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Continuum models describing ideal nematic solids
are widely used in theoretical studies of liquid
crystal elastomers. However, experiments on
nematic elastomers show a type of anisotropic
response that is not predicted by the ideal models.
Therefore, their description requires an additional
term coupling elastic and nematic responses, to
account for aeolotropic effects. In order to better
understand the observed elastic response of
liquid crystal elastomers, we analyse theoretically
and computationally different stretch and shear
deformations. We then compare the elastic moduli
in the infinitesimal elastic strain limit obtained from
the molecular dynamics simulations with the ones
derived theoretically, and show that they are better
explained by including nematic order effects within
the continuum framework.

1. Introduction

Liquid crystalline solids are responsive multifunctional
materials that combine the flexibility of polymeric
networks with the nematic order of liquid crystals [1,2].
Owing to their molecular architecture, they can exhibit
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dramatic spontaneous deformations and phase transitions, which are reversible and repeatable
under heat, light, solvents and electric or magnetic fields [3-12]. However, their physical
behaviour under combined mechanical loading and external stimuli still needs to be fully
elucidated.

For ideal monodomain nematic elastomers, with the mesogens uniaxially aligned throughout
the material, a continuum model is given by the so-called neoclassical strain-energy density
introduced in [13-16]. This is a phenomenological strain-energy function that extends the neo-
Hookean model for rubber [17], where the parameters are derived from macroscopic shape
changes at small strain or through statistical averaging at microscopic scale [18,19]. Since
elastic stresses dominate over Frank elasticity induced by the distortion of mesogens alignment
[20-22], Frank energy [23,24] is generally neglected. Extensions to polydomains where every
domain has the same strain-energy density as a monodomain are provided in [25,26]. These
descriptions have been generalized by employing other hyperelastic models, such as Mooney-
Rivlin, Gent and Ogden, which better capture the nonlinear elastic behaviour at large strains
[27-29] (see [30,31] for molecular interpretations of the Mooney-Rivlin and Gent strain energies
in rubber elasticity). Further generalizations can be found in [32,33]. Numerical studies of liquid
crystal elastomers (LCEs) are presented, for example, in [33-35], where the finite-element method
is used, and in [36,37], where molecular Monte Carlo simulations are employed.

Usually, when the elastic properties of a material are investigated, uniaxial deformations,
which are easier to reproduce experimentally, are examined first [38—41]. For a purely elastic
isotropic material, the shear modulus is then inferred from a universal relation between elastic
moduli from the classical theory. To study the elastic responses of nematic monodomains, uniaxial
deformations were assumed in [38] (see also [42]), where it was found that, if only the elastic
energy was considered, then the stretch moduli in the direction parallel to the director and
in a perpendicular direction were equal. However, experiments clearly show an aeolotropic
effect; namely, the stretch moduli depend on the direction in which they are measured. To
capture this experimentally observed response of the material, the nematic energy [43] was then
also taken into account. Experimental results for monodomains where the tensile load formed
different angles with the initial nematic director were reported in [39,44]. In [45], measurements
of five independent elastic constants derived from three uniaxial tests, with the director parallel,
perpendicular or at an angle of 45° relative to the loading direction, respectively, were obtained
for a nematic monodomain treated as a classical transversely isotropic material. However, for
many complex materials, shear deformations can reveal important additional mechanical effects,
which may not be observed or inferred from uniaxial tests. In particular, to assess LCE materials,
shear deformations with the direction of shear either parallel or perpendicular to the nematic
director need to be considered independently of uniaxial stretches [46-52]. For example, on
the one hand, it was found experimentally in [38] that, if Ej and E, are the stretch moduli
in a direction parallel or perpendicular to the nematic director, respectively, then Ej/E| > 1
at low temperature, E|/E; <1 at high temperature and E|/E; =1 at the transition point. On
the other hand, if 4 and p) denote the shear moduli in a direction parallel or perpendicular
to the nematic director, respectively, then it was reported in [47,48,51] that u)/n1 =~ 1 in the
isotropic phase and pj/ni <1 at temperatures below that for the nematic-isotropic phase
transition. Therefore, from a symmetry point of view, monodomain LCEs are transversely
isotropic materials with five independent elastic constants and the distinguished direction
given by the nematic director. However, despite the constitutive symmetry about the direction
given by the nematic field, the mechanical responses of LCEs differ from the known elastic
behaviours in traditional transversely isotropic elastic materials where, typically, Ej > E| and
Wy > 1 [53-56].

