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ABSTRACT Visual saliency plays a significant role in image quality assessment. Image distortions cause
shift of saliency from its original places. Being able to measure such distortion-included saliency variation
(DSV) contributes towards the optimal use of saliency in automated image quality assessment. In our
previous study a benchmark for the measurement of DSV through subjective testing was built. However,
exiting saliency similarity measures are unhelpful for the quantification of DSV due to the fact that DSV
highly depends on the dispersion degree of a saliency map. In this paper, we propose a novel similarity
metric for the measurement of DSV, namely MDSV, based on convex optimization method. The proposed
MDSV metric integrates the local saliency similarity measure and the global saliency similarity measure
using the function of saliency dispersion as a modulator. We detail the parameter selection of the proposed
metric and the interactions of sub-models for the convex optimization strategy. Statistical analyses show that
our proposed MDSV outperforms the existing metrics in quantifying the image quality induced saliency
variation.

INDEX TERMS Image quality assessment, saliency, saliency variation, similarity measure, visual attention

I. INTRODUCTION

SALIENCY – the scene-driven, bottom-up selective vi-
sual attention mechanism of the human visual system –

has been widely studied in the area of image quality assess-
ment [1]–[6]. The application of saliency in image quality
metrics potentially improves their reliability in predicting
image quality as perceived by humans [7]–[14]. However,
the optimal use of saliency requires a deeper understanding
of how saliency plays a role in image quality assessment
and how perception relating to saliency can be effectively
quantified.

Eye-tracking studies [15], [16] have been undertaken to
better understand the interaction between saliency and image
distortions. The SIQ288 database [16] reveals the corre-
spondences between the changes in image quality and the
changes in saliency, as an example illustrated in Figure 1.
Note all saliency maps contained in the SIQ288 database

were rendered from ground truth eye-tracking data. It can be
seen from Figure 1 that the difference between the saliency
of the “high quality” image and that of the “original image”
is marginal; the difference in saliency is modest for the
“medium quality” image; whereas the saliency of the “low
quality” image significantly differs from that of the “orig-
inal image”. To measure such so-called distortion-induced
saliency variation (DSV) – the similarity between the original
saliency (e.g., (e) in Figure 1) and the deviated saliency (e.g.,
(f), (g) or (h) in Figure 1) – a benchmark was established
in [17]. In this benchmark, the difference mean saliency
variation score (DMSS) per saliency map in the SIQ288
database is yielded via a subjective study. As shown in
Figure 1, the higher the DMSS, the less similar the deviated
saliency is from the original saliency. The DMSS scores are
reliable, however, they are expensive and impractical in many
circumstances. A more realistic way to measure saliency
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FIGURE 1. Illustration of the distortion-induced saliency variation (DSV).
DMSS (difference mean saliency variation score) represents the degree of
similarity between the deviated saliency map and the reference saliency map.

variation (i.e., DSV) is to use computational algorithms.
In the literature, many algorithms have been established

and used for similarity measures in various applications.
In particular, these similarity metrics are used in the area
of saliency modelling to evaluate a computational saliency
model’s ability to predict human fixations. The plausibility of
using these metrics for quantifying DSV, however, is not ver-
ified. In this paper, we first analyse the performance of eight
state-of-the-art similarity metrics in measuring DSV; and
then we propose a new metric for assessing the distortion-
induced saliency variation (DSV). The proposed metric is
inspired by the characteristics of the human visual system
(HVS), using a saliency dispersion measurement as a key
component in a convex optimization method to integrate the
local saliency similarity and the global saliency similarity.

The rest of this paper is organized as follows. Section II
provides an analysis of the state-of-the-art similarity met-
rics, and the description of the DSV benchmark. Section III
details the proposed algorithm. The overall performance of
the proposed algorithm is presented in Section IV. Section V
concludes the paper.

II. ANALYSIS OF THE STATE-OF-THE-ART SIMILARITY
METRICS
A. THE DSV BENCHMARK
The benchmark of the distortion-induced saliency variation
(DSV) [17] is based on the SIQ288 database [16], which
contains images of varying quality (i.e., 18 pristine images
and each distorted by 5 distortion types and 3 distortion
levels) and their corresponding saliency maps rendered from
ground truth human fixations. The DSV benchmark contains
18 reference saliency maps and 270 deviated saliency maps.
Sixteen experts in computer vision assessed the deviations
of saliency maps of distorted images. The resulting differ-
ence mean saliency variation score (DMSS) represents the
degree of similarity between each deviated saliency map
and its original saliency. The DMSS ranges from 0 to 100,
with 0 representing the smallest degree of difference and
100 representing the largest degree of difference. Table 1
lists the details of the distortion-induced saliency variation
benchmark. Figure 2 shows the histogram of DMSS scores

FIGURE 2. Illustration of the histogram of the difference mean saliency
variation scores (DMSS) of the DSV benchmark [17].

contained in the benchmark.

TABLE 1. Details of the distortion-induced saliency variation (DSV)
benchmark [17].

