FC patterns (brain states) with the related symbolic

time series that expresses FC patterns' temporal evolution across time

and subject. From this symbolic time series, numerous chronnectomics

can be estimated (see Section 4.3). NNMF decomposes the vectorised

TVFCG leading to two-rank approximation matrices. The first refers to

FC patterns (brain states), and the second to the time-dependent mag-

nitude that expresses every FC pattern's weight across experimental

time. It is essential to state here that k-means and NNMF lead to a dif-

ferent outcome at every run. We recommend running the algorithms

multiple times and integrating them via a consensus approach.

4.2 | Determining the number of brain states in
dynamic functional brain connectivity using various
cluster validity indexes

Using any type of the algorithms above (NGAS, PCA, NNMF, SVD) for

detecting brain states from a dynamic functional brain connectivity

graph demands the adaptation of a cluster validity index (CVI). It is

common to use the Elbow-Criterion, Silhouette index and the GAP-

Statistic. Ιn our module, we provide two indexes; the Davies-Bouldin

and Ray-Turi index. The following will be included in an upcoming
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release: Calinski-Harabasz, Silhouette, Wemmert-Gancarski, Dunn,

Log Det Ratio, Log SS Ratio, Scott-Symons, SD Scat, Trace W. It is of

paramount importance to validate brain states detection algorithms

with NGAS, k-means, PCA/SVD, NNMF and other methods in large

data sets with repeated scans (Vergara et al., 2019, 2020).

4.3 | Chronnectomics

Chronnectomics (where Chronos the greek word for time, and ‘omics’
describes the efficacy of objects being categorised based on common

traits) is a relatively new class of neuroimaging term (Allen et al.,

2014; Calhoun et al., 2014) that acts as the spatio-temporal counter-

part of connectomics. Genomics, metabolics and proteomics seek to

study and understand both the healthy and diseased human organism. Sim-

ilarly, chronnectomics are focused on the human brain. Chronnectomics

integrate spatio-temporal details pronounced from the distinct brain states,

as extracted from a dynamic connectivity strategy. The outcome of k-

means and NGAS is a symbolic time series that describes brain states' tem-

poral evolution.

The symbolic time series extracted from the mining of temporal

networks as introduced in the previous section and shown in

F IGURE 5 Flowchart of the analytic pipeline of time-varying functional brain networks. (a) Construction of time-varying functional
connectivity graph (TVFCG). (b) Vectorisation of TVFCG in the dimension of connectivity pairs� time� subjects. (c) PCA/SVD demands a
demeaning process that is performed by subtracting the static functional connectivity graph of every subject by every time-dependent functional
connectivity graph. Then, we can project the feature matrix to a new feature space that includes the eigenonnectivities and their temporal
weights. K-means and Neural Gas decompose the vectorised TVFCG leading to FC patterns (brain states) with the related symbolic time series
that expresses the temporal evolution of FC patterns across time and subject. Non-negative matrix factorisation decomposes the vectorised
TVFCG leading to two-rank approximation matrices. The first axis refers to FC patterns (brain states) and the second one, to the time-dependent
magnitude that expresses the weight of every FC pattern across experimental time
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Figure 6c using either k-means or NGAS, numerous chronnectomic

features can be defined. These chronnectomics are described below:

Flexibility index (FI) (Bassett et al., 2011, Dimitriadis et al., 2017;

Dimitriadis, 2018) is the frequency of a node changing module alle-

giance; brain states' transition between consecutive temporal seg-

ments. The higher the number of changes, the larger the FI will be.

Given a symbolic time series, the flexibility index is estimated as

follows:

FI¼ number of transitions
total symbols�1

: ð1Þ

Occupancy time (OT) is the fraction of distinct symbols occurring in

the observed symbolic time series. In the context of brain states (and

dynamic functional connectivity specifically), for each brain state k, it

is computed as

OC kð Þ¼ frequency of occurance
slides

: ð2Þ

Dwell time (DT) measures when a brain state is active (highlighted)

between consecutive temporal segments. The difference with the

Occupancy Time is the search scope of the methods. DT captures

the time that an individual spends in a given state; while OT measures

the overall time spent in a given brain state.

Transition matrix (TM) tabulates every brain state's transition

from one to another in a matrix form. One can convert this

transition matrix into probabilities (transition probability matrix) by

dividing the individual transitions by the sum of all observed

transitions.

Complexity index (CI) (Janson et al., 2004; Dimitriadis, 2018) quan-

tifies the ‘richness’ of symbolic time series. The index, specifically, indi-

cates the frequency of repeated sub words (up to a specific length). It is

to derive randomised versions of the original symbolic time series and

estimate the index for each of them. Repeating this process 1,000 times,

a distribution is generated that is used for the evaluation (i.e., consider

the SD) and the normalisation of the original, resulting index.

Figure 6 illustrates an example of the majority of the chronnectomics

above.

5 | DIFFERENT FUNCTIONAL BRAIN
NETWORKS REPRESENTATIONS

Numerous alternative representations of functional brain networks

have been proposed during recent years, from original low-order

F IGURE 6 Illustration of a dynamic connectome pipeline. (a) The estimated dynamic connectivity, resulting in N functional connectivity
graphs (FCGs). (b) Mined brain states; in this example four states. (c) Reconstruction of the original FCGs based on the mined brain states.
(d) Occupancy time of each brain state; how time a brain state is active. (e) The transition probability of each brain state and between each state.
(f) Flexibility index and complexity index for the symbolic time series
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functional brain networks to high-order and associated high-order

(Zhang et al., 2017). Multi-layer functional brain networks have been

used to express either temporal network (horizontal representation)

with every time-instant functional brain network-referred to as a dif-

ferent layer (Mucha et al., 2010). Another representation is the inte-

grated functional brain networks (vertical representation), with every

layer referring to a distinct frequency-dependent functional brain net-

work (Dimitriadis et al., 2018). Finally, the edge-to-edge functional

brain network deriving from a temporal network that encapsulates

the co-fluctuation functional temporal strength pattern between

edges of pairs of brain areas.