The aim of this study is to develop an explicit approach for the derivation of elastic moduli that
captures the aeolotropy of liquid crystalline elastomers. This approach represents an extension of
the general theoretical framework by which similar elastic moduli were obtained for hyperelastic
materials [57]. In the case of nematic solids, these moduli include information about both
the elasticity of the polymeric network and the mechanical responses of the liquid crystal
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molecules. In §2, we recall the neoclassical model for ideal nematic elastomers, with the isotropic
phase at high temperature as the reference configuration [29,58-61], instead of the nematic
phase at cross-linking [14-16,32,33,62,63]. Phenomenologically, this choice is motivated by the
multiplicative decomposition of the effective deformation into an elastic distortion, followed
by a natural stress-free shape change [64-67]. This multiplicative decomposition is similar to
those found in the constitutive theories of thermoelasticity, elastoplasticity and growth [68,69]
(see also [70,71]), but it is also different in the sense that the elastic deformation is directly
applied to the reference state. The elastic stresses can then be used to study the final deformation
where the stress-free geometrical change also plays a role [65]. In §3, we calculate the two
stretch moduli under small elastic uniaxial tension and finite natural deformation when the
nematic director is either parallel or perpendicular to the tensile direction, respectively. In §4,
we further consider three shear deformations where the elastic component is a simple shear,
while the nematic director is either parallel to the shear direction, perpendicular to the shear
direction or perpendicular to the shear plane, respectively. When the elastic shear strain is
small and the natural deformation is finite, we obtain effective shear moduli with the relative
ratio equal to the natural anisotropy parameter of the nematic material. Note that we use the
uniaxial and simple shear deformation, respectively, to describe the elastic contribution to the
deformation rather than the overall deformation, which also contains a natural deformation
component. To derive the elastic moduli, we then take the limit of small elastic strain, while
the natural deformation remains finite. This enables us to rigorously adapt the elasticity theory
to nematic elastomers (for a review on elastic moduli, see [57]). To account for the physical
aeolotropy of real nematic solids, in §5, we extend the continuum model by incorporating a
nematic energy, and show how the stretch and shear moduli corresponding to the ideal case are
modified by the additional information. The parameters entering the LCE model characterize
either the change of the microstructure due to nematic effects or the behaviour of the material
in large natural deformations. Nevertheless, in the limit of small elastic deformations and for
fixed nematic parameters, the system behaves indeed like a transverse isotropic material with
five independent elastic constants. In physics, aeolotropy refers to materials exhibiting different
properties depending on the direction in which they are measured, or simply defined by Lord
Kelvin as “That which is different in different directions’ [72, p. 122]. While traditional anisotropic
elastic materials also exhibit aeolotropy, we refer to nematic solids as aeolotropic materials, and
reserve the characterization of isotropic or anisotropic for the elastic part of the energy. In §6, we
present a molecular dynamics simulation of a nematic elastomer, and analyse its response under
similar stretch and shear deformations as for the continuum model to illustrate the aeolotropic
mechanical responses. In §§3-5, physical quantities are treated symbolically, and units of measure
only appear in §6, where datasets are used to illustrate the theory. The final section contains
concluding remarks.

2. Prerequisites
The strain-energy density describing an ideal monodomain nematic liquid crystalline (NLC) solid
takes the general form [64-67,73]

WO(E,n) = W(A), 1)
where F represents the deformation gradient from the isotropic state, n is a unit vector, known as
the director, for the orientation of the nematic field and W(A) denotes the strain-energy density of

the isotropic polymer network, depending only on the (local) elastic deformation tensor A. The
tensors F and A satisfy the following relation:

F=GA, 2.2)

where

G=a"’n@n+a"?1-n®n) (2.3)
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is the spontaneous deformation tensor describing a change of frame of reference from the isotropic
to a nematic phase (e.g. [74]). In (2.3), 2 > 0 represents a temperature-dependent stretch parameter,
v is the optothermal analogue to the Poisson ratio [74] and relates responses in directions parallel
or perpendicular to the director n, ® denotes the tensor product of two vectors and I=diag
(1, 1, 1) is the identity tensor. It is assumed here that 2 and v are spatially independent. The ratio
r=al/3/a=/3 = q+D/3 represents the anisotropy parameter, which, in an ideal nematic solid, is
the same in all directions. In the nematic phase, both the cases with r>1 (prolate molecules)
and r <1 (oblate molecules) are possible, while when r=1 the energy function reduces to that
of an isotropic hyperelastic material. Nematic elastomers have v =1/2, while for nematic glasses
ve(1/2, 2) [10,75]. Natural strains in NLC glasses are typically of up to 4%, whereas for NLC
elastomers these may be up to 400%. The nematic director n is an observable (spatial) quantity.
Denoting by ng the reference orientation of the local director corresponding to the cross-linking
state, n may differ from ng both by a rotation and by a change in r. In nematic elastomers,
which are weakly cross-linked, the director can rotate freely, and the material exhibits isotropic
mechanical effects. In nematic glasses, which are densely cross-linked, the director n cannot rotate
relative to the elastic matrix, but changes through convection due to elastic strain and satisfies
[21,22,58,74,76]
Fng

