Citation for final published version:

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Genetic errors of immunity distinguish pediatric non-malignant lymphoproliferative disorders

Lisa R. Forbes, MD, Olive S. Eckstein, MD, Nitya Gulati, MD, Erin C. Peckham-Gregory, PhD MPH, Nmazuo W. Ozuah, MD, Joseph Lubega, MD MPH, Nader K. El-Mallawany, MD, Jennifer Agrusa, MD, M. Cecilia Poli, MD PhD, Tiphanie P. Vogel, MD PhD, Natalia S. Chaimowitz, MD PhD, Nicholas L. Rider, DO, Emily M. Mace, PhD, Jordan S. Orange, MD PhD, Jason W. Caldwell, DO, Juan C. Aldave-Becerra, MD, Stephen Jolles, MD PhD, Francesco Saettini, MD, Hey J. Chong, MD PhD, Asbjorg Stray-Pedersen, MD PhD, Helen E. Heslop, MD, Kala Y. Kamdar, MD, R. Helen Rouce, MD, Donna M. Muzny, MS, Shalini N. Jhangiani, MS, Richard A. Gibbs, PhD, Zeynep H. Coban-Akdemir, PhD, James R. Lupski, MD PhD, Kenneth L. McClain, MD PhD, Carl E. Allen, MD PhD, Ivan K. Chinn, MD

PII: S0091-6749(21)01135-0
DOI: https://doi.org/10.1016/j.jaci.2021.07.015
Reference: YMAI 15204

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 9 March 2021
Revised Date: 2 July 2021
Accepted Date: 14 July 2021

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published.
in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology.
Genetic errors of immunity distinguish pediatric non-malignant lymphoproliferative disorders

Lisa R. Forbes MD, Olive S. Eckstein MD, Nitya Gulati MD, Erin C. Peckham-Gregory PhD MPH, Nmazuo W. Ozuah MD, Joseph Lubega MD MPH, Nader K. El-Mallawany MD, Jennifer Agrusa MD, M. Cecilia Poli MD, Tiphanie P. Vogel MD PhD, Natalia S. Chaimowitz MD PhD, Nicholas L. Rider DO, Emily M. Mace PhD, Jordan S. Orange MD PhD, Jason W. Caldwell DO, Juan C. Aldave-Becerra MD, Stephen Jolles MD PhD, Francesco Saettini MD, Hey J. Chong MD PhD, Asbjorg Stray-Pedersen MD PhD, Helen E. Heslop MD, Kala Y. Kamdar MD, R. Helen Rouce MD, Donna M. Muzny MS, Shalini N. Jhangiani MS, Richard A. Gibbs PhD, Zeynep H. Coban-Akdemir PhD, James R. Lupski MD PhD, Kenneth L. McClain MD PhD, Carl E. Allen MD PhD, Ivan K. Chinn MD

1. Department of Pediatrics, Baylor College of Medicine, Houston, TX
2. Department of Pediatrics, Texas Children’s Hospital, Houston, TX
3. Division of Pediatric Immunology/Allergy/Retrovirology, Texas Children’s Hospital, Houston, TX
4. Division of Pediatric Hematology/Oncology, Texas Children’s Hospital Cancer Center, Houston, TX
5. Universidad del Desarrollo, Clínica Alemana de Santiago, Santiago, Chile
6. Division of Pediatric Rheumatology, Texas Children’s Hospital, Houston, TX
7. New York Presbyterian Morgan Stanley Children’s Hospital, Columbia University College of Physicians and Surgeons, Department of Pediatrics, New York, NY
8. Section of Pulmonary, Critical Care, Allergic and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC
9. Division of Allergy and Immunology, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
10. Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
11. Department of Pediatric Hematology, Fondazione MBBM, University of Milan-Bicocca, Monza, Italy
12. Division of Pediatric Allergy and Immunology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
13. Department of Pediatric and Adolescent Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
14. Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
15. Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
*These individuals contributed equally

**Co-senior authors

Corresponding Authors:

Carl Allen, M.D., Ph.D.
Feigin Center, Suite 730.06
1102 Bates St
Houston, TX 77030
832.824.4312 (T)
832.825.1206 (F)
ceallen@txch.org

Ivan Chinn, M.D.
Feigin Center, Suite 330
1102 Bates St
Houston, TX 77030
832.824.1319 (T)
832.825.1260 (F)
chinn@bcm.edu

Manuscript: 3,687 words

Figures: 4

Tables: 1

Supplementary Materials: Tables S1-S7, Figures S1-S3, Master Data File

Funding Sources

This work was funded in part by the HistioCure Foundation (TXCH Histiocytosis Program) and the Fayez Sarofim Lymphoma Program. We also appreciate grant support from St. Baldrick’s Foundation (NACHO Consortium, CEA and KLM; Innovation Award, CEA; International Scholar Award, JL and NWO; and Fellow Award, NG). This work was further supported by the Leukemia and Lymphoma Society (Translational Research Project, CEA; Career Development Program, EPG); American Society of Hematology Scholar Award in Clinical Research (to
EPG); SPORE in Lymphoma (CA126752, HEH, CEA, EPG); National Institutes of Health K12 (K12CA090433, OSE); NIH-NIAID NIH-R01AI120989, (to JSO); Jeffrey Modell Foundation Translational Research Award and Histiocytosis Association Research Award (to IKC); and NIH-NHGRI/NHLBI UM1 HG006542 (to the Baylor-Hopkins Center for Mendelian Genomics); Fondecyt #1118222 (to MCP).