Characteristics Information
Number of reference saliency maps 18
Number of deviated saliency maps 270

Number of different distortion types 5
Number of different levels for each distortion type 3

Evaluation method Simultaneous double stimulus
Number of human viewers per image 16

B. PERFORMANCE OF THE STATE-OF-THE-ART
SIMILARITY METRICS
There are many mathematical algorithms that can be used
to measure the similarity between two images. In terms of
evaluating saliency maps, research has focused on measuring
the difference between the predicted saliency (generated by
machines) and the ground truth saliency (obtained by eye-
tracking) [18]. The popular metrics are: the area under the
receiver operating characteristic curve (AUC) [19], [20],
Normalized Scanpath Saliency (NSS) [21], Information Gain
(IG) [22], SIMilarity (SIM) [23], Pearson’s Correlation Co-
efficient (CC) [24], Kullback-Leibler Divergence (KL) [18],
and Earth Mover’s Distance (EMD) [25]. It should be noted
that each metric has its own advantages and disadvantages
depending on the specific applications, for example, some
metrics (i.e., AUC, NSS, IG) emphasise on local saliency
similarity measurement and some metrics (i.e., SIM, CC, KL,
EMD) focus on the global similarity of saliency. However, it
is unknow yet whether these metrics are helpful in measuring
the distortion-induced saliency variation (DSV). Now, we
analyse the performance of these similarity metrics in the
DSV context. We calculated the metrics for all test/deviated
saliency maps contained in the DSV benchmark. The perfor-
mance of these metrics in measuring the saliency variation
is quantified by comparing the ground truth DMSS scores
and the metrics’ outputs. Figure 3 shows the scatter plot
of the DMSS and each of the similarity metrics. Table 2
lists the quantitative results of the performance in terms of
the Pearson’s correlation coefficient (PLCC), Spearman rank
order correlation coefficient (SROCC), Kendall’s rank order
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TABLE 2. Performance of state-of-the-art similarity metrics for the measurement of distortion-induced saliency variation (DSV) on all saliency maps of the DSV
benchmark [17].

Criterion AUC-Judd AUC-Borji NSS IG SIM CC KL EMD
PLCC 0.6816 0.2787 0.6782 0.3273 0.7475 0.7786 0.3100 0.6121

SROCC 0.6502 0.2106 0.6081 0.2988 0.6962 0.7246 0.2755 0.5502
KROCC 0.4363 0.1373 0.4328 0.2052 0.5063 0.5345 0.1909 0.3832

FIGURE 3. Scatter plot of the DMSS and each of the similarity metrics (AUC-Judd, AUC-Borji, NSS, IG, SIM, CC, KL and EMD).

correlation coefficient (KROCC), and root mean square error
(RMSE) that are formulated as follows:

PLCC =

∑L
i=1(mi − m̄)(ni − n̄)√∑L
i=1[(mi − m̄)(ni − n̄)]2

, (1)

RMSE =

√√√√ 1

L

L∑
i=1

(mi − ni)2, (2)

SROCC =

∑L
i=1(R(mi)−R(m))(R(ni)−R(n))

G(mi,m, ni, n)
, (3)

KROCC =
2[N(concordant pairs)−N(discordant pairs)]

L(L− 1)
,

(4)
where L is the number of test saliency maps, mi

and ni are the metric score and subjective DMSS
of the i-th saliency map respectively, m̄ and n̄ are
the mean of metric scores and subjective DMSSs re-
spectively, R(·) denotes the rank, G(mi,m, ni, n) =√∑L

i=1(R(mi)−R(m))2

√∑L
i=1(R(ni)−R(n))2, R(·)

is the mean of the ranks, and N(·) represents the amount of
corresponding variables.

In general, some metrics (i.e., AUC-Borji, IG, KL) exhibit
a poor correlation with the DMSS, meaning they cannot
accurately measure the distortion-induced saliency variation.
AUC-Judd, NSS, SIM, CC, and EMD metrics show better
performance, but there is still room for improvement. Some
interesting observations are revealed in our study. For differ-
ent reference saliency maps from different source images, the
responses of the similarity metrics differ. We give two exam-
ples here using the correlation matrix visualization. Figure 4
illustrates the correlation matrix of eight similarity metrics
and DMSS of all deviated saliency maps from the reference,
i.e., "Paint-house". Figure 5 illustrates the correlation matrix
for a different reference, e.g., "Man-fishing". The reference
saliency of Figure 4 represents a dispersed map, and the
reference saliency of Figure 5 represents a concentrated map.
The similarity metrics show consistent performance for the
case of Figure 4, meaning they may capture similar properties
of DSV. Whereas, the similarity metrics show inconsistent
performance for the case of Figure 5, meaning they may
focus on different properties of DSV measurement. These
examples indicate that the measurement of DSV tends to de-
pend on the dispersion degree of the reference saliency map.
Based on these observations, we propose a new similarity
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FIGURE 4. Correlation matrix visualization of eight saliency similarity metrics
and DMSS of all deviated saliency maps from the reference, i.e.,
"Paint-house".

metric for assessing the distortion-induced saliency variation
(DSV) based on saliency dispersion, which is described in
detail below.