5.1 | Low-order, high-order and associated high-
order functional brain networks

A recent study introduced the notion of low-order, high-order and

associated high-order or hybrid high-order functional brain networks

(Zhang et al., 2017). Conventional functional brain networks are con-

structed by adopting a connectivity estimator and quantifying the

temporal correlation between every pair of brain areas. This type of

well-known functional brain network is called low-order (Figure 7). A

high-order functional connectivity graph (FCG) is constructed by tak-

ing the correlation between every pair of nodal correlation strength

vector. Figure 7 illustrates how low-order FCG constructs high-order

FCG. Every row from the first low-order FCG is correlated with every

column of the second low-order FCG. Circular graph topological lay-

outs illustrate the first row's functional strength from the first low-

order FCG and the second, third and last column from the second

low-order FCG. We used an example from a male of age nine from an

fMRI resting-state activity using BASC atlas with 64 ROIs. The low

and high-order FCG dimension is 64�64. The dimension of the rows

and columns is a vector of 64, tabulating the functional strength

values. The operation is a point-wise of the first low-order FCG with

its inverted version. Following the same procedure between the

resulting high-order FCG and the low-order FCG, one can estimate

the associated high-order FCG (Figure 8). Associated high-order FCG

are by default asymmetrical and could be treated as either a directed

graph or undirected by taking the maximum value for every pair of

nodes.

The whole operation can also be realised in a dynamic fashion by

adopting the sliding-window method. Topological filtering and net-

work metric analysis can also be applied to the constructed high-order

and associated high-order FCG as with the original low-order FCG

(Zhang et al., 2017). It is interesting, in the future, to explore these

types of FCG in numerous experimental paradigms.

5.2 | Multi-layer networks

In recent years, the network neuroscience community introduced in

the analysis of functional brain connectivity the notion of multi-layer

networks. The term multi-layer network has been adopted to describe

both temporal networks and multi-frequency networks. In the first

case, every layer refers to a time-instant (Mucha et al., 2010). In the

latter, every layer refers to a frequency-dependent functional brain

network (Guillon et al., 2017; Yu et al., 2017; Dimitriadis et al., 2018).

Figure 9a shows a temporal multi-layer network with 36 time-instant

functional brain networks. This temporal network is built from fMRI

resting recordings from a healthy male of age 9. Figure 9b illustrates a

multi-layer multi-frequency network where every layer is devoted to

a frequency-dependent functional brain network from δ up to γ2
(Guillon et al., 2017; Yu et al., 2017). Ιn a recent study, we first intro-

duced a multi-layer network that incorporates functional brain net-

works from both within-frequency and cross-frequency interactions

between every pair of the studying frequencies, here δ to γ2
(Dimitriadis et al., 2018). Figure 9c is devoted to an integrated multi-

frequency network where every layer is devoted to a distinct coupling

mode, 8 layers for within-frequency coupling and 28 layers for CFCs.

These networks (Figure 9b,c) were constructed from magneto-

encephalographic resting-state recordings from virtual time series

located over the 90 ROIs according to the automated anatomical

labelling atlas (AAL).

5.3 | Edge-to-edge networks

An interesting representation of a dynamic functional connectivity

graph is the edge-to-edge functional brain network. Figure 10a dem-

onstrates the 3D dynamic functional network of dimensions

temporal segments�ROIs�ROIs. Figure 10b is the transformation of

the 3D dynamic functional network shown in Figure 10a to a 2D

matrix of size possibleROI pairs� temporal segments: This matrix

encapsulates the fluctuation of functional strength for every pair of

ROIs. Figure 10c shows an example of temporal functional strength

for pairs of ROIs 1�2,1�3f g. By estimating the correlation between

every possible pair of temporal functional strength time series, we

build the edge-to-edge network presented in Figure 10d. The dimen-

sion of edge-to-edge functional brain network has dimensions of size

possible ROI pairs�possibleROI pairs. The black box points to the

spearman correlation between the two temporal functional strength

shown in Figure 10c. If N is the number of ROIs, the possible pairs of

ROIs equal to Nx
N�1
2 for undirected functional brain networks and

N2�N for directed functional brain networks.

5.4 | Novel adjusted network metrics to different
network representations

Trivial network metrics and transformations like topological filtering

can be applied to low-order, high-order, associated high-order and

edge-to-edge functional brain networks. However, for multi-layer net-

works, network metrics should be adjusted. Community detection of a

multi-layer temporal network demands an adjustment of famous

graph partition algorithms like modularity (Mucha et al., 2010). Based

on temporal community affiliations, various network metrics can be
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estimated. These metrics include community laterality that quantifies

the extent to which a community is localised to the left or right hemi-

sphere or in targeted sets of brain areas like the default mode network

(Doron et al., 2012), the radius and diameter of a temporal community,

the flexibility index that quantifies how many times a node changes

community assignment between consecutive temporal segments

F IGURE 7 Illustration of
high-order FC network
construction based on the
topographical similarity between
each pair of the rows of the first
instance of a low-order network
with the columns of the second
instance of a low-order network.
Circular graph layouts represent

the rows or columns of a low-
order network, referring to a brain
area's functional connectivity
with the rest of the brain areas in
a pair-wise fashion
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(Bassett et al., 2011). Another one, the cohesiveness strength, counts if

two or more nodes change community assignment across experimen-

tal time together in conjunction to flexibility index (Telesford

et al., 2017) and an inter-slice γ coupling that quantifies how the

strength of every node changes across time between consecutive

temporal segments (Guillon et al., 2017).

For multi-layer frequency-dependent functional brain networks,

trivial network metrics should be adjusted properly. An example is the

participation coefficient. The multi-layer version of participation coef-

ficient (MPC) quantifies the importance of every ROI across the differ-

ent layers (Battiston et al., 2014). Brain ROIs with high MPC are

characteristic central hubs of the ML-FCG. MPC quantifies the impor-

tance of a node in a single-layer or across layers. MPC tends to be

0 when an ROI has more connections within one layer, while it tends

to 1 when an ROI distributes their connections across the layers.

MPC has a meaning in topological filtered functional brain networks

and not to fully-weighted. A weighted version of MPC will be intro-

duced in our module.

