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FIRST PASSAGE TIMES FOR SOME CLASSES OF

FRACTIONAL TIME-CHANGED DIFFUSIONS

Abstract. We consider some time-changed diffusion processes obtained by
applying the Doob transformation rule to a time-changed Brownian motion.
The time-change is obtained via the inverse of an α-stable subordinator. These
processes are specified in terms of time-changed Gauss-Markov processes and
fractional time-changed diffusions. A fractional pseudo-Fokker-Planck equa-
tion for such processes is given. We investigate their first passage time densities
providing a generalized integral equation they satisfy and some transforma-
tion rules. First passage time densities for time-changed Brownian motion
and Ornstein-Uhlenbeck processes are provided in several forms. Connections
with closed form results and numerical evaluations through the level zero are
given.

Keywords: First passage time; Fractional diffusion; Time-changed diffusion;
Integral equation; Numerical evaluation

AMS Classification numbers: 60G22; 26A33

1. Introduction

In last two decades an increasing attention has been given to time-changed pro-
cesses, in order to construct new correlated processes and heavy-tailed processes
preserving a sort of memory and also to be able to manipulate the time-scales of
the consequent stochastic models ([3], [4], [6], [9], [28], [19], [21], [26]). The study
of these new kind of processes required the large use of mathematical tools such as
those of the fractional calculus, from which fractional processes and in particular
fractional diffusions were introduced ([5], [27], [34], [40]).

The first passage time (FPT) problem for such processes is really interesting to
be investigated because more realistic stochastic models can be constructed and
many fields of applications can fruitfully use them. Indeed, the first passage time
of fractional processes is actually the final goal of models embodying a sort of
memory.

With the aim to investigate some time-changed diffusions and their FPT, we
start with the time-changed Brownian motion and we consider those processes ob-
tained by applying the Doob transformation rule ([23], [30]). Generally, the use
of transformation rules between processes has a twofold purpose: from a mathe-
matical point of view this is a strategy to understand how and how much can be
enlarged a specific class of stochastic processes preserving known properties (see,
for instance, [17] and reference therein), from an applicative point of view this is
a way to construct ad hoc models satisfying specific requirements originated by
phenomenological evidences ([16], [30]). Stimulated by these needs, we follow this
strategy to construct the class of fractional time-changed diffusions on which we
focus this paper.
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2FIRST PASSAGE TIMES FOR SOME CLASSES OF FRACTIONAL TIME-CHANGED DIFFUSIONS

Specifically, we start considering the classical Doob transform in order to identify
the Gauss-Markov (GM) processes {X(t)} such as

(1.1) X(t) = m(t) + η(t)W (r(t))

where {W (t), t ≥ 0} is the standard Brownian motion, and m(t), η(t), r(t) suitable
functions ([17]). Our idea is to consider the same Doob transform by substituting
the standard Brownian motion with the time-changed Brownian motion {Wα(t) =
W (Eα(t)), t ∈ I} in such a way, for a parameter set I ⊆ R, we construct the
following time-changed process:

(1.2) Xα(t) = m(t) + η(t)Wα(r(t))

with η(t), m(t) ∈ C1(I), r(t) positive monotone increasing C1(I)−functions (gen-
erally with r(0) = 0). Furthermore, Eα(t) is a non decreasing stochastic process,
independent of W (t); in particular we consider Eα(t) = inf{s > 0 : σα(s) > t}
defined as the inverse of an α−stable subordinator process σα, with α ∈ (0, 1).
Substantially, starting from the time-changed process Wα(r(t)) = W (Eα(r(t))),
the process Xα(t) = m(t)+ η(t)Wα(r(t)) is a time-changed Brownian motion, eval-
uated at a transformed time r(t), transformed in space by η(t), having mean m(t).
Then, we consider a second type of time-changed process, i.e. the following one:

(1.3) Xα(t) = m(Eα(t)) + η(Eα(t))W (r(Eα(t)))

obtained as a time-changed GM process (1.1) by means of the same Eα(t). Note that
in this last case we use the time-changed Brownian motion W (r(Eα(t))) different
from the previous one W (Eα(r(t))) in (1.2). This kind of processes will be useful
to obtain results also for the first kind ones.

The main difference between the two above processes Xα(t) and Xα(t) relies
essentially on the order of application of the time-change and the space-time trans-
formation. Indeed, for Xα(t), at first we apply the time-change to the Brownian
motionW (t) obtainingWα(t) = W (Eα(t)), then the latter is evaluated in the trans-
formed time r(t), multiplied by η(t) and then it is endowed with the mean m(t).
Instead, the process Xα(t) is obtained by considering at first the process X(t) con-
structed by means of the Doob transform (1.1), that is a Brownian motion evaluated
in the transformed time r(t), multiplied by η(t) and endowed with the mean m(t),
then the time-change is applied to X(t) in such a way Xα(t) = X(Eα(t)).

We used to call the processes (1.2) the first kind time-changed GM processes
and the processes in (1.3) the second kind of time-changed GM processes via the
inverse of an α−stable subordinator Eα(t) (even if they are non-Gaussian and non-
Markov processes). We also use subordinated in place of time-changed with the
same meaning.

In this paper we firstly provide an introduction on the time-change strategy and
some basic facts related to time-changed processes. In Section 2 we define the time-
changed processes by Doob transform as those in (1.2) and in (1.3), we study them
by pointing differences and relationships between them. In Section 3 the pseudo
Fokker-Planck equation is proved to hold for a class of fractional time-changed
diffusions related to the above processes. In Section 4 the FPT topic is addressed:
an integral equation is provided following the Volterra integral approach ([17], [35])
specialized for the specified time-changed processes. Due its key rule, we focus on
FPT density of the time-changed Brownian motion. As example of application the
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FPT density for a time-changed Ornstein-Uhlenbeck (OU) process is provided by
means of several strategies and numerical evaluations are also provided.

1.1. The time-change. At first we recall some definitions and fundamental prop-
erties of the involved processes in the time-change.

Some basic facts: the α-stable subordinator and its inverse. Referring to [11] and
[32], we recall some essential definitions. For α ∈ (0, 1), we specifically consider an
α-stable subordinator σα(t), i.e. a strictly increasing (pure jumps) positive Lévy
process with the following Laplace transform, for λ > 0, t > 0,

E[e−λσα(t)] = e−tλα

,

with Laplace exponent λα.We also consider the inverse α-stable subordinatorEα(t),
i.e.

Eα(t) := inf{y > 0 : σα(y) > t}.
We recall that in [32], it was proved that σα(t) and Eα(t) are absolutely continuous
random variables for any t > 0, but this feature can also be extended for t < 0 to
suitable modifications of processes σα(t) and Eα(t). It was proved ([12], [14]) that
the inverse stable subordinator Eα(t) has the following Laplace-Stieltjes transform

(1.4) E[e−sEα(t)] =
∞∑

n=0

(−stα)n

Γ(αn+ 1)
= Eα(−stα)

where Eα(−stα) is the Mittag-Leffler function. More specifically, we recall that he
Mittag-Leffler function Eα(z) is defined as

Eα(z) =

∞∑

k=0

zk

Γ(1 + αk)
, z, α ∈ C,R(α) > 0.

Moreover, keeping in mind that the notation
d
= means the equality of finite

dimensional distributions (fdd), we recall the scaling property of σα(t) :

σα(t)
d
= t1/ασα(1).

Furthermore, the inverse of α-stable subordinator Eα(t) is a self-similar pro-
cesses, indeed for c > 0

(1.5) c−αEα(ct)
d
= Eα(t) ∀t ≥ 0.

Furthermore, the mean is

(1.6) E[Eα(t)] =
tα

Γ(α+ 1)

and the covariance for 0 < s ≤ t from [26]:

(1.7) cov[Eα(s), Eα(t)] =
[αs2αB(α, α+ 1) + F (α; s, t)]

(Γ(α+ 1))2

where B(a, b) is the Beta function, and

F (α; s, t) = αt2αB(α, α + 1; s/t)− (st)α
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is the hypergeometric function (see, for instance, [20]) and B(a, b;x), with x ∈ [0, 1],
is the incomplete beta function, i.e.

B(a, b;x) =

∫ x

0

uα−1(1− u)b−1du,

with B(a, b) = B(a, b; 1).
From (1.7) we also obtain the variance

(1.8) var[Eα(t)] = t2α
[

2

Γ(2α+ 1)
− 1

(Γ(α+ 1))2

]
.

We recall that ([26])

(1.9) cov[Eα(s), Eα(t)]
t→∞→ s2α

Γ(2α+ 1)
.

Moreover, let us denote by γα(x) the probability density function (pdf) of σα(1)
and by να(x, t) the pdf of Eα(t). It holds ([32])

(1.10) να(x, t) =
t

α
x−1− 1

α γα(tx
− 1

α ), x ≥ 0, t > 0.

This density is zero for x < 0, whereasEα(t) is positive for t > 0 with a discontinuity
in x = 0. Additional details are provided in the Appendix.