III. THE PROPOSED ALGORITHM
A. BASIC ALGORITHM FRAMEWORK
First, We propose a new algorithm for quantifying distortion-
induced saliency variation (DSV), combining the local and
global saliency similarity measures. The principle of the
algorithm is to integrate local measure and global measure as
demonstrated in the section above; and a modulator based on
saliency dispersion is used to control the adaptive measure
of saliency similarity. The basic idea of the algorithm is
described below.

Modulator: Saliency dispersion measure [10] gives a
quantitative gauge of the spatial distribution of saliency, i.e.,
the extent to which a saliency pattern is spread throughout
the spatial domain. Based on our observations of the DSV
benchmark (as the examples illustrated above), the distortion-
induced saliency variation tends to depend on the degree of
saliency dispersion: when saliency is concentrated in fewer
areas in the spatial domain, the global (i.e., structural charac-
teristics) saliency variation significantly contributes the DSV
assessment; when saliency is dispersed throughout the spatial
domain, the local (i.e., positional characteristics) saliency
variation makes a predominant contribution to the DSV as-
sessment. Hence, the saliency dispersion measure developed
in [10] is used here. The method is based on Shannon entropy

FIGURE 5. Correlation matrix visualization of eight saliency similarity metrics
and DMSS of all deviated saliency maps from the reference, i.e., "Man-fishing".

(note H represents the entropy of a saliency map), using a
multilevel approach. More specifically, the saliency map (i.e.,
S) is partitioned at level P into P×P nonoverlapping blocks
of equal size. The multilevel entropy of the saliency maps is
defined as:

HΣ(S) =
1

Pmax

Pmax∑
P=1

N∑
B=1

H(B), (5)

where Pmax is the finest level of division and N = P 2
max,

and B runs over each block, as the procedure illustrated in
Figure 6. The lower the multilevel entropy, the more compact
the saliency map is; otherwise, the higher the multilevel
entropy, the more spread-out the saliency map is as illustrated
in Figure 6.

Algorithm formulation: We now consider how to use the
above components for the quantification of the DSV. For the
input reference saliency map and the deviated saliency map,
local and global saliency similarity metrics are calculated,
and the degree of dispersion is calculated for the reference
saliency map. The key idea is to reinforce local similarity
measure for the spread-out saliency map and global similarity
measure for the compact saliency map. We formulate the
metric for DSV (MDSV) as a convex optimization problem,
and define the metric as:

MDSV(Sd, Sr) = [1− σ(HΣ(Sr))]M1 + σ(HΣ(Sr))M2,
(6)
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TABLE 3. Performance of state-of-the-art similarity metrics for the measurement of distortion-induced saliency variation (DSV) for "low dispersion" and "high
dispersion" saliency maps of the DSV benchmark [17].

Criterion AUC-Judd AUC-Borji NSS IG SIM CC KL EMD

Low dispersion saliency maps
PLCC 0.4545 0.0518 0.4538 0.3327 0.7394 0.7751 0.6493 0.7136

SROCC 0.3755 0.0169 0.3476 0.3064 0.6600 0.6603 0.6770 0.7219
KROCC 0.2526 0.0091 0.2395 0.2122 0.4734 0.4953 0.5073 0.5412

High dispersion sailency maps
PLCC 0.7518 0.3820 0.6396 0.3157 0.5614 0.5930 0.3379 0.5371

SROCC 0.7380 0.4039 0.5686 0.2268 0.4859 0.5495 0.3018 0.4349
KROCC 0.5520 0.2281 0.4147 0.1503 0.3458 0.4593 0.2098 0.3023

where M1 represents the local metric,M2 represents the
global metric, and σ(·) represents the revised sigmoid func-
tion:

σ(HΣ(Sr)) =
1

1 + exp {−τ [HΣ(Sr)− T ]}
, (7)

where T is the selected threshold and τ controls the steepness
of the function. In this paper, T and τ were determined from
the saliency maps of the DSV benchmark, using statistical
methods and learning-based parameter calibration, which are
detailed below.

B. STATISTICAL PROPERTIES OF SALIENCY
SIMILARITY METRICS BASED ON SALIENCY
DISPERSION
In order to find suitable components for our proposed convex
optimization based DSV metric, we analyse the statistical
properties of the state-of-the-art similarity metrics based on
saliency dispersion using the DSV benchmark database.

We computed the multilevel entropy of all reference
saliency maps contained in the DSV benchmark database
[17] using the formula (5). Our previous work showed that
the multilevel entropy has the ability to distinguish the dis-
persion degrees of saliency maps. Figure 6 illustrates the
multilevel entropy of two saliency maps of different disper-
sion degrees: one represents the dispersed saliency and one
represents the concentrated saliency.

FIGURE 6. Calculation of multilevel entropy HΣ for distinguished saliency
maps. At each level the saliency map is divided into blocks of equal size. HΣ

is found by the sum of the entropy computed at each level of partition. Pmax is
the level with finest partitioning.