6 | BRAIN NETWORK SIMILARITY

Comparison of brain networks is an important and mandatory process

in numerous network neuroscience studies. Necessary but not limited

examples of those comparisons are: (a) the estimation of the (dis)simi-

larity between structural and functional brain networks (Figure 11a),

(b) tracking temporal similarity in a dynamic functional brain network

between consecutive time window (Figure 11b). This analysis can also

be used between a baseline static functional brain network and a

dynamic functional brain network related to the active task and 3) the

estimation of the dissimilarity between sets of brain networks related

to normal and pathological groups or between two conditions in cogni-

tive tasks (Figure 11c) (Dimitriadis et al., 2012, b; Avena-Koenigsberger

et al., 2018, Paban et al. 2019, Rizkallah et al. 2019).

Estimating (dis)similarity between networks in general, specifically

for brain networks, is a complicated task based on the complex nature of

the brain, which can be represented simultaneously across time, space,

frequency, and modalities (structural, functional brain networks). Graph

distance metrics can be classified based on the nature of the features

extracted from brain networks: these features could be related to nodes,

edges, network and spectrum level. In our previous study, we proposed a

J-index quantifying the dissimilarity of partition distance between pairs

of communities between two cognitive tasks (Dimitriadis et al., 2012).

Another study proposed a similar distance index quantifying the dissimi-

larity between sets of Laplacian eigenvalues on a node level (Shimada

et al., 2016). Here, we will discuss two families of existing methods: (a) a

graph theoretic approach which is based on the extraction of topological

features from various types of sets of brain networks at network, nodal

and edge level (Bassett and Sporns, 2017) (Bullmore and Sporns 2009,

Zalesky, Fornito et al. 2010) and (b) graph matching algorithms including

subgraphs isomorphism (Cordella et al. 2004), graph edit distance (Gao

et al. 2010), and other approaches (Dimitriadis et al., 2012, b; Shimada

et al. 2016, Schieber et al. 2017). Our module's current version provides

a submodule with most of the graph distance metrics we discussed.

Future releases will include methods to support subgraph isomorphism

(Cordella et al. 2004).

F IGURE 8 Illustration of
associated high-order FC network
construction based on the
topographical similarity between
each pair of the rows of low-
order sub-networks and columns
of high-order sub-networks

F IGURE 9 Illustration of different versions of a multi-layer network. (a) A temporal network οf 36-time instances. (b) A frequency-dependent
multi-layer network where every layer refers to a functional brain network tailored to a frequency from δ to γ2. (c) A frequency-dependent multi-
layer network where every layer refers to a functional brain network tailored to a within-frequency coupling from δ to γ2 (8 layers) and also to
every possible pair of cross-frequency coupling between the eight frequencies (28 layers)
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6.1 | Graph-theoretic distance metrics

Comparison of graph-theoretic metrics estimated on the network

level can be realised via trivial statistical analysis (ANOVA,

ANCOVA etc.). Similarly, for comparative analysis on the edge

level, one can apply statistics for every pair of connections

between two sets of functional or structural strength and then

apply a multiple comparison correction approaches, like false dis-

covery rate. However, this last approach presupposes that we

deal with fully-weighted brain networks, a solid and wrong

assumption. Nodal network metrics produce a distribution of

values equals to the size of the studying network. For a group or

condition comparison, we get two or more sets of patterns/distri-

butions. Every trace Xif g, Yif g tabulates a matrix of dimension

subjects�ROIs with the corresponding values to the adopted network

metric. In the following equation, we express a J index used in our

previous studies (Dimitriadis et al., 2012b, 2013) that quantifies the

dissimilarity ratio between every pair of inter-set scatter and the two

within-set scatter.

J¼ J Xif g, Yj

� �� �¼ ISCond A$Cond B

WSCond AþWSCond B

¼1
2

PN

i¼1

PN

j¼1
D Xi,Yj

� �

PN

i¼1

PN

j>1
D Xi ,Xj

� �þPN

i¼1

PN

j¼1
D Yi,Yj

� �
: ð3Þ

As a proper dissimilarity measure D Xif g, Yif gð Þ, we can adopt one of

the many options provided in the following subsections. Dissimilarity

measures should be tailored to the quantity that will be compared

across groups or conditions. Below, we summarise sets of distance

metrics that are implemented in our module.

6.1.1 | Partition distance

In our previous studies, we adopted the J index with a proper partition

distance metric called Variation of Information (VI) (Dimitriadis

et al., 2009, 2012). If our strategy is to compare graph communities

between groups or conditions, we can adopt the J index with VI

F IGURE 10 Schematic step by step construction of an edge-to-edge functional brain network. (a) An example of a 3D dynamic functional
connectivity brain network. (b) A vectorised version of the 3D dynamic functional connectivity brain network into a 2D representation of
temporal functional strength. (c) An example of temporal functional strengths for two pairs of pairs of ROIs 1�2,1�3:f g. (d) The final edge-to-
edge functional connectivity network estimated via spearman's correlation of every pair of temporal functional strength tabulated in the 2D
matrix showed in B in total. Black box points the position of spearman correlation between the two temporal functional strength showed in C
(PLV, phase locking value; SC, spearman's correlation)
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(Meila, 2007). In our module, we have implemented VI and normalised

mutual information.

6.1.2 | Histogram distances

Adopting any network metric estimating on a node level produces a

distribution of nodal network metrics per subject. As a proper distance

metric to compare sets of histograms Xif g, Yj

� �
could be one of the

following available: Kullback–Leibler Divergence, Jenson-Shannon

Divergence, Jeffrey Divergence, Chi-Square, Kolmogorov–Smirnov,

(Histogram) Intersection, (Histogram) Match, Quadratic form (Schauerte

et al., 2012).

6.1.3 | Graph-diffusion distance

The graph diffusion distance (GDD) metric measures the distance

between two (positive) weighted graphs based on the Laplacian

exponential diffusion kernel. The notion backing this metric is that

two graphs are similar if they emit comparable patterns of informa-

tion transmission. (Hammond et al., 2013). This GDD metric can be

used to compare two structural brain networks, a structural brain

network with every time-instant temporal network and, at the same

time, as a proper metric for comparing two sets of brain networks

via J index.