In particular, we note that also Eα is an increasing, continuous process with
constant values corresponding to the jumps of σα. Moreover, the Laplace transform
of να(x, t) respect to t is

(1.11) Lt→λ[να(x, t)] = λα−1e−xλα

.

1.2. Generalities on time-changed (or subordinated) processes. A time-
changed process is the composition of two independent processes: the outer process
and the inverse of an α-stable subordinator. It is characterized by the continuous
sample paths if the outer process has continuous paths. Here, the transformation
rule (1.2) will involve the Brownian motion as the outer process and the inverse of
an α−stable subordinator processes for the time-change.

However, in general, if f(x, s) is the probability density of the outer process, the
time-changed process has the following pdf:

(1.12) fα(x, t) =

∫ +∞

0

f(x, s)να(s, t)ds ∀t ∈ I ⊂ R.

We remark that there exist an alternative expression of fα(x, t) by using (1.10) and
the change of variable ts−1/α = w, i.e.

(1.13) fα(x, t) =

∫ +∞

0

f

(
x,

(
t

w

)α)
γα(w)dw ∀t ∈ I.

The Eq. (1.12) can also be interpreted as the application of a subordination
operator in such a way fα(x, t) is the subordinated density of f(x, t) by means of
να(s, t). The subordination operator is originally due to Bochner in 1955 [13]. Then,
Bertoin [11] and Sato [38] studied Lévy subordinated processes. The fractional
diffusions obtained by subordinators, further mathematical aspects and possible
applications can be found in [26]-[30], [34], [40]. For more general subordinator,
basically studying the Laplace exponent as Bernstein function, and involving also
discrete subordinated processes see, for instance, Kochubei in [24].
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2. The time-changed processes by Doob transform

About the first kind time-changed GM processes. In such a framework, we start
by focussing on the first kind of time-changed processes as in (1.2). Indeed, by
considering (1.12) and (1.13) for the case of Xα(t) of (1.2), we specifically have the
following relation for its pdf:

fXα
(x, t) =

1

η(t)

∫ +∞

0

fW

(
x−m(t)

η(t)
, r(s)

)
να(r(s), r(t))dr(s), ∀t ∈ I(2.1)

with fW (x, t) the pdf of the standard Brownian motion W (t). After the change of
variable r(t)(r(s))−1/α = w, we also have:

(2.2) fXα
(x, t) =

1

η(t)

∫ +∞

0

fW

(
x−m(t)

η(t)
,

(
r(t)

w

)α)
γα(w)dw ∀t ∈ I.

We have to emphasize about the subordinated processes, i.e. for processes having
the subordinated pdf as in (1.12) , that even for GM outer processes, the corre-
sponding subordinated is not Gaussian. The time-changed process is not Gaussian
anymore but we can give some specifications on its mean and covariance.

Indeed, the main moments of a such process are:
(2.3)

E[Xα(t)] = m(t), cov(Xα(s), Xα(t)) = η(t)η(s)cov(Wα(r(s)),Wα(r(t))).

Furthermore, we can also specify specific forms for the covariance in terms of the
transforming functions η(t) and r(t).

Proposition 2.1. By setting

(2.4) ζ(s, t) = η(s)cov(Wα(r(s)),Wα(r(t))),

the following factorized form holds

(2.5) cov(Xα(s), Xα(t)) = η(t)ζ(s, t).

Then, if

(2.6) r(t) =

(
Γ(α+ 1)

ζ(t, t)

η(t)

)1/α

,

the Xα(t) covariance is, for s ≤ t,

(2.7) cov(Xα(s), Xα(t)) =
η(t)η(s)(r(s))α

Γ(α+ 1)
.

Proof. From (2.4) and the second of (2.3), Eq. (2.5) immediately follows. Further-
more, we have (cf. [22]):

cov(Wα(r(s)),Wα(r(t)) =
(min{r(s), r(t)})α

Γ(α+ 1)

from which we derive, taking into account (2.4),

ζ(s, t) = η(s)
(min{r(s), r(t)})α

Γ(α+ 1)
.
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Then, for s ≤ t, taking into account (2.6), we obtain that

cov(Wα(r(s)),Wα(r(t)) =
(r(s))α

Γ(α+ 1)
=

ζ(s, s)

η(s)
=

ζ(s, t)

η(s)
.

Last equality implies

ζ(s, t) = η(s)
(r(s))α

Γ(α+ 1)

that used in (2.5) leads to (2.7).
�

Examples of transforming functions r(t) and η(t) are r(t) = e2θt or r(t) =
(e2θt − 1)/θ and η(t) = e−θt with θ > 0, that will be used in subsection 4.3.

We note that, even if the transformed process Xα(t) is neither Gaussian nor
Markov, by adopting forms (2.7),(2.4) and (2.6), it preserves a factorized covariance
(2.5).

Finally, we specify, from (2.2), the pdf of the processXα(t) = m(t)+η(t)Wα(r(t)),
i.e.

(2.8)

fXα
(x, t) =

1

η(t)
√
2π(r(t))α

∫ +∞

0

wα/2 exp




−

(
x−m(t)
η(t)

)2

2
(

r(t)
w

)α




γα(w)dw, ∀t ∈ I.

About the second kind time-changed GM processes. In order to highlight the differ-
ence between the second kind time-changed GM and the first kind one, we at first
consider the subordinated pdf of processes (1.3) that, from (1.12), is the following
one

(2.9) fXα
(x, t) =

∫ ∞

0

1

η(s)
fW

(
x−m(s)

η(s)
, r(s)

)
να(s, t)ds

clearly different from (2.1). We remark that pdfs (2.1) and (2.9) are both derived
from (1.12), but the integrand function f(x, s) involved in (1.12) is different for
each calculation due the different definition of the processes in (1.2) and (1.3).

Furthermore, about the mean of these kind of processes we have:

(2.10) E[Xα(t)] = E[m(Eα(t))] + E[η(Eα(t))W (r(Eα(t)))] = E[m(Eα(t))].

It is easy to understand that, in case of the transforming function m(t) in (1.2) is
substituted by

(2.11) mα(t) =

∫ ∞

0

m(s)να(s, t)ds = E[m(Eα(t))]

in such a way we can consider

Xα(t) = mα(t) + η(t)Wα(r(t)),

the processes Xα(t) and Xα(t) have the same mean, i.e. E[Xα(t)] = E[Xα(t)].
Then, the covariance of Xα(t) can be evaluated as follows:

cov(Xα(s),Xα(t)) = cov(m(Eα(s)),m(Eα(t))

+ cov(η(Eα(s))W (r(Eα(s))), η(Eα(t))W (r(Eα(t))))(2.12)
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where

cov(η(Eα(s))W (r(Eα(s))), η(Eα(t))W (r(Eα(t))))

= E[η(Eα(s))η(Eα(t))]cov(W (r(Eα(s))),W (r(Eα(t)))).

To specify completely this covariance the explicit forms of the functions η(·) and
r(·) are finally required.

2.1. Some comparisons. In order to investigate relationships between special
cases of first and second kind processes, we consider the transforming functions in
(1.2) such that m(t) as in (2.11) and

ηα(t) =

∫ ∞

0

η(s)να(s, t)ds

in such a way, we can consider

(2.13) X̄α(t) = mα(t) + ηα(t)Wα(r(t))

that is a special case of (1.2). Furthermore, in order to do some comparisons, we
can also consider

Yα(t) = mα(t) + ηα(t)W (r(Eα(t))).

Both processes X̄α(t) and Yα(t) have the same mean of Xα(t), i.e.

E[X̄α(t)] = E[Yα(t)] = E[Xα(t)], ∀t ∈ I.

Instead, the pdf of X̄α(t) is

fX̄α
(x, t) =

1

ηα(t)

∫ +∞

0

fW

(
x−mα(t)

ηα(t)
, z

)
να(z, r(t))dz, ∀t ∈ I(2.14)

obtained from (2.1) substituting z in place of r(s), for r positive monotone increas-
ing function with r(0) = 0 and limt→+∞ r(t) = +∞, whereas the pdf of Yα(t)
is

fYα
(x, t) =

1

ηα(t)

∫ +∞

0

fW

(
x−mα(t)

ηα(t)
, r(z)

)
να(z, t)dz, ∀t ∈ I.(2.15)

For m(t) = 0 and η(t) = 1, processes X̄α(t) and Yα(t) reduce to Wα(r(t)) and
W (r(Eα(t))), respectively, and their pdf become

fWα
(x, r(t)) =

∫ +∞

0

fW (x, z) να(z, r(t))dz(2.16)

and

fW (r(Eα))(x, t) =

∫ +∞

0

fW (x, r(z)) να(z, t)dz.(2.17)

Hence, it appears clear that for r(t) = t, the two processesWα(r(t)) andW (r(Eα(t)))
are the same process. Take in mind that, anyway, even if r(t) = t, the processes
Xα(t) in (1.2) and Xα(t) in (1.3) differs. Obviously, for α = 1 the processes X1(t)
as in (1.2) and X1(t) as in (1.3) coincide.
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Remark 2.1. Relationships between Xα(t) in (1.2) and Xα(t) in (1.3) can be de-
rived for specific choices of transforming functions m(t), η(t) and r(t) in equations
(1.2) and (1.3), respectively. Indeed, we can set differently functions in (1.2) and
in (1.3), such as

(2.18) Xα(t) = m1(t) + η1(t)Wα(r1(t))

and

(2.19) Xα(t) = m2(Eα(t)) + η2(Eα(t))W (r2(Eα(t))).

