
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/14 3 0 7 5/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Wu, Xiaoping, Ch a n g, Jianlon g, Lai, Yu-Kun , Yang, Jufen g a n d Tian, Qi 2 0 2 1. BiSPL:

Bidir ec tion al S elf-Pac e d Le a r nin g for r e co g ni tion fro m w e b d a t a. IEEE Tra n s a c tions

on Im a g e P roce s sing 3 0 , 6 5 1 2 - 6 5 2 7. 1 0.1 10 9/TIP.202 1.30 9 4 7 4 4

P u blish e r s p a g e: h t t p://dx.doi.or g/10.11 0 9/TIP.202 1.30 9 4 7 4 4

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

IEEE TRANSACTIONS ON IMAGE PROCESSING 1

BiSPL: Bidirectional Self-Paced Learning for

Recognition from Web Data
Xiaoping Wu, Jianlong Chang, Yu-Kun Lai, Jufeng Yang, and Qi Tian, Fellow, IEEE

Abstract—Deep learning (DL) is inherently subject to the
requirement of a large amount of well-labeled data, which is
expensive and time-consuming to obtain manually. In order to
broaden the reach of DL, leveraging free web data becomes an
attractive strategy to alleviate the issue of data scarcity. However,
directly utilizing collected web data to train a deep model is
ineffective because of the mixed noisy data. To address such
problems, we develop a novel bidirectional self-paced learning
(BiSPL) framework which reduces the effect of noise by learning
from web data in a meaningful order. Technically, the BiSPL
framework consists of two essential steps. Relying on distances
defined between web samples and labeled source samples, first,
the web samples with short distances are sampled and combined
to form a new training set. Second, based on the new training
set, both easy and hard samples are initially employed to train
deep models for higher stability, and hard samples are gradually
dropped to reduce the noise as the training progresses. By
iteratively alternating such steps, deep models converge to a
better solution. We mainly focus on the fine-grained visual
classification (FGVC) tasks because their corresponding datasets
are generally small and therefore face a more significant data
scarcity problem. Experiments conducted on six public FGVC
tasks demonstrate that our proposed method outperforms the
state-of-the-art approaches. Especially, BiSPL suffices to achieve
the highest stable performance when the scale of the well-labeled
training set decreases dramatically.

Index Terms—Deep Learning, Image Recognition, Self-Paced
Learning, Noisy Web Data.

I. INTRODUCTION

DATA-driven deep convolutional neural networks (CNNs)

are widely used in the vision community and achieve

excellent performance on various tasks, e.g., visual classi-

fication [1] and object detection [2]. Popular models such

as ResNet-50 [1] have very deep network architectures and

contain millions of parameters. In practice, they usually ensure

sufficient model training by collecting a massive number of

images with clean labels. It is expected that more well-labeled

data results in higher performance and better robustness of

the model. However, manual data annotation is expensive

and time-consuming, especially for tasks that need expert

knowledge.

To tackle this issue, a straightforward way is to pre-train

CNNs on large-scale datasets (e.g., ImageNet [3]) and then

fine-tune them on new tasks such as visual classification of

X. Wu and J. Yang are with the College of Computer Science,
Nankai University, Tianjin 300350, China (e-mail: xpwu95@163.com,
yangjufeng@nankai.edu.cn).

J. Chang and Q. Tian are with Huawei Cloud & AI, Shenzhen 518000,
China (jianlong.chang@huawei.com and tian.qi1@huawei.com).

Y.-K. Lai is with the School of Computer Science and Informatics, Cardiff
University, Wales, UK (e-mail: laiy4@cardiff.ac.uk).

the dogs [4] and birds [5]. Later work by Cui et al. [6]

proposes to transfer from a sub-set of ImageNet that is similar

to the target domain-specific dataset. However, the learning

of novel knowledge is still limited to the scale of well-

labeled training data. More recently, several methods [7]–[9]

have alternatively considered utilizing web data as auxiliary

information to enhance the model performance on the source

dataset. For example, Schroff et al. [10] utilize a multi-modal

approach that combines the text, metadata, and visual features

to obtain candidate images from web pages. Then, Krause et

al. [11] additionally quantify the noise level of collected web

images and apply active learning to filter the images with

ambiguous category labels.

They propose that the web data can be freely collected

from the Internet, yet it may contain a lot of noise due to

the inherent characteristics of common search engines. Hence,

the key to web data learning lies in the selection of confident

data from noisy web data. In addition, some deep learning

works [12]–[14] show that clean hard samples have a positive

effect on model training. Their successful application proves

that hard sample mining promotes better convergence and

generalization of deep models. For example, focal loss [12]

considers samples with large losses as hard samples and

increases their contribution to the gradient by assigning larger

weights. At the same time, some work such as GHM [14]

also suggests that some very hard samples may be noisy

and have a negative impact on model training. Therefore, in

addition to selecting reliable web samples, how to distinguish

informative hard samples from the data with noisy labels is

also a challenge for the task of web data learning. As shown

in Fig. 1, most algorithms [11], [15] usually rank the web data

based on the classification scores and then choose relatively

credible samples via a threshold. However, in this way, we

may wrongly include noisy data (e.g., the images surrounded

by red boxes) if we want to add more hard but informative

samples, since the noise may exist in both the procedures of

web data sampling and model training.

Following the aforementioned observations, we propose a

novel bidirectional self-paced learning (BiSPL) strategy for

improving the effectiveness of learning using web data. First,

an initial model is trained on the source dataset with clean

labels. Second, in the procedure of web data sampling, inspired

by the self-paced learning (SPL) paradigm which learns from

the data with multiple paces, we infer the confidence of each

web sample and rank them in the meaningful order, i.e.,

from easy to hard. Contrary to the standard SPL, the cosine

similarity is utilized to represent the relation between source

data and web data in a robust feature space. The complexity

IEEE TRANSACTIONS ON IMAGE PROCESSING 2

ChihuahuaChihuahua 0.910.91 0.800.80 0.710.71 0.630.63 0.410.41

BassetBasset 0.940.94 0.830.83 0.650.65 0.560.56 0.190.19

SalukiSaluki 0.820.82 0.680.68 0.570.57 0.510.51 0.250.25

Fig. 1. Examples from the Dog-120 dataset (the first column) and correspond-
ing web dataset (the remaining columns). The images in each row belong
to a category, where borders of different colors, i.e., green, orange, and red,
represent positive, ambiguous, and noisy data, respectively. The numbers in the
boxes denote the cosine similarity between web samples and source samples.

of each web sample is measured by its cosine distance to

each class center of the source set. The easier samples are

preferentially selected to re-train the model and the harder ones

will be learned at the next pace. Benefiting from it, web data

is gradually and safely added to the training set in the order

from easy to hard. And we can stop learning when we observe

a significant drop in model performance to avoid introducing

too much noise. Third, in the procedure of model training,

opposite to the concept of SPL, we further propose to train

the model from hard to easy to adaptively reduce the effect

of possible noise mixed in the training set. Specifically, we

learn all the data including hard samples in the early training

stage, because the CNN model is robust to noisy data when the

learning rate is large [16], [17]. As the model training iterates

and learning rate decreases, we gradually drop the samples

with large classification losses which are treated as noisy data.

Finally, we repeat the processes of web data sampling and

model training to mine useful knowledge from web data.

To sum up, the key contributions of this paper are:

1) Inspired by the human learning strategy that learns knowl-

edge in a meaningful order, we develop a new bidirectional

self-paced learning (BiSPL) framework to reduce the effect

of noise by learning from web data in a meaningful order.

2) By sorting the learning complexity of web data with the

cosine similarity, BiSPL suffices to endow deep models

with the capabilities of steadily expanding training set

capacity from easy to hard and learning from hard to easy

as the learning progresses and the learning rate decreases.

3) Extensive experiments on six popular fine-grained visual

classification (FGVC) datasets (i.e., Indoor-67, Dog-120,

Food-101, Food-101N, CUB-200, and Flower-102) demon-

strate the superiority of BiSPL.

The remaining of the paper is organized as follows: In

Section II, we briefly introduce the related research. Section III

details our proposed BiSPL strategy. Then extensive experi-

ments and analysis are conducted in Section IV and Section V

provides the conclusion of this paper.

II. RELATED WORK

In this section, we introduce the methods which are related

to our paper, including image recognition from web data,

relation learning, and self-paced learning.

A. Recognition from Web Data

Recently, deep learning has boosted the performance of

many vision tasks, such as image classification [1] and object

detection [2]. However, a large amount of well-labeled data

is required to train deep CNNs with numerous parameters.

To address this issue, recent research works have considered

learning useful knowledge from free web data.

In the past few years, learning from web data has received

widespread attention in the vision community [7], [15], [18]–

[21] and led to great success in a variety of tasks including

scene classification [19], clothing recognition [7], skin disease

diagnosis [15], and action recognition [22]–[25], etc. Several

works [10], [15], [26] gather web images from common web

search engines for given query classes. The collection of

web data minimizes human effort, but the resulting datasets

contain noisy labels and cannot directly improve model per-

formance [15], [18], [27]. Wong et al. [26] utilize rich se-

mantic information such as image parametric dimensions and

metadata to automatically annotate real-world web images.

Cao et al. [28] also leverage a knowledge graph constructed

from free DBpedia-Wikipedia and successfully employ the

distillation technology. And Schroff et al. [10] alternatively

harvest high-quality web data by combining the multi-modal

features of text, metadata, and vision. In contrast, [29], [30]

propose noise-robust methods to make the classifier robust to

data with noisy labels. For example, Goldberger et al. [31]

train a deep neural network with an additional noise adaptation

layer to bridge the gap between correct labels and noisy ones.

However, the noise-robust algorithm seems to be only suitable

for the simple case of label noise [20]. Semi-supervised

learning based methods instead propose to learn from web data

along with an auxiliary dataset with clean labels. Recently,

Yang et al. [15] initially train a CNN on a small source

dataset and then use it to progressively filter web data with

estimated pseudo-labels. Chen et al. [32] also utilize a semi-

supervised learning method to jointly discover common-sense

relationships and predict pseudo-labels at the instance level.

They demonstrate the effectiveness of utilizing web data to

boost image recognition performance on the source dataset.

However, the classifier trained on the source dataset may

easily be over-fitting and not sensitive to noisy data. Thus the

predicted pseudo-labels based on it are unreliable and may

lead to noise accumulation along with the iteration procedure.

In our work, the reliability of each web sample is measured

based on its cosine distance from source data in the feature

space. And the relation between web data and source data is

also associated during the model training phase. Specifically,

the web samples that have abnormal loss values to the average

case will also be dropped.