6.1.4 | Spectral distance metrics

Given an undirected network, the Laplacian matrix L is computed as

the difference between the degree (D) and adjacency matrix (A)

accordingly: L¼D�A. It maintains the same information as the adja-

cency matrix but has different, useful vital properties. Its spectrum,

formed by its eigenvalues, can characterise a distinct neural network

model from scale-free and small-world. The Laplacian spectrum of the

normalised Laplacian matrix can inform us about the underlying brain

network's basic topological properties. The first eigenvalues reflect

the existence of communities with smaller first eigenvalues to support

strong communities. Interestingly, the synchronizability index is

defined as the ratio of the second smallest eigenvalue versus the larg-

est eigenvalue. Peaks in the Laplacian spectrum indicate duplications

or additions of characteristic motifs that arise from the network topol-

ogy. The largest eigenvalue is an index of the bipartiteness level of

the most bipartite subnetwork, linked to the odd cyclic motifs within a

network (de Lange et al., 2014). In our module, we provide the follow-

ing spectral distance metrics: (a) Ipsen-Mikhailov distance (Donat and

Holmes, 2018), (b) Spectral Euclidean Distance (Wilson and Zhu, 2008),

(c) Spectral K distance (Pincombe, 2007), (d) Laplacian energy

(Gutman and Zhou, 2006). This set of four spectral distance metrics

implemented in our module can be used in conjunction with the J

index.

6.2 | Comparing temporal networks with structural
brain network

To demonstrate a way of quantifying similarities in a multimodal neu-

roimaging scenario, we used an integrated structural brain network

produced as described in our study (Dimitriadis et al., 2017) and a

dynamic functional brain graph produced using iPLV estimator from

low—γ activity. Both types of brain networks were estimated using

the AAL atlas of 90 ROIs (45 per hemisphere). Figure 12a shows the

integrated structural brain network and a few snapshots from

the dynamic functional brain network. Adopting GDD as a proper dis-

tance metric, we quantified their distance per temporal segment

(Figure 12b). Fluctuations of topological similarities could be used for

further comparisons across frequency bands, across subjects or by

direct comparisons between groups or conditions.

7 | GRAPH SIGNAL PROCESSING PROCESS
ON FUNCTIONAL NEUROIMAGING BRAIN
GRAPHS

Graph signal processing (GSP) is an emerging research area that com-

bines a graph structure with brain signals x∈RN interpreting brain sig-

nal x as graph signals encapsulating the topology of a brain graph.

Brain networks are modelled via a weighted brain graph G¼ V,Að Þ
where V¼ 1,2,…,Nf g is a set of N nodes associated with specific brain

F IGURE 11 Applications of graph comparison in network
neuroscience. (a) Comparison between structural and functional brain
networks. (b) Tracking the dynamic (dis)similarity of a temporal
network across time. (c) Comparison of sets of brain networks
between two or more groups and conditions
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regions and are directly related to the adopted atlas that parcellates

brain volume into distinct brain regions and A∈⥂RN�N is a weighted

adjacency matrix with entries Aij representing the functional strength

between brain regions i and j or characteristic estimated measures

related to tracts in diffusion MRI (Figure 13).

GSP has been introduced to employ brain graph to analyse brain sig-

nals x. For weighted brain graph with only positive weights, we can

either adopt the original adjacency matrix A or the graph Laplacian L¼
D�A where the D matrix is a matrix with dimensions N�N as the

adjacency matrix A with all the entries equal to 0 except for the main

diagonal that tabulates the degree of every node (Chung, 1997). The

degree of every node refers to the total number of existing connec-

tions of every node, with the rest of the N�1 nodes ranging from

1 up to N�1. Alternative Laplacian operators are: the symmetric

normalised graph Laplacian Lsym ¼D�1=2LD�1=2 that smooths the dif-

ferences in degree enhancing the contribution of the connectivity tab-

ulating in A or a random-walk normalised graph Laplacian Lrw ¼D�1L

(Von Luxburg, 2007).

We can define a graph shift operators S assuming that S is diago-

nalizable using singular value decomposition (SVD), such as S¼
VΛV�1 where Λ is a diagonal matrix containing the eigenvalues, and V

its eigenvectors. When V is symmetric, then V is real and unitary,

implying that V�1 ¼VT . The main goal of the definition of S as a graph

shift operator is to build a transformation process that characterises

exchanges of information between neighbouring nodes. The

eigendecomposition of S is then used to define the graph spectral

domain.

Consider a signal x∈RN and a graph shift operator S¼
VΛV�1 ∈ RN�N decomposed on its eigenvalues and eigenvectors, then

the following pair of transformations form the graph Fourier trans-

form (GFT) and the inverse graph Fourier transform (iGFT):

x0 ¼VTx and x¼Vx0: ð4Þ

where x0 ¼ x01,x
0
2…,x

0
n

� �
can be thought of as the graph frequencies of

the signal (Shuman et al., 2013).

The first Laplacian eigenvalues reflect the brain network's community

structure, with the smaller first eigenvalues supporting a strong community

structure. Explicitly repeated eigenvalues reflect motif duplications or addi-

tions, while the largest eigenvalue is associated with the bipartiness level

of the most bipartite sub-network (de Lange et al., 2014).

The smallest Laplacian eigenvalues (or most positive adjacency

eigenvalues) are associated with low-frequency modes on the graph.

In contrast, the largest Laplacian eigenvalues (or most negative adja-

cency eigenvalues) are associated with high-frequency modes. These

modes define the GFT. The GFT encodes the graph signal variability,

such as the Fourier transform encodes for temporal brain signals.

Brain signals linked to specific brain graph nodes related to specific

brain areas can be decomposed using those nodes and transformed

by employing tools from graph signal processing.

Discrete Fourier transform (DFT) has also been introduced to tai-

lor graphs as in signals by considering cycle graphs. Cycle graphs tabu-

lated the number of cycles between every pair of nodes representing

discrete periodic signals (Leonardi and Van De Ville, 2013). For this

graph, the eigenvectors of its adjacency Acycle or its Laplacian matrix

Lcycle ¼2I�Acycle satisfy V¼ F. Since cycle graphs represent discrete

periodic signals, a GFT is equivalent to a DFT for cyclic graphs. We

also note that it is possible to combine DFT and GFT to investigate

the joint spatial–temporal frequency, that is, X00 ¼VTXFH where F

refers to the Fourier matrix tabulates the Fourier coefficients, and t �H
indicates the Hermitian transpose of the F (Huang et al., 2018).