Conflict of Interest Disclosures
The authors have no significant financial interest in or other relationship with the manufacturer of any product or provider of any service mentioned in this article.
Abstract

Background: Pediatric non-malignant lymphoproliferative disorders (PLPD) are clinically and genetically heterogeneous. Long-standing immune dysregulation and lymphoproliferation in children may be life-threatening, and a paucity of data exists to guide evaluation and treatment of children with PLPD.

Objective: The primary objective of this study was to ascertain the spectrum of genomic immunologic defects in PLPD. Secondary objectives included characterization of clinical outcomes and associations between genetic diagnoses and those outcomes.

Methods: PLPD was defined by persistent lymphadenopathy, lymph organ involvement, or lymphocytic infiltration for more than 3 months, with or without chronic or significant EBV infection. Fifty-one subjects from 47 different families with PLPD were analyzed using whole exome sequencing (WES).

Results: WES identified likely genetic errors of immunity in 51% to 62% of families (53% to 65% of affected children). Presence of a genetic etiology was associated with younger age and hemophagocytic lymphohistiocytosis. Ten-year survival for the cohort was 72.4%, and patients with viable genetic diagnoses had a higher survival rate (82%) compared to children without a genetic explanation (48%, \(p = 0.03 \)). Survival outcomes for individuals with EBV-associated disease and no genetic explanation were particularly worse than outcomes for subjects with EBV-associated disease and a genetic explanation (17% vs. 90%; \(p = \)).
Ascertainment of a molecular diagnosis provided targetable treatment options for up to 18 individuals and led to active management changes for 12 patients.

Conclusion: PLPD therefore defines children with high risk for mortality, and WES informs clinical risks and therapeutic opportunities for this diagnosis.

Clinical Implications
Genetic evaluation is necessary in PLPD because it not only helps to determine the underlying mechanistic etiology of disease and carries prognostic implications, but it also directs key management decisions.

Capsule Summary
Genetic errors of immunity are prevalent in children who meet criteria for PLPD yet correlate with improved survival. EBV-PLPD without a genetic explanation is associated with increased risk for mortality. Genetic testing alters management strategies.

Key Words: lymphoproliferation, pediatric, whole exome sequencing, genomic, Epstein-Barr virus

Abbreviations
ALPS - autoimmune lymphoproliferative syndrome
CAEBV - chronic active EBV
<table>
<thead>
<tr>
<th>Page</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>CMG - Center for Mendelian Genomics</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>EBV - Epstein-Barr virus</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>EBV-PLPD - EBV-associated PLPD</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>HGSC - Human Genome Sequencing Center</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>HLH - hemophagocytic lymphohistiocytosis</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>HSCT - hematopoietic stem cell transplantation</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>IUIS - International Union of Immunological Societies</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>NK - natural killer</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>PIDD - primary immunodeficiency disease</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>PIRD - primary immune regulatory disorder</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>PLPD - pediatric non-malignant pediatric lymphoproliferative disorders</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>WES - whole exome sequencing</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Lymphadenopathy is common during normal childhood and noted on physical examination of approximately half of all children visiting a medical provider for either “well” or “sick” visits. While transient lymphadenopathy in children is rarely dangerous, long-standing lymphoproliferation may reflect underlying immune dysregulation, increase the risk for developing malignant disease or hemophagocytic lymphohistiocytosis (HLH), and/or drive life-threatening lymphoproliferative disease. Non-malignant pediatric lymphoproliferative disorders (PLPD) constitute a clinically and genetically heterogeneous group of conditions associated with a wide range of clinical consequences. PLPD are characterized by proliferating (and/or persistent) clonal or polyclonal lymphoid cells that may arise as aberrant responses to immune stimuli or represent intrinsic immune dysregulation. Clinical presentations include chronic or recurrent lymphadenopathy, splenomegaly, or symptoms secondary to organ infiltration by abnormal lymphoid cells. In some cases, patients may develop pathologic inflammation consistent with HLH or macrophage activation syndrome. PLPD are also associated with an increased predisposition toward developing hematopoietic malignancies, specifically lymphoma. When a lymph node biopsy is negative for malignancy, the diagnostic and therapeutic paths forward for children with evidence of lymphoproliferation remain poorly defined.
Although several inherited diseases of immune dysregulation have been associated with PLPD, the frequency and distribution of primary immunodeficiency diseases (PIDD) and primary immune regulatory disorders (PIRD) in children with PLPD are unknown. PIRDs encompass immune mediated disease leading to autoimmune disease and autoinflammatory conditions. Errors in more than 400 genes are now ascribed to PIDD and PIRD, and a significant number of these conditions present with clinical features consistent with PLPD.