It is worth noting that the goal of self-supervised learn-

ing [33]–[35] is also to learn from unlabeled or even

noisy data. Specifically, self-supervised learning learns fea-

tures in various pretext tasks by automatically generating

pseudo-labels. For example, the well-known MoCo [33], Sim-

CLR [34], and BYOL [35] perform basic data augmentation

operations on unlabeled images to obtain anchors, positive

examples and negative examples, and then minimize the

IEEE TRANSACTIONS ON IMAGE PROCESSING 3

distances between positive pairs while maximizing those be-

tween negative pairs. In addition, some studies also design

various pretext tasks such as image colorization [36], jigsaw

puzzles [37], and image inpainting [38] for unlabeled image

data and vehicle tracking [39], relative speed perception [40],

background erasure [41], and sound generation [42] for un-

labeled audio and video data. Based on models trained on

pretext tasks, self-supervised learning can further transfer the

learned features to downstream tasks. In this way, as a specific

form of unsupervised learning, self-supervised learning can be

applied to learn from unlabeled web data. However, different

from self-supervised learning which assigns pseudo labels

(e.g., rotation angles) corresponding to the pretext task to all

data, the web data learning paradigm removes noisy data and

alternatively chooses to directly assign each confident web

data a label that belongs to the label system of the specific

downstream task. This maximizes the utilization of web data.

The indirect learning process of self-supervised learning can

learn a certain degree of knowledge from web data, while it

is hard to ensure sufficient learning of web data.

B. Relation Learning

Recently, many researchers [43]–[45] are interested in min-

ing the latent relationships between the data. For example,

Chang et al. [44] consider similar and dissimilar pairwise

patterns to train a deep self-evolution clusterer. In contrast,

graph-based methods [43], [46] tend to utilize a graph to reflect

more complex structure. Zhan et al. [43] approximate the

semantic relationships between a massive amount of unlabeled

face data by constructing a bottom-up relational graph. More

recently, graph convolutional networks (GCNs) [46], [47]

show considerable performance improvement on graphical

pattern modeling. For example, Kipf et al. [47] extend the

convolutional neural networks to operate directly on graph-

structured data and achieve impressive performance on the

semi-supervised classification task. The relation learning strat-

egy is also widely used in the field of one-/few-shot learn-

ing [48]–[50]. The idea of learning to compare, i.e., learning

the distance metric between samples and inferring the few

examples of new classes by comparing to the labeled query

images, enables the image classification of new classes. For

example, the architecture of Matching Networks [50] is like

an end-to-end version of nearest neighbor classifier which

encodes the features of each episode and then calculates the

category with the highest similarity score to the test sample.

Sung et al. [49] also propose a Relation Network architecture

by automatically learning a deep distance metric between

sample items and the query in each training episode. Inspired

by the above-mentioned works, we propagate pseudo labels

and measure the complexity of web data by considering its

relation to source data.

C. Self-Paced Learning

Inspired by the learning pattern of humans, curriculum

learning (CL) [7], [51], [52] gradually incorporates training

samples into several ordered curriculums from easy to hard.

The key of CL lies in the pre-definition of each curriculum and

corresponding training orders. For example, Zhang et al. [52]

start with a simple task that learns the strong idiosyncrasies

(e.g., size and spatial relations) between urban scene images

and then train a segmentation network and regularize predic-

tions at the same time. However, it is time-consuming and

difficult in the scenario of large-scale datasets. To address

this critical issue, Kumar et al. [53] propose the self-paced

learning (SPL) paradigm which assigns each sample with an

importance parameter (i.e., loss value) to measure whether it

is easy or hard and iteratively updates it. Subsequently, the

SPL dynamically trains the model with the same goal as the

CL rather than using heuristic knowledge. Meng et al. [54]

further provide some theoretical analysis for SPL.

Recently, the SPL paradigm has been successfully applied

in many tasks [55]–[57]. For example for multimedia search,

Jiang et al. [55] propose a self-paced reranking approach for

image and video search, which far exceeds the traditional

reranking methods that primarily rely on heuristic weighting.

To avoid poor local optimum and enhance the generalization of

the model, ClusterGAN [58] trains the clusterer by gradually

increasing the hardness of the included samples. Inspired by

the SPL, we progressively select web data from easy to hard

according to the similarity between the web and source data.

During the training procedure, our method also detects outliers

to efficiently avoid label noise from the selected web samples.

And its implementation procedure is task-independent and can

be easily generalized to varying scenarios.

III. BIDIRECTIONAL SELF-PACED LEARNING

In this section, we detail the BiSPL to mine useful knowl-

edge from noisy web data for the fine-grained visual clas-

sification task. For this purpose, Section III-A models the

pairwise relation learning to consider the relations in web

data. By taking advantage of the learned relationships, the

relation-based pseudo-labeling in Section III-B is employed

to assign a pseudo-label with a confidence score to each web

sample. The formulation of bidirectional self-paced learning

during the procedures of data sampling and model training is

presented in Section III-C according to the meaningful orders

of web data. Finally, the model training process is described

in Section III-D.

A. Learning Pairwise Relations

Given a standard source dataset Ds = {(xs
i , y

s
i)}

Ns

i=1 with

Ns sample-label pairs (xs
i , y

s
i), where ysi ∈ {1, 2, · · · , C}

and C indicates the number of classes, our goal is to learn

the relation between each image pair in the feature space. To

achieve this goal, a common way is to train a CNN model

(e.g., ResNet-50 [1]) on Ds via the softmax loss:

Ls = −
1

Ns

Ns

∑

i=1

log
e
WT

ys
i
xs
i+bys

i

∑C

j=1 e
WT

j
xs
i
+bj

, (1)

where Wj ∈ R
d and bj ∈ R denote the jth column of the

model weight W ∈ R
d×C and bias item, respectively. The

feature dimension d is set according to the dimension of the

last convolution block plus a global average pooling layer of

the backbone network, such as 2, 048 for ResNet-50.

IEEE TRANSACTIONS ON IMAGE PROCESSING 4

shared weight

Feature Extraction

feature space

Label Propagation

Training set

Web Data Sampling

easy hard

Model Training

hard easy

class center

similarity Z-score

outliers

++ ──

Fig. 2. Pipeline of our proposed framework. At each pace, 1) we train the ResNet-50 [1] as our backbone network on the source set and extract features
of the source (Ds, triangle) and web (Dw , circular) sets, respectively. 2) In the pseudo-labeling step, we assign each web sample with a pseudo label and

confidence score based on its similarity to the class center (red triangle). 3) Then we rank the web samples and add the easy ones D̂w into the training set.
The harder samples will be added in the next pace. 4) During the model training phase, as the model approaches convergence, we drop more and more hard
outliers with large Z-scores from the training set.

The softmax loss separates the features of different classes,

although it is not sufficiently effective for minimizing the

distances of the features belonging to the same class [59].

To learn a discriminative feature representation for a better

measure of the cosine similarity between samples in subse-

quent steps of the proposed method, i.e., enhancing the intra-

class cosine similarity and weakening the inter-class one, we

employ the commonly used ArcFace loss [59] which adds a

geodesic distance margin penalty to the softmax loss. With

the fixed bias bj = 0, the logit can be transformed as

WT
j xs

i + bj = ‖Wj‖ ‖x
s
i‖ cos θj , where cos θj is the cosine

angle between the weight Wj and sample xs
i . For simplicity,

the l2 normalization is used to fix ‖Wj‖ = ‖xs
i‖ = 1, and then

the item WT
j xs

i + bj = cos θj . The softmax loss is simplified

to:

Ls = −
1

Ns

Ns

∑

i=1

log
e
cos θys

i

∑C

j=1 e
cos θj

. (2)

After that, the ArcFace loss can be formulated as:

La = −
1

Ns

Ns

∑

i=1

log
e
cos(θys

i
+m)

e
cos(θys

i
+m)

+
∑C

j=1,j 6=ys
i
ecos θj

, (3)

where m denotes the geodesic distance margin penalty and is

set to 0.5 following [59]. We can observe that the ArcFace loss

is a modified version of softmax loss. To keep the classification

ability of our model, we independently separate these two

losses into different branches. And the feature dimension for

the ArcFace loss is set to 512 to trade-off the model complexity

and performance. Then the total loss for relation learning can

be defined as:

L = (1− λ)Ls + λLa, (4)

where λ is set to 0.1 to balance the contribution of softmax and

ArcFace losses according to their loss values observed during

the experiment.

B. Relation-Based Pseudo-Labeling

Given Nw unlabeled web samples Dw = {xw
i }

Nw

i=1, the

goal is to assign each web sample with a confident class

label and filter out noisy samples. As we know, during the

collection procedure of web data, we utilize the name of

each class as the keyword to query images from the Internet.

Hence, we can simply treat them as the weak labels for

retrieved web samples. Then we can obtain the labeled web

dataset Dw = {xw
i , y

w
i }

Nw

i=1. However, in this way, Dw cannot

be directly used to train the model because it is hard to

discriminate between the clean samples and noisy data yet.

Hence, we further assign each web sample with a confidence

score via its relation (i.e., cosine similarity) to the class center

on the source dataset in the feature space:

R(xw
i , cyw

i
) =

f(xw
i) · cyw

i

‖f(xw
i)‖

∥

∥cyw
i

∥

∥

, (5)

where f(xw
i) and ywi denote the feature of web sample xw

i

and corresponding weak label. cyw
i

indicates the feature center

(arithmetic mean) of the ywi -th class of the source dataset Ds.

Note that in each pace, only the data in the source dataset

participates in the calculation of the class center, and the web

data does not participate in either high-confidence or low-

confidence. The range of R belongs to [0, 1] and a larger

value indicates more similarity. And the samples with the

confidences less than a threshold can be regarded as outliers.

Note that the raw self-paced learning methods [54], [56],

[57] use classification loss to determine whether a sample is

easy or hard to learn, while we find that the cosine similarity

in the feature space is more robust than the classification loss

to measure the confidence of web data. And the experimental

evaluation in Section IV-E also proves this. In addition, the

core of the web data learning task lies in the detection of noise.

Compared with the feature relationship, the optimization of

the classifier may be more susceptible to noisy data. This will

make it easier for the model to accumulate noise information.

C. Bidirectional Self-Paced Learning

In this section, we design the bidirectional self-paced learn-

ing, which contains two strategies of sampling web data from

easy to hard and training model from hard to easy, to avoid

noise information while learning more knowledge from the

web data.