If the above transforming functions are chosen as m2(t) = 0, η2(t) = 1 and r2(t) = t
in (2.19) in such a way Xα(t) = W (Eα(t)) = Wα(t), consequently we have that
(2.18) becomes

(2.20) Xα(t) = m1(t) + η1(t)Xα(r1(t)).

Hence, in the special case Xα(t) = Wα(t), from (2.20), we derive

(2.21) fXα
(x, t) =

1

η1(t)
fXα

(
x−m1(t)

η1(t)
, r1(t)

)
.

On the other hand, by setting the transforming functions m1(t) = m2(t) = m,
η1(t) = η2(t) = η and r2(t) = t in (2.18) and (2.19), one has

(2.22) Xα(r1(t)) = Xα(t) = m+ ηWα(r1(t)).

Transformations between Xα(t) processes. Consider a GM process

(2.23) XD(t) = mD(t) + ηD(t)W (r(t))

and the transformed time-changed process obtained from it as follows

(2.24) XD,α(t) = mα(t) + ηα(t) ·Wα(r(t))

with

(2.25) mα(t) =

∫ ∞

0

mD(s)να(s, t)ds, ηα(t) =

∫ ∞

0

ηD(s)να(s, t)ds.

The process XD,α(t) is a particular case of (1.2) when the transforming functions
m(t), η(t) in (1.2) are set in such a waym(t) = mα(t) and η(t) = ηα(t), respectively.
Then, it is also a particular case of X̄α(t) in (2.13) when functions mα(t) and ηα(t)
are defined for m(t) = mD(t) and η(t) = ηD(t). Note that XD,α(t) is different
from Yα(t), even if E[XD,α(t)] = E[Yα(t)] = E[Xα(t).] We recall that for α = 1 the
two above processes coincide, i.e. XD,1(t) ≡ XD(t). Now, we want to prove how
it is possible to put in relation the two processes Xα(t) in (1.2), characterized by
any transforming functions m(t) and η(t), and XD,α(t) in (2.24), characterized by
transforming functions mα(t) and ηα(t) as in (2.25).

Proposition 2.2. We have that there are functions m̃(t) and η̃(t) such that

(2.26) Xα(t) = m̃(t) + η̃(t)XD,α(t).

Moreover, Xα(t) = XD,α(t) if and only if in (1.2) the transforming functions are
specified as m(t) = mα(t) and η(t) = ηα(t).
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Proof. From (1.2) and (2.24), we can see that in both equations the time-changed
standard Brownian motion Wα(r(t)) is involved. From this we can write explicitly
the relationships between processes XD,α(t) and Xα(t), that is

(2.27) XD,α(t) = mα(t) + ηα(t)

[
Xα(t)−m(t)

η(t)

]

and vice versa

(2.28) Xα(t) = m(t) + η(t)

[
XD,α(t)−mα(t)

ηα(t)

]
.

From the last one we recognize that:

(2.29) Xα(t) = m̃(t) + η̃(t)XD,α(t)

with

m̃(t) = m(t)− η(t)

ηα(t)
mα(t) and η̃(t) =

η(t)

ηα(t)
.

Finally, if and only if m(t) = mα(t) and η(t) = ηα(t), (2.29) implies that Xα(t) =
XD,α(t). �

From the above proposition we put in evidence the link between the first kind
time-change process with a specific GM process and we highlight how we can ex-
tend results valid for Xα(t) to the process XD,α(t) by means of (2.27) for which the
transformed functions are specified as above; on the other hand, we can also inves-
tigate specific properties of XD,α(t) and by means of (2.28) to specialize these for
the process Xα(t). Furthermore, even if in special cases, relationships between pro-
cesses of Xα(t) of first kind and Xα(t) of second kind can be reciprocally exploited
to investigate this classes of time-changed processes.

For such processes we aim to provide some specific results about a Fokker-Planck
equation and first passage times just starting from some known results valid for GM
processes. Indeed, for the general GM processes XD(t), under the assumption of
differentiability of the involved transforming functions mD(t), ηD(t) and r(t), they
are also diffusions ([16], [17]). Then, if random time is adopted, as the case of the
inverse of a subordinator σα(t) is (with infinite mean [34]), the corresponding time-
changed processes, among them Xα(t) and Xα(t), belong to the class of anomalous
diffusions, also called fractional diffusions because their pdfs are solutions of special
fractional differential equations.

Consequently, about the processes Xα(t), here constructed by means of the outer
process GM process XD(t), i.e. Xα(t) = XD(Eα(t)), we refer them as α-stable
subordinated GM processes. If all transforming functions are C1(I) these processes
are included in the class of subdiffusions, for α ∈ (0, 1). Here, we also refer to
Xα(t) processes as fractional diffusions. Then, we will show that the results can be
extended also to Xα(t).

In what follows we first recall the Fokker-Planck equation satisfied by the tran-
sition pdf of a GM process, and then we specialize it for Xα(t) processes.
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3. The fractional pseudo-Fokker-Planck equation

The classical GM case. Referring to the GM processXD(t) as in (2.23), let fD(x, t|y, τ)
denote the normal transition pdf of XD; more specifically,
(3.1)

fD(x, t|y, τ) = 1√
2π var[XD(t)|XD(τ)]

exp

{
− (x− E[XD(t)|XD(τ) = y])2

2var[XD(t)|XD(τ)]

}

where

E[XD(t)|XD(τ) = y] = mD(t) +
ηD(t)

ηD(τ)
[y −mD(τ)],

var[XD(t)|XD(τ)] = η2D(t)[r(t) − r(τ)].

The transition pdf of a GM processXD(t), i.e. fD(x, t|y, τ), satisfies the following
Fokker-Planck equation [17]:

(3.2)
∂fD(x, t|y, τ)

∂t
= − ∂

∂x
[A1(x, t)fD(x, t|y, τ)] + 1

2

∂2

∂x2
[A2(t)fD(x, t|y, τ)]

with the point source initial condition:

(3.3) lim
t→τ

fD(x, t|y, τ) = δ(x− y)

where δ(·) is the delta function and

(3.4) A1(x, t) = m′
D(t) + [x−mD(t)]

η′D(t)

ηD(t)
, A2(t) = (ηD(t))2r′(t)

are the infinitesimal moments.

About the time-changed Brownian motion Wα(t) and the Caputo derivative. Con-
sider now the α-stable time changed Brownian motion Wα(t). We know ([21], [32],
[40]) that its transition pdf fWα

(x, t|y, τ) satisfies the following fractional Fokker-
Planck equation, with the initial condition (3.3),

(3.5) CDα
t fWα

(x, t|y, τ) = 1

2

∂2

∂x2
fWα

(x, t|y, τ)

where the operator CDα
t is the Caputo fractional derivative respect to t. The

Caputo derivative of a function f(x, t) can be defined by recalling the definition of
the following fractional derivative:

∂αf

∂tα
=





∂f

∂t
(x, t), if α = 1

CDα
t f(x, t), if α ∈ (0, 1)

where

CDα
t f(x, t) =

1

Γ(1− α)

[
∂

∂t

∫ t

0

f(x, τ)(t − τ)−αdτ − f(x, 0)

tα

]
, t > 0,

is the regularized Riemann-Liouville fractional derivative, that for a C1 function
f(t) is as in [32]:

CDα
t f(t) =

1

Γ(1 − α)

∫ t

0

f ′(τ)(t − τ)−αdτ.
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Recall also that if f and Dα
C,tf(t) are Laplace transformable function, then it holds:

(3.6) Lt→λ[
CDα

t f(t)] = λαLt→λf(t)− λα−1f(0).

Furthermore, the fractional Caputo derivative CDα
t can also be defined as the inverse

Laplace transform of λαLt→λf(t)− λα−1f(0) ([10]).
Then, considering the case of a subordinated probability density such as fα(x, t) =∫∞

0
f(x, s)να(s, t)ds, setting for short f̂(x, λ) = Lt→λf(x, t), we have

f̂α(x, λ) = Lt→λfα(x, t) =

∫ ∞

0

e−λt

∫ ∞

0

f(x, s)να(s, t)dsdt

=

∫ ∞

0

f(x, s)

∫ ∞

0

e−λtνα(s, t)dtds

=

∫ ∞

0

f(x, s)ν̂(s, λ)ds

= λα−1

∫ ∞

0

f(x, s)e−sλα

ds = λα−1f̂(x, λα),(3.7)

where we used (1.11).