= . 2.4
"= Fny| @4)

This constraint enables patterning of the director field at cross-linking and guarantees that the
‘written-in” pattern remains virtually the same during natural shape changes [21,22,77].

For a hyperelastic material described by the strain-energy density W = W(A), the Cauchy stress
tensor is equal to

T = (det A)_l%AT —pl=—pl+ BB+ B 1B}, (2.5)

where the so-called hydrostatic pressure p denotes the Lagrange multiplier for the
incompressibility constraint detA=1, f1=20W/dl; and p_1=-20W/dl, are material
parameters, B= AAT is the left Cauchy-Green elastic deformation tensor and I1, I, are its first two
principal invariants (I3 =1 owing to incompressibility). The corresponding first Piola-Kirchhoff
stress tensor is equal to

P =TCof(A), (2.6)

where Cof(A) = (det A)A’T. For an NLC solid characterized by the strain-energy density given
by (2.1), the stress tensors when the director is ‘free’ to rotate relative to the elastic matrix and
when the nematic director is ‘frozen” and satisfies condition (2.4) are presented in appendix A
(see also [65]).

In the next sections, we obtain two stretch moduli under small elastic uniaxial tension and
three nonlinear shear moduli under elastic simple shear deformations, respectively, which combine
elastic and nematic effects. In our calculations, the nematic director is ‘frozen’, but the case where
the director is ‘free” can be treated similarly, provided that the elastic deformation is small. In
particular, when the director is free to rotate and a tensile force is applied perpendicular to
the director, experimental results show that there is a range of strains, up to 10% (e.g. [78,79]),
before the director rotates in response to the applied force. However, the local nematic order
might be altered. We further note that, in finite elasticity, the strain-energy density W(A) and the
stress relationship (2.5) characterize an isotropic material. Yet, the response of a nematic solid
also depends on the director orientation. For instance, we show that the ideal model exhibits
an anisotropic response under stretch if the natural deformation is finite. There are, in fact, two
possible contributions to aeolotropy. First, in the ideal case, the elastic energy of the system is
isotropic but the full energy depends on the orientation of the nematic field as well [59]. Second,
there is a component of the energy that depends directly on the nematic order through the so-
called Q-tensor [23]. In this case, we need to extend the discussion by including this nematic
energy density as developed later in the paper.
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Figure 1. (a) Nematic material with the director parallel to the applied tensile force, and (b) the effect of varying the parameter
a on the first Piola—Kirchhoff tensile stress of an ideal material when 1« =1and v = 1/2. (Online version in colour.)
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3. Stretch moduli

The stretch modulus of a homogeneous isotropic elastic material is obtained under uniaxial
tension with the gradient tensor in a Cartesian system of coordinates taking the form [57]

/YA 0 0
A= 0 x» 0 |, (3.1)
0 0 1/Vx

where A > 1 is the stretch ratio in the direction of the applied tensile force. Assuming that the only
non-zero component of the associated first Piola—Kirchhoff stress, given by (2.6), is in the tensile
direction, i.e. Py > 0, it follows that

B-1 1
Py = —— (A== 3.2
22 (/31 ; ) ( A2> (3.2)
The Young modulus at small strain is then defined as [57]

P, P,
E= lim 2 _fjim 2
am—1Ap —1 i1 A —

1= 311_{111(/-‘31 - B-1)=3u, (3.3)

where Py is the tensile first Piola-Kirchhoff stress given by (3.2), » — 1 is the corresponding tensile
strain (for different definitions of an elastic strain, see [57]) and u =1im ;_,1(81 — B_1) is the shear
modulus at small strain.

To derive stretch moduli for the nematic material, we apply the tensile force in a direction that
is either parallel or perpendicular to the reference nematic director [45]. In each case, we assume
an overall deformation where the elastic component is a uniaxial tension with the deformation
tensor given by (3.1). Then, we calculate the stretch moduli by taking the ratio between the first
Piola-Kirchhoff tensile stress and the associated strain in the limit of small elastic tensile strain,
while the natural deformation remains finite.