Sampling Web Data from Easy to Hard: To stably add

reliable web data to the training set, we follow the SPL [51]

paradigm and sample web data in several paces in the order

from easy to hard. In this way, the model becomes more

IEEE TRANSACTIONS ON IMAGE PROCESSING 5

Algorithm 1 Bidirectional Self-Paced Learning

Input: Source dataset Ds and web dataset Dw

Output: Model parameters W

1: Train an initial model W on the source dataset Ds;

2: Predetermine the fixed pace parameter γ and threshold σ;

3: repeat

4: Extract the features of Ds and Dw using model W and

calculate the feature center of each class on Ds;

5: Calculate the cosine distance of each web sample to its

corresponding class center via Eq. 5;

6: Select web samples from Dw to build D̂w via Eq. 7;

7: for Ne = {1, · · · , NE} do

8: Compute Z-scores and detect outliers from D̂w via

Eq. 9;

9: Build outlier set D̂∗
w by randomly selecting Ne

NE
of

outliers;

10: Update model W on Ds ∪ (D̂w − D̂∗
w) via Eq. 8;

11: end for

12: until Model gains no performance improvement

13: return W

and more robust and we can gradually add hard web samples

with more confidence compared to sampling data at once. The

training loss can be re-defined as:

L =

Ns

∑

i=1

L(xs
i , y

s
i) +

Nw

∑

j=1

vjL(x
w
j , y

w
j), (6)

where vj ∈ {0, 1} controls the selection of web samples.

Different from most SPL related works [54], [56], [57] which

utilize the classification loss to measure the confidence of

each sample and determine whether it is easy or hard, we

consider the relationship (i.e., cosine similarity) between web

and source data in the feature space and the value of vj is

decided by:

vj =

{

1, if R(xw
j , cyw

j
) > γ

0, otherwise
. (7)

The web sample xw
i will be added into the training set if the

cosine similarity of R(xw
j , cyw

j
) is greater than the fixed pace

parameter of γ.

Note that the raw self-paced learning [54] gradually changes

the pace parameter during the training process to select sam-

ples from easy to hard. However, following this setting, the

model will have a great risk of introducing a lot of noise into

the training set after experimental evaluation in Section IV-E.

In our algorithm, we alternatively fix the pace parameter of γ.

For each class in the feature space, before training, hard web

samples (with confidence scores less than γ) are distributed

around the class center of the source dataset. As the training

converges on the source dataset and selected web samples,

the ArcFace loss [59] maximizes the inter-class variance and

minimizes the intra-class variance. As a result, the density

of sample cluster of each class in the feature space will

gradually increase and further narrow the distance between

the hard samples and class center [59]. This is reflected in

the experiment that with the γ parameter fixed, in each pace,

there is still part of the hard samples (with confidence scores

less than γ in the previous pace) whose similarity to the class

center (i.e., the confidence scores) in the current pace is greater

than γ. In this way, we can safely and stably use web samples

from easy to hard to expand the training set capacity.

Training Model from Hard to Easy: At each pace, the data

we sample from the web set is still likely to contain noise.

Inspired by the related works [16], [17] that deep networks

are robust to noisy labels under a large learning rate, during

the model training phase, we learn from the samples from

hard to easy as the learning rate gradually declines, i.e., at the

beginning we learn from all the samples in the training set and

then we gradually ignore the samples with large loss values.

Then we re-formulate the training loss of the model as:

L =

Ns

∑

i=1

L(xs
i , y

s
i) +

Nw

∑

j=1

ujvjL(x
w
j , y

w
j), (8)

where the sample xj is treated as noise if uj = 0 or otherwise

as clean data. And uj is defined as:

uj =

{

1, if Z-score(j, {L(xw
i , y

w
i)}

Nb

i=1) 6 σ

0, otherwise
, (9)

where N b denotes the batch size and Z-score (also called
standard score) [60] measures how many standard deviations
an observed value is from the mean of a group of values. In
this paper, it can be defined as a specific loss value L(xw

j , y
w
j)

minus the average loss (denoted as avg(·)) and then divided
by the population standard deviation (denoted as std(·)):

Z-score(j, {L(xw
i , y

w
i)}

Nb

i=1) =
L(xw

j , y
w
j) - avg({L(xw

i , y
w
i)}

Nb

i=1)

std({L(xw
i , y

w
i)}

Nb

i=1
)

.

(10)

Here, σ varies from 1 to ∝ and the samples with their Z-scores

larger than the threshold are treated as noisy data. Larger σ

means the model contains more hard samples for training. In

addition, to avoid losing a large amount of useful information

at one time, we drop the noisy data with a probability of Ne

NE

in each training batch, where the epoch number Ne gradually

increases from 1 to the total epoch number NE .

We utilize different metrics (i.e., cosine similarity and Z-

score) for determining whether the web data is easy or hard

in the aforementioned two proposed strategies for two reasons.

First, Z-score is not used in the web sample sampling stage be-

cause it measures how many standard deviations the observed

sample point is from the mean of all samples. Unfortunately,

the mean and standard deviation of unlabeled web data are

unreliable. Second, if the metric of cosine similarity is used

to drop web data, the similarity threshold will be difficult to

determine. Due to the fact that the web data is selected based

on its similarity with the source dataset (i.e., greater than γ). If

a threshold is set during model training to remove part of the

training data that may be noise, the direct result is equivalent

to increasing the γ parameter.

Note that the paradigm of online hard example mining [13]

(OHEM) also sorts examples from hard to easy. The core

of the OHEM algorithm is to select some hard examples

with diversity and high loss as a training set to improve

the parameter learning effect of the network. The purpose of

IEEE TRANSACTIONS ON IMAGE PROCESSING 6

hard negative mining in [61] is also to make the model give

more attention or learning weight to the hard examples. In

contrast, the training strategy of BiSPL aims to avoid noisy

web examples and progressively drop the hard examples at

each training iteration. Specifically, during the model training

procedure, we dynamically detect outlier (i.e., noisy web data)

in each batch via Z-score and keep all training examples in the

early stages. As the model tends to be robust and convergent,

we begin to consider outliers as noise. However, we may

lose important information if we simply discard the top K

hard examples like OHEM. And the ablation experiment in

Section IV-E also demonstrates this.

Dynamic Threshold Hyper-Parameters: We can observe

that the setting of the threshold hyper-parameters (i.e., γ and

σ) plays an important role in the proposed BiSPL method.

The comprehensive experiment conducted in the experiment

chapter also proves that we can adjust the values of these

two thresholds to obtain state-of-the-art model performance.

However, this manual process is time-consuming. So we

further design dynamic versions for these two parameters as

follows.

For the parameter γ, we independently set the safety thresh-

old for each class by considering its positional relationship

with the nearest neighbor class in the feature space:

γ∗
yw
j
= 1− dinter(y

w
j , ŷ

w
j)

dintra(y
w
j)

dintra(ywj) + dintra(ŷwj)
, (11)

where ywj ∈ {1, 2, · · · , C} denotes the weak label of web

sample xw
i . ŷwj is the nearest neighbor class of the class ywj and

the inter-class distance dinter(·, ·) is calculated by the cosine

distance between the centers of the two classes on the source

dataset. dintra(·) represents the intra-class distance, defined

as the maximum cosine distance between each sample and

the center of the class it belongs to on the source dataset. In

this way, we can safely select web samples for each class and

avoid confusion with similar classes.

For the parameter σ, in each training batch, we observe that

the Z-score values for most samples are around 0 (both positive

or negative), and those samples are assumed to be clean

samples. And the smaller the Z-score value of a sample is, the

more likely it is a clean sample. Outliers tend to have larger

Z-score values. Therefore, we simply use the absolute value of

the Z-score of the cleanest sample (i.e., with the smallest loss

and Z-score value) as the threshold to dynamically distinguish

the outliers:

σ∗ = |min({Z-score(j, {L(xw
i , y

w
i)}

Nb

i=1)}
Nb

j=1)|

=
avg({L(xw

i , y
w
i)}

Nb

i=1) - min({L(xw
i , y

w
i)}

Nb

i=1)

std({L(xw
i , y

w
i)}

Nb

i=1)
. (12)

Therefore, samples whose Z-score values are in the interval of

[−σ∗, σ∗] are regarded as clean samples, and a small number

of remaining samples with large Z-score values are regarded

as noise.

D. Model Iteration

Following the related SPL works [55]–[57], we train an ini-

tial model on the source dataset and split the training procedure

CUB-200

Flower-102

GeococcyxGeococcyx

Great
Masterwort

Great
Masterwort

Fig. 3. Examples of collected web datasets for CUB-200 [5] and Flower-
102 [65]. The images surrounded by red boxes indicate noisy data which
does not help with the classification task.

into several paces. In each pace, as illustrated in Fig. 2 and

Algorithm 1, we first extract features for both the web and

source data. Second, we propagate the pseudo labels for web

data and utilize their relation to source data in the feature

space to assign each web sample with a confidence score.

The relation is measured by the cosine similarity between the

web sample and the feature center of the pseudo-label. Third,

we sample the confident web data following the order from

easy to hard. Then we re-train the model with a new training

set that combines the source and labeled web data. During

this training process, under the control of σ, hard samples

with large losses are considered to be noisy and are gradually

removed with the increase of the training epoch. Finally, we

process the next pace and repeat the model iteration.

IV. EXPERIMENTS

In this section, we introduce the datasets and implemen-

tation details. Then we conduct comprehensive experiments

for parameters, ablation studies, and performance evaluation

of BiSPL. All the code and datasets will be released to the

community.

A. Datasets

Following previous works on web data learning, we exper-

iment on six fine-grained image recognition datasets with dif-

ferent characteristics, including Dog-120 [4], Indoor-67 [62],

Food-101 [63], Food-101N [64], Flower-102 [65], and CUB-

200 [5]. These datasets cover classification tasks of a diverse

range of targets and are to some extent complementary. For ex-

ample, the object classification tasks (e.g., dog and bird) which

recognize obvious foreground targets in the image are very

different from the scene classification task. Besides, among

these objects (i.e., dog, food, bird, and flower), the recognition

of food is different from others since food generally has no

fixed shape, color, etc.

Existing Datasets. Table I shows the detailed statistics of

the source and web datasets employed in this work, including

image number, class number, and training/test split protocol.

Specifically, we utilize each original benchmark dataset as the

source set in our experiment and keep the same split setting of

IEEE TRANSACTIONS ON IMAGE PROCESSING 7

TABLE I
STATISTICS OF SOURCE AND WEB DATASETS. ‘CLASS’ AND ‘NUM.’

DENOTE THE NUMBERS OF CLASSES AND IMAGES, RESPECTIVELY. ‘*’
INDICATES THAT FOOD-101N EMPLOYS THE SAME TEST SET AS

FOOD-101 [63].

Dataset
Source Set Web Set

Class Num. Training/Test Num.

Dog-120 120 20,580 12,000/8,580 52,115

Indoor-67 67 15,620 14,280/1,340 76,907

Food-101 101 101,000 75,750/25,250 240,096

Food-101N 101 57,609 43,121/25,250* 252,400

Flower-102 102 8,189 2,040/6,149 213,404

CUB-200 200 11,788 5,994/5,794 307,348

training and test sets as previous works. For example, for the

Dog-120 [4] dataset, 12, 000 samples are utilized to train the

model and the rest are used as the test set. For the first four

source datasets in Table I, we use their corresponding web

sets collected by previous works [15], [64]. Note that the web

sets are only used for model training, which is consistent with

real-life applications. And each web sample has an unreliable

pseudo label since the images obtained from Internet resources

may be inconsistent with the objects we want.