Some notes about the pdf of time-changed processes under a start conditioning. We
consider the GM process XD(t) conditioned to start from y at initial time τ and we
denote with fD(x, t|y, τ) its pdf. Now, we specifically refer to Xα(t) = XD(Eα(t)),
for t > τ , whose pdf is obtained from (1.12) as follows

(3.8) fXα
(x, t|y, τ) =

∫ ∞

0

fD(x, s|y, τ)να(s, t)ds

with fD(x, s|y, τ) = 0 for s < τ. We remark that the function fD(x, t|y, τ) for
Gauss-Diffusion processes ([16]) is specifically the transition Markov density. On
the contrary, the Xα(t) processes are non Markov processes, (they can be semi-
Markov, [7], [8]) nor (classical) diffusions. The following theorem is devoted to the
above functions.

Furthermore, take into account that all involved functions in the following theo-
rem have to be such that they belong not only to the domain of fractional Caputo
derivative, i.e. C1(I) respect to the time variable t and C2(R) respect to space vari-
able x, but also to the set of (time-)Laplace transformable functions and having
finite inverse Laplace transforms.

Theorem 3.1. Consider a time-changed GM process XD(t) as in (2.23) and the
fractional diffusion Xα(t) for which (3.8) holds. The conditional density fXα

(x, t|y, τ)
of the process Xα(t) satisfies the following fractional pseudo-Fokker-Planck equa-
tion:

(3.9) CDα
t fα(x, t|y, τ) = Φα(f(x, t|y, τ))

where fα(x, t|y, τ) stands for fXα
(x, t|y, τ), f(x, t|y, τ) stands for fD(x, t|y, τ), the

operator Φα is such as:

Φα(f(x, t|y, τ)) =
[(

− ∂

∂x
I1,αf(x, t|y, τ) +

1

2

∂2

∂x2
I2,αf(x, t|y, τ)

)]
(3.10)
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with

I1,αf(x, t|y, τ) =
∫ ∞

0

A1(x, s)f(x, s|y, τ)να(s, t)ds(3.11)

I2,αf(x, t|y, τ) =
∫ ∞

0

A2(s)f(x, s|y, τ)να(s, t)ds(3.12)

and the initial condition:

(3.13) lim
t→τ

fα(x, t|y, τ) = δ(x− y).

Proof. Consider the Fokker-Planck equation (3.2) satisfied by the f(x, t|y, τ) and
apply the Laplace transform (respect to t) to both sides of (3.2). We obtain:

(3.14)

λf̂(x, λ|y, τ) = Lt→λ

(
− ∂

∂x
[A1(x, t)f(x, t|y, τ)] +

1

2

∂2

∂x2
[A2(t)f(x, t|y, τ)]

)
.

Then, from (3.6) and by using the initial condition for x 6= y, one has

L[CDα
t fα(x, t|y, τ)] = λαf̂α(x, λ|y, τ) = λ2α−1f̂(x, λα|y, τ).

Now, by using (3.14) in the above equation, we have:

L[CDα
t fα(x, t|y, τ)]

= λα−1Lt→λα

(
− ∂

∂x
[A1(x, t)f(x, t|y, τ)] +

1

2

∂2

∂x2
[A2(t)f(x, t|y, τ)]

)

= λα−1

(
− ∂

∂x
L [A1(x, t)f(x, t|y, τ)] (λα) +

1

2

∂2

∂x2
L [A2(t)f(x, t|y, τ)] (λα)

)

=

(
− ∂

∂x
L [A1(x, t)f(x, t|y, τ)]α (λ) +

1

2

∂2

∂x2
L [A2(t)f(x, t|y, τ)]α (λ)

)

=

(
− ∂

∂x
Lt→λ I1,αf(x, t|y, τ)(λ) +

1

2

∂2

∂x2
Lt→λ I2,αf(x, t|y, τ)(λ)

)
.

Finally, by applying the inverse of Laplace transform to both sides, the thesis
holds. �

Remark 3.1. We remark that many authors dealt with fractional FP equations for
time-changed processes (see, for instance, [21], [22], [28], [34], [40] and references
therein). Specifically, FP-type equations was established in [21] for time-changed
fractional Brownian motion, in [22] for time-changed Brownian motion with con-
stant drift, in [34] and [40] for time-changed diffusions with non time-dependent
infinitesimal moments. Note that the provided pseudo-Fokker-Planck equation (3.9)
agrees with that in [28] established for an α-stable subordinated Brownian motion
with a time-depending drift F (t); in particular, the agreement is obtained in the
specific case of the operator (3.11) is such that I1,αf(x, t|y, τ) = F (t)fα(x, t|y, τ).

We can say that the pseudo-Fokker-Planck equation (3.9) is a version of the
fractional-type Fokker-Planck equations devoted to the case of more general time-
dependent infinitesimal moments and, in particular, Theorem 3.1 shows how the
infinitesimal moments of the outer GM process are involved in the operator of a
such equation.



FIRST PASSAGE TIMES FOR SOME CLASSES OF FRACTIONAL TIME-CHANGED DIFFUSIONS13

In the following we specialize the result of Theorem 3.1 in specific cases.

Remark 3.2. We remark that for the case in which Xα(t) (or Xα(t)) is the α-
stable subordinated Brownian motion Wα(t), Eq. (3.9) is the same of (3.5), i.e. the
fractional pseudo-Fokker-Planck (FP) is exactly the fractional FP equation. Indeed,
we specifically, have: A1(x, t) = 0, A2(t) = 1, I1,α ≡ 0, I2,αf = fα, such as

LΦα(fW (x, t|y, τ)) =

(
1

2

∂2

∂x2
f̂Wα

(x, λ|y, τ)
)

= λα−1

(
1

2

∂2

∂x2
f̂W (x, λα|y, τ)

)

= λ2α−1f̂W (x, λα|y, τ) = λαf̂Wα
(x, λ|y, τ)

= L[CDα
t fWα

(x, t|y, τ)]
where we also used (3.5) for α = 1, and its corresponding Laplace transformed
equation, i.e.

λf̂W (x, t|y, τ)(λ) = 1

2

∂2

∂x2
f̂W (x, t|y, τ)(λ).

For this specific case, i.e. when we refer to Xα(t) = W (Eα(t)), we denote by ΦW
α

the above corresponding operator.

Corollary 3.1. (About the first kind time-changed processes) For the process Xα(t)
as in Eq. (2.20) of Remark 2.1, i.e. Xα(t) = m1(t) + η1(t)Wα(r1(t)), and from
(2.21) and Theorem 3.1 we have that the conditional pdf fXα

(x, t|y, τ) satisfies the
following fractional pseudo-Fokker-Planck equation:

(3.15) CDα
r1(t)

(fXα
(x, t|y, τ)) = ΦW

α (f(x, t|y, τ))
where f(x, t|y, τ)) is the conditioned pdf of the GM process XD(t) = m1(t) +
η1(t)W (r1(t)), ΦW

α is specified in Remark 3.2 and with the corresponding initial
delta condition.

Proof. Under the assumptions for Eq. (2.20) in Remark 2.1, we have that Xα(t) =
m1(t) + η1(t)Xα(r1(t)) with Xα(t) = W (Eα(t)), hence

fXα
(x, t|y, τ) = 1

η1(t)
fXα

(
x−m1(t)

η1(t)
, r1(t)

∣∣∣y −m1(t)

η1(t)
, r1(τ)

)

1

η1(t)

∫ +∞

0

fW

(
x−m1(t)

η1(t)
, s
∣∣∣y −m1(t)

η1(t)
, r1(τ)

)
να(s, r1(t))ds.

From Theorem 3.1 we have that

CDα
r1(t)

fXα

(
x−m1(t)

η1(t)
, r1(t)

∣∣∣y −m1(t)

η1(t)
, r1(τ)

)

= ΦW
α

(
fW

(
x−m1(t)

η1(t)
, r1(t)

∣∣∣y −m1(t)

η1(t)
, r1(τ)

))
.(3.16)

Furthermore, we recall that

fW

(
x−m1(t)

η1(t)
, r1(t)

∣∣∣y −m1(t)

η1(t)
, r1(τ)

)
= η1(t)f(x, t|y, τ)
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where f(x, t|y, τ) is the conditioned pdf of XD(t) = m1(t) + η1(t)W (r1(t)). From
all above identities, we obtain that

CDα
r1(t)

fXα

(
x−m1(t)

η1(t)
, r1(t)

∣∣∣y −m1(t)

η1(t)
, r1(τ)

)

=CDα
r1(t)

η1(t)fXα
(x, t|y, τ) = η1(t)

CDα
r1(t)

fXα
(x, t|y, τ),

ΦW
α

(
fW

(
x−m1(t)

η1(t)
, r1(t)

∣∣∣y −m1(t)

η1(t)
, r1(τ)

))
= η1(t)Φ

W
α (f(x, t|y, τ))

and the (3.15) follows. �

Corollary 3.2. (Particular case of the previous corollary). For the process Xα(t)
as in Eq. (2.22) of Remark 2.1, from Theorem 3.1 the conditional pdf fXα

(x, t|y, τ)
satisfies the following fractional pseudo-Fokker-Planck equation:

(3.17) CDα
t fXα

(x, t|y, τ) = ΦW
α (f(x, t|y, τ))

where Φα is that in Remark 3.2 and with the initial delta condition.