PLPD associated with Epstein-Barr virus (EBV) can represent de novo infection, reactivation, and/or malignant transformation. PIDD patients who have impaired natural killer (NK) cell cytotoxic function may have increased susceptibility to primary infection or reactivation of viruses, including EBV. Patients with chronic active EBV (CAEBV), a rare form of EBV disease characterized by persistent and/or proliferative EBV-infected lymphocytes during primary or reactivated EBV infection, have poor outcomes, especially individuals with EBV specifically detected in NK and T cells.

Optimal management of PLPD patients requires understanding of underlying pathogenic drivers. Given the rare occurrence of PLPD and its overlapping features with ordinary reactive lymphadenopathy in children, diagnosis is often quite challenging. We therefore sought to determine the utility of whole exome sequencing (WES) in children with PLPD with a focus on impact on treatment and prognosis.
Methods

Subject Enrollment

Patients and family members at Texas Children’s Hospital or collaborating referral centers who met criteria for PLPD between 1994 to 2018 were offered participation in this study. Studies were performed under research protocols approved by the Baylor College of Medicine Institutional Review Board. All procedures involving human participants were performed in accordance with institutional and international ethical standards.

Clinical Data and Study Criteria

"PLPD" was defined as persistent lymphadenopathy, lymph organ involvement, or organ lymphocytic infiltration with duration greater than 3 months, with or without chronic or significant EBV infection in children and young adults (≤21 years). Chronic or significant EBV infection was defined by recurrent or persistent EBV viremia greater than 3 months, invasive EBV disease, or EBV DNA copy number >100,000 in either whole blood or plasma13,14. Exclusion criteria consisted of history of hematopoietic cell transplantation, solid organ transplantation, established diagnosis of autoimmune lymphoproliferative syndrome (ALPS), or malignancy prior to PLPD. Biopsy details are included in Supplemental File: Master Data Table. Data regarding co-morbidities and clinical outcomes were extracted from the medical record.

Whole Exome Sequencing and Data Analysis
Clinical whole exome sequencing was conducted by Baylor Genetics Laboratories (Houston, TX, USA). Research-based WES was performed at the Human Genome Sequencing Center (HGSC) at Baylor College of Medicine through the Baylor-Hopkins Center for Mendelian Genomics (CMG) initiative. Using 1 μg of DNA, an Illumina paired-end pre-capture library was constructed according to the manufacturer’s protocol (Illumina Multiplexing_SamplePrep_Guide_1005361_D) with modifications as described in the BCM-HGSC Illumina Barcoded Paired-End Capture Library Preparation protocol. Pre-capture libraries were pooled into 4-plex library pools and then hybridized in solution to the HGSC-designed Core capture reagent15 (52 Mb, NimbleGen), or 6-plex library pools used the custom VCRome 2.1 capture reagent15 (42 Mb, NimbleGen) according to the manufacturer’s protocol (NimbleGen SeqCap EZ Exome Library SR User’s Guide) with minor revisions. The sequencing run was performed in paired-end mode using the Illumina HiSeq 2000 platform, with sequencing-by-synthesis reactions extended for 101 cycles from each end and an additional 7 cycles for the index read. With a sequencing yield of 9.1 Gb, the sample achieved 91% of the targeted exome bases covered to a depth of 20X or greater. Illumina sequence analysis was performed using the HGSC Mercury analysis pipeline (https://www.hgsc.bcm.edu/software/mercury)16,17, which moves data through various analysis tools from the initial sequence generation on the instrument to annotated variant calls (SNPs and intra-read in/dels). Data were analyzed through the Baylor-Hopkins CMG initiative from 2015 to 2019, as previously described.18,19 Variants were prioritized according to established guidelines20,21.
with additional attention to variants in genes established by the International Union of Immunological Societies (IUIS)2, 8 to be defective in human immunologic disorders or closely associated with these genes in known protein interactions or immunologic pathways (Table S1). Genetic variants were ultimately assigned to the following categories describing potential contributions to immune pathogenesis: 1) defective control of lymphocyte activity; 2) impaired activation/cytotoxicity, cytoskeletal organization and apoptosis; and 3) dysregulated inflammation.

\textit{Statistical Analysis}

Demographic and clinical information were abstracted from medical records. The chi-squared test was used if counts exceeded \(n = 5\); otherwise Fisher's Exact test was implemented. Kaplan-Meier survival curves were generated to estimate survival from time of disease presentation to end of follow-up, and a log-rank test estimated differences across strata of interest. All statistical analyses were conducted in STATA 13.v1.
Results

Characteristics of PLPD Cohort

Clinical Features

Overall, 51 subjects from 47 families met criteria for PLPD at Texas Children’s Hospital and referring centers (Table 1). The median age at disease presentation was 3.3 years (range 4 weeks – 21 years) with nearly equal proportions of males ($n = 26$) and females ($n = 25$). Almost half (49%) of subjects were Hispanic, and 29% were non-Hispanic white. All patients met at least one PLPD criterion: 38 patients (74%) had lymphadenopathy for longer than 3 months, 32 patients (63%) had splenomegaly, and 12 patients (23%) had non-malignant lymphoproliferation on tissue biopsy. Therapeutic strategies ranged from observation to hematopoietic stem cell transplantation (HSCT). Maximum interventions in ascending order included observation (21.6%), steroids only (15.7%), biologics (19.6%), chemotherapy (21.6%), and HSCT (15.7%).