Newly Collected Web Datasets. For the last two tasks in

Table I, we further collect their web datasets following the

procedure of previous works [15], [64]. For a given class name,

we use it as the keyword to query from the image search

engines (e.g., Google, Bing). Only top-3, 000 retrieved results

are retained for each class. Then we simply filter the images

which have the wrong format or are duplicated in the test set.

Finally, as shown in Table I, we collect a total of 213, 404
and 307, 348 web images for Flower-102 [65] and CUB-

200 [5] datasets, respectively. Fig. 3 illustrates some example

web images. We can observe that the web data contains both

informative images and noise.

Food-101N. Food-101N [64] is a web data learning dataset

with 101 food categories such as Hamburger and Cheesecake

and shares the same taxonomy as Food-101 [63] dataset.

310, 009 images are collected from Google, Bing, Yelp, and

TripAdvisor, with foodspotting.com excluded to avoid duplica-

tion with the original Food-101 [63] dataset. The correspond-

ing weak labels are annotated through query keywords and the

related work [64] estimates that its noisy class label accuracy

is 80%. The additional meta information includes 52, 868
verification labels for training and 4, 741 ones for validation

which belong to {0, 1} and denote whether each class label is

correct. Among the verified training set, 43, 121 images with

correct labels (i.e., corresponding verification label equal to 1)

are selected as source set in our BiSPL mechanism. Following

previous works [64], [102], we utilize the test set of Food-

101 [63] dataset to evaluate the proposed method.

B. Implementation Details

In our experiments, ResNet-50 [1] is employed as the

backbone network and initialized with the parameters pre-

trained on ImageNet [3]. The size of input images is set to

448 × 448 unless otherwise specified. In addition, common

data augmentation strategies like random crop, dropout, and

cutout [105] are utilized to avoid overfitting in our experi-

ments. In total, we train the model for 50 epochs in each

pace and optimize it using Stochastic Gradient Descent (SGD).

The mini-batch, momentum, and weight decay are set to 40,

0.9, and 5e-4, respectively. The learning rate of backbone

and last fully connected layer are set to 0.001 and 0.01
respectively. Our method is implemented on the platform of

PyTorch framework and an NVIDIA 1080Ti GPU with 11 GB

on-board memory.

C. Comparison with the State-of-the-Arts

In this section, we evaluate the proposed BiSPL and com-

pare with state-of-the-art methods on fine-grained classifica-

tion tasks.

Comparison Protocols. For a fair comparison, we try our

best to compare with related methods in the same experimental

scenario. First, on the Dog-120 [4], Indoor-67 [62], and Food-

101 [63] datasets, we mainly cite the results from recent works

of ADNN [27] and PF [15]. Both methods exploit the same

source and web sets in a similar mechanism to ours. On the

Food-101N [64] dataset which originally comprises of labeled

source set and noisy web set, we perform the experiment by

directly following settings of previous methods. Second, on all

the datasets especially the CUB-200 [5] and Flower-102 [65]

datasets whose corresponding web data is first collected in this

work, we find existing works based on these datasets from top

journals and conferences and compare with the state-of-the-

art methods. In Table II, we detail the experimental settings

of backbone network and image input size of each method.

Moreover, except on the Food-101N [64] dataset, specific

statistics of the comparison methods which utilize additional

data are also reported in Table III. For example, DPTL [6]

utilizes a more powerful network architecture (i.e., Inception-

ResNet-v2 SE [66]), higher image resolution and transfer

knowledge from the subset of large-scale well-labeled dataset

(i.e., iNaturalist [106]) that is similar to the target domain.

In this case, it shows excellent classification results and even

outperforms the web data learning methods (e.g., PF [15] and

ADNN [27]) on the Dog-120 [4] and Food-101 [63] datasets.

Third, we also report our model results under different settings

of input size (e.g., 224 × 224 and 448 × 448) to compare

methods in a controlled protocol.

Comparison on Existing Datasets. Specifically, on the

Dog-120 [4] dataset, as shown in Table II, our BiSPL achieves

the best classification performance of 88.66%. Compared

with web data learning methods (i.e., PF [15], ADNN [27],

Goldfinch [11], and Hybrid [19]), our BiSPL outperforms them

in accuracy by at least 1.30%. For the methods of PF [15]

and ADNN [27] using the same web set as ours, we utilize

the fair experimental settings (i.e., backbone of ResNet-50 and

input size of 224×224) and achieve the classification accuracy

of 88.11%. PF [15] has a similar procedure that step-wisely

learns from noisy web data and processes ambiguous samples

which are mixed in the added web data. Different from it,

we select confident samples from noisy web data based on

the relation (i.e., cosine similarity) on feature space which is

more robust than classification scores. Besides, the process

IEEE TRANSACTIONS ON IMAGE PROCESSING 8

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CLASSIFICATION TASKS OF DOG, INDOOR SCENE, FOOD, BIRD, AND FLOWER. WE COMPARE

THE PROPOSED BISPL WITH SEVERAL METHODS INCLUDING WEB DATA LEARNING ALGORITHMS AND FINE-GRAINED VISUAL CLASSIFICATION

FRAMEWORKS. ‘-’ REPRESENTS THAT THE SPECIFIC DATA IS NOT REPORTED IN CORRESPONDING PAPER. ‘*’ INDICATES THE USE OF ADDITIONAL DATA

(e.g., WEB IMAGES AND THE INATURALIST DATASET, SPECIFIC STATISTICS ARE IN TABLE III). ‘INCRESV2SE’ IS THE NETWORK OF

INCEPTION-RESNET-V2 SE [66]. † AND ‡ DENOTE THE USE OF DYNAMIC THRESHOLD HYPER-PARAMETERS AND LARGER INPUT SIZE, RESPECTIVELY.
BOLD VALUES DENOTE THE TOP 3 PERFORMANCE OF ACCURACY (ACC.).

Dog-120 [4] Indoor-67 [62] Food-101 [63]

Method Backbone Input Size Acc. Method Backbone Input Size Acc. Method Backbone Input Size Acc.

PBC [67] GoogLeNet 224×224 78.30 HybirdCNN* [68] Places-CNN - 70.80 RF [63] Random-Forest - 50.76

SCDA [69] VGG-16 224×224 78.86 SNN [70] VGG-16 - 72.20 DCNN [63] AlexNet - 56.40

VSM [71] VGG-16 - 79.50 SFV [72] CaffeNet - 72.86 Im2Cal [73] GooLeNet - 79.00

Weakly [74] VGG-16 224×224 80.43 BCNNs [75] VGG-16 multi-scale 79.00 KELM [76] ResNet-50 300×300 82.60

PC [77] DenseNet-161 - 83.75 Places* [78] VGG-16 - 79.76 Grassmann [79] VGG-16 224×224 85.70

Hybrid* [19] VGG-16 - 85.16 MPP [80] CaffeNet multi-scale 80.78 CNet [7] Inception-V2 - 87.30

Goldfinch* [11] Inception-V3 - 85.90 DFHybrid* [81] Places-CNN multi-scale 80.97 Inception [82] Inception-V3 299×299 88.28

ADNN* [27] ResNet-50 224×224 87.07 LSDH [83] VGG-11 - 83.75 ADNN* [27] ResNet-50 224×224 89.35

PF* [15] ResNet-50 224×224 87.36 ADNN* [27] ResNet-50 224×224 84.59 PF* [15] ResNet-50 224×224 89.77

DPTL* [6] IncResV2SE 448×448 88.00 PF* [15] ResNet-50 224×224 84.78 DPTL* [6] IncResV2SE 448×448 90.40

BiSPL ResNet-50 224×224 88.11 BiSPL ResNet-50 224×224 85.82 BiSPL ResNet-50 224×224 90.39

BiSPL† ResNet-50 224×224 88.52 BiSPL† ResNet-50 224×224 85.60 BiSPL† ResNet-50 224×224 89.35

BiSPL‡ ResNet-50 448×448 88.66 BiSPL‡ ResNet-50 448×448 87.01 BiSPL‡ ResNet-50 448×448 91.18

CUB-200 [5] Flower-102 [65] Food-101N [64]

Method Backbone Input Size Acc. Method Backbone Input Size Acc. Method Backbone Input Size Acc.

Part-RCNN [84] CaffeNet 227×227 76.40 TriCoS [85] SVM - 85.20 verified ResNet-50 224×224 74.19

PSA-CNN [86] VGG-19 - 82.80 LSVM [87] SVM - 87.14 clean ResNet-50 224×224 78.57

MG-CNN [88] VGG-19 - 83.00 N-Piars [89] GoogLeNet - 88.50 noisy [64] ResNet-50 - 81.44

DLA [90] DLA-102 448×448 85.10 RepMet [91] Inception-V3 - 89.00 clean* [64] ResNet-50 - 81.67

MA-CNN [92] VGG-19 448×448 86.50 MsML [87] - 224×224 89.45 Weakly [20] VGG-16 - 83.43

NTS-Net [93] ResNet-50 448×448 87.50 Magnet [94] GoogLeNet 224×224 91.40 CleanNet(hard) [64] ResNet-50 - 83.47

PA-CNN [95] VGG-19 448×448 87.80 BOA* [96] ResNet-152 - 92.50 CleanNet(soft) [64] ResNet-50 - 83.95

DCL [97] ResNet-50 448×448 87.80 VMF [98] GoogLeNet 224×224 95.60 Guidance [99] ResNet-50 224×224 84.20

iSQRT [100] ResNet-101 448×448 88.70 DAT [101] Inception-V3 - 97.70 MetaCleaner [102] ResNet-50 - 85.05

DPTL* [6] Inception-V3 448×448 89.60 EfficientNet [103] EfficientNet-b7 600×600 98.80 DeepSelf [104] ResNet-50 224×224 85.11

BiSPL ResNet-50 224×224 90.20 BiSPL ResNet-50 224×224 99.09 BiSPL ResNet-50 224×224 86.23

BiSPL† ResNet-50 224×224 90.39 BiSPL† ResNet-50 224×224 99.10 BiSPL† ResNet-50 224×224 86.60

BiSPL‡ ResNet-50 448×448 91.11 BiSPL‡ ResNet-50 448×448 99.33 BiSPL‡ ResNet-50 448×448 87.22

TABLE III
STATISTICS ON THE USE OF ADDITIONAL DATA FOR COMPARISON

METHODS.