Proof. It is sufficient to realize that, under the assumptions for Eq. (2.22) in
Remark 2.1, Xα(t) = W (Eα(t)), then

fXα
(x, t|y, τ) =

∫ +∞

0

1

η
fW

(
x−m

η
, s
∣∣∣y −m

η
, r1(τ)

)
να(s, r1(t))ds

=
1

η
fXα

(
x−m

η
, r1(t)

∣∣∣y −m

η
, r1(τ)

)
.

From Theorem 3.1 we have that
(3.18)

CDα
r1(t)

1

η
fXα

(
x−m

η
, r1(t)

∣∣∣y −m

η
, r1(τ)

)
= ΦW

α

(
1

η
fW

(
x−m

η
, r1(t)

∣∣∣y −m

η
, r1(τ)

))
.

and, taking into account that

1

η
fW

(
x−m

η
, r1(t)

∣∣∣y −m

η
, r1(τ)

)
= f(x, t|y, τ)

where f(x, t|y, τ) is the conditioned pdf of XD(t) = m + ηW (r1(t)), the (3.18)
follows. �

Proposition 3.1. (Time-depending drift case) For the case in which XD(t) =
mD(t) +W (t) and Xα(t) = mD(Eα(t)) +Wα(t) with mD(t) (linear function of t),
the (3.9) can be specialized in

(3.19) Dα
C,tfα(x, t|y, τ)] = −m′

D(t)
∂

∂x
fα(x, t|y, τ) +

1

2

∂2

∂x2
fα(x, λ|y, τ).

Proof. Starting from (3.9) with A1(x, t) = m′
D(t), A2(t) = 1,

I1,αf(x, t|y, τ) =
∫ ∞

0

m′
D(s)f(x, s|y, τ)να(s, t)ds

I2,αf(x, t|y, τ) =
∫ ∞

0

f(x, s|y, τ)να(s, t)ds = fα(x, t|y, τ).
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we obtain

LΦα(f(x, t|y, τ)) =
(
− ∂

∂x
Lt→λ I1,αf(x, t|y, τ)(λ) +

1

2

∂2

∂x2
f̂α(x, λ|y, τ)

)

= λα−1

(
− ∂

∂x
Lt→λα(m′

D(t)f(x, t|y, τ))(λα) +
1

2

∂2

∂x2
f̂(x, λα|y, τ)

)

= λ2α−1f̂(x, λα|y, τ) = λαf̂α(x, λ|y, τ)
= L[CDα

t fα(x, t|y, τ)](3.20)

where we also used (3.2) valid for the GM process XD(t) and its corresponding
Laplace transformed equation, i.e.

λαf̂(x, λα|y, τ) = − ∂

∂x
Lt→λα(m′

D(t)f(x, t|y, τ))(λα) +
1

2

∂2

∂x2
f̂(x, λα|y, τ).

Finally, if mD(t) is a linear function of t, we can specify that (3.20) leads to the
case of (3.19). �

4. First passage times

About the FPT of a GM process ([17]) XD(t) = mD(t)+ηD(t)W (r(t)), we recall
the following formula:

(4.1) gXD
(S(t), t|x0, t0) =

dr(t)

dt
gW (S∗(r(t)), r(t)|x∗

0 , r(t0))

where gXD
(S(t), t|x0, t0) is the pdf of the FPT

(4.2) T = inf{θ > 0 : XD(θ) > S(θ)},
with S(t) a C1(I)-boundary, and gW (S∗(r(t)), r(t)|x∗

0 , r(t0)) is the pdf of the FPT
of the standard Brownian motion W , i.e. the FPT pdf of

TW = inf{θ > 0 : W (r(θ)) > S∗(r(θ))}
with

(4.3) S∗(r(t)) =
S(t)−mD(t)

ηD(t)
, x∗

0 =
x0 −mD(t0)

ηD(t0)
.

In order to investigate this problem, here, we first consider the subordinated FPT
Tα defined as the random variable having with pdf gα(S(t), t|x0, t0) such that

(4.4) gα(S(t), t|x0, t0) =

∫ ∞

0

g(S(θ), θ|x0, t0)να(θ, t)dθ

where g ≡ gXD
is the FPT of XD process. Tα is the subordinated FPT of the

process Xα(t) = XD(Eα(t)) to the boundary S(t).
Note that, in (4.4), g(S(θ), θ|x0, t0) is equal to zero for θ < t0, henceforth the

evaluation of the integral at the RHS of (4.4) is on the domain (t0,+∞), even if
we leave it as in (4.4) due to t0 ∈ (0,+∞).

Hence, in order to investigate the first passage times of Xα(t) processes, we at
first focus on main subordinated processes Wα(t) and XD(Eα(t)); we specialize
some FPT results, such as those in [16], [17], and we recall those already known
and then we give specific results about the subordinated first passage times.
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4.1. An integral equation for the subordinated first passage time. We
recall the following result holding for FPT of GM processes ([17]). Consider a GM
process with the Doob representation, i.e. XD(t) = mD(t)+ηD(t)W (r(t)). For this
process, we also consider a function ζD(t) such that that ζD(t) = r(t)ηD(t). Let
f [x, t|y, τ ] be its normal transition pdf as in (3.1) and

g[S(t), t|x0, t0] =
d

dt
P (T ≤ t)

be the pdf of the FPT defined in (4.2). Let S(t),mD(t), ηD(t), ζD(t), r(t) be C1(I)
functions. Then, g[S(t), t|x0, t0] satisfies the following nonsingular second-kind
Volterra integral equation

g[S(t), t|x0, t0] = −2Ψ[S(t), t|x0, t0] + 2

∫ t

t0

g[S(τ), τ |x0, t0] Ψ[S(t), t|S(τ), τ ] dτ
(
x0 < S(t0)

)
(4.5)

where

Ψ[S(t), t|y, τ ] =
{
S′(t)−m′

D(t)

2
− S(t)−mD(t)

2

ζ′D(t)ηD(τ)− η′D(t)ζD(τ)

ζD(t)ηD(τ)− ηD(t)ζD(τ)

−y −mD(τ)

2

η′D(t)ζD(t)− ηD(t)ζ′D(t)

ζD(t)ηD(τ)− ηD(t)ζD(τ)

}
f [S(t), t|y, τ ].(4.6)

Theorem 4.1. For the Xα(t) process, consider the α-stable subordinated pdf

(4.7) gα(S(t), t|x0, t0) =

∫ ∞

0

g(S(θ), θ|x0, t0)να(θ, t)dθ

where g[S(t), t|x0, t0] is the FPT pdf of a GM XD process. Let Tα be the subordi-
nated FPT with pdf gα(S(t), t|x0, t0). Then, gα(S(t), t|x0, t0) satisfies the following
equation

gα[S(t), t|x0, t0] = −2Ψα[S(t), t|x0, t0] + 2It0,tΨα
g[S(t), t|x0, t0](4.8)

where the integral operator is defined as follows

I
t0,t
Ψα

g[S(t), t|x0, t0] =

∫ t

t0

g[S(τ), τ |x0, t0]Ψα[S(t), t|S(τ), τ ]dτ(4.9)

and

Ψα[S(t), t|y, τ ] =
∫ ∞

0

Ψ[S(θ), θ|y, τ ]να(θ, t)dθ.(4.10)

Proof. By inserting in the right hand side of (4.7) the expression of g as at the
right hand side of (4.5), we have

gα(S(t), t|x0, t0) = −2Ψα[S(t), t|y, τ ](4.11)

+2

∫ ∞

0

∫ θ

t0

g[S(τ), τ |x0, t0]Ψ[S(θ), θ|S(τ), τ ]dτνα(θ, t)dθ(4.12)

Under assumption that all involved functions are L1 on their domains, Fubini the-
orem can be applied to the integral term at the right hand side, in such a way one
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has
∫ ∞

0

∫ θ

t0

g[S(τ), τ |x0, t0]Ψ[S(θ), θ|S(τ), τ ]dτνα(θ, t)dθ(4.13)

=

∫ t

t0

g[S(τ), τ |x0, t0]

∫ ∞

0

Ψ[S(θ), θ|S(τ), τ ]να(θ, t)dθdτ(4.14)

= I
t0,t
Ψα

g[S(τ), τ |x0, t0](4.15)

where we used (4.10) and also that

∫ ∞

0

Ψ[S(θ), θ|S(τ), τ ]να(θ, t)dθ = 0, τ > t,

�

Note that the equation (4.8) allows to obtain numerical approximations of gα for
general C1(0,+∞) boundary S(t), for which no closed form results are available.
This can be done by using numerical procedure for coupled integral equations (4.5)
and (4.8). Indeed, in cases in which g is unknown, the main advantage respect
to the direct numerical quadrature of (4.7) is that generally both functions Ψ and
Ψα involved in (4.5) and (4.8) can be analytically evaluated, and in addition the
integration intervals for the numerical quadrature in (4.5) and (4.8) are limited.