In order to reveal how different similarity metrics respond
to different degrees of saliency dispersion, we divided the
reference saliency maps in the DSV benchmark into two sets:
one set contains saliency maps of high dispersion degrees
(i.e., large multilevel entropy); one set contains saliency maps

of low dispersion degrees (i.e., small multilevel entropy).
The division is made using a threshold (i.e., 7.0126 in
our experiment) of the calculated multilevel entropy values
for all reference saliency maps. Note rigid thresholding is
impossible as dispersion is a relative term, but we have
considered the subjective content classification in [26] to
assure the division reflects two distinctive degrees of saliency
dispersion. This leads to a split of the entire DSV benchmark
into "low dispersion" and "high dispersion" saliency maps.
To analyse the impact of saliency dispersion on existing
similarity metrics, we calculate the performance of these
metrics (i.e., based on the PLCC, SROCC, and KROCC
between a metric and ground truth DSV) once on the sub-
set of "low dispersion" saliency maps and once on the sub-
set of "high dispersion" saliency maps. Table 3 lists the
performance of similarity metrics for "low dispersion" and
"high dispersion" saliency maps of the DSV benchmark. As
can be seen from Table 3, the metrics’ performance differs for
different degrees of saliency dispersion. More specifically,
for the "low dispersion" saliency maps, globe metrics, i.e.,
SIM and CC give the best performance amongst all metrics;
whereas for the "high dispersion" saliency maps, local met-
rics, i.e., AUC-Judd and NSS produce the best performance
amongst all metrics. This tends to suggest that the way local
and global metrics contribute to DSV measurement depends
on the degree of saliency dispersion, and therefore their usage
should be explicitly considered. Based on above analysis,
saliency dispersion measured by multilevel entropy could
be used as the modulator to combine the local similarity
metric and global similarity metric for a more sophisticated
measurement of the distortion-induced saliency variation.

TABLE 4. Performance of the Structural Similarity (SSIM) Index, Multiscale
Structural Similarity (MS-SSIM) Index, Complex Wavelet Structural Similarity
(CW-SSIM) Index, and Information Content Weighted Structural Similarity
(IW-SSIM) Index for the measurement of distortion-induced saliency variation
(DSV) for saliency maps of the DSV benchmark [17].

Criterion SSIM MS-SSIM CW-SSIM IW-SSIM
PLCC 0.7052 0.7823 0.6718 0.7784

SROCC 0.6351 0.7321 0.6803 0.7791
KROCC 0.4602 0.5689 0.4899 0.5822

C. PLAUSIBILITY OF USING IMAGE FIDELITY METRICS
FOR DSV MEASUREMENT
Since saliency maps are essentially images, we naturally
wonder whether the well-established image fidelity metric -
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Structural SIMilarity (SSIM) index [27] and its variants [28]–
[30] could be used to evaluate the distortion-induced saliency
variation. In Table 4, we list the performance of the Structural
Similarity (SSIM) index, Multiscale Structural Similarity
(MS-SSIM) index, Complex Wavelet Structural Similarity
(CW-SSIM) index, and Information Content Weighted Struc-
tural Similarity (IW-SSIM) index for the measurement of
DSV on the DSV benchmark. As can be seen from the
table that SSIM and its variants produce good performance,
compared to the overall performance of the state-of-the-art
similarity saliency metrics as listed in Table 2. The PLCC
values of SSIM and its variants are comparable to the best-
performing SIM and CC metrics in Table 2. Since SSIM-
based methods measure the structural information of images,
they seem to capture the saliency patterns. In addition, the
MS-SSIM extract the hierarchical information via a multi-
scale approach and the IW-SSIM index obtains sophisticated
features based on information theory, therefore, both MS-
SSIM and IW-SSIM produce slightly higher performance
than SSIM. CW-SSIM index focuses on the linear pertur-
bation around edges and textures, which are less important
for saliency patterns. This might cause a relatively lower
performance for CW-SSIM.

In summary, these SSIM-based metrics have demonstrated
the potential for the DSV measurement, and therefore, can be
further investigated for use in our proposed algorithm.

D. SELECTION OF SUB-MODELS FOR THE PROPOSED
DSV METRIC
Our proposed convex optimization framework contains two
essential components, i.e., local and global similarity mea-
sures. Based on above analysis of existing similarity metrics
(including the image fidelity metrics), we now focus on
determining which metrics could be included in our proposed
algorithm. The details of the selection procedure as well as
the reasons of selecting specific metrics are described below.

Let Sr(i, j), Sd(i, j) respectively denote the intensity
value of the saliency map of the reference image and its
distorted version at the position (i, j), and Fr(i, j), Fd(i, j)
are the intensity (binary) value of the fixation map of the
reference image and its distorted version at the position (i, j).

Local saliency similarity: As already discussed in Section
II.B, AUC-Judd, AUC-borji, NSS, and IG are classified as
local saliency similarity metrics. As per the overall perfor-
mance listed in Table 2, AUC-Judd and NSS significantly
outperform NSS and IG, therefore, we consider AUC-Judd
and NSS as candidates and describe both metrics.

AUC-Judd [19]- The ROC (Receiver Operating Charac-
teristic) curve is discretely given by the threshold set L =
{l1, · · ·, ln}. For each li, i ∈ {1, · · ·, n}, its corresponding
coordinates are defined as (TPRli ,FPRli), where TPRli ,
FPRli are the true-positive rate and false-positive rate that
can be formulated as follows:

TPRli =
tpli

tpli + fnli
,FPRli =

fpli
fpli + tnli

, (8)

where tpli , fpli , tnli , fnli represent the number of the true
positives, false positives, true negatives, and false negatives
for the corresponding li-level set classifier, and they can be
implemented by level sets of the saliency map of the distorted
image Sd and the fixation map of the reference image Fr. The
AUC-Judd is equal to the area under the ROC curve.