Dataset Method Use of Additional Data

Dog-120

Hybrid [19] 100 noisy web images per category

Goldfinch [11] 342,632 noisy web images

ADNN [27] 52,115 noisy web images

PF [15] 52,115 noisy web images

DPTL [6] subset of iNaturalist [106]

Indoor-67

HybirdCNN [68] Places 205 (2,448,873 images)

Places [78] Places 205 (2,448,873 images)

DFHybrid [81] Places 205 (2,448,873 images)

ADNN [27] 76,907 noisy web images

PF [15] 76,907 noisy web images

Food-101

ADNN [27] 240,096 noisy web images

PF [15] 240,096 noisy web images

DPTL [6] subset of iNaturalist [106]

CUB-200 DPTL [6] subset of iNaturalist [106]

Flower-102 BOA [96] unknown amount of web data

of assigning each sample with multiple labels performs well

when one image contains objects from multiple categories,

but ambiguous web samples may be noisy and do not belong

to any category. We choose to directly drop them instead of

introducing extra label information for every training sample.

Even compared to the method of Goldfinch [11] which utilizes

a much larger scale of web dataset both in the levels of

category (i.e., 515 vs. 120) and image number (i.e., 342, 632
vs. 52, 115), our method still performs better by at least 2%.

Compared with the state-of-the-art methods (e.g., PC [77] and

Weakly [74]) in the fine-grained visual classification field,

our method shows great advantages in classification results.

This indicates that web data contains rich information that can

effectively improve the model performance. For these methods

(i.e., DPTL [6] and PC [77]) that usually utilize deeper

CNNs (e.g., DenseNet-161), our method still outperforms

them to a certain extent. For example, DPTL [6] which is

based on the network of Inception-ResNet-v2 SE [66], input

size of 448 × 448 and additional images from the subset of

iNaturalist [106] achieves excellent accuracy performance of

88% and even outperforms the state-of-the-art web data based

methods (e.g., PF [15]).

Our BiSPL performs similarly on the datasets of Indoor-

IEEE TRANSACTIONS ON IMAGE PROCESSING 9

67 [62] and Food-101 [63]. As shown in Table II and Ta-

ble III, under the different experimental settings, our method

outperforms both the web data learning methods and state-of-

the-art fine-grained visual classification methods. Moreover, on

the Indoor-67, the methods of HybirdCNN [68], Places [78],

and DFHybrid [81] benefit from the initial model which is

pre-trained on the Places 205 dataset [78]. This large-scale

scene recognition dataset (i.e., Places 205 [78]) comprises

of 205 scene categories and about 2.5 million well labeled

images. Having at least 5k images of each category guarantees

that rich information can be transferred from the Places

205 [78] dataset, while the better performance of our method

demonstrates that unlabeled noisy web data also contains a lot

of valuable knowledge and our method can effectively learn

from it.

Comparison on Newly Collected Web Datasets. On the

CUB-200 [5] dataset, our method outperforms the related

works by at least 0.60% in accuracy. The part-based methods

such as PA-CNN [95], DCL [97], and MA-CNN [92] attend

to generate attention maps or utilize local information, e.g.,

bounding boxes and attributes, to assist the feature represen-

tation. They achieve good performance since part regions can

guide the model to focus on the foreground area and ignore the

noisy background information. However, the data diversity is

still limited to the source data scale and the annotation of fine-

grained labels is time-consuming. Benefiting from web data,

as shown in Fig. 3, we can freely obtain extensive bird images

that differ in scale, pose, and environment. This can help to

decrease both the intra- and inter-class variation in the fine-

grained visual classification task. In our BiSPL strategy, we

use these data samples that contain rich information and effec-

tively drop noisy data. Therefore, the model gains the improve-

ment of robustness and generalization and achieves state-of-

the-art results. On the Flower-102 [65] dataset, BOA [96] also

augments training set from web data according to the similarity

between the web sample and labeled source sample. However,

it only samples the web data once and may introduce noisy

information easily. In contrast, our method gradually adds

reliable web data to the training set in the order from easy to

hard. In addition, we also detect and remove potentially noisy

samples during model training. Then, as shown in Table II, we

observe that the pure deep network (i.e., EfficientNet-b7 [103]

with the input size of 600 × 600) can also achieve excellent

performance (i.e., accuracy of 98.8%) with an average of only

20 training samples per class. This may be because the task

of flower classification is relatively simple and the diversity

of flowers (e.g., colors, shapes, etc.) in the corresponding test

set may be relatively limited.

Comparison on Food-101N. The basic ResNet-50 achieves

the accuracy of 74.19% on the 53k verified subset of Food-

101N [64]. The verification labels denote whether the label

of each image is correct. Hence we remove the noisy training

images and gain performance improvement on the 43k clean

set (utilized as source set in our method). As reported in [64],

the model trained on a total of 310k noisy training images

easily achieves the classification performance of 81.44%.

This is very close to the performance of 81.67% on the

clean Food-101 [63] dataset with 76k well-labeled training

0.0

0.5

1.0

1.5

L
o
s
s
 v

a
lu

e

1 10 20 30 40 50
Training epoch

L
s

λ=0.1
λ=0.2
λ=0.3
λ=0.4
λ=0.5
λ=0.6
λ=0.7
λ=0.8
λ=0.9

0.2

1.2

2.2

3.2

4.2

5.2

L
o
s
s
 v

a
lu

e

L
a

λ=0.1
λ=0.2
λ=0.3
λ=0.4
λ=0.5
λ=0.6
λ=0.7
λ=0.8
λ=0.9

1 10 20 30 40 50
Training epoch

Fig. 4. Sensitivity of λ (denoted as different colors) on the Indoor-67 dataset.
The losses of Ls and La vary from the training epochs under the different
settings of λ.

images. This indicates that the images collected from the

Internet are relatively reliable for the task of food classification

and we can simply obtain extensive knowledge from the

web data without any human effort for annotation. For the

other compared methods on the Food-101N [64] dataset,

they can be grouped into two categories: unsupervised and

semi-supervised methods. The unsupervised web data learning

methods (i.e., DeepSelf [104] and Weakly [20]) usually utilize

weak labels (e.g., the query keywords when collecting data

from Internet) and correct them with the information such

as losses and gradients during model training. For example,

DeepSelf [104] generates multi-prototypes for each class by

feature clustering and computes the similarity score to de-

termine whether each sample label is correct. However, this

method may perform poorly in some categories where the

number of samples is very small or the corresponding web data

contains many error samples. In contrast, the semi-supervised

mechanisms (i.e., MetaCleaner [102], Guidance [99], and

CleanNet [64]) require a small well-labeled source dataset as

auxiliary or prior information and generally achieve higher

classification performance. For example, MetaCleaner [102]

assigns each noisy web sample with a confidence score by

calculating its relation to clean samples and gains the accuracy

of 85.05% on the Food-101N [64] dataset. Compared with it,

our method adds the noisy web data into training set through

several steps instead of one time. This process reduces the

risk of biasing to poor optimization to some extent and makes

the model more robust. As shown in Table II, our proposed

BiSPL outperforms the state-of-the-art methods under the fair

experimental settings (i.e., backbone of ResNet-50 and input

size of 224× 224).

D. Parameters

In this section, we evaluate the model performance with

varying parameter settings of λ, γ, and σ.

Impact of the Weight between Losses. The weight pa-

rameter λ in Eq. 4 controls the loss contributions of Ls and

La. On the Indoor-67 dataest, we train a ResNet-50 with the

input size of 224 × 224 and 50 epochs and report the loss

curves of Ls and La in Fig. 4. We can observe that both

losses converge relatively faster as the λ parameter decreases.

In addition, during the experiment, we find that the value of Ls

is usually close to 10 times that of La. Therefore, we finally

set the λ parameter to 0.1 in this paper.

Impact of the Pace Parameter. The pace parameter γ

determines whether one sample is confident to be added to

the training set in the next pace. Smaller γ may lead to the

IEEE TRANSACTIONS ON IMAGE PROCESSING 10

1.0 1.5 2.0 2.5 3.0 3.5 4.0

78

80

82

84

86

88

83.5

84.0

84.5

85.0

85.5

86.0

0.4 0.5 0.6 0.7 0.8

σ

A
ccu

racy
 (%

)A
cc

u
ra

cy
 (

%
)

γ

σ

||
γ

Fig. 5. Sensitivity of γ and σ (denoted as orange and blue, respectively).

TABLE IV
PARAMETER SETTINGS OF γ AND σ ON DIFFERENT DATASETS.

Dog-120 Indoor-67 Food-101 CUB-200 Flower-102 Food-101N

γ 0.6 0.6 0.7 0.7 0.7 0.7

σ 2.0 2.5 2.5 2.5 2.5 2.5

model ignoring those hard but informative web samples. In

contrast, larger γ may easily introduce more noise and make

the model accumulate more error. As illustrated in Fig. 5, with

the fixed setting of σ = 2.5, the model performs increasingly

better when γ varies from 0.4 to 0.6 on the Indoor-67 [62]

dataset. Yet the accuracy performance drops dramatically in

the interval of [0.6, 0.8]. As a result, we fix the γ to 0.6 for

the experiments on the Indoor-67 dataset in this paper.

Impact of the Threshold of Z-Score. σ is the Z-score

threshold that controls the number of outliers in a batch in the

model training procedure. Larger σ means fewer outliers will

be dropped and we set σ = 2.5, based on the observation from

Fig. 5. In summary, we can find that the model performance

changes regularly as the hyper-parameters vary on the Indoor-

67 [62] dataset. And we can easily set the parameters of γ

and σ to 0.6 and 2.5, respectively.

Sensitivity of Hyper-Parameters. Hyper-parameters have

a certain influence on model performance. Because the noise

in the web data has a direct and significant impact on the

performance of the model. Too large σ and γ will increase the

risk of introducing noise data (around 1.5% accuracy), and too

small σ and γ will make hard samples with rich information

that are beneficial to the model generalization to be filtered

out too early. While for a σ that is extremely small, a large

number of training samples will be discarded, resulting in a

more dramatic drop in performance relative to the parameter γ.

In addition, benefiting from the regular influence of parameters

on model performance, in Table IV, We can easily find the

hyper-parameters by simply adjusting the hyper-parameters

near the ones of the Indoor-67 dataset. The specific hyper-

parameter settings of the other evaluation datasets (i.e., Dog-

120, Food-101, CUB-200, Flower-102, and Food-101N) are

shown in Table IV.

E. Ablation Studies

We conduct extensive ablation experiments on the Indoor-67

dataset to demonstrate the effectiveness of BiSPL.