(a) Nematic director parallel or perpendicular to the tensile direction

When the tensile force is acting in the second Cartesian direction and the reference director is
parallel to the tensile force, the nematic director in the current configuration and the associated
spontaneous deformation tensor take the following form, respectively (figure 1a):
0 av® 0 0
nW=|1|, W= 0 47 o0 . (3.4)
0 0 0 g3
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Figure 2. (a) Nematic material with the director perpendicular to the applied tensile force, and (b) the effect of varying the
parameter a on the first Piola—Kirchhoff tensile stress of an ideal material when p = 1and v = 1/2. (Online version in colour.)
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When the reference director is perpendicular to the tensile force, the nematic director in
the current configuration and the associated spontaneous deformation tensor are, respectively
(figure 2a),

1 al’? 0 0
n@=|o|, c@=| 0o a3 o |. (3.5)
0 0 0 as

Assuming that the elastic deformation tensor A is of the form given by (3.1), for the deformation
gradient F and the associated first Piola—Kirchhoff stress, the principal components in the
direction of the tensile load are, respectively,

1 (ncl _
F(22) = )\.al/?), P:(ZI;C ) =a 1/3P22 (36)
and
Fézz) = )\ufv/3, ’ﬁér;cZ) = a”/3P22, (3.7)

where Py, is the first Piola—Kirchhoff stress given by (3.2). These are illustrated in figures 1b and
2b, respectively, for £ =1 and v=1/2. We define the following stretch moduli for the nematic
material under the above two deformations, respectively:

"(ncl) _1/3P P
EO —fim — 2 —lim "2 _ 2By 2 g2 (3.8)
=1 13 51430 —1) i>1a—1
Fyy —a
and
’15(nc2) U/3P P
E@—lim ——2 im0 2 _ 2By — 2 g3, (3.9)
A1 @ _ v as1a B3 —1) 1A —1
Fyy —a

where E=3u is Young’s modulus defined by (3.3). Therefore, the stretch moduli given by (3.8)
and (3.9) satisfy the following relation:

E@ )
_ 20w+1)/3 _
= =" =7 (3.10)
We infer that: if r > 1, then EO) < E@: if r <1, then E®) >~ E@; if r =1, then E®) = E@ =E.

4. Shear moduli

To obtain the shear modulus of a homogeneous isotropic elastic material, a standard
deformation is the simple shear, with the following gradient tensor in a Cartesian system of
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Figure 3. (a) Nematic material with the director parallel to the applied shear force, and (b) the effect of varying the parameter
a on the first Piola—Kirchhoff shear stress when 1« = Tand v =1/2. (Online version in colour.)
coordinates [57]:

1
A=|0 4.1)
0

S
==

where k>0 is the shear parameter. The non-zero components of the associated Cauchy stress
tensor, given by (2.5), are

Tin=pik>, Tan=p-1k*, Tin=kB — B-1), (4.2)

and the non-zero components of the corresponding first Piola—Kirchhoff stress tensor, given by
(2.6), are

P11 =Ty —kT12, Ppp=Txn, Pi2=Ti2, Pxn=-kT1. (4.3)
The shear modulus at small shear is then obtained as follows [57]:

po= fim 22 = fim 512 — tim (51— ). (4.4
To obtain suitable shear moduli for the nematic solid, we assume an overall deformation where
the elastic component is a simple shear with the deformation tensor given by (4.1). In general,
one cannot easily separate the individual contributions to the deformation gradient given by (2.2).
However, for the three shear configurations adopted here, it is possible to write these components
explicitly. Then, in each case, we can calculate the shear modulus by taking the ratio between the
first Piola-Kirchhoff shear stress and the corresponding shear strain in the limit of small elastic
shearing strains, while the natural deformation remains finite.

(a) Nematic director parallel to the shear direction

When the reference nematic director n(()l) =1[1,0,0]" is parallel to the direction of applied shear
force, in the current configuration, we have (figure 3a)

—_

nD=10
0

/3 0 0 (4.5)

GV=| 0 a3 0
0 0 av83
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(@)

Figure 4. (a) Nematic material with the director perpendicular to the applied shear force, and (b) the effect of varying the
parameter a on the first Piola—Kirchhoff shear stress when p« = 1and v = 1/2. (Online version in colour.)