NSS [21]- For each fixation location (i, j) of the reference
Fr(i, j), the corresponding Normalized Scanpath Saliency
(NSS) value for the distorted saliency map (i.e., Sd(i, j)) is
given by:

NSS(i, j) =
Sd(i, j)− µSd

σSd

, (9)

where µSd
, σSd

are the average value and standard deviation
of the test saliency map Sd. Then the NSS metric for the
whole test saliency map Sd is:

NSS(Sd) =
1

|Fr,1|
∑

(i,j)∈Fr,1

NSS(i, j), (10)

where Fr,1 = {(i, j)|Fr(i, j) = 1}.
Global saliency similarity: As already discussed in Sec-

tion II.B, SIM, CC, KL, and EMD are global metrics. Based
on the overall performance listed in Table 2, CC gives the
best performance amongst all global metrics, therefore, we
consider CC as the first candidate. SIM’s performance is
comparable to (slightly lower than) CC, but as we discussed
in Section III.C, the image fidelity metrics are applicable
and show good potential for DSV measurement, we hence
consider SSIM-based metrics rather than SIM in our algo-
rithm. We also want to consider a third candidate, KL, simply
because it has been widely used as part of the loss function in
deep learning-based saliency models. We wish to investigate
whether KL has its place in our proposed framework. The
details of the three candidates are described below.

CC [24]- The Pearson’s Correlation Coefficient (CC) met-
ric of the test saliency map Sd and the reference saliency map
Sr is defined as:

CC(Sd, Sr) =
σ(Sd, Sr)

σ(Sd)σ(Sr)
, (11)

where σ(Sd), σ(Sr) are the variance of saliency maps Sd and
Sr, respectively, and σ(Sd, Sr) is the covariance between the
saliency maps Sd and Sr.

KL [18] - The Kullback-Leibler divergence (KL) metric of
the test saliency map Sd and the reference saliency map Sr is
defined as:

KL(Sd, Sr) =
∑

(i,j)∈Sr

S̃r(i, j) log2[ε+
S̃r(i, j)

S̃d(i, j) + ε
], (12)

where ε is a regularization constant.
SSIM [27]- The structural similarity (SSIM) index of the

test saliency map Sd and the reference saliency map Sr is
defined as following mean structural similarity (MSSIM):

MSSIM(Sd, Sr) =
1

MN

M∑
i=1

N∑
j=1

SSIM[Sd(i, j), Sr(i, j)],

(13)
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TABLE 5. Performance of different fusion methods LR, MLP, SVM-P, SVM-RFB, M5Rules, RT, RF and our proposed MDSV1 for combing the sub-models
AUC-Judd and CC for DSV measurement on the DSV benchmark [17].

Criterion LR MLP SVM-P SVM-RFB M5Rules RT RF MDSV1

PLCC 0.3965 0.2378 0.3894 0.3506 0.3943 0.2063 0.3385 0.7915
SROCC 0.3554 0.1890 0.3528 0.2892 0.3534 0.2052 0.3031 0.7481
KROCC 0.2492 0.1294 0.2455 0.1998 0.2485 0.1387 0.2068 0.5513

whereMN is the size of Sd and Sr, and SSIM[Sd(i, j), Sr(i, j)]
is formulated as:

(2µSd(i,j)µSr(i,j) + C1)(2σSd(i,j)Sr(i,j) + C2)

(µ2
Sd(i,j) + µ2

Sr(i,j) + C1)(σ2
Sd(i,j) + σ2

Sr(i,j) + C2)
, (14)

where local statistics µSd(i,j), µSr(i,j), σSd(i,j), σSr(i,j), and
σSd(i,j)Sr(i,j) are estimated by the local window that is
defined using an normalized 11 × 11 circularly-symmetric
Gaussian function w = {wp|p = 1, · · ·, l,

∑l
p=1 wp = 1}

with the standard deviation of 3
2 . Specifically, these local

statistics are estimated as:

µSd(i,j) =

l∑
p=1

wpSd(p), (15)

µSr(i,j) =

l∑
p=1

wpSr(p), (16)

σSd(i,j) = [

l∑
p=1

wp(Sd(p)− µSd(i,j))
2]

1
2 , (17)

σSr(i,j) = [

l∑
p=1

wp(Sr(p)− µSr(i,j))
2]

1
2 , (18)

σSd(i,j)Sr(i,j) =

l∑
p=1

wp(Sd(p)−µSd(i,j))(Sr(p)−µSr(i,j)),

(19)
where p is the p-th position of the local window.

In summary, we have now selected two local saliency
similarity measures (i.e., AUC-Judd and NSS), three global
saliency similarity measures (i.e., CC, KL and SSIM) as the
candidate sub-models for our proposed convex optimization
framework for quantifying the distortion-induced saliency
variation (DSV). We will now investigate the construction of
a final DSV metric, based on above basic components.