Effect of Web Data. Specifically, as shown in Table V,

we first evaluate the basic fine-tuning technology in the deep

learning field which transfers knowledge through pre-training

TABLE V
ABLATION EXPERIMENTS ON THE INDOOR-67 DATASET. ‘224’ AND ‘448’

INDICATE THE DIFFERENT SIZES OF INPUT IMAGE. ‘SRC’ INDICATES

SOURCE DATA IS USED FOR TRAINING, WHILE ‘WEB’ DENOTES THE USE

OF ADDITIONAL WEB DATA. ‘SPL1’ AND ‘SPL2’ REPRESENT THE

STRATEGIES OF SAMPLING DATA FROM EASY TO HARD AND TRAINING

MODEL FROM HARD TO EASY, RESPECTIVELY. ‘RL’ IS PROPOSED

RELATION LEARNING, ‘OHEM’ MEANS FIXEDLY REMOVING TOP K HARD

SAMPLES IN EACH TRAINING BATCH. ‘†’ AND ‘‡’ DENOTE THE USE OF

EUCLIDEAN DISTANCE. ‘‡’ INDICATES THE Center LOSS IS FURHTER

EMPLOYED.

Method Input Size Indoor

B
as

el
in

e

SRC 224× 224 79.63

SRC 448× 448 83.13

Web 224× 224 67.54

SRC+Web 224× 224 78.10

Web → SRC 224× 224 80.37

SRC+Web → SRC 224× 224 81.04

SRC+Web+Filter 224× 224 81.34

SRC+Web+RL 224× 224 83.66

SRC+Web+RL† 224× 224 82.12

SRC+Web+RL‡ 224× 224 83.05

A
b

la
ti

o
n SRC+Web+RL+SPL1

224× 224 84.03

SRC+Web+RL+SPL2
224× 224 84.25

SRC+Web+RL+OHEM 224× 224 83.51

SRC+Web+RL+SPL1+OHEM 224× 224 84.26
O

u
rs SRC+Web+RL+BiSPL 224× 224 85.82

SRC+Web+RL+BiSPL 448× 448 87.01

the model on a large dataset (e.g., ImageNet) and then fine-

tuning it on the source dataset (e.g., Indoor-67). We train a

basic CNN model (i.e., ResNet-50) on the source dataset and

achieve the accuracy of 79.63%. To evaluate the effectiveness

of web data, in the 3rd row, we directly train on the noisy

web data and the model gets worse on the Indoor-67 dataset.

Then the source and noisy web datasets are combined in the

4th row and the model improves the classification result on

the Indoor-67 dataset (i.e., the accuracy of 78.10%) while it is

still lower than the basic model trained on the source dataset.

This case indicates that the categories of indoor scenes in the

Indoor-67 dataset are abstract and this makes the collected web

data difficult to use without filtering. To alleviate the influence

of noisy data in a simple way, in the 5th-6th rows, we further

fine-tune the model in the 3rd-4th rows on the source dataset.

Compared with the classification result on the source dataset,

this simple strategy easily obtains performance improvement

and demonstrates the efficiency and importance of research to

mine knowledge from free web data. In our method, we do

not choose to fine-tune the final model on the source dataset,

because the deep networks are learned with memorization [16],

[17] and the fine-tuned model may forget valid information

learned from the web set. Moreover, the better performance

of the fine-tuned model may be due to the small domain shift

between the clean source set and the test set, which may lead

to lack of better generalization.

Effect of Noise Filtering. Afterward, we filter and add web

data into the training set via the classification results from the

basic CNN model and set different thresholds following [15].

And the model trained by the combination of source data

IEEE TRANSACTIONS ON IMAGE PROCESSING 11

0

5

10

15

20

25

30

35

40

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

Ratio of used source data

N
u
m

b
er o

f u
sed

 d
ata

x103

A
cc

u
ra

cy
Indoor-67

Web data Source data

BiSPL Baseline

Fig. 6. Performance on the limited-data setting on the Indoor-67 dataset. The
x-axis denotes the ratio of used source data for initial model training. The
orange and blue histograms denote the amount of used web data and source
data, respectively. The curves indicate the classification performance.

and filtered web data outperforms the basic model, achieving

accuracy boost of 1.71%. Note that we set the input size of

CNN to 224×224 for accelerating the experimental procedure

and all the models are pre-trained on the ImageNet dataset.

Effect of Relation Learning. Different from most of the

web data learning methods that measure the confidence of

web data via a classifier trained on the source set (i.e., the

7th row), in the 8th row of Table V, we process it in a

more robust way and introduce the relation learning (RL) into

the proposed framework, i.e., utilizing the cosine similarity

in the feature space to represent the relationship between

source and web data. We can observe that the relation-based

data sampling strategy outperforms the conventional classifier-

based one. Furthermore, we also verify the impact of different

similarity measures (e.g., Euclidean distance) on our proposed

BiSPL. Specifically, in the 9th row, we train a classification

network on the source dataset as in row 7 and further use

Euclidean distance to measure the similarity between the

source data and the web data. And the result indicates that the

similarity measure in the feature space is more robust than

using classification loss directly. This may be because web

data learning is an open-set problem. For noisy web samples

not included in the label set of the source dataset, in the

feature space, they will always be classified into a hyperplane

of a certain category by the classifier. And the classification

results normalized by softmax will always assign predicted

probabilities to each category belonging to the source dataset

and the sum is 1. This may make it more difficult to distinguish

between hard samples and noisy samples. In the 10th row, we

further employ the metric learning loss (i.e., the commonly

used Center loss) to embedding features and achieve the

performance of 83.05%. Compared with ArcFace loss, the

Center loss relies on the classifier to ensure that the features

are separable while minimizing the distance within the class.

As a result, its feature discriminability is related to classifier

performance.

Effect of BiSPL. Then we introduce the proposed bidirec-

tional self-paced learning pattern in the 11th-12th rows. First,

inspired by the learning pattern of humans, the order from easy

to hard confirms the web data is sampled through a meaningful

fashion. Compared with the simple one-stage sampling in

the 8th row, the self-paced learning strategy in the 11th row

samples data step by step and boosts the model performance by

0.37%. It is worth noting that we fix the pace parameter γ as

described in Eq. 7. When we gradually reduce this parameter

following the pattern of the original self-paced learning [54],

the model will only achieve the highest performance in the

first pace which equals to the performance in the 8th row. In

the later paces, the performance degradation may be caused by

the introduction of too much noise. Then, to avoid the effects

of noise contained in the data sampled from the web set, we

insightfully propose to train the model from hard to easy in the

12th row. Along with the training process of the model, this

mechanism dynamically drops more and more outliers with

large Z-scores which are calculated by loss values. As shown

in Table V, the model trained by reversed self-paced learning

during model training is more robust and obtains performance

improvement. In contrast, in the 13th-14th rows, the OHEM

strategy which fixedly removes the top K hard examples in

each training batch can easily lose critical information and

performs worse than our training strategy. In this paper, we

set K to {1, 5, 10, 20} respectively on each dataset and report

the best experimental performance. Finally, we combine both

above-mentioned strategies into a unified framework, called

bidirectional self-paced learning (BiSPL), in the 15th row.

We can find that the BiSPL can perform stably both on the

procedures of web data sampling and model training and

achieves the best accuracy performance. In addition, in the

last row of Table V, we resize the input image to higher

resolution 448×448 and the model gains further performance

improvement. This indicates that the larger size of the input

image can help the model capture richer information.

F. Evaluation on the Limited-Data Setting

In practice, as the difficulty of labeling different types of

data is different (e.g., the classification of medical images

versus general targets), it is hard to control the scale of well-

labeled data. In this section, we evaluate the efficiency of our

proposed method under the limited-data setting.

Specifically, as illustrated in Fig. 6, we gradually decrease

the scale of source training set from 100% to 10% by random

sampling. The sample size ratio of all categories remains

unchanged relative to the original training set. Experiments

are conducted with the backbone of ResNet-50 and the input

size of 224×224. We first report the classification performance

of ResNet-50 (denoted as ‘Baseline’) which is trained on the

limited source set. Then the proposed method is evaluated on

the combination of partial training set and web set. Note that

the rest of training set is not used under each setting of training

scale. This is to simulate real-world application scenarios that

we can only obtain web data of unknown quality through the

Internet and the degree of overlap between the web set and

training set is difficult to control. As observed from Fig. 6, on

the Indoor-67 [62] dataset, the performance of the Baseline

method decreases dramatically as the amount of supervised

data decreases. Due to the fact that the massive parameters of

deep learning technology require a large amount of data. As

the amount of data gradually decreases, the performance of

the deep model will definitely decrease. Especially when the

amount of data in the training set of the source dataset is too

sparse (i.e., less than 40% on the Indoor-67 dataset) and is not

enough to fit the test set, the performance of the ‘Baseline’

IEEE TRANSACTIONS ON IMAGE PROCESSING 12

(a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(a2)(a1)
-100 -50 0 50 100

-100

-50

0

50

100

-100 -50 0 50 100

-100

-50

0

50

100

-150 -100 -50 0 50 100 150

-100

-50

0

50

100

150

-100 -50 0 50 100

-100

-50

0

50

100

-100 -50 0 50 100

-100

-50

0

50

100

-100 -50 0 50 100

-100

-50

0

50

100

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-80 -60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

-100 -50 0 50 100

-100

-50

0

50

100

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

Fig. 7. 2D t-SNE [107] visualizations of the feature embeddings on different datasets, i.e., (1) Dog-120, (2) Indoor-67, (3) Food-101, (4) Flower-102, and
(5) CUB-200. Two rows indicate the features extracted from (a) ResNet-50 [1] combined with ArcFace loss and (b) our BiSPL model, respectively.

(a) pace 1 (b) pace 2 (c) pace 3

0.30 0.240.37

0.35 0.300.36

0.64 0.520.52

0.67 0.58 0.48

0.94 0.700.81

0.93 0.720.86

0.93 0.86 0.72 0.67 0.58 0.48 0.36 0.35 0.30

0.81 0.70 0.64 0.52 0.52 0.37 0.30 0.240.94

0.93 0.85 0.70 0.67 0.49 0.44 0.30 0.27 0.20

Fig. 8. Web images selected from easy (a) to hard (c) by the proposed BiSPL algorithm in different learning paces. Different rows indicate different categories
(i.e., Laysan Albatross, Northern Waterthrush, and Purple Finch). The numbers under the images represent corresponding cosine distances to the feature centers
of the pseudo-labels. The images which are surrounded by green boxes denote the correctly identified noisy data during the model training phase, while the
red boxes indicate the missed outliers.

method drops sharply. In contrast, it can be found that as long

as the amount of data can ensure that the model can learn the

basic general pattern of each category (i.e., more than 20% on

the Indoor-67 dataset), our work can safely learn knowledge

conducive to rich feature diversity from web data pace by

pace, thus contributing to the generalization performance of

the model and achieves relatively stable performance. As a

result, even if the reduction in the training set scale results

in a bias from the test set, our model can still have a

significant performance improvement on the test set relative

to the ‘Baseline’ method. This demonstrates that the task of

web data learning can indeed effectively alleviate the data-

hungry problem. However, when well-labeled data is less than

20%, the performance of our method also begins to decrease

significantly. This may be due to the fact that too little data

is not enough to train a deep network such as ResNet-50

and obtain a good initial feature representation. In addition,

our method tends to utilize more web data when the ratio of

used source data is less than 40%, and at the same time the

performance of the ‘Baseline’ method is greatly reduced. In

this case, the sampled web data contains relatively more noise,

and the BiSPL can still achieve a more stable classification

performance than the ‘Baseline’ method, which demonstrates

the effectiveness of our method.