By (2.2) and (A4), the corresponding shear strain and first Piola—-Kirchhoff shear stress for the
nematic solid are, respectively,

where P15 is the shear component of the elastic first Piola-Kirchhoff stress given by (4.3). These are
represented in figure 30,

N X E—

7 (nc2)

P

12

0 0.1 0.2 0.3 0.4 0.5 0.6
ka3

Fglz) =ka'/® and ﬁ(ﬁd) =a"13Py,, (4.6)
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for u =1 and v =1/2. We now define the shear modulus for the nematic

material at small shear as follows:

o) ﬁ(lrﬁd) P2 o3 2/3 2/3
© :111_135 F%) =]£1_r)157a =111_r3(1)(ﬂ1—/371)a =pa 7. 4.7)

(b) Nematic director perpendicular to the shear direction

When the reference nematic director n(()z) =[0,1,0]" is perpendicular to the direction of shear, we
obtain in the current configuration (figure 4a)

k
1

C S S

\/Im 0

ka3 4 a3 k@3 — a3y 0 (4.8)
1
and G® = a1 k@3 — a3 Ka=v/B 4 ql/3 0
0 0 a*l)/?)(kz + 1)

For sufficiently small values of k, the corresponding shear strain and first Piola-Kirchhoff shear
stress of the nematic material take the form

FO =ka'?, P2 = q-03GE Py, — GOPy), (4.9)

with the components P1o and Py; of the elastic first Piola—Kirchhoff stress given by (4.3). These are
illustrated in figure 4b, for =1 and v =1/2. In this case, the associated shear modulus at small

shear is equal to

S(ne2)

P
2) _1; 12 _1: _ (v=1)/3 _ v=1)/3
© —,}131 522) —1113(1)(/31 B-1)a =pa - (4.10)

0 F
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Figure 5. (a) Nematic material with the director perpendicular to the shear plane, and (b) the effect of varying the parameter
a on the first Piola—Kirchhoff shear stress when 1« = Tand v =1/2. (Online version in colour.)

(c) Nematic director perpendicular to the shear plane

When the reference nematic director n(()s) =[0,0,1]7 is perpendicular to the shear plane, we have
(figure 5a)

0 a0 0
1 0 0 a4l

By (2.2) and (A4), the corresponding shear strain and first Piola—Kirchhoff shear stress for the
nematic solid are, respectively,

F(l‘? =ka ¥® and ﬁgca) =a"Py, (4.12)

where P15 is the shear component of the elastic first Piola—Kirchhoff stress given by (4.3). These are
represented in figure 5b, for =1 and v =1/2. We now define the shear modulus for the nematic
material at small shear as follows:

’ﬁ(nCS)

P
@ o F12 P12 93 _ 20/3 _  2v/3
n _IPHE) F%) _Ilmz) p a _%m})(ﬂl B_1)a uatre. (4.13)

A comparison of the shear moduli given by (4.7), (4.10) and (4.13) implies

u® @

_ (v41)/3 _
—=—==a =r. (4.14)
w®

We conclude that: if r>1, then u® <pu@ < u®; if r<1, then 1@ > pu@ > 1®); if r=1, then
uD = @ = B = .

5. Contribution of the nematic free energy

The results of §§3 and 4 imply that, for an ideal nematic material, the effective shear and
stretch moduli respect the same inequalities (e.g. if ¥>1, then we have both ED <ED and
1 < 1@ <143, and so on). However, numerous experimental results have demonstrated that
there are significant differences between the behaviour of real nematic solids and that of ideal
nematic materials analysed in the previous sections [38,42,45]. In particular, it was found that
the ideal behaviour of the stretch and shear moduli ratio does not match experimental results.
We therefore extend the strain-energy function by taking into account the nematic free-energy
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density, in addition to the isotropic strain-energy density W™ = W®)(F, n), given by (2.1), as
wce) — wno) 4 py (5.1)

where W, is equal to [38,43] (see also [19], ch. 2)

1 4 2
Wi(Q) = 34tr(QQ) — 5 Btr(QQQ) + 5 Ctr(QQQQ) + -+, (5.2)

with Q the order parameter tensor. This macroscopic tensor parameter is used to describe the
orientational order in nematic liquid crystals [23] (see also [80]). For incompressible nematic
elastomers subjected to uniaxial stretches, the contribution given by (5.2) to the total strain-energy
density described by (5.1) was originally analysed in [38]. Following a similar approach, we
restrict our attention to the one-term strain-energy density of the form (2.1) (see also [58]),

W®(E, n) = %tr(FTG_ZF), (5.3)

where ‘tr” denotes the trace operator and > 0 is the elastic shear modulus at small strain. This
strain-energy density can be expressed equivalently as follows [14]:

WO (F, n) = %tr(G%FTG_zf), (5.4)

where Go = diag((})"/?,(19)"/2,(19)"/?) is the natural deformation tensor corresponding to the

cross-linking state (with eigenvalues (lo)l/2 and (l0 Y2 denoting the direction parallel

to the director and L indicating an orthogonal direction), G = dlag(li/ 21 5/ 21 é/ 2) is the

natural deformation tensor in the current configuration (with eigenvalues ll/ 2 lé/ 2, l;/ %)
and F satisfies the relation F=FGy [29]. When the order parameter tensor takes the form
Q=diag(—(Q—-0)/2,—(Q+1b)/2, Q), where Q and b are scalar values (see also [19], §2.2), we

consider the nematic energy described by (5.2) and approximate it by [38]

~ 1 1 1 1
WiQ b) = 5AQ* = 2BQ° + 1CQ* + -+ 2(A+2BQ+CQ2 + - WP + - (55)
We therefore approximate the total strain-energy density defined by (5.1) as
wilee) — ynd) iy, (5.6)

where W) = Jync) (F,n) and Wn W,,(Q b) are given by (5.4) and (5.5), respectively. For the
components of G2, the first-order approximation of the Taylor expansions about the backbone
order parameters in the initial state (Q, b) = (Qo, 0) are [38]

I I I I
Ll (1 ”QaQ) zzmzfi< =250 + 120” ) lg%l‘i( lQ(SQJr 1301’ ) (.7)
L

II l

where [ o =3l1/0Q and [ | o =3l/3Q = dl3/9Q denote the first derivatives of /; and I, (and also
I3) with respect to Q at b =0, respectively, and I, , = 81> /db and I3, = 813/ db are the first derivatives
of I and I3, respectively, with respect to b at Q = Qp.

For a nematic solid with the strain-energy density given by (5.6), we derive the stretch and
shear moduli in a direction parallel or perpendicular to the nematic director, as follows.

(a) Extension parallel to the director

When the nematic director is uniformly aligned in the first direction, we take F= diag(i1, 12, 3),
where A1 =1 >1 and A, = A3 =1/V2. Assuming infinitesimal extension, we have A=1+¢ and
21 =1—¢, where ¢ denotes the infinitesimal strain. At b=0, the elastic strain-energy density is
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approximated by
~ l l
WO~ B2 oty 2 B (209 | 9,158 ) 50 :
702+ 27 = (1 et a0 8)

This contributes to the small variation in total strain-energy density defined by (5.6)

~ 3,bL l , IJ_ 1
stitlce) _ 7Ez o (10Q zOQ £5Q + ZW(QS)((SQ)ZI (5.9)

where W(ke) 32 wlce) / 8Q2|Q Qo- The above quadratic function in §Q has a minimum of

2
minsfe = 32| (o Loy | (5.10)
8Q 2 317\/865) lﬁ 19

Denoting E =3, the stretch modulus in a direction parallel to the nematic director is then

2
_ ko (he Le
Qo M L

(b) Extension perpendicular to the director

When the director is aligned in the first direction and F= diag(A1, A2, A3), where A1 =23 =1/ VA
and A =1 > 1, assuming A =1+ ¢ and 271 =1 — ¢, with ¢ the infinitesimal strain, the elastic strain-
energy density given by (5.4) is approximated by

N ! 1 ! N 1
Wed~ £a2 4207 = £ (07122 422 a1l ) o0 - £ (0220 427120 )b (5.12)
2 ) lJ_ lJ_ 2 l lJ_

This contributes to the total strain-energy variation

- o |
sivice) _ 37/‘82 L H (Q _ LQ) 0L

19 1 2\N 1

I 1
(22b - 3b> eb+ = W(lce)(éQ)2 + = W lce)bz
(5.13)

(lee) _ g2 3y(1ce) /b2 |- Minimizing the above function

where I/NVSCQ is defined as before and W
with respect to §Q and b gives

2 2
min 5W(lce) = 3—“32 1— H lH& _ lJ‘i’Q M 2127117 _ 13717 ) (514)
(6Q,b) 2 12WgC5) lﬁ 19_ 12I/v(lce) 19_ Z(JJ_

Denoting E =3y, the stretch modulus in a direction perpendicular to the nematic director is