Hemophagocytic lymphohistiocytosis and EBV

Among the 51 subjects, 15 patients (29%) fulfilled at least five of eight HLH-2004 diagnostic criteria for HLH: 9 (60%) survived, and 8 (53%) had EBV-associated disease (Table 1, Table S2). Among the entire cohort, 21 (41%) had EBV-PLPD and 14 (67%) of these patients survived (Table 1, Table S3). Five of 8 (63%) patients with both EBV-PLPD and HLH survived, and 9 of 12 (75%) patients with EBV-PLPD without HLH survived.
Autoimmune and Autoinflammatory Conditions

Fifteen subjects (29%) were diagnosed with autoimmune and/or autoinflammatory conditions either prior to or concurrent with their PLPD diagnosis (Table 1, Table S4), and this subset of patients had an overall survival rate of 73%. Of the 22 subjects who had testing for double negative alpha-beta T cells, 11 had elevated levels (≥ 1.5% of total lymphocytes). ALPS was considered at some point in the medical record in 40 patients (78%), but upon evaluation none in this cohort met diagnostic criteria\(^{23, 24}\) prior to enrollment, and no functional defects in apoptosis were identified. However, ALPS-associated gene defects were subsequently identified in 2 patients in whom ALPS was not initially suspected or evaluated. For reference, 14 patients were diagnosed with ALPS at our institution during the study period (and were therefore excluded from this cohort).

Malignancy

Subjects with lymphoproliferative disease secondary to malignancy were excluded from this study (Table 1, Table S5). Four patients (8%) developed malignancy after meeting enrollment criteria for non-malignant PLPD. Median time interval between PLPD presentation and malignancy diagnosis was 7.75 years (Table S5). All of these patients (100%) initially had EBV-associated PLPD with subsequent diagnosis of either mature T-cell lymphoma (\(n = 1\)), diffuse large B cell lymphoma (\(n = 2\)), or papillary thyroid carcinoma (\(n = 1\)). Notably, only the patient with papillary thyroid carcinoma, which is not typically associated with
lymphoproliferative disease, EBV infection, or immune deficiency, survived (25%).

Genetic Findings

Genetic Errors of Immunity are Prevalent in PLPD

All 51 participants from the 47 families underwent WES. Clinical WES was completed in 19 of the families (19 probands), resulting in genetic diagnoses for only 4 children (21%). For the other 15 cases and families who underwent clinical WES which did not yield a diagnosis, 12 consented to research-level analyses of the clinical exome data, resulting in identification of an additional 8 candidate molecular diagnoses. For one of these families, research WES of 2 additional affected siblings enabled identification of the defect in PIK3CD in all 3 children.

Research-based WES analyses were also performed without clinical WES for 28 families (30 cases), leading to likely molecular diagnoses in 13 (46%) [14 cases, 47%] and further potential genetic explanations in 4 (14%) [5 cases, 17%]. Thus, 29 of 47 PLPD families (62%), or 33 of 51 affected children (65%), were found to have likely or plausible disease-associated genetic errors of immunity (Table S1). Note that "genetic errors" serves as a more appropriate term than "inborn errors" because of the identified likely somatic changes to KRAS and NRAS. Of these 29 families (33 cases) with viable genetic explanations, 21 (23 cases) had disease candidate variants in 15 IUIS-established PIDD and PIRD genes. One family (LPD019 and LPD034) was discovered to have a novel disease candidate for which the variants (in NCKAP1L) were functionally validated. In the
remaining 7 families (8 cases) with genetic disease candidates, one was hypoth-
esized to have phenotypic expansion of a known disease-associated gene
(CDC4226, 27), and 6 (7 cases) had potentially novel genetic causes of human
disease. At minimum, 24 of 47 families (51%), or 27 of 51 affected children
(53%), had pathogenic or likely pathogenic genetic etiologies for LPD. A smaller
proportion of patients (21%) who received only clinical WES resulted in like-
ly/potential diagnoses versus 61% who underwent research WES only (\(p = 0.01\)).
Further, when considering children who underwent clinical WES followed by re-
search-based analysis, 63% obtained likely/potential diagnoses, compared to on-
ly 21% who had clinical WES only (\(p = 0.003\)). Rather than suggesting inferiority
of clinical testing, these observations reflect the improvement in WES methodol-
ogy over the course of the study period. All of the LPD-associated genes were
observed to fall broadly into one of 3 categories2, 3 based on immunologic mech-
anism: 1) defective control of lymphocyte activity; 2) impaired lymphocyte activa-
tion/cytotoxicity, cytoskeletal organization, and apoptosis; and 3) dysregulated
inflammation (\textbf{Figure 1}).

\textit{Genotype/Phenotype Correlations}

The proportion of subjects with a potential molecular explanation inversely corre-
lated with age at presentation (\textbf{Figure 2A}). Patients with suggested genetic ab-
normalities were significantly younger at presentation compared to subjects who
lacked genetic findings (\(p = 0.02\), \textbf{Figure S1}). In fact, all children (\(n = 7\), 100%)
who presented with PLPD younger than one year old were found to have a viable
genetic explanation for the disease. Of the 28 patients between 1 and 8 years of age, 72% had a potential genetic etiology identified. In contrast, a molecular diagnosis for PLPD was less likely to be identified in the 16 patients who developed symptoms after 8 years of age (38%).