8 | THE RELATIONSHIP OF
CONNECTOMICS AND CHRONNECTOMICS
TO COGNITION AND BEHAVIOUR

In the majority of neuroimaging studies, numerous behavioural, cogni-

tive and neuropsychological measures are estimated. These measures

should be first pre-filtered to reveal the ones that share complemen-

tary information and avoid the multicollinearity effect. At a second

F IGURE 12 A graph distance topological similarity between a structural brain network and a dynamic functional brain network. (a) A
structural brain network and multiple snapshots of a dynamic functional brain network. (b) Graph diffusion distance time series that represents
the structural-functional distance at every temporal segment. The peak around the temporal segment 105 depicts the remarkable similarity
between the structural and functional brain networks
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level, canonical correlation analysis could be adopted to find modes of

optimal covariation between connectomics and behaviour-demographics

(Smith et al., 2015).

9 | COMPARATIVE CONNECTOMICS
ACROSS SPECIES

Connectomics and chronnectomics can be used in various ways by com-

paring their consistency across multiple sites, across neuroimaging sys-

tems, and across species (van den Heuvel et al., 2016). It is important for

evolutionary neurobiologists and geneticists to compare the derived

connectomic maps across various species except for monkeys, cats, rats

and C. Elegans. For that purpose, comparative studies should adopt a simi-

lar acquisition methodology to map and explore connectomics' differences

across species. This module aspires to become a common framework for

many research studies that will aim to apply for such comparisons.

10 | APPLICATION TO EXPERIMENTAL
FMRI DATA

As an application and immediate demonstration of the presented

module, we considered the data set MyConnectome; a data set com-

prised of an array of psychological and biological recordings of a single

healthy human over 532 days. We focused on the 84, 10 min long,

resting-state fMRI scans. Each volume contains 640 voxels that make

up the following 12 networks: Cingulo Opercular, Default Mode Net-

work, Dorsal Attention, Frontoparietal 1, Frontoparietal 2, Medial

Parietal, Parieto Occipital, Salience, Somatomotor, Ventral Attention,

F IGURE 13 Graph signal processing for brain imaging. (a) Visualisation of a weighted structural connectivity graph derived from diffusion
MRI in a sagittal brain view (top) and as an adjacency matrix of size ROIs�ROIs (90�90) where every edge (topography) or cell (adjacency)
represents the strength of the structural connection. Here, we adopted a healthy subject of age 24. The matrix has been constructed as described
in a recent study (Dimitriadis et al., 2017). (b) Τhe eigendecomposition of the adjacency (left plot) and normalised Laplacian (right plot) matrix
revealed the related eigenvalues, and it is linked to the spectral analysis of a graph like the Fourier transform of a time series. The smallest (most
positive) Laplacian eigenvalues (labelled in lilac) are associated with low-frequency modes of the graph (c, top brain view). In contrast, the largest
(most negative) Laplacian eigenvalues (or most negative adjacency eigenvalues) (labelled in pink) are associated with high-frequency modes (c,
bottom brain views). Both modes define the graph Fourier transform (GFT). Functional MRI data or EEG or MEG measured at every single ROI
representing the nodes of the graph (network) (d) can be decomposed employing these modes and can be transformed through graph signal
processing (GSP) tools (e). Topographies have been created with BrainNet Viewer (Xia et al., 2013)
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Visual 1, Visual 2. An overview of the study design, analysis pipelines

and data acquisition parameters can be found elsewhere (Poldrack

et al., 2015). We used our module in a well-defined pipeline alongside

other important scientific modules in a complimentary manner.

Our pipeline's backbone is based on the computation of dynamic

functional connectivity using a sliding window over the fMRI time series

and estimating the connectivity. For demonstration reasons, we opted to

use the classic Pearson's correlation. The sliding window's width was set

to 20 samples, and each iteration is moved forward 1 sample. The

connectivity is estimated within this sliding window, resulting in 101

connectivity matrices (temporal segments�ROIs�ROIs¼101�640

�640) per scan.

Furthermore, for each connectivity profile, at first, we estimated the

nodal global efficiency (NGE). Then, a mean global efficiency (GE) has

been estimated from the ROIs belonging to the same brain sub-network.

This approach leads to a 2D matrix of size 12�8484, where 12 are the

brain networks, and 8484¼ scans� temporal segments¼84�101.
This integrated 2D matrix that encapsulates all the important informa-

tion across scans and temporal segments were projected into a com-

mon two-dimensional space using Uniform Manifold Approximation

and Projection for Dimension Reduction (UMAP). Then, we clustered

the projected manifold into a small number of prototypes using Neural

Gas (NGAS).

We concluded to use k¼2 prototypes based on the Ray-Turi cri-

terion (Figure 14). From the symbolic time series presented in

Figure 14 from the first scan, we computed the chronnectomics fea-

tures associated with them (Figure 15). More specifically, we com-

puted the Flexibility Index, Complexity Index, Dwell Time and

Occupancy Time. Mean and SDs have been estimated across scans

(Figures 16 and 17). Figure 18 illustrated the mean and SD of GE on

the network level for both brain states. Our results align with the find-

ings of a recent study on the same data set confirming further the

existence of two brain states (metastates) that intermittently fluctuate

over experimental and longitudinal time. They reported that these

two distinct temporal brain states are associated with attentional

resources (Shine et al., 2016).

11 | COMPARING AND CLASSIFYING
BRAIN NETWORKS

Complex network analysis is helpful to compare brain networks

between conditions, between groups and across lifetime in longitudi-

nal studies. There are two mainstream approaches to compare brain

networks. The first approach includes a graph matching approach

using graph distance metrics, graph edit distance metrics. Alterna-

tively, another approach is based on the statistical comparison at the

global level, edgewise, nodewise and spectral graph analysis via the

Laplacian matrix's eigenanalysis. Our module provides the basic

approaches of the aforementioned tools with a broad set of histogram

distance metrics to compare nodal network metrics distribution, edge

weights distribution and normalised Laplacian eigenvalues across any

potential comparison scenario. Similarly, we adjusted both the k-NN classi-

fier and support vector machines properly to deal with either histograms

or distributions and brain networks (2D matrices) (Dimitriadis et al., 2015).