E =El1-—* (Mo Lo : n(ple By 2 (5.15)
Rl B 8 ) palo\"t 8

QQ

(c) Shear parallel to the director

We recall that a simple shear deformation of a hyperelastic material is equivalent to a biaxial
stretch (‘pure shear’ [81]) in the principal directions [82]. We assume that the director is aligned
uniformly in the first (or second direction), and F = R diag(1, A2, A3), where A1 =1 >1, A, =1/
and A3 =1, and R is the rotation by an angle of 7 /4 in the plane formed by the first two directions.
Taking A =1+ ¢ and 171 =1—¢, with ¢ the infinitesimal strain, the elastic strain-energy density
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is approximated as follows:

~ 1 0
W) — % |:)»2 (0” + 1) +272 (é + 1) +2}
I l”

_ i ,2he ﬁﬂ L a2le i+1 s 1“hb Azﬁ—i—)ﬁz b.  (5.16)
4 10 ZO ZO 10 4 10 lO : :
II L 1 [I s 1

This contributes to the total strain-energy variation

N YL wlio (0 o (11
SW“"):ZS Fa il ol il B Bt ll Bl RO
no 0\ no\D

0
I

whyp (1 1sce), o2, L ece),2
-5 (l(i _ )sb+ 5 W0 (6QP + S W2, (5.17)

with ng) and Wélbce) defined as before. We minimize this function with respect to §Q and b,

ey _ M B YL Lo (K ’
min sW0D =26 1 | 0+ 5 +2) — = | o (e +1) -5 * 2
(3Q,b) I lII 2WQQ l|| I I lH

I 2 lo 2
M 2,b I
s (i) () } o

The linear shear modulus in a direction parallel to the nematic director is then

00 Lo (1 Lo (0 ?
_ M I 1L M 1L (I LO ('L
M=z (lo+lo+2> ) [,o PO ol
1 I QQ Il L1 L1 I
2 0 2
© oY) i
—— 2 (2} (L-1) ¢}, (5.19)

i (7) (2

(d) Shear perpendicular to the director

Next, assuming that the director is aligned in the first direction, we set F = diag(A1, 22, A3), where
M=1,A=1>1and A3=1/A. Taking A=1+¢ and 2~1=1—¢, with ¢ the infinitesimal strain,
the elastic strain-energy density is approximated by

_ I I I I I
WO~ D1 a2 4072 - B (R 20 2@ ) 50 - B (220 15230 )y (5.0
2 2K 0 0 2\"' 0 ]

This contributes to the small variation in total strain-energy density

~ by Iy 1~a
S0 = g2 — <10 - eb+ §Wz(7bce)b2/ (5.21)
1 1

where WS;G) is defined as before. The above quadratic function in b has a minimum value of

2
_ Ly |
min sT(ce) — ;g2 [1 __F (“’ - 3") } ‘ (5.22)

A

The linear shear modulus in a direction perpendicular to the nematic director is equal to

2
wo (bp By
pr=pm|l-—=\75 -3 |- (5.23)
{ 2 (l‘i 13)}
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(e) Deviation from isotropy

The stretch and shear moduli Ej, Ei, pj and p, defined by (5.11), (5.15), (5.19) and (5.23),
respectively, contain information about the nematic order, in addition to the small strain elasticity
of the polymer matrix, described by Young’s modulus E and shear modulus u. Proceeding as in
§§3 and 4, with We) instead of wine), by replacing E with Ej in (3.8) and with E in (3.9), u with
w) in (4.7) and (4.10), and with x| in (4.13), we obtain

EQ EL, u® 4@ g

W_?”r, W:r, W:ﬂ—”r. (5.24)

We deduce that: if Ej/E| > 1, then E@/EW <7 if Ej/E; <1, then E@/EM > % if yu/py > 1,
then @ /u@ < if /L <1, then u®/u@ = In particular, when r>1, if Ej/E; > 2>1
and p)/p <1, then EW > E@ and u® < 1@ <1, which is qualitatively different from the
behaviour of ideal nematic solids or any standard anisotropic hyperelastic material. In the next
section, we show how to access these moduli through molecular dynamics simulations.

6. Molecular dynamics simulation

We performed molecular dynamics (MD) simulations to synthesize LCEs, form nematic LCEs
and characterize their response under stretch and shear deformations. Given its accuracy and
efficiency for modelling mesogen—polymer systems, we used a hybrid force field, including
Gay-Berne coarse-graining potentials for mesogen—-mesogen interaction and Lennard-Jones (L])
potentials for united atoms of hydrocarbon groups, CHy, in polymer chains. Our computer
simulations [83] can serve as a virtual experiment to observe the macroscopic mechanical
behaviour, which can then be compared directly with the continuum theory, and to calculate the
physical quantities arising from atomistic movement and gain a mechanistic understanding.