G. Visualization Results

Fig. 7 shows the 2D t-SNE [107] feature embeddings.

Compared with the baseline method (i.e., ResNet-50), our

BiSPL learns discriminative feature representations on all the

datasets. Further, as illustrated in Fig. 8, our method samples

the web data via several paces and follows the meaningful

order from easy to hard. As the learning pace progresses,

more and more outlier hard samples are successfully detected

(surrounded by green boxes) and treated as noise by our

BiSPL. At the same time, we can observe that there are

still some informative hard samples that are retained, and

they can often enrich the diversity of corresponding categories

and enhance its generalization performance. For example, in

row 2, column 3 of Fig. 8, the outlier which belongs to

Louisiana Waterthrush is similar to Northern Waterthrush,

yet it has bright white at the rear of eyebrow. In the third

row, several web samples that contain multiple categories of

birds are also dropped. However, the noise sample surrounded

by an orange box in the first row fails to be detected as it

has a similar representation as Laysan Albatross (i.e., white

underpart and dark gray-brown upper wings) and its true class

is not contained in the CUB-200 [5] dataset. More specifically,

Fig. 9 presents more examples including training images, web

images selected by our algorithm, and classification results.

The web data contains diverse information compared with the

training set and helps improve the model generation. However,

several noisy samples have extremely similar characteristics

to the training set and do not belong to any category of the

dataset, so they are easy to be wrongly selected, e.g., the single

computer and monitor (surrounded by red boxes) in the fourth

IEEE TRANSACTIONS ON IMAGE PROCESSING 13

Testing ImagesTraining Images Selected Web Images

Iri
sh

 S
et

te
r

C
h
ic

k
en

 W
in

g
s

C
o
m

p
u
te

r R
o
o
m

Bi
rd

 o
f P

ar
ad

ise

Fig. 9. Samples of the training images, selected web images, and test images on the Dog-120 (Irish Setter), Indoor-67 (Computer Room), Food-101 (Chicken
Wings), and Flower-102 (Bird of Paradise) datasets. The images surrounded by red boxes indicate noisy data or wrong predictions.

row of Fig. 9 are easily misidentified as the ‘Computer Room’

category, since they appear frequently in the training images

of this category. And the side dishes in the food (in the sixth

row of Fig. 9) are also easily confused with the main dish

category. Moreover, we occasionally fail to recognize images

that are mislabeled. For example, in the first row of Fig. 9,

multi-categories of dogs appear in the testing set of the ‘Irish

Setter’ category in the Dog-120 dataset.

H. Further Analysis

In practice, sometimes it is challenging to collect large

amounts of data for each category of some small-scale tasks

(e.g., ‘laboratory wet’ on Indoor-67 [62]) on the web. Besides,

the scale of valuable samples for each category may also be

imbalanced. These may cause the model to recognize well the

common categories with large scale training samples while

poorly the rare ones in contrast. In our proposed BiSPL, we

observe that the data imbalance is a natural phenomenon,

both when collecting web data and sampling training samples.

For example, on the Dog-120 [4] dataset, it is more difficult

to automatically collect web images for ‘Brabancon Griffon’

compared to ‘Doberman’. During the sampling stage, the

BiSPL samples a total of 30, 532 images from the noisy web

set for 120 categories before achieving the best performance of

88.66% accuracy, which contains 623 images of ‘Samoyed’,

while only 7 images of ‘Papillon’. Our algorithm can automat-

ically mine valuable information from imbalanced web data,

while imbalanced training set may bias the model to these

majority classes with a relatively large number of samples.

Therefore, in the web data learning task, how to obtain a

balanced set throughout the web data learning procedure is

crucial and we will pay attention to this point in future work.

V. CONCLUSION

This paper focuses on the data scarcity problem of deep

CNNs via learning from web data, where the web data is

free to obtain from the Internet and does not need any

extra manual annotation. For such purpose, we propose the

BiSPL framework which alternatively iterates the procedures

of web data sampling and model training. During the sampling

phase, we rank the web data by cosine distance and sample

confident ones in a meaningful order, i.e., from easy to hard.

The training phase optimizes the model from hard to easy

via gradually dropping outliers with large losses which are

regarded as noise. Extensive experiments on six fine-grained

datasets demonstrate the superiority of BiSPL against state-of-

the-art methods.

In the future work, we plan to explore more application

scenarios for the proposed algorithm, such as experimental

evaluation on more tasks (e.g., multi-label classification, object

detection, and semantic segmentation) and large-scale datasets.

In addition, how to automatically eliminate interference from

open set categories in the process of web data learning is also

a challenging issue.

IEEE TRANSACTIONS ON IMAGE PROCESSING 14

VI. ACKNOWLEDGEMENT

This work was supported by the National Key

Research and Development Program of China Grant

(NO. 2018AAA0100403), NSFC (NO.61876094,

U1933114), Natural Science Foundation of Tianjin, China

(NO.20JCJQJC00020, 18JCYBJC15400, 18ZXZNGX00110).

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in NIPS, 2015.

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer

Vision, vol. 115, no. 3, pp. 211–252, 2015.
[4] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li, “Novel dataset for

fine-grained image categorization: Stanford dogs,” in CVPR Workshop,
2011.

[5] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD birds-200-2011 dataset,” California Institute of Tech-
nology, Tech. Rep. CNS-TR-2011-001, 2011.

[6] Y. Cui, Y. Song, C. Sun, A. Howard, and S. Belongie, “Large scale
fine-grained categorization and domain-specific transfer learning,” in
CVPR, 2018.

[7] S. Guo, W. Huang, H. Zhang, C. Zhuang, D. Dong, M. R. Scott, and
D. Huang, “Curriculumnet: Weakly supervised learning from large-
scale web images,” in ECCV, 2018.

[8] Z. Wei, J. Zhang, Z. Lin, J.-Y. Lee, N. Balasubramanian, M. Hoai, and
D. Samaras, “Learning visual emotion representations from web data,”
in CVPR, 2020.

[9] Y. Shen, R. Ji, Z. Chen, X. Hong, F. Zheng, J. Liu, M. Xu, and Q. Tian,
“Noise-aware fully webly supervised object detection,” in CVPR, 2020.

[10] F. Schroff, A. Criminisi, and A. Zisserman, “Harvesting image
databases from the web,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 33, no. 4, pp. 754–766, 2010.
[11] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig,

J. Philbin, and L. Fei-Fei, “The unreasonable effectiveness of noisy
data for fine-grained recognition,” in ECCV, 2016.

[12] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in ICCV, 2017.

[13] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based
object detectors with online hard example mining,” in CVPR, 2016.

[14] B. Li, Y. Liu, and X. Wang, “Gradient harmonized single-stage
detector,” in AAAI, 2019.

[15] J. Yang, X. Sun, Y. Lai, L. Zheng, and M. Cheng, “Recognition from
web data: A progressive filtering approach,” IEEE Transactions on

Image Processing, vol. 27, no. 11, pp. 5303–5315, 2018.
[16] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa, “Joint optimization

framework for learning with noisy labels,” in CVPR, 2018.
[17] D. Arpit, S. Jastrzkebski, N. Ballas, D. Krueger, E. Bengio, M. S.

Kanwal, T. Maharaj, A. Fischer, A. C. Courville, Y. Bengio, and
S. Lacoste-Julien, “A closer look at memorization in deep networks,”
in ICML, 2017.

[18] J. Li, Y. Song, J. Zhu, L. Cheng, Y. Su, L. Ye, P. Yuan, and S. Han,
“Learning from large-scale noisy web data with ubiquitous reweighting
for image classification,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2019.
[19] L. Niu, A. Veeraraghavan, and A. Sabharwal, “Webly supervised

learning meets zero-shot learning: A hybrid approach for fine-grained
classification,” in CVPR, 2018.

[20] B. Zhuang, L. Liu, Y. Li, C. Shen, and I. Reid, “Attend in groups:
A weakly-supervised deep learning framework for learning from web
data,” in CVPR, 2017.

[21] Y. Tu, L. Niu, J. Chen, D. Cheng, and L. Zhang, “Learning from web
data with self-organizing memory module,” in CVPR, 2020.

[22] C. Gan, T. Yao, K. Yang, Y. Yang, and T. Mei, “You lead, we exceed:
Labor-free video concept learning by jointly exploiting web videos and
images,” in CVPR, 2016.

[23] C. Gan, C. Sun, and R. Nevatia, “Deck: Discovering event compo-
sition knowledge from web images for zero-shot event detection and
recounting in videos,” in AAAI, 2017.

[24] J. Li, Y. Wong, Q. Zhao, and M. S. Kankanhalli, “Attention transfer
from web images for video recognition,” in ACM MM, 2017.

[25] C. Gan, C. Sun, L. Duan, and B. Gong, “Webly-supervised video
recognition by mutually voting for relevant web images and web video
frames,” in ECCV, 2016.

[26] R. C. Wong and C. H. Leung, “Automatic semantic annotation of
real-world web images,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 30, no. 11, pp. 1933–1944, 2008.

[27] J. Yang, X. Sun, and L. Chen, “Learning from web data using adver-
sarial discriminative neural networks for fine-grained classification,” in
AAAI, 2019.

[28] Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li, “Learning from
noisy labels with distillation,” in ICCV, 2017.

[29] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu, “Making
deep neural networks robust to label noise: A loss correction approach,”
in CVPR, 2017.

[30] K. Yi and J. Wu, “Probabilistic end-to-end noise correction for learning
with noisy labels,” in CVPR, 2019.

[31] J. Goldberger and E. Ben-Reuven, “Training deep neural-networks
using a noise adaptation layer,” in ICLR, 2017.

[32] X. Chen, A. Shrivastava, and A. Gupta, “Neil: Extracting visual
knowledge from web data,” in ICCV, 2013.

[33] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in CVPR, 2020.

[34] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” in ICML, 2020.

[35] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar
et al., “Bootstrap your own latent: A new approach to self-supervised
learning,” in NeurIPS, 2020.

[36] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in
ECCV, 2016.

[37] M. Noroozi and P. Favaro, “Unsupervised learning of visual represen-
tations by solving jigsaw puzzles,” in ECCV, 2016.

[38] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in CVPR, 2016.