E. SELECTION OF ESSENTIAL PARAMETERS FOR THE
PROPOSED DSV METRIC
In the proposed algorithm framework, as detailed in Section
III.A and equation (5)-(7) , there are three essential param-
eters that are worth discussing. We now give more details
below on how these important parameters are determined
using empirical methods.

Maximum level of the multilevel entropy for saliency
dispersion measure: The maximum level of the multilevel
entropy as illustrated in Figure 6 is determined by calculating
the correlation between the estimated saliency dispersion

degree and its ground truth - inter-observer agreement (IOA),
as detailed in [10]. By varying the variable, i.e., Pmax in
equation (5), the correlation (i.e., PLCC) is calculated over
the DSV benchmark database as a function of Pmax. It was
found that the PLCC value saturated at the maximum level
Pmax = 4. In order to determine whether there is a signifi-
cant difference between Pmax = 4 and the higher maximum
levels, a Wilcoxon signed rank test is applied, which is a non-
parameter version of t-test in the case of non-normality based
on the residuals between estimated multilevel entropy HΣ

and its ground truth IOA. The test results show that there is
no statistically significant difference between Pmax = 4 and
Pmax = 5, and between Pmax = 4 and Pmax = 6 (i.e.,
in both cases, p-values are larger than 0.05). Therefore, we
choose the maximum level Pmax = 4 for the calculation of
the multilevel entropy to measure the saliency dispersion of
the saliency maps contained in the DSV benchmark.

Steepness of the sigmoid function: In our proposed al-
gorithm framework for distortion-induced saliency variation,
the parameter τ is used to control the steepness of the
sigmoid function. Inspired by the parameters of the Gaussian
probability distribution, we estimate the steepness τ by the
inverse of the unbiased deviation of the dispersion degrees of
the reference saliency maps in the DSV benchmark, and the
estimated value of τ is given by the following equation:

τ̂ =
1

1
R−1

∑R
t=1[HΣ(Sr,t)−HΣ(Sr,·)]2

, (20)

where R is the number of the reference saliency maps in the
DSV benchmark, Sr,t represents the t-th reference saliency
map, HΣ(Sr,·) = 1

T

∑R
t=1HΣ(Sr,t) is the mean of the

dispersion degrees of the reference saliency maps. Based
on this statistical method, the steepness of the proposed
DSV metric is computed and is equal to 20.62 for the DSV
benchmark in this paper.

Threshold of the sigmoid function: In order to control
the convergence and the robustness of our proposed MDSV
framework, we need to determine a suitable threshold T for
our MDSV algorithm. Since the modulator of our proposed
metric framework is related the dispersion degree of the
reference saliency maps, we estimate the threshold as:

T̂ =
1

R

R∑
t=1

T̂ [Sr,t], (21)

where T̂ [Sr,t] is the estimated value of the t-th reference
saliency map in the DSV benchmark, and it can be computed
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TABLE 6. Performance of different fusion methods LR, MLP, SVM-P, SVM-RFB, M5Rules, RT, RF for combing the sub-models NSS, CC and KL and our proposed
MDSV2 for combing NSS and CC (note KL is not considered as it has little impact on DSV) for DSV measurement on the DSV benchmark [17].

Criterion LR MLP SVM-P SVM-RFB M5Rules RT RF MDSV2

PLCC 0.7842 0.7357 0.7796 0.7633 0.7785 0.6592 0.7859 0.8031
SROCC 0.7288 0.6488 0.7164 0.6749 0.6833 0.6057 0.7395 0.7695
KROCC 0.5387 0.4672 0.5243 0.4895 0.4921 0.4321 0.5420 0.5715

by the following formula:

T̂ [Sr,t] = HΣ(Sr,t) +
ln [dist(Sr,t)− 1]

τ̂
, (22)

where τ̂ is given by equation (20), and dist(Sr,t) is computed
as:

||M2(Sr,t)−M1(Sr,t)||22
[M2(Sr,t)−M1(Sr,t)]T [DMSS(Sr,t)−M1(Sr,t)]

,

(23)
where M1(Sr,t) is the metric vector of metric M1 for the
test saliency maps originated from the t-th reference saliency
map in the DSV benchmark, M2(Sr,t) is the metric vector
of metric M2 for the test saliency maps originated from
the t-th reference saliency map in the SIQ288 database,
DMSS(Sr,t) is the ground truth vector of metric DMSS
for the test saliency maps originated from the t-th reference
saliency map, and || · ||2 is the L2 norm of vector space. For
example, if we use the modulator to fuse the local similarity
measure AUC-Judd and the global similarity measure CC,
the estimated threshold is 4.38.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. INTERACTIONS OF SUB-MODELS FOR THE CONVEX
OPTIMIZATION METHOD
In Section III.D, we have selected potential candidate sub-
models (for both local and global saliency similarity mea-
sures) to construct our final MDSV metric. Now, we inves-
tigate (1) how different combinations of local and global
measures and (2) how different fusion methods can affect the
final DSV measurement.