Corollary 4.1. Under the assumptions of Theorem 4.1, if the boundary S(t) is
such that

(4.16) S(t) = mD(t) + aζD(t) + bηD(t) ∀t ∈ I, a, b ∈ R.

the subordinated FPT pdf gα[S(t), t|x0, t0], for x0 < S(t0), can be written as follows

(4.17) gα[S(t), t|x0, t0] =
S(t0)− x0

ηD(t0)

∫ ∞

0

ηD(θ)r′(θ)

r(θ) − r(t0)
f [S(θ), θ|x0, t0]να(θ, t)dθ,

where f [S(θ), θ|x0, t0] is the normal transition pdf of the corresponding GM process
XD as given in (3.1), and r(t) = ζD(t)/ηD(t).1

Proof. From Theorem 3.2 of [17], we recall that, specifically referring to W (r(t)),

ΨW [S(r(t)), r(t)|S(r(τ)), r(τ )] = 0, ∀τ, t ∈ I, τ ≤ t

iff
S(r(t)) = ar(t) + b ∀t ∈ I, a, b ∈ R.

This result implies that

Ψ[S(t), t|S(τ), τ ] = 0, ∀τ, t ∈ I, τ ≤ t

iff

S(t) = mD(t) + ηD(t)S(r(t)) = mD(t) + ηD(t)(ar(t) + b)

= mD(t) + ηD(t)

(
a
ζD(t)

ηD(t)
+ b

)
= mD(t) + aζD(t) + bηD(t).

Hence, recalling (4.10), we have that if the boundary is (4.16), we have

Ψα[S(t), t|S(τ), τ ] = 0, ∀τ, t ∈ I.

1Note that ζD(t) ≡ ζ(t, t) of Proposition 2.1.
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Consequently, the operator It0,tΨα
(4.9), involved in (4.8), is identically zero. For the

boundary (4.16), making use of Theorem 4.1, the integral equation (4.8) reduces to
the following one

(4.18) gα[S(t), t|x0, t0] = −2Ψα[S(t), t|x0, t0]

where Ψα is defined in (4.10) with Ψ as in (4.6). Now, by substituting (4.16) in
Ψ[S(t), t|x0, t0], specialized from (4.6) with y = x0, τ = t0, we obtain (cf. Corol-
lary 3.1 of [17])

Ψ[S(t), t|x0, t0] = −1

2

S(t0)− x0

r(t) − r(t0)

ηD(t)

ηD(t0)
r′(t)f [S(t), t|x0, t0],

that substituted in (4.10), written for y = x0, τ = t0, leads to Ψα[S(t), t|x0, t0],
and finally (4.17) follows from (4.18). �

An advanced investigation about other possible transformed closed forms such
as those related with one-side and two-side Daniels-type boundaries ([17], [35]), but
also additional asymptotic results ([7], [18]) will be the object of a future work.

4.2. FPT density for time-changed Brownian motion. Due its central rule in
this class of the fractional diffusions, now we point out some specific results about
the FPT density of the time-changed Brownian motion Wα(t) = W (Eα(t)).

Proposition 4.1. For the time-changed Brownian motion Wα(t) in presence of a
linear boundary S(t) = at+ b, with b > x0, and ∀t ≥ t0, the FPT density is

gα[at+ b, t|x0, t0] =

= −afα[at+ b, t|x0, t0] +

∫ ∞

0

(
aθ + b− x0

θ − t0

)
f [aθ + b, θ|x0, t0]να(θ, t)dθ

(4.19)

where fα[at+ b, t|x0, t0] is as in (1.12) with

f [aθ + b, θ|x0, t0] =
1√

2π(θ − t0)
exp

{
− (aθ + b− x0)

2

2(θ − t0)

}
.

that is (3.1) specialized for the standard Brownian motion W (t).

Proof. For the time-changed Brownian motion Wα(t) = W (Eα(t)) in presence of a
linear boundary S(t) = at + b, with b > x0, (4.17) can be re-written with r(t) =
t, η(t) = 1, to obtain

gα[at+ b, t|x0, t0] = −2Ψα[at+ b, t|x0, t0] =

−2

∫ ∞

0

ΨW [aθ + b, t|x0, t0]να(θ, t)dθ

= −
∫ ∞

0

(
a− aθ + b− x0

θ − t0

)
f [aθ + b, θ|x0, t0]να(θ, t)dθ.

from which Eq. (4.19) follows.
�

Note that (4.19) for α = 1 coincides with the well-known formula due to Bachelier-
Lévy (see, for instance, [1]), i.e. the Wald density

(4.20) g[at+ b, t|x0, t0] =
|at0 + b− x0|
(t− t0)3/2

φ

(
at+ b− x0√

t− t0

)
,
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with φ(y) = 1√
2π

e−y2/2.

Remark 4.1. We note that in the case of the linear boundary it is also possible
to proceed as follows. At first, we remark that we can use (4.20) in (4.7). Indeed,
just for the FPT of the time-changed Brownian motion W (Eα(t)) for the linear
boundary S(t) = at+ b, (a, b ∈ R), we have that
(4.21)

gα(S(t), t|x0, t0) =
1√
2π

∫ ∞

0

|at0 + b− x0|
(θ − t0)3/2

exp

{
− (aθ + b − x0)

2

2(θ − t0)

}
να(θ, t)dθ

equivalent to (4.19).

In particular, from (4.21), referring to the zero-boundary (i.e. for 0 = S(t) =
at + b with a = b = 0), we can write the FPT pdf of the time-changed Brownian
motion (for x0 > 0, t0 = 0), as the following

gα(0, t|x0, 0) =
x0√
2π

∫ ∞

0

1

θ3/2
exp

{
−x2

0

2θ

}
να(θ, t)dθ.(4.22)

Moreover, by using (1.10) and the suitable change of variable as used in (1.13)

gα(0, t|x0, 0) =
x0√
2π

∫ ∞

0

(w
t

) 3α

2

exp

{
−x2

0

2

(w
t

)α
}
γα(w)dw(4.23)

with γα(w) the density of the α-stable subordinator.
For 0 < α ≤ 1, the function γα(·) in (4.23) can be numerically evaluated by

means of R library routines. Specifically, this library allows to call the function
dstable to evaluate the density γα(w) of a stable subordinator (see, [31]). For this
case we implemented our R codes providing some numerical approximations plotted
in Fig.1. Alternatively, it is possible to obtain further numerical approximations
by using a series expansion for γα(w) such as (cf. [39])

(4.24) γα(w) =

+∞∑

i=1

(−1)n−1

n!

Γ(αn+ 1)

Γ(αn)Γ(1 − αn)
w−αn−1

or by using its asymptotic behaviors that can be found, for instance, in [32]. In a
preliminary numerical investigation, we can say that the use of the serie expansion
(4.24) can be well exploited with the first n = 100 summands because this is a
right balance between very short running times and order of accuracy of results.
Furthermore, we remark that the numerical resolution of (4.8) constitutes a valid
and general strategy to evaluate the FPT density for this process but also for
the general case. A more detailed and comparative investigation about different
approximation strategies will be done in a future work.

Finally, we stress the importance of the provided FPT results for time-changed
Brownian process because this process is directly involved in the construction of
fractional diffusions here constructed by the Doob transform (1.2). In addition, the
above FPT results can be exploited for the class of time-changed processes Xα of
the first kind as the following way.

Proposition 4.2. The FPT density through a boundary S(t) of the Xα(t) = m(t)+
η(t)Wα(r(t)) process can be derived in the following way:

(4.25) gXα
(S(t), t|x0, t0) =

dr(t)

dt
gWα

(S∗(r(t)), r(t)|x∗
0 , r(t0))



20FIRST PASSAGE TIMES FOR SOME CLASSES OF FRACTIONAL TIME-CHANGED DIFFUSIONS

0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

α=0.25

α=0.5

α=0.6

α=0.75

α=0.9

α=1

t

Figure 1. Numerical evaluations of FPT pdf gα(0, t|x0, 0) as
in (4.23) of the time-changed Brownian motion through zero-
boundary for some values of α. For all plots we set x0 = 1.

with

(4.26) S∗(r(t)) =
S(t)−m(t)

η(t)
, x∗

0 =
x0 −m(t0)

η(t0)

with gWα
(S∗(r(t)), r(t)|x∗

0 , r(t0)) is the FPT pdf of Wα(t).

Proof. Following the strategy of derivation of (4.1) and (4.3) for the classical case
(see [17]), also in this case (4.25) and (4.26) are obtained.