The proportion of patients with possible genetic explanations did not differ significantly between EBV-PLPD and PLPD without EBV. Of the 21 patients with EBV-PLPD, 67% had potential genetic explanations, and of the 27 patients with PLPD without EBV, 70% had implicated genetic findings ($p = 0.91$). Likewise, among the three immune-mediated genetic categories, the proportion of EBV-affected individuals was evenly distributed (Figure 1).

Genetic findings were more common in patients with HLH compared to patients who eventually developed malignancy, although the proportional differences did not reach a level of statistical significance ($p = 0.08$). Among the 15 patients who met HLH diagnostic criteria, a probable genetic explanation was present in 11 (73%), 9 of whom were under the age of 8 (Table S2). Fewer patients who developed malignancy subsequent to their PLPD diagnosis (25%) had a genetic disorder (Table S5).

Lack of Genetic Diagnosis is Associated with Increased Risk for Mortality

Estimated ten-year survival for the entire cohort was 72.4% with a median follow-up of 5.6 years (range 0.10 - 26.6 years, Figure 2B). Analyzing the cohort as a
whole (Figure 2C, Figure S2), patients without an identified possible genetic eti-
ology had significantly lower ten-year survival compared to patients with a poten-
tial genetic explanation (48% versus 82%, respectively, \(p = 0.03 \)). The ten-year
survival estimate for children with EBV-PLPD trended lower compared to children
without EBV (56% vs 80%; \(p = 0.13 \)). Children with EBV-PLPD frequently had
complicated courses: 5 had HLH, 4 developed malignancy, and 1 developed both
malignancy and HLH. Presence of EBV-PLPD did not predict an underlying ge-
netic defect. Most notably, however, subjects with EBV-PLPD without a viable
genetic explanation had significantly lower estimated survival than children with a
suggested genetic explanation (17% vs. 90%, \(p = 0.002 \); Figure 2D). In fact, the
group of patients who had EBV-PLPD without a genetic explanation was the cat-
egory associated with the highest risk of death.

Genetic Testing Impacts Therapeutic Decisions

Identification of an underlying genetic diagnosis in PLPD patients informs thera-
peutic opportunities (Figure 4, Table S6). Currently, targeted therapies are
available or show promise for treatment of at least 11 of the genetic conditions
diagnosed in this cohort (potentially benefitting up to 18 patients from 16 fami-
lies)\(^28\). Furthermore, successful outcomes have been reported after HSCT in 10
of the 15 IUIS-recognized genetic errors of immunity reported here (which could
treat up to 20 patients from 18 families). Prior to the availability of genetic testing
results, only two patients had received empiric treatment that would have been
supported by their ultimate genetic diagnoses. After genetic testing results were
available, 12 patients had diagnoses that led to active changes in the treatment plan through either targeted therapies or planning for HSCT. Five patients who had actionable findings after genetic testing did not have changes in their treatment plans, as they were either clinically well or lost to follow-up. Unfortunately, three patients died prior to receiving their genetic diagnoses (NRAS, KRAS, and CASP1). Importantly, 6 novel disease candidate genes were discovered, which may lead to unique opportunities for precision therapy. It becomes important to note that estimated ten-year survival was greatest (100%, n = 10) among subjects in whom control of disease was achieved using targeted biologic therapies (Figure S3).
Discussion

Clinical and Genomic Landscape of PLPD

Pediatric non-malignant LPD represents a heterogeneous group of conditions with high risk for mortality characterized by lymphadenopathy and/or lymph organ involvement with or without chronic, severe, or recurrent EBV infection. HLH has been associated with a range of lymphoproliferative disorders and was enriched in this cohort, with 15 (29%) of 51 children meeting HLH-2004 diagnostic criteria. Children with immune disorders also carry increased risk of malignancy. Despite exclusion of malignancy at presentation, 8% of this PLPD cohort subsequently developed this complication.

In order to improve knowledge of underlying immune pathogenesis mechanisms in PLPD to better inform treatment, we performed WES of 51 subjects from the 47 families in this cohort. This unbiased approach led to a genetic diagnosis in 51% to 62% of families [53% to 65% of affected children] (Figure 1), encapsulating a heterogenous collection of genetic errors of immunity. As a comparison, Stray-Pedersen et al reported a 40% overall genetic diagnostic rate, including potentially novel diseases, in patients with PIDD. Findings from this study support the clinical utility of comprehensive genetic analysis in PLPD, with high likelihood of identifying genetic alterations that inform therapeutic opportunities and clinical risk.

PLPD Risk Stratification
Overall survival was 72% with a trend towards worse outcomes associated with EBV infection, HLH, and subsequent malignancy. Earlier age at presentation with LPD positively correlated with likelihood of identifying a potential genetic diagnosis, especially in children with impaired lymphocyte activation/cytotoxicity, cytoskeletal organization, and apoptosis (Table S7). In fact, a molecular explanation was found in all 7 patients who presented at less than 1 year of age. These data particularly support the clinical utility of WES for infants and younger children with PLPD. At older ages, acquired factors, such as autoimmune disease and infection, may also contribute to development of PLPD. Even so, for 9 patients above 12 years of age, 3 had a plausible underlying genetic explanation, suggesting that genetic testing can play a critical role in diagnosis and management of PLPD in adolescents and young adults as well.