Firstly, based on the proposed convex optimization method
of equation (6), we define a metric for distortion-induced
saliency variation, namely MDSV1, combing the local
saliency similarity measure AUC-Judd and global saliency
similarity measure CC. We now compare our combination
strategy to other alternatives including linear regression (LR),
multi-layer perceptron (MLP) [31], support vector machine
with polynomial kernel (SVM-P) [32], SVM with radial
basis function (RFB) kernel (SVM-RFB) [32], model tree
rules (M5Rules) [33], random tree (RT) [34], and random
forest (RF) [35]. Each of above fusion methods was used
to combine AUC-Judd and CC to form a DSV measurement
(note since they are machine learning-based fusion method,
a 10-fold cross-validation was used to generate results for
a fair comparison between methods). The performance (i.e.,
PLCC, SROCC and KROCC) of these DSV measures on
the DSV benchmark are listed in Table 5. It can be seen

that our MDSV1 significantly outperforms other DSV mea-
sures. Also, it is worth noting that MDSV1 produces better
performance than any of the individual sub-models (see
their performance in Table 2), meaning the proposed convex
optimization method has proven efficacy.

Secondly, in the literature of computational saliency mod-
els, deep learning-based methods (e.g., SAM-VGG and
SAM-ResNet [36]) often benefit from a loss function that
combines sub-models NSS, CC and KL. By using the above
mentioned fusion methods, i.e., LR, MLP, SVM-P, SVM-
RFB, M5Rules, RT, and RF, DSV measures can be produced
by combining NSS, CC and KL (note KL already shows
little impact on DSV measurement (see Table 2), but it is
included in these metrics without compromising the perfor-
mance as these metrics learn the weights of sub-models).
Since they are machine learning-based fusion method, a
10-fold cross-validation was used to generate results for a
fair comparison between methods. Meanwhile, we can use
our proposed convex optimization method to define a new
DSV metric, namely MDSV2, by fusing the local saliency
similarity measure NSS and the global saliency similarity
measure CC. Note, KL is not considered in our DSV metric
as it shows little impact on DSV measurement (see Table
2) and our method is designed to combine only two sub-
models. The performance (i.e., PLCC, SROCC and KROCC)
of these DSV measures is listed in Table 6, which shows
that our proposed MDSV2 is superior to other DSV mea-
sures. This also suggests that our proposed algorithm could
be potentially used to improve the loss function of deep
learning-based saliency models. Moreover, the performance
comparison between MDSV1 and MDSV2 has demonstrated
the contribution of the modulator (i.e., representing saliency
dispersion degree) introduced in our algorithm framework.
More specifically, the only difference between MDSV1 and
MDSV2 is that the former uses AUC-Judd and the latter
uses NSS as the local saliency similarity measure. According
to Table 7, since AUC-Judd is better than NSS, we would
expect that MDSV1 is better than MDSV2 in terms of DSV
measurement. However, as can be seen in Table 7, MDSV2 is
statistically significantly better than MDSV1 (i.e., p < 0.05
via a t-test). This means that the modulator has adaptively
combined the sub-models towards optimal performance for
DSV measurement.

Thirdly, based on our convex optimization method, we
could use SSIM or its variant as the sub-model for global
saliency similarity measure. This will produce a new family
of DSV metrics, for example, we can define a MDSV3 that
combines the local saliency similarity measure NSS and the
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TABLE 7. erformance of eight state-of-the-art saliency similarity metric and our proposed metrics, MDSV1, MDSV2, and MDSV3 for DSV measurement on the
DSV benchmark [17].

Criterion AUC-Judd AUC-Borji NSS IG SIM CC KL EMD MDSV1 MDSV2 MDSV3

PLCC 0.6816 0.2787 0.6782 0.3273 0.7475 0.7786 0.3100 0.6121 0.7915 0.8031 0.8060
SROCC 0.6502 0.2106 0.6081 0.2988 0.6962 0.7246 0.2755 0.5502 0.7481 0.7695 0.7692
KROCC 0.4363 0.1373 0.4328 0.2052 0.5063 0.5345 0.1909 0.3832 0.5513 0.5715 0.5709
RMSE 8.1487 10.6952 8.1839 10.5229 7.3978 6.9878 10.5878 8.8064 6.8903 6.5116 6.3541

global saliency similarity measure SSIM. The performance
of MDSV3 will be discussed in more detail below.

FIGURE 7. Scatter plot of the DMSS and our proposed MDSV1. Curve shows
the regression line of nonlinear logistic fitting. X-axis shows the predicted
score MDSV1 and y-axis shows the observers’ DMSS.

FIGURE 8. Scatter plot of the DMSS and our proposed MDSV2. Curve shows
the regression line of nonlinear logistic fitting. X-axis shows the predicted
score MDSV2 and y-axis shows the observers’ DMSS.