Note that the FPT pdf gWα
(S∗(r(t)), r(t)|x∗

0 , r(t0)), if it is not known in closed
form, can be evaluated by means of numerical quadrature strategies applied to the
integral equation (4.8) such as those in [16] or [17]. �

On the other hand, the already known results for the FPT of the time-changed
Brownian motion through a specified boundary can be extended to the process Xα

for a corresponding boundary as specified in the following proposition.

Proposition 4.3. When the FPT pdf gWα
(S(ϑ), ϑ|x0, ϑ0) for Wα(t) through the

boundary S(ϑ) is available, the following transformation formulae are useful to
specify FPT pdf for the process Xα(t):

(4.27) gXα
(S̃(r−1(ϑ)), r−1(ϑ)|x̃0, r

−1(ϑ0)) =
gWα

(S(ϑ), ϑ|x0, ϑ0)
dr−1(ϑ)

dϑ

with

(4.28) S̃(r−1(ϑ)) = m(r−1(ϑ))+η(r−1(ϑ))S(ϑ), x̃0 = m(r−1(ϑ0))+η(r−1(ϑ0))x0.
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Proof. These formulae are derived by inverting (4.25) and (4.26). �

In the next subsection we give appication examples of (4.25)-(4.26) and (4.27)-
(4.28).

4.3. FPT density for time-changed OU-type processes. At first, we specify a
consequence of the previous FPT results on a time-changed OU process. Consider,
at first, the stationary OU process such that can be written as the following GM
process, for t ∈ R,

(4.29) U(t) = m(t) + e−θtW (e2θt)

and its of second kind time-changed version Uα(t) = U(Eα(t)).

Corollary 4.2. For the stationary time-changed OU process U(Eα(t)) the FPT
pdf through the boundary S(t) = m(t) + aeθt + be−θt is for t ≥ t0
(4.30)

gUα
[S(t), t|u0, t0] = eθt0(S(t0)− u0)

∫ ∞

0

2θeθξ

e2θξ − e2θt0
f [S(ξ), ξ|u0, t0]να(ξ, t)dξ

where

f [S(ξ), ξ|u0, t0] =
1√

2π[1− e−θ(ξ−t0)]

× exp

{
− [S(ξ)−m(ξ)− e−θ(ξ−t0)(u0 −m(t0)]

2

2[1− e−θ(ξ−t0)]

}
,(4.31)

the latter obtained from (3.1) adapted to the case of the considered OU process.

Proof. Applying the Corollary 4.1 to the process U(Eα(t)), we recall that it is the
time-changed version of the GM processXD as in (2.23) with transforming functions
r(t) = e2θt and ηD(t) = e−θt, and normal transition density f [s, t|y, τ ] as in (3.1).
Hence, the corresponding boundary is just the hyperbolic-type boundary S(t) =
m(t) + aeθt + be−θt, being ζD(t) = eθt. Finally, from (4.17), we have (4.30). �

Furthermore, it is also possible to consider a non-stationary time-changed OU
process {U0(t), t ≥ 0} solution of the following stochastic differential equation, for
t ≥ 0, and u0 ∈ R,

(4.32) dU0(t) = −θU0(t)dt + dW (t), U0(0) = u0.

For θ > 0, the case we consider, the process is recurrent and hence its FPT for any
constant level b > u0 is finite with probability one. It is interesting to recall that
for this process a closed form of FPT pdf through the level b = 0 is available (see
formula (2.8) in [2]), i.e.

(4.33) gU0
(0, t|u0, 0) =

|u0|√
2π

(
2θ

eθt − e−θt

)3/2

exp

(
− 2θu2

0

e2θt − 1
+

θt

2

)

due originally to Breiman [15], and Pitman and Yor [36].
In addition, U0(t) is the GM process with the following representation by the

Brownian motion:

(4.34) U0(t) = mU0
(t) + ηU0

(t)W (r(t)− r(0)) = u0e
−θt + e−θtW

(
e2θt − 1

2θ

)

with r(t) = e2θt/(2θ).
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We note that the formula (2.8) of [2] was determined starting from the well-
known formula of FPT pdf of the Brownian motion {W (τ), τ ≥ 0} through a
constant level −u0 > 0 (see (4.20) with a = 0 and b = −u0), taking into account
(4.34), the inverse of transform (4.34), i.e.

(4.35) W (τ) =
√
2θτ + 1

[
U0

(
log(2θτ + 1)

2θ

)]
− u0,

and the analogous of relation (4.1), i.e.

(4.36) gU0
(S, t|u0, 0) =

dρ(t)

dt
gW (S∗(ρ(t)), ρ(t)|x∗

0 , ρ(0))

with

(4.37) S∗(ρ(t)) =
S −mU0

(t)

ηU0
(t)

, x∗
0 =

x0 −mU0
(0)

ηU0
(0)

and ρ(t) = r(t)−r(0). For the specific case of (4.33), in (4.37) with S = 0,mU0
(t) =

u0e
−θt, ηU0

(t) = e−θt, we have

(4.38) S∗(ρ(t)) = −u0, x∗
0 = 0 > u0.

Note that a first kind time-changed version of such a process is

U0,α(t) = mU0
(t) + ηU0

(t)Wα

(
e2θt − 1

2θ

)
.(4.39)

It can obtain another version, possibly connected to the previous one according to
Proposition 2.2, as follows

Ū0,α(t) = mα(t) + ηα(t)Wα

(
e2θt − 1

2θ

)

= u0E(−θtα) + E(−θtα)W (Eα(ρ(t)))(4.40)

where E(·) is the Mittag-Leffler function and ρ(t) = e2θt−1
2θ .

Regarding the second kind time-changed version U0,α(t) = U0(Eα(t)), the re-
lated FPT pdf gU0,α(S, t|u0, 0), we know that it can be determined by its definition:

(4.41) gU0,α(S, t|u0, 0) =

∫ ∞

0

gU0
(S, ξ|u0, 0)να(ξ, t)dξ.

Indeed, we can write the following formula for the case S = 0, by inserting (4.33)
in (4.41), i.e.
(4.42)

gU0,α(0, t|u0, 0) =

∫ ∞

0

|u0|√
2π

(
2θ

eθξ − e−θξ

)3/2

exp

(
− 2θu2

0

e2θξ − 1
+

θξ

2

)
να(ξ, t)dξ.

By using the form of να(ξ, t), as in (1.10), and the suitable change of variable
w = (tξ−1/α), as used in (1.13) , we finally have that (4.42) can also be alternatively
written as follows:
(4.43)

gU0,α(0, t|u0, 0)=

∫ ∞

0

|u0|√
2π

(
2θ

eθ(
t

w
)α − e−θ( t

w
)α

)3/2

exp

(
− 2θu2

0

e2θ(
t

w
)α − 1

+
θ( t

w )
α

2

)
γα(w)dw

where γα(w) is the density of the α-stable subordinator.
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Figure 2. Numerical evaluations of FPT pdf gU0,α(0, t|u0, 0)
(4.43) of the time-changed OU process U0(Eα(t)) through zero-
boundary for some values of α. For all plots we set u0 = 1 and
θ = 1 (on the left) and θ = 1.2 (on the right).

In Fig. 2 we plot numerical evaluations of FPT pdf (4.43) of the time-changed
OU process U0(Eα(t)) through zero-boundary for some values of α and θ. These
evaluations are obtained by ad hoc R-codes we devised.

Before to give the following corollary, we remark that (4.42), due to (4.36), has
been obtained by the following integration

(4.44) gU0,α(S, t|u0, 0) =

∫ ∞

0

dρ(ξ)gW (S∗(ρ(ξ)), ρ(ξ)|x∗
0 , ρ(0))να(ξ, t).

Instead, for the first kind time-changed process U0,α(t), from Proposition 4.2, we
have

gU0,α(S, t|u0, 0) =
dρ(t)

dt
gWα

(S∗(ρ(t)), ρ(t)|x∗
0 , ρ(0))(4.45)

=
dρ(t)

dt

∫ ∞

0

gW (S∗(ρ(t)), ξ|x∗
0 , ρ(0))να(ξ, ρ(t))dξ.(4.46)

In particular, for a constant boundary S∗(ρ(t)) = S∗ and ρ(0) = 0, one has

(4.47) gU0,α(S, t|u0, 0) =
dρ(t)

dt

∫ ∞

0

gW (S∗, ξ|x∗
0, 0)να(ξ, ρ(t))dξ.

Hence, for this specific case, we give the following corollary.