Histogram distance metrics like chi-square and graph-diffusion distance

metrics are some of the kernels that can improve both classifiers'

performance.
F IGURE 14 The Ray Turi index for measuring a clustering's
compactness

F IGURE 15 Temporal Evolution of Brain States across
experimental time from the first scan

F IGURE 16 The mean and SD of Complexity Index and Flexibility
Index across repeat scans

MARIMPIS ET AL. 21



12 | BRAIN CONNECTIVITY ANALYSIS
MODULE

The landscape of neuroimaging tools, toolboxes and modules is vast

and can be complicated. As brain connectivity became a widely

accepted approach, virtually all available options provide connectivity

estimators and measures. Multiple connectivity based and machine

learning analysis software are freely available from various labs. A

non-exhaustive list of the most prominent neuroimaging python mod-

ule includes nilearn (most methods are described in Abraham

et al., 2014), PyMVPA (Hanke et al., 2009), scikit-learn (Pedregosa

et al., 2011) and MNE (Gramfort et al., 2013). Scikit-learn is the de-facto

module for machine learning in python. Nilearn, provides a compre-

hensive framework for analysing brain volumes; it leverages scikit-

learn to provide statistical and machine-learning methods. PyMVPA

(MultiVariate Pattern Analysis in Python) is a package intended for

statistical learning on large data sets. MNE, is a MEG and EEG specific

analysis and visualisation toolbox; it includes both spectral and effec-

tive connectivity measures. Additionally, PACTOOLS (La Tour

et al., 2017) is a set of tools to estimate the phase-amplitude coupling

in neural time series. Another noteworthy data analysis project is

neuropycon (Meunier et al., 2019). It provides a framework to con-

struct python-based pipelines with a focus on connectivity and graph

analysis. There are numerous toolboxes for MATLAB; some of which

include PRoNTo (Schrouff et al., 2013), GraphVar (Kruschwitz

et al., 2015, Waller et al., 2018), CONN (Whitfield-Gabrieli & Nieto-

Castanon 2012), Fieldtrip (Oostenveld et al., 2011) and HERMES

(Niso et al., 2013). PRoNTo and GraphVar are GUI toolboxes that can

perform pattern recognition analysis of neuroimaging data. The func-

tional connectivity toolbox (Zhou et al., 2009) is dedicated to fMRI

modality, including high-order network construction and classification.

CONN implements the component-based noise correction method

(CompCor); a physiological and noise reduction strategy that filters

first and second-level connectivity analyses. It is based on SPM to

provide a complete pipeline. Fieldtrip supports several connectivity

measures with the focus being MEG, EEG and iEEG. HERMES is

designed to study functional and effective brain connectivity from

neurophysiological data such as multivariate EEG and/or MEG. It also

includes visualisation tools and statistical methods to address the

problem of multiple comparisons. EEGLAB (Delorme & Makeig, 2004),

the most famous MATLAB toolbox for EEG data analysis, also pro-

vides a wide array of connectivity estimators with a convenient GUI.

Regarding our proposed module, several features distinguish it from

other software packages. First and foremost, our module is focused

specifically on dynamic connectivity, chronnectomics and graph the-

ory (thresholding, networks, multilayer networks, and graph dis-

tances). In addition, our module is developed with ‘mix and matching’
in mind; one can import only the functions they need. Regarding

modalities, our module can process any type of modality data (EEG;

MEG; fMRI; ECoG; fNIRS), as long as they can be represented in a

standard NumPy array format. Subsequently, one can construct any avail-

able type of brain network (low-order, high-order, associated high-order,

multi-layer network, integrated network, edge-to-edge) adapting a high

number of functional connectivity estimators. Moreover, we provided the

F IGURE 17 The mean and SD of Dwell Time and Occupancy for each state across scans

F IGURE 18 Mean and SD of global efficiency estimated over
ROIs within each of the 12 brain subnetworks. SD is estimated across
scans corresponding to each brain state
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first set of a complete set of implemented CFC estimators. Our recent

dominant coupling model is also available to build the integrated dynamic

functional connectivity graph (iDFCG) that keeps both the strength and

the type of interaction between every pair of brain areas and across

experimental time. This set is not available yet, in other software. This

iDFCG is accompanied by novel features tailored to this type of network.

Moreover, we provided a complete set of histogram and graph matching

metrics for comparing brain networks of the same modality or between

structural and functional brain networks. This is another feature of our

module that makes it unique among the others. These histogram and

graph distance metrics have been introduced in two important classifiers,

the k-NN and support vector machines, to use these features on their

original feature space and format instead of vectorizing them. This feature

is also first represented in our module. Surrogates tailored to identify

significant interactions and features tailored to multi-layer networks

have also been introduced. Statistical filtering of brain networks is

also accompanied by a complete set of topological filtering algorithms

that include both arbitrary and data-driven. Our module's core is a

complete set of mainstream pipelines for the definition of brain states

from a DFCG. The estimation of famous chronnectomics accom-

panies the mining of DFCG, for example, occupancy time, dwell time,

transition rate. Our module is open-source software that allows

researchers to customise their pipeline according to their needs,

hypotheses and goals and incorporate any function into large-scale

analytic protocols. As with all available toolboxes and python mod-

ules, critical thinking and scientific reasoning is required when design-

ing an experiment and selecting the methods.

13 | CONCLUSION

In this article, we presented a python module, called dyconnmap, for

static and dynamic brain network construction in multiple ways, min-

ing time-resolved function brain networks, network comparison and

brain network classification. This module introduces the integration of

state-of-the-art signal processing analysis under the notion of within

and between frequency coupling (CFC), the construction of brain net-

works in alternative scenarios. It furthermore provides a framework

for comparing and classifying brain networks and their extracted fea-

tures. The target audience is users with an understanding of every

concept of algorithmic analysis and clinicians with domain knowledge

but with less familiarity with writing customised software.