B. OVERALL PERFORMANCE
Based on our convex optimization method, we produce three
new DSV metrics, MDSV1, MDSV2, and MDSV3 which
fuse the local saliency similarity measure and global saliency

FIGURE 9. Scatter plot of the DMSS and our proposed MDSV3. Curve shows
the regression line of nonlinear logistic fitting. X-axis shows the predicted
score MDSV3 and y-axis shows the observers’ DMSS.

similarity measure. Now, we give a comprehensive evalua-
tion of these new metrics in comparison to existing saliency
similarity metrics. We calculate each new DSV metric for
all test (deviated) saliency maps of the DSV benchmark,
and quantify the ability of metric outputs to predict the
ground truth DMSS scores using PLCC, SROCC, KROCC
and RMSE. The overall performance is listed in Table 7 and
Figure 7-9 each shows the scatter plot of the DMSS and
one of the new DSV metrics. As can be seen, the proposed
metrics MDSV1, MDSV2, and MDSV3 outperform existing
alternatives for the measurement of DSV. Hypothesis testing
(i.e., t-test) was conduced and statistical results show that
each of our MSDV variant is significant (p < 0.05) better
than any other alternative metric of the state-of-the-art.

The superior performance of the proposed metrics demon-
strates the importance of taking into account both local and
global saliency similarity measures as well as saliency disper-
sion. It is worth noting that our proposed convex optimization
framework is highly adaptable as described in above when
MDSV1, MDSV2, and MDSV3 were produced. Different
combinations of local and global saliency similarity measures
can be easily implemented based on the proposed framework.
Based on our current available candidate sub-models, we
can continue to construct more variants of MDSV, such as
combing AUC-Judd and SSIM. When better sub-models are
created in future, they can be easily used to replace current
sub-models to produce new MDSV metrics.
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TABLE 8. Metric output (Mean) for saliency of high (H), medium (M), and low
(L) quality images of the DSV benchmark database [17].

Metrics Statistics H M L

AUC-Judd Mean 0.7817 0.7757 0.7526
Sig.(p) H-M:p > 0.05 M-L:p < 0.05

AUC-Borji Mean 0.6484 0.6454 0.6230
Sig.(p) H-M:p > 0.05 M-L:p < 0.05

NSS Mean 1.2785 1.2472 1.1006
Sig.(p) H-M:p > 0.05 M-L:p < 0.05

IG Mean 0.1567 0.1348 -0.0119
Sig.(p) H-M:p > 0.05 M-L:p < 0.05

SIM Mean 0.8322 0.8195 0.7661
Sig.(p) H-M:p < 0.05 M-L:p < 0.05

CC Mean 0.8945 0.8776 0.7901
Sig.(p) H-M:p > 0.05 M-L:p < 0.05

KL Mean 0.1830 0.1982 0.2995
Sig.(p) H-M:p > 0.05 M-L:p < 0.05

EMD Mean 0.8735 0.9864 1.2817
Sig.(p) H-M:p < 0.05 M-L:p < 0.05

MDSV1
Mean 0.8732 0.8515 0.7856

Sig.(p) H-M:p < 0.05 M-L:p < 0.05

MDSV2
Mean 0.8812 0.8546 0.7631

Sig.(p) H-M:p < 0.05 M-L:p < 0.05

MDSV3
Mean 0.8924 0.8463 0.7722

Sig.(p) H-M:p < 0.05 M-L:p < 0.05

DMSS (Ground truth) Mean 45.2084 49.0597 56.2730
Sig.(p) H-M:p < 0.05 M-L:p < 0.05

In addition, we analyse an important property of the DSV
measurement. One of the significant findings of the previous
study [9] is that DSV potentially forms a good basis for
image quality prediction. In terms of the association between
distorted images and their saliency maps, it is found that the
wider the saliency variation relative to the reference (i.e., the
larger the difference between the deviated saliency and the
original saliency), the higher the distortion in the image (i.e.,
the lower the image quality). Statistical analysis [17] also
revealed that the quality levels are significantly (p < 0.05)
distinguished by the subjective (ground truth) DMSS. Now,
we analyse whether this property also holds for the state-of-
the-art similarity metrics and our proposed metrics MDSV1,
MDSV2, and MDSV3. Table 8 lists the statistical analysis
for the similarity metrics. It can be seen that all metrics can
distinguish medium and low quality levels, but most of them
(except for SIM, EMD and our proposed MDSV1, MDSV2,
and MDSV3) fail in distinguishing the high and medium
quality levels. Overall, results demonstrate that our proposed
metrics give the best performance for the measurement of the
distortion-induced saliency variation.

V. CONCLUSION
Following up on our previous work of building a benchmark
for distortion-induced saliency variation (DSV), in this paper,
we proposed a novel convex optimization framework for
quantifying DSV. We have investigated eight state-of-the-art
saliency similarity metrics and their predictive performance
for DSV. From the statistical analyses, we found that the
performance of these metrics for DSV highly depends on
the dispersion degree of the saliency maps. Based on the
findings, we therefore proposed an algorithm framework

based on the convex optimization method to combine local
and global saliency similarity measures and using saliency
dispersion measure as the modulator. We have produced three
new DSV metrics, MDSV1, MDSV2, and MDSV3 based
off our proposed framework. Experimental results show that
these new DSV metrics significantly outperform existing
metrics in quantifying distortion-induced saliency variation
(DSV). Our proposed framework is highly adaptable, and can
be easily updated given better-performing local and global
sub-models are created. Going forward, the proposed DSV
metric will be used to facilitate the development of advanced
saliency models that can predict saliency of distorted images
in various image quality related applications.
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