Corollary 4.3. For the FPT pdf of U0,α(t) process we have the following expression

gU0,α(0, t|u0, 0) =
e2θt√
2π

∫ ∞

0

|u0|
ξ3/2

exp

{
−u2

0

2ξ

}
να

(
ξ,

e2θt − 1

2θ

)
dξ.(4.48)

Proof. Indeed, by applying Proposition 4.2, if the FPT pdf for the time-changed
Brownianmotion through the corresponding boundary S∗(ρ(t)) in (4.37) was known,
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also the FPT pdf for the first kind time-changed OU process U0(Eα(t)) can be ob-
tained by using (4.25). For this specific case, we have S = 0, S∗(ρ(t)) = −u0,
x∗
0 = 0, ρ(t) = (e2θt − 1)/(2θ) and ρ(0) = 0, in such a way

(4.49) gU0,α(0, t|u0, 0) = e2θtgWα

(
−u0,

e2θt − 1

2θ

∣∣∣0, 0
)

where, from (4.21),

gWα

(
−u0,

e2θt − 1

2θ

∣∣∣0, 0
)

=
1√
2π

∫ ∞

0

|u0|
ξ3/2

exp

{
−u2

0

2ξ

}
να

(
ξ,

e2θt − 1

2θ

)
dξ(4.50)

and finally (4.48) follows by inserting (4.50) in (4.49). �

Note that (4.48) is an example of application of the transforming formulae (4.25)
and (4.26) of Proposition 4.2 between FPT densities. Finally, referring to (4.34),
we can also give an example of application of the formulae (4.27) and (4.28) of
Proposition 4.3 by which the FPT density of time changed OU process is derived
from that of time-changed Brownian motion through zero-boundary as in (4.22);
the FPT obtained is related to a different boundary. Specifically, we have:

gU0,α

(
u0√

1 + 2θt
,
log(1 + 2θt)

2θ

∣∣∣u0 + x0, 0

)
= e2θtgWα

(
0, t

∣∣∣x0, 0
)
.(4.51)

Hence, by using gWα

(
0, t

∣∣∣x0, 0
)

as in (4.22) in (4.51), we immediately have the

available FPT of the time-changed OU process through the boundary u0√
1+2θt

in

the logarithmic time log(1+2θt)
2θ .

An advanced study of the numerical approximations of all above equations, fo-
cussing on those derived from a numerical resolution of (4.8) and simulations will
be the object of a future work.

Appendix

We give some additional details about the subordinator and its inverse process
considered in the subsection 1.1. In particular, we can specify the density of σα(t)
involved in (1.10) as follows (([37]))

γα(x, t) =
1

αtx1+α
Mα

(
t

xα

)

where the M-Wright function Mβ(z) is defined as

Mα(z) =

∞∑

k=0

(−z)k

k!Γ(−αk + (1− α))
=

1

π

∞∑

k=0

(−z)k−1

(k − 1)!
Γ(αk) sin(παk), z ∈ C, 0 < α < 1.

Instead of (1.10), the density of Eα(t) can also be given in the following form

να(x, t) =
1

tα
Mα

( x

tα

)
.

Furthermore, we also note that there is a Mikusinski’s representation [33] for
density
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γα(x, 1) = γα(x) =
α

1− α
· 1

πx

∫ π

0

u(ϕ) exp{−u(ϕ)}dϕ,

where

u(ϕ) =
sin[(1 − α)ϕ]

sinϕ
(
sin(αϕ)

x sinϕ
)

α

1−α .

The following asymptotics are known

γα(x) ∼ C2
exp{−C1x

− α

1−α }
x(2−α)/(2−2α)

, x → 0,

and

γα(x) ∼
C3

x1+α
, x → ∞

where

C1 = (1− α)αα/(1−α), C2 =
α

1

2−2α

√
2π(1− α)

, C3 =
sin(πα)

π
Γ(1 + α).

Coming back to (1.10), for example, for t = 1, we have

να(x, 1) ∼
C2

α
x(2α−1)/(2−2α) exp{−C1x

1/(1−α)}, x → ∞,

and

να(x, 1) →
sin(πα)

πα
Γ(1 + α), x → 0.

Then, using self-similarity and setting z = x
tα , we have:

να(z, t) = t−ανα(z, 1) ∼ t−αC2

α
z(2α−1)/(2−2α) exp{−C1z

1/(1−α)}, z → ∞
or

(4.52) να(x, t) ∼ C2 ·
t−α(1+ 2α−1

2−2α
)

α
x

2α−1

2−2α exp{− C1

tα/(1−α)
x1/(1−α)}, x → ∞

for any fixed t, and

(4.53) να(t, x) → t−α sin(πα)

πα
Γ(1 + α), x → 0.

Finally, a further expression of να(x, t) can be found in [25], i.e. ∀t ≥ 0

(4.54) να(x, t) =
1

π

∫ +∞

0

uα−1e−tu−xuα cos(απ) sin (πα − xuα sin(πα)) du.

References

[1] Abundo, M. (2001). Some results about boundary crossing for Brownian motion. Ricerche

di Matematica. vol. L, (2), 283–301.
[2] Alili, L. , Patie, P., Pedersen J. L. (2005). Representations of the First Hitting Time

Density of an Ornstein-Uhlenbeck Process. Stochastic Models. 21:4, 967–980.
[3] Anh, V, and Inoue, A. (2005). Financial markets with memory i: Dynamic models. Sto-

chastic Analysis and Applications. 23(2), 275–300.
[4] Ascione, G., Mishura, Y. and Pirozzi, E. (2019). Fractional Ornstein-Uhlenbeck process

with stochastic forcing, and its applications. Methodology and Computing in Applied Proba-

bility. 1–32.

[5] Ascione, G., Mishura, Y. and Pirozzi, E. (2020). Time-changed fractional Ornstein-
Uhlenbeck process. Fractional Calculus and Applied Analysis. 23(2), 450–483.

[6] Ascione, G. and Pirozzi, E. (2019). On a stochastic neuronal model integrating correlated
inputs. Math. Biosci. Eng. 16, 5206–5225.



26FIRST PASSAGE TIMES FOR SOME CLASSES OF FRACTIONAL TIME-CHANGED DIFFUSIONS

[7] Ascione, G., Pirozzi, E. and Toaldo B. (2019). On the exit time from open sets of some
semi-Markov processes. Annals of Applied Probability. 30, 3, 1130–1163.

[8] Ascione, G. and Toaldo B. (2019). A semi-markov leaky integrate-and-fire model. Mathe-

matics, 7(11):1022.
[9] Ascione, G., D’Onofrio, G., Kostal, L., and Pirozzi, E. (2020). An optimal Gauss-

Markov approximation for a process with stochastic drift and applications. Stochastic Pro-

cesses and their Applications, 130(11), 6481–6514.
[10] Baeumer, B., Meerschaert, M.M., and Nane, E. (2009). Brownian subordinators and

fractional Cauchy problems. Transactions of the American Mathematical Society. 361, 7,
3915–3930.
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tion Structure of Time-Changed Lévy Processes. Communications in Applied and Industrial

Mathematics , e-483, ISSN 2038-0909.
[27] Leonenko, N., Meerschaert, M. M. and Sikorskii A. (2013). Fractional Pearson diffu-

sions. Journal of Mathematical Analysis and Applications. 403(2), 532–546.
[28] Magdziarz M., (2009). Stochastic representation of subdiffusion processes with time-

dependent drift. Stochastic Processes and their Applications.119, 3238–3252.
[29] Mainardi, F., Luchko, Y. and Pagnini, G. (2001) The fundamental solution of the space-

time fractional diffusion equation. Fractional Calculus Appl. Anal. 4, 153–192.
[30] Mainardi, F., Pagnini, G. and Gorenflo, R. (2003). Mellin transform and subordination

laws in fractional diffusion processes. Fractional Calculus Appl. Anal. 6, 441–459.
[31] Meerschaert, M. M. and Sikorskii A. (2019). Stochastic Models for Fractional Calculus.

DeGruyter Studies in Mathematics. 43. Berlin.
[32] Meerschaert, M. M. and Straka, P. (2013). Inverse stable subordinators. Mathematical

Modelling of Natural Phenomena, 8(2), 1–16.



FIRST PASSAGE TIMES FOR SOME CLASSES OF FRACTIONAL TIME-CHANGED DIFFUSIONS27

[33] Mikusinski J. (1959). On the function whose Laplace-transform is e−s
a

. Studia Mathematica.

18(2),191–198.
[34] Piryatinska, A., Saichev, A.I. and Woyczynskia, W.A. (2005). Models of anomalous

diffusion: the subdiffusive case. Physica A. 349, 375–420.
[35] Pirozzi, E. (2020). A Symmetry-Based Approach for First-Passage-Times of Gauss-Markov

Processes through Daniels-Type Boundaries. Symmetry. 12(2), 279.
[36] Pitman, J. and Yor, M. (1981). Bessel processes and infinitely divisible laws. Lecture Notes

in Math. 851, 285–370.
[37] Saa, A. and Venegeroles, R. (2011). Alternative numerical computation of one-sided Levy

and Mittag-Leffler distributions.Phys.Rev. E 84, 026702.
[38] Sato, H. (1999). Levy Processes and Infinitely Divisible Distributions. Cambridge University

Press.
[39] Uchaikin, V.V. and Zolotarev, V.M. (1999). Chance and Stability. Stable Distributions

and Their Applications. VSP, Utrecht.
[40] Umarov, S. (2015). Introduction to Fractional and Pseudo-Differential Equations with Sin-

gular Symbols. Developments in Mathematics, 41, Springer.