Increased Mortality in Patients with EBV-PLPD and No Genetic Explanation

EBV is the most common pathogen associated with non-malignant LPD\(^\text{32}\). In this cohort, patients with EBV-PLPD had pathogenic or likely pathogenic variants in several genes associated with atypical EBV disease: *CTLA4, LRBA, PIK3CD, CD27, RAB27A, ZBTB24*, and *STAT1*\(^\text{33}\). Additionally, somatic *PLCG2* mutations have correlated with EBV-positive Burkitt lymphoma\(^\text{34}\). Potentially disease-associated variants in *CASP1* and *CASP5* were also discovered in EBV-PLPD patients \(^\text{24, 35-46}\). *CASP1* has provocatively been implicated in IRF8-dependent EBV lytic reactivation\(^\text{47}\). EBV status alone, however, did not impact the likelihood of having a potential underlying genetic explanation for LPD (67% of EBV-
associated LPD vs. 70% of non-EBV-associated LPD). Furthermore, susceptibility to EBV infection was not significantly skewed toward any of the three immunologic mechanism categories (Figure 1). However, children with EBV-associated PLPD without an identifiable genetic diagnosis had a much higher risk of mortality (17% estimated ten-year survival) when compared to children with EBV-associated PLPD and a plausible genetic etiology (90% estimated ten-year survival; Figure 2D). EBV-LPD may evolve from 1) persistence of EBV-infected lymphocytes as a reflection of immune dysfunction and/or 2) proliferation of EBV-infected lymphocytes that endure despite intact immune function. In this series, the latter was associated with more aggressive disease, including a higher likelihood of HLH, malignancy, and need for HSCT. Early genetic testing may therefore be particularly important for children with EBV-PLPD. Importantly, CAEBV disease is characterized by persistence of EBV without a known immunodeficiency or immune regulation disorder12. This distinction underscores the importance of genetic testing in the CAEBV evaluation in order to detect genetic susceptibility to atypical EBV disease/lymphoproliferation and leave CAEBV as a diagnosis of exclusion.

Genetic Diagnoses Yield Treatment Opportunities

Early detection of genetic diagnoses in PLPD informs mechanisms of pathogenesis, facilitates assessments of clinical risks, and identifies potential therapeutic targets. In this PLPD cohort, genetic diagnoses offered improved therapeutic opportunities. Empirically, subjects received treatment with corticosteroids, biologic
therapies, chemotherapy, and/or HSCT upon diagnosis. Results from genetic
testing directly led to active changes in the management plan for 12 of the 51
(24%) patients. Unfortunately, 3 subjects died before the potential molecular di-
agnosis was identified. Specific therapeutic strategies associated with genetic
findings are outlined in Table S6. Two children (one with activated PI-3-kinase
delta syndrome type 1 and one with CTLA4 haploinsufficiency) received HSCT
prior to molecular diagnosis based on clinical features. Overall, our data are con-
sistent with results from a study in which 40% of PIDD patients studied by WES
were diagnosed with a genetic cause for disease, leading to changes in the diag-
nosis and therapeutic management for approximately 25% of patients.

WES also facilitated detection of potential disease-modifying genetic variants.
For instance, in addition to a variant of uncertain significance in CASP1, siblings
LPD010 and LPD023 both carried biallelic variants in TP53I13 that were compu-
tationally predicted to be damaging (Table S1). Although this gene is not current-
ly associated with human disease, its gene product is known to have tumor sup-
pressive properties. As a result, we cannot exclude disease contribution from
these variants. In a second example, LPD035 was found to have de novo and
paternally inherited variants in CDC42 and NLRP12, respectively. For this child,
anakinra resulted in resolution of fevers, rash, and arthritis but did not alleviate
the lymphoproliferative disease, unlike the experience reported by others. This
observation is not surprising, since anakinra does not correct the cytoskeletal
and cytotoxic abnormalities caused by defects at p.R186 of CDC42. Some of
the improvement observed with anakinra therapy may have occurred due to mitigation of the effect of the \textit{NLRP12} variant. These examples highlight the potential for characterization of molecular defects by WES to inform personalized therapy that may be more effective and safer than empiric immune suppression strategies or HSCT.

\textit{Hematopoietic Stem Cell Transplantation in PLPD}

The children who underwent HSCT had the lowest ten-year survival (38\%) compared to subjects who were given less intense therapies (\textbf{Figure S3}), likely reflecting severity of their disease as well as risks of HSCT in patients with uncontrolled lymphoproliferation. Of the 8 children who underwent HSCT, 3 who lacked a genetic explanation proceeded to HSCT due to failure of conventional intervention with empiric steroids, biologics, or cytotoxic chemotherapy. For subjects who survived transplant, 2 of the 3 survivors had genetic diagnoses (\textit{ZBTB24} and \textit{CTLA4} deficiencies). Genetic testing can therefore help to guide the need for this intervention.