Dynamic functional connectivity analysis has emerged as an

effective approach to characterise how associations between brain

areas change over time. Here, we described an extensive collection of

different types of connectivity estimators for both within- and

between-frequency coupling, the design of appropriate surrogates to

detect significant interactions, and topological filtering algorithms

to filter out a dense brain network. Mining time-resolved functional

brain networks are the central core of this module with the estimation

of the essential chronnectomics features such as occupancy time,

dwell time and transition rate that characterised the (dis)appearance

of brain states evolved over experimental time. To the best of our

knowledge, our module is the most comprehensive module where one

can analyse time series extracted from specialised toolboxes tailored

to every modality till the outcome and the demonstration of the key

findings.
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APPENDIX A

Module structure

Our proposed module, dyconnmap, is organised in multiple sub-

modules. Each submodule groups together appropriate methods. The

most fundamental submodules are fc, chronnectomics and graph.

These submodules' relation and function are apparent; estimate the

connectivity, compute the similarity between the connectivities, and

extract chronnectomics features. There are numerous other sub-

modules within the module, such as ‘ts’, for time series and symbolic

time series analysis and ‘cluster’ for clustering methods and measur-

ing the clusters' quality.

Tables A1–A5

Code availability

The code available under the ‘New BSD’ Licence at GitHub https://

github.com/makism/dyconnmap. It supports Python 3.6 or newer

than Python 3.8. One can find the complete source code, logs, instal-

lation instructions, hard and soft dependencies (such as NetworkX,

NumPy, SciPy, scikit-learn). Of course, no commercial software is

required to use dyconnmap. In addition, because of Python's cross-

platform support, one can use dyconnmap virtually on every platform:

Linux, Mac OS and Windows. In addition, finally, due to the very lib-

eral licencing option, practically one can do as they please; there are

as few as possible regulations.

Through PyPi (the Python Package Index—https://pypi.python.

org, the official third-party software repository), we make the distribu-

tion of our module robust and accessible practically to everyone with

a standard python installation. The distributed files (called ‘wheels’ in the

Python ecosystem) encapsulate the module itself (alongside the exam-

ples, tests, the licence file, etc.) and metadata, such as a list with the

dependencies and target version. The installation through pip is as easy

as typing the command ‘pip install dyconnmap’. Alternatively, if one uses

the Anaconda distribution, the Anaconda channel must be specified; ‘pip
instal -i https://pypi.anaconda.org/makism/simple dyconnmap’.

Learning material

We have supplied the GitHub repository with numerous tutorials in

verbose Jupyter notebooks format that cover all the aspects of our

module. The tutorials are also available online through Binder

(https://mybinder.org) at our interactive environment at https://

mybinder.org/v2/gh/makism/dyconnmap/master?filepath=tutorials.

Furthermore, there is an example snippet code almost for each func-

tion and method listed in the module.

On development

On the development aspect of our project and following the spirit of

other open-source projects, we have hosted our module on GitHub.

There, one can easily browse the source code and keep track of the

changes made historically. For those interested in contributing to our

project, GitHub provides a user-friendly environment to make forks

and create pull requests, which after review; they will be merged with

the main public branch.

Moreover, we make use of third-party applications integrated

with GitHub, like Coveralls (https://coveralls.io) and Codacy (https://

TABLE A1 Connectivity estimators and Surrogates analysis methods (found in the ‘fc’ and ‘ts’ submodules)

Method Short description

Coherence (COH) It is a measurement of two signals' linear relationship at a specific frequency (Nolte et al., 2004).

Correlation (CORR), partial and cross-correlation

(PART/CROSS)

Pearson's correlation, cross and partial (Friston et al., 1994).

Cosine (COS) The cosine representation of the BOLD signals was recently used (Vohryzek et al., 2020) to

bridge together dynamic systems theory and spontaneous brain activity.

Directed phase lag index (dPLI) Directed Phase Lag Index was introduced (Stam & van Straaten, 2012) to capture the phase and

lag relationship as a measure of directed functional connectivity

Imaginary coherence (ICHOH) The imaginary part of coherence is insensitive to volume conduction artefacts (Nolte

et al., 2004).

Imaginary part of phase locking value (IPLV) It was proposed as an alternative to PLV to resolve its sensitivity to volume conduction and

common reference effects (Sadaghiani et al., 2012).

Mutual information (MI) (Vinck et al., 2011)

Phase lag index (PLI) Phase lag index was developed as an alternative phase synchronisation estimator that is less

prone to the effects of common sources (namely, volume conduction and active reference

electrodes) (Stam et al., 2007).

Phase locking value (PLV) Possibly the most well know phase estimator (Lachaux et al., 1999).

Weighted phase lag index (wPLI) and debiased

weighted phase lag index (dwPLI)

Another alternative method to PLI to combat its noise and noise conduction effects (Vinck

et al., 2011).

Surrogates, AAFT Surrogates and their multiple approaches have been extensively described and studied (Theiler

et al., 1992; Schreiber and Schmitz, 2000).
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www.codacy.com). Coveralls are a web service that determines the

code coverage of a project, to which degree the source code is exe-

cuted given some tests. Coveralls report a code coverage of 93% for

our project. Codacy, on the other hand, performs static analysis on

the source code, reporting the quality of the code (i.e., unused

variables or imported modules), the complexity of a piece of code, etc.

Our project has been awarded a grade ‘A’ from Codacy for its quality.

To maintain the development progress in a forwarding momen-

tum, we have integrated an online continuous integration solution,

namely, TravisCI (https://travis-ci.org) to automate the code testing.

TABLE A2 Cross frequency coupling methods (from the ‘fc’ submodule)

Method Short description

Phase amplitude coupling (PAC) The most famous and prominent approach for studying the cross-frequency coupling between slow and

faster oscillations. The phase of a low frequency drives the power of a higher frequency.

Power-envelope correlation (PEC) Similarly to AEC, we can use the following formula to estimate the correlations in power between the

different frequency bands (Hipp et al., 2012).

Amplitude envelope correlation (AEC) Estimates the coupling without phase coherence and even among different frequencies by computing the

correlation coefficient of a signal's amplitude envelope (Bruns et al., 2000).

Envelope-to-signal correlation (ESC) It is similar to Amplitude Envelope Correlation, but the lower frequency oscillation amplitude is signed;

thus, the phase information is preserved (Bruns et al., 2004).