[39] C. Gan, H. Zhao, P. Chen, D. Cox, and A. Torralba, “Self-supervised
moving vehicle tracking with stereo sound,” in ICCV, 2019.

[40] P. Chen, D. Huang, D. He, X. Long, R. Zeng, S. Wen, M. Tan, and
C. Gan, “Rspnet: Relative speed perception for unsupervised video
representation learning,” in AAAI, 2021.

[41] J. Wang, Y. Gao, K. Li, Y. Lin, A. J. Ma, H. Cheng, P. Peng, R. Ji,
and X. Sun, “Removing the background by adding the background:
Towards background robust self-supervised video representation learn-
ing,” in CVPR, 2021.

[42] P. Chen, Y. Zhang, M. Tan, H. Xiao, D. Huang, and C. Gan, “Generat-
ing visually aligned sound from videos,” IEEE Transactions on Image

Processing, vol. 29, pp. 8292–8302, 2020.

[43] X. Zhan, Z. Liu, J. Yan, D. Lin, and C. C. Loy, “Consensus-driven
propagation in massive unlabeled data for face recognition,” in ECCV,
2018.

[44] J. Chang, G. Meng, L. Wang, S. Xiang, and C. Pan, “Deep self-
evolution clustering,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2018.

[45] J. Chang, L. Wang, G. Meng, Q. Zhang, S. Xiang, and C. Pan, “Local-
aggregation graph networks,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2019.

[46] J. Kim, T. Kim, S. Kim, and C. D. Yoo, “Edge-labeling graph neural
network for few-shot learning,” in CVPR, 2019.

[47] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[48] J. Guan, Z. Lu, T. Xiang, A. Li, A. Zhao, and J.-R. Wen, “Zero and few
shot learning with semantic feature synthesis and competitive learning,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[49] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in
CVPR, 2018.

[50] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in NIPS, 2016.

[51] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in ICML, 2009.

[52] Y. Zhang, P. David, H. Foroosh, and B. Gong, “A curriculum domain
adaptation approach to the semantic segmentation of urban scenes,”
IEEE transactions on pattern analysis and machine intelligence, 2019.

[53] M. P. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent
variable models,” in NIPS, 2010.

[54] D. Meng, Q. Zhao, and L. Jiang, “A theoretical understanding of self-
paced learning,” Information Sciences, vol. 414, pp. 319–328, 2017.

IEEE TRANSACTIONS ON IMAGE PROCESSING 15

[55] L. Jiang, D. Meng, T. Mitamura, and A. G. Hauptmann, “Easy samples
first: Self-paced reranking for zero-example multimedia search,” in
ACM MM, 2014.

[56] D. Zhang, D. Meng, and J. Han, “Co-saliency detection via a self-paced
multiple-instance learning framework,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 39, no. 5, pp. 865–878, 2017.

[57] J. Yang, X. Wu, J. Liang, X. Sun, M.-M. Cheng, P. L. Rosin,
and L. Wang, “Self-paced balance learning for clinical skin disease
recognition,” IEEE Transactions on Neural Networks and Learning

Systems, 2019.

[58] K. Ghasedi, X. Wang, C. Deng, and H. Huang, “Balanced self-paced
learning for generative adversarial clustering network,” in CVPR, 2019.

[59] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in CVPR, 2019.

[60] E. Kreyszig, Advanced engineering mathematics (Fourth Edition).
John Wiley and Sons Ltd, 1979.

[61] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in ECCV, 2016.

[62] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in CVPR,
2009.

[63] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101 – Mining
discriminative components with random forests,” in ECCV, 2014.

[64] K.-H. Lee, X. He, L. Zhang, and L. Yang, “Cleannet: Transfer learning
for scalable image classifier training with label noise,” in CVPR, 2018.

[65] M.-E. Nilsback and A. Zisserman, “Automated flower classification
over a large number of classes,” in ICVGIP, 2008.

[66] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
CVPR, 2018.

[67] C. Huang, H. Li, Y. Xie, Q. Wu, and B. Luo, “PBC: Polygon-
based classifier for fine-grained categorization,” IEEE Transactions on

Multimedia, vol. 19, no. 4, pp. 673–684, 2016.

[68] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
deep features for scene recognition using places database,” in NIPS,
2014.

[69] X.-S. Wei, J.-H. Luo, J. Wu, and Z.-H. Zhou, “Selective convolutional
descriptor aggregation for fine-grained image retrieval,” IEEE Trans-

actions on Image Processing, vol. 26, no. 6, pp. 2868–2881, 2017.

[70] M. Mohammadi and S. Das, “SNN: Stacked neural networks,” arXiv

preprint arXiv:1605.08512, 2016.

[71] K. Chen and Z. Zhang, “Learning to classify fine-grained categories
with privileged visual-semantic misalignment,” IEEE Transactions on

Big Data, vol. 3, no. 1, pp. 37–43, 2016.

[72] M. Dixit, S. Chen, D. Gao, N. Rasiwasia, and N. Vasconcelos, “Scene
classification with semantic fisher vectors,” in CVPR, 2015.

[73] A. Meyers, N. Johnston, V. Rathod, A. Korattikara, A. Gorban, N. Sil-
berman, S. Guadarrama, G. Papandreou, J. Huang, and K. P. Murphy,
“Im2Calories: Towards an automated mobile vision food diary,” in
ICCV, 2015.

[74] Y. Zhang, X.-S. Wei, J. Wu, J. Cai, J. Lu, V.-A. Nguyen, and M. N. Do,
“Weakly supervised fine-grained categorization with part-based image
representation,” IEEE Transactions on Image Processing, vol. 25, no. 4,
pp. 1713–1725, 2016.

[75] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear convolutional
neural networks for fine-grained visual recognition,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 40, no. 6, pp. 1309–
1322, 2017.

[76] Z. Li, X. Zhu, L. Wang, and P. Guo, “Image classification using
convolutional neural networks and kernel extreme learning machines,”
in ICIP, 2018.

[77] A. Dubey, O. Gupta, P. Guo, R. Raskar, R. Farrell, and N. Naik,
“Pairwise confusion for fine-grained visual classification,” in ECCV,
2018.

[78] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places:
A 10 million image database for scene recognition,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 40, no. 6, pp. 1452–
1464, 2017.

[79] X. Wei, Y. Zhang, Y. Gong, J. Zhang, and N. Zheng, “Grassmann
pooling as compact homogeneous bilinear pooling for fine-grained
visual classification,” in ECCV, 2018.

[80] D. Yoo, S. Park, J.-Y. Lee, and I. So Kweon, “Multi-scale pyramid
pooling for deep convolutional representation,” in CVPR, 2015.

[81] L. Herranz, S. Jiang, and X. Li, “Scene recognition with CNNs:
Objects, scales and dataset bias,” in CVPR, 2016.

[82] H. Hassannejad, G. Matrella, P. Ciampolini, I. De Munari, M. Mor-
donini, and S. Cagnoni, “Food image recognition using very deep
convolutional networks,” in MADiMa Workshop, 2016.

[83] S. Guo, W. Huang, L. Wang, and Y. Qiao, “Locally supervised deep
hybrid model for scene recognition,” IEEE Transactions on Image

Processing, vol. 26, no. 2, pp. 808–820, 2016.
[84] N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-based R-CNNs

for fine-grained category detection,” in ECCV, 2014.
[85] Y. Chai, E. Rahtu, V. Lempitsky, L. Van Gool, and A. Zisserman,

“Tricos: A tri-level class-discriminative co-segmentation method for
image classification,” in ECCV, 2012.

[86] J. Krause, H. Jin, J. Yang, and L. Fei-Fei, “Fine-grained recognition
without part annotations,” in CVPR, 2015.

[87] Q. Qian, R. Jin, S. Zhu, and Y. Lin, “Fine-grained visual categorization
via multi-stage metric learning,” in CVPR, 2015.

[88] D. Wang, Z. Shen, J. Shao, W. Zhang, X. Xue, and Z. Zhang, “Multiple
granularity descriptors for fine-grained categorization,” in ICCV, 2015.

[89] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” in NIPS, 2016.

[90] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, “Deep layer aggregation,”
in CVPR, 2018.

[91] L. Karlinsky, J. Shtok, S. Harary, E. Schwartz, A. Aides, R. Feris,
R. Giryes, and A. M. Bronstein, “RepMet: Representative-based metric
learning for classification and few-shot object detection,” in CVPR,
2019.

[92] H. Zheng, J. Fu, T. Mei, and J. Luo, “Learning multi-attention
convolutional neural network for fine-grained image recognition,” in
ICCV, 2017.

[93] Z. Yang, T. Luo, D. Wang, Z. Hu, J. Gao, and L. Wang, “Learning to
navigate for fine-grained classification,” in ECCV, 2018.

[94] O. Rippel, M. Paluri, P. Dollar, and L. Bourdev, “Metric learning with
adaptive density discrimination,” in ICLR, 2016.

[95] H. Zheng, J. Fu, Z.-J. Zha, J. Luo, and T. Mei, “Learning rich part
hierarchies with progressive attention networks for fine-grained image
recognition,” IEEE Transactions on Image Processing, 2019.

[96] D. Han, Q. Liu, and W. Fan, “A new image classification method using
CNN transfer learning and web data augmentation,” Expert Systems

with Applications, vol. 95, pp. 43–56, 2018.
[97] Y. Chen, Y. Bai, W. Zhang, and T. Mei, “Destruction and construction

learning for fine-grained image recognition,” in CVPR, 2019.
[98] X. Zhe, S. Chen, and H. Yan, “Directional statistics-based deep metric

learning for image classification and retrieval,” Pattern Recognition,
vol. 93, pp. 113–123, 2019.

[99] Q. Li, X. Peng, L. Cao, W. Du, H. Xing, Y. Qiao, and Q. Peng, “Product
image recognition with guidance learning and noisy supervision,”
Computer Vision and Image Understanding, 2019.

[100] P. Li, J. Xie, Q. Wang, and Z. Gao, “Towards faster training of
global covariance pooling networks by iterative matrix square root
normalization,” in CVPR, 2018.

[101] J. Ngiam, D. Peng, V. Vasudevan, S. Kornblith, Q. V. Le, and R. Pang,
“Domain adaptive transfer learning with specialist models,” arXiv

preprint arXiv:1811.07056, 2018.
[102] W. Zhang, Y. Wang, and Y. Qiao, “Metacleaner: Learning to hallucinate

clean representations for noisy-labeled visual recognition,” in CVPR,
2019.

[103] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convo-
lutional neural networks,” in ICML, 2019.

[104] J. Han, P. Luo, and X. Wang, “Deep self-learning from noisy labels,”
in ICCV, 2019.

[105] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[106] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard,
H. Adam, P. Perona, and S. Belongie, “The inaturalist species classifi-
cation and detection dataset,” in CVPR, 2018.

[107] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal

of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