\textit{Conclusions}

Although lymphadenopathy remains a common presentation in children, prolonged and severe symptoms defined by our PLPD criteria characterized a cohort at high risk for mortality for whom no precise diagnostic or therapeutic approach had been established. An unbiased genetic testing approach to delineate the molecular etiologies within our PLPD cohort strongly supports the use of ge-
Netic testing to identify potentially actionable disease-causing molecular defects (Figure 4)8. In particular, significant findings from this study show that genetic testing identified a molecular etiology in 100% of patients with PLPD under one year of age. Further, presence of a genetic error of immunity was associated with improved survival in patients, particularly subjects with EBV associated disease. Lastly, early identification of genetic diagnoses allowed for precision therapy and/or definitive HSCT, potentially avoiding the morbidity and mortality associated with uncontrolled disease and broad immunosuppression. As a result, the findings of the study support early WES and genetic characterization of patients who meet criteria for PLPD both clinically and in prospective cohort studies.
Acknowledgements

This work was funded in part by the HistioCure Foundation (TXCH Histiocytosis Program) and the Fayez Sarofim Lymphoma Program. We also appreciate grant support from St. Baldrick’s Foundation (NACHO Consortium, CEA and KLM; Innovation Award, CEA; International Scholar Award, JL and NWO; and Fellow Award, NG). This work was further supported by the Leukemia and Lymphoma Society (Translational Research Project, CEA; Career Development Program, EPG); American Society of Hematology Scholar Award in Clinical Research (to EPG); SPORE in Lymphoma (CA126752, HEH, CEA, EPG); National Institutes of Health K12 (K12CA090433, OSE); NIH-NIAID NIH-R01AI120989, (to JSO); Jeffrey Modell Foundation Translational Research Award and Histiocytosis Association Research Award (to IKC); and NIH-NHGRI/NHLBI UM1 HG006542 (to the Baylor-Hopkins Center for Mendelian Genomics); Fondecyt #1118222 (to MCP).

Author Contributions

LRF, OSE, CEA and IKC conceived of the study, designed experiments, analyzed results and approved the manuscript; LRF, OSE, NG, ECPG analyzed results and drafted the manuscript; NWO, JL, NKEM, MCP, TPV, NSC, NLR, EMM, JSO, JWC, JCAB, SJ, FS, HJC, ASP, HEH, KYK, RHR, DMM, SNJ, RAG, ZHCA, JRL, KLM participated in data review and approved the manuscript.

Conflict of Interest Disclosures
The authors have no significant financial interest in or other relationship with the manufacturer of any product or provider of any service mentioned in this article.
References:

Lv DW, Zhang K, Li R. Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathog 2018; 14:e1006868.

Table 1. Subject Information

<table>
<thead>
<tr>
<th>Demographics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at Presentation in Years, median (range)</td>
<td>3.3 (0.08-21)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>26 (51.0)</td>
</tr>
<tr>
<td>Female</td>
<td>25 (49.0)</td>
</tr>
<tr>
<td>Race/Ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>15 (29.4)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>25 (49.0)</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>2 (3.9)</td>
</tr>
<tr>
<td>Non-Hispanic Asian</td>
<td>6 (11.8)</td>
</tr>
<tr>
<td>Non-Hispanic other</td>
<td>2 (3.9)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1 (2.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LPD Characteristics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphadenopathy > 3 Months, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>38 (74.5)</td>
</tr>
<tr>
<td>No</td>
<td>13 (25.5)</td>
</tr>
<tr>
<td>Lymphocyte Infiltration on Tissue Biopsy</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>12 (23.5)</td>
</tr>
<tr>
<td>No</td>
<td>24 (47.0)</td>
</tr>
<tr>
<td>Unknown</td>
<td>15 (29.4)</td>
</tr>
<tr>
<td>EBV-associated Lymphoproliferation</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>21 (41.2)</td>
</tr>
<tr>
<td>No</td>
<td>27 (52.9)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3 (5.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associated Clinical Features:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HLH (5 of 8 criteria), n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>15 (29.4)</td>
</tr>
<tr>
<td>No</td>
<td>35 (68.6)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1 (2.0)</td>
</tr>
<tr>
<td>Autoimmune Disease Diagnosis, n (%)</td>
<td>15 (29.4)</td>
</tr>
<tr>
<td>Malignancy (following LPD), n (%)</td>
<td>4 (7.8)</td>
</tr>
<tr>
<td>Splenomegaly, n (%)</td>
<td>32 (62.8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapeutic Strategy:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Therapeutic Strategy, n (%)</td>
<td></td>
</tr>
<tr>
<td>Observation Only</td>
<td>11 (21.6)</td>
</tr>
<tr>
<td>Steroid Only</td>
<td>8 (15.7)</td>
</tr>
<tr>
<td>Biologics</td>
<td>10 (19.6)</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>11 (21.6)</td>
</tr>
<tr>
<td>HSCT</td>
<td>8 (15.7)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3 (5.9)</td>
</tr>
<tr>
<td>Treated with Rituximab</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>10 (19.6)</td>
</tr>
<tr>
<td>No</td>
<td>38 (74.5)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3 (5.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Follow-up Time in Years, (range)</td>
<td>5.6 (0.10-26.6)</td>
</tr>
<tr>
<td>Alive at End of Follow-up, n (%)</td>
<td>39 (76.5)</td>
</tr>
</tbody>
</table>
Figure Legends:

Figure 1. Genetic testing reveals underlying immune defects in children with LPD. Genetic profiles for 47 families who met criteria for PLPD and received whole exome sequencing. The graph displays the distribution of families among the 4 broad genetic categories. The table provides the list of implicated genes (and number of affected families in parentheses, if greater than 1) associated with each defective immune mechanism.