Amplitude-normalised envelope-to-

signal correlation (NESC)

Like ESC, but it introduces the cosine of the signal, and so it is invariant to amplitude modulations and

hence to co-modulations in amplitude (Penny et al., 2008).

General linear model The general linear model is used widely to detect coupling between a low and higher frequency (Penny

et al., 2008; Penny et al., 2011).

TABLE A3 Brain states extraction (‘cluster’ submodule)

Method Short description

Neural gas (NG) An unsupervised adaptive algorithm that does not assume a preconstructed lattice, thus the adaptation cannot be

based on the distances between the neighbour neurons because, by definition, there are no neighbours (Martinetz &

Schulten, 1991).

Growing neural gas (GNG) A dynamic neural network that learns topologies; compared with Neural Gas, GNG provides the functionality of adding

or purging the constructed graph of nodes and edges when specific criteria are met (Fritzke, 1995).

Relational neural gas (RNG) Relational Neural Gas is a variant of Neural Gas that allows clustering and mining data from a pairwise similarity or

dissimilarity matrix (Hammer & Hasenfuss, 2007).

Merge neural gas (MNG) It is similar to the original neural gas algorithm, but each node has an additional context vector associated; and the best

matching unit is determined by a linear combination of both the weight and context vector (thus the merge),

from the previous iteration (Strickert & Hammer, 2003).

Self-organised maps (SOM) One of the most famous clustering algorithms. It uses a neighbouring function to preserve the topological properties of

the given input data (Kohonen, 2001)

Ray-Turi A validity measure developed to automatically (and data-driven) find the number of clusters. It is based on the intra-

cluster and inter-cluster distance measures (Ray & Turi, 1999).

Davies-Bouldin An index to measure the similarity of (any number) clusters (Davies & Bouldin, 1979).

TABLE A4 Chronnectomics-related methods

Method Short description

Dwell-time (DT) Dwell time measures the time (when used in functional connectivity microstates) in which a state is active consecutive

temporal segments. (Dimitriadis et al., 2019)

Flexibility index (FI) In the context of graph clustering, flexibility is the frequency of a node change module allegiance, the transition of brain

states between consecutive

temporal segments. The higher the number of changes, the larger the FI will be. (Bassett et al., 2011)

Occupancy time (OT) The fraction of number of distinct symbols occurring in the symbolic time series (Dimitriadis et al., 2019).

Markov matrix Markov matrix (also referred to as ‘transition matrix’) is a square matrix that tabulates the observed transition probabilities

between symbols for a finite Markov Chain. It is a first-order descriptor by which the next symbol depends only on the

current symbol (and not on the previous ones); a Markov Chain model (Dimitriadis et al., 2019).

Transition rate (TR) The total sum of transition between symbols (Dimitriadis et al., 2019).
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The sole purpose of these services is to execute the provided test

suites, given some criteria, that is, when a new piece of code is pushed

to the repository or periodically. This way, we can keep track if a

revised implementation of a method or algorithm produces the

desired results. Furthermore, we are in the process of adjusting and

updating the module to use the recently introduced ‘typing’ module.

These ‘type hints’ (as they are called, see PEP 484) can be used with

third-party tools, that is, ‘mypy’ for type checking, or from IDE to pro-

vide useful feedback about the expected types of variables, functions

parameters and return values. Our module evolves together with

Python; Python 3.7 introduced the notion of ‘data classes’; a decora-

tor that fills in standard methods in a class that is heavily used as a

data container. We are working on a new ‘Data set’ class that utilises

the data class feature to bind all the functionality provided in our

module together, with built-in parallel processing support (through a

third-party library, such as joblib or Numba). With the upcoming addi-

tions and improvements, we strive for transparency, reproducibility,

and replicability.

Finally, considering the project's documentation, we have opted

in for using ReadTheDocs (https://readthedocs.org/). An online plat-

form to generate and produce HTML and PDF files from the source

code's comments (of course, the same results can be achieved locally,

just following the given instructions). This ensures that a manual text-

book is generated automatically whenever the project is revised.

Please note that the specific links for the services described are

maintained on the project's GitHub page.

TABLE A5 Methods available in the ‘graph’ submodule

Method Short description

Graph diffusion distance (GDD) The GDD metric is a measure of distance between two (positive) weighted

graphs based on the Laplacian exponential diffusion kernel. The notion

backing this metric is that two graphs are similar if they emit comparable

patterns of information transmission.

Ipsen-Mikhailov distance (IMD) Given two graphs, this method quantifies their difference by comparing their

spectral densities. This spectral density is computed as the sum of Lorentz

distributions (Ipsen, 2004; Donnat & Holmes 2018).

Laplacian energy (LE) Laplacian graph energy is a measure of graph complexity (Gutman, 2006).

Normalised mutual information (NMI) Normalised Mutual Information proposed (Strehl & Ghosh, 2002) as an

extension to Mutual Information to enable interpretations and comparisons

between two partitions.

Multilayer participation coefficient (MPC) Multilayer Participation Coefficient method from Guillon (Guilon et al., 2017)

using the γ coefficient.

Nodal global efficiency (NGE) The global efficiency as computed per node (Latora & Marchiori, 2001; Latora

& Marchiori, 2003)

Spectral Euclidean distance (SED) The spectral distance between graphs is simply the Euclidean distance

between the spectra (Wilson & Zhu, 2008).

Spectral K distance (SKD) Given two, we can use their k-largest positive eigenvalues of their Laplacian

counterparts to compute their distance (Jakobson & Rivin, 2000;

Rincombe, 2006).

Variation of information (VI) Variation of Information (Meil�a, 2007) is an information-theoretic criterion for

comparing two partitions. It is based on the classic notions of entropy and

mutual information. In a nutshell, VI measures the amount of information

lost or gained in changing between two clusters. VI is a true metric, is

always non-negative and symmetric.

Threshold (k-core decomposition, MST—Mean degree, mean

degree, shortest paths, global-cost efficiency, OMST global-cost

efficiency)

• Global-Cost Efficiency: threshold a graph based on the Global Efficiency -

Cost formula (Bassett et al., 2009).

• OMST Global-Cost Efficiency: threshold a graph by optimising the formula

GE-C via orthogonal MSTs (Dimitriadis et al., 2017).
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