Figure 2. Features of clinical presentation and outcomes. (A) PLPD genetic profile by age at presentation. Subjects were separated into 4 groups by age in years at presentation (x-axis). A two-sample test of proportions with a 95% confidence level for each comparison was used to analyze proportional differences in genetic profile by age (n = 51). Asterisks indicate a significant (p < 0.05) difference from the <1 year old group with the same genetic profile. (B) Ten-year survival estimate from PLPD presentation to date of death or last contact in years (n = 51). (C) Ten-year survival estimate from PLPD presentation to date of death or last contact in years by presence of a genetic explanation (n = 51). (D) Ten-year survival estimate from PLPD presentation to date of death or last contact in years by EBV-associated disease and genetic explanation (n = 51).

Figure 3. Treatment altered by genetic diagnoses. Top part of figure shows the number of subjects eligible for targeted biological therapy alone, hematopoietic stem cell transplantation alone, or either therapy based upon the discovered
genetic diagnosis. Bottom part of figure depicts numbers of patients who were treated according to these strategies before and after genetic testing results became available.

Figure 4. PLPD evaluation and treatment. This schema demonstrates a framework for evaluation and treatment of children with prolonged lymphoproliferation. If symptoms persist or worsen despite standard evaluations and empiric therapies, more extensive laboratory testing characterizing EBV infection status, immune function, and HLH status may be informative. If tissue biopsy demonstrates non-malignant lymphoproliferation, results from this study indicate that genetic evaluations have high likelihood of identifying a genetic cause of disease that may inform optimal therapy ranging from observation to targeted therapy to hematopoietic stem cell transplantation.
Defective control of lymphocyte activity: pathogenic/likely pathogenic (n = 8, EBV+ = 3)

Impaired lymphocyte activation, cytoskeletal organization, and apoptosis: pathogenic/likely pathogenic (n = 10, EBV+ = 5)

Impaired lymphocyte activation, cytoskeletal organization, and apoptosis: VUS (n = 1, EBV+ = 0)

Dysregulated inflammation: pathogenic/likely pathogenic (n = 6, EBV+ = 2)

Dysregulated inflammation: VUS (n = 4, EBV+ = 2)

<table>
<thead>
<tr>
<th>Genetic Explanation</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defective control of lymphocyte activity</td>
<td>BCL6B, CTLA4 (x 2), LRBA, PIK3CD (x 3), PIK3R1</td>
</tr>
<tr>
<td>Impaired lymphocyte activation, cytoskeletal organization, and apoptosis: pathogenic/likely pathogenic</td>
<td>CD27 (x 2), CDC42, DOCK4, FAS, KRAS, NCKAP1L, NRAS, RAB27A, ZBTB24</td>
</tr>
<tr>
<td>Impaired lymphocyte activation, cytoskeletal organization, and apoptosis: VUS</td>
<td>IKZF1</td>
</tr>
<tr>
<td>Dysregulated inflammation: pathogenic/likely pathogenic</td>
<td>CASP1, STAT1, STAT3 (x 2), XIAP (x 2)</td>
</tr>
<tr>
<td>Dysregulated inflammation: VUS</td>
<td>BIRC6, CASP1, CASP5, PLCG2</td>
</tr>
</tbody>
</table>
Figure 2

A) Lymphoproliferative Genetic Profile by Age at Presentation (Years)

B) Ten-Year Survival Estimate Among Lymphoproliferative Patients (n = 51)

C) Ten-Year Survival Estimate by Evidence of Genetic Explanation (n = 51)

D) Ten-Year Survival Estimate by Genetic Explanation and EBV-Associated Disease (n = 48)

Legend:
- No Genetic Explanation
- Defective Control of Lymphocyte Activity
- Impaired Activation/Cytotoxicity, Cytoskeletal Organization, and Apoptosis
- Dysregulated Inflammation

P = 0.03

Notes:
- All other comparisons did not reach a level of statistical significance at P = 0.05.
Subjects with Clinically Actionable Treatment Options

Targeted Biological Therapy

Hematopoietic Stem Cell Transplantation

Prior to genetic testing results available

After genetic testing results available

Actively changed

Not changed

Deceased

2

12

5

3

2

16

4
PLPD Evaluation and Treatment

Lymphadenopathy evaluations and empiric treatment

Specific lab testing:
1. EBV (Blood and tissue)
2. Immune function
3. ALPS & HLH evaluations
4. Tissue biopsy

Non-malignant

Informed therapy
- Observe/Support
- Targeted Therapy
- HSCT

Figure 3