In the MD simulations of LCEs, the potential energy of the whole system includes
contributions from bond stretch, angle bending, dihedral rotation, non-bonded LJ interaction
between united atoms (a-a), anisotropic non-bonded Gay-Berne interaction between mesogens
(m-m) and the extended Gay—Berne interaction between united atoms and mesogens (a-11):

E=Epond + Eangle + Edihedral + Ea-a + Em-m + Ea-m, (6.1a)
where
Nl(,l) N[(,Z)
ky (1)y2 kp )12
Eoona = _ > (i =1y + 3 220 — 197, (6.1b)
i=1 i=1
N NS
Bangle = ) (6= 007 + 3 216 — 6@, (610)
i=1 i=1
NV 3 N® 3
1 2
Edihedral = Y 3 Co1(cos )" + 3 Y €2 (cos ¢, (6.1d)
i=1 n=1 i=1 n=1
N©@
' | aiap cic
=Y |2 - 22 619
i1 | Tij Tij
Nz(;n-m)
and Em—m = Z u?’(A]/ A]/ rij/ YV, € 6) . T](A,, A]/ v) X (Alr A]/ rijl S) (61f)

i=1
In the above equations, Epong represents a harmonic bond style, with I; the ith bond length,

1M the equilibrium bond length of CHy-CHy, and 1@ the equilibrium bond length of CH,—
mesogen; Eangle denotes a harmonic angle style, with 0; the ith angle, 6 the equilibrium angle
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Figure 6. (a) Schematic of single chains of a liquid crystal polymer with a hydrocarbon backbone and 50 side chains among
which 20% are attached with cross-linking sites (yellow atoms) and 80% are attached with mesogens (white ellipsoids). The
cross-linking sites and mesogens are randomly selected from the 50 side chains for each liquid crystal polymer molecule
and chain 1and chain 2 are displayed here as examples. (b) The evolution of nematic order S, during the isotropic—nematic
phase transition when the weakly cross-linked LCEs were first quenched from 500 K to 450 K with external field for 10 ns, then
equilibrated at 450 K with external field for 20 ns, then equilibrated at 450 K without external field for 17 ns. (Online version in
colour.)

of the non-branched X-CH,-X and 6@ the equilibrium angle of branched X-CH-X; Egihedral iS
a multiple-term harmonic dihedral style, with ¢; the ith torsion angle, CS}’ the non-branched
X-CH>-CH,—X and C(f) the branched X-CH>~CH-X; E(,; represents the L] potential between
non-bonded united atoms CH,, with rij the distance between two united atoms and 4;, ¢; the
factorized energy parameters for CHy; E;;—y; is the Gay-Berne potential between non-bonded
mesogens, with U, the shifted distance-dependent interaction, 7, x the orientation-dependent
energy, A; the transformation matrix for mesogen i, r;; the centre-to-centre vector between the
ith and jth mesogens and all the rest of the parameters specified as constants in table 1; and
Eqs—m denotes the extended Gay-Berne potential between a non-bonded mesogen and CHy
following the standard mixing rule [86]. The cut-off distance is 9.8 A for the LJ potential and
16.8 A for the Gay-Berne potential. For the detailed explanation and explicit form of the Gay—-
Berne potential, readers should refer to [87,88]. First, 64 molecules of side-chain liquid crystal
polymers were created, where every molecule has a backbone of 100 hydrocarbon monomers
and 50 side chains attaching to the backbone in a syndiotactic way. Among the 50 side chains
for each molecule, 20% were randomly selected to be attached with cross-linking sites, and
the rest were attached with mesogens, as shown in figure 6a. Thus, every LC molecule has a
different configuration. The 64 molecules were mixed by heating at 800K for 50ns. Then the
system was quenched down to 500 K during 10 ns. Cross-linking of the first step was established
while equilibrating the system at 500 K. A weakly cross-linked isotropic LCE was constructed,
as shown in figure 6b. The system was found to have its isotropic-nematic phase-transition
temperature below 490K, consistent with other MD studies of similar LCE systems [89]. To
form nematic LCEs, the whole system was quenched down to 450K with an external field
Uieﬁeld = —1.0 - Py(cos 6;), where P»(x) = (3x% —1)/2 is the second Legendre polynomial and 6; is
the angle between the long axis of the ith mesogen and the external field. The external field has
been experimentally and computationally proved to accelerate the formation of the nematic phase
[90,91]. The quenching stage from 500K to 450K lasted 10ns and the equilibrium stage at 450K
lasted 20 ns, for both of which the external field was applied along the z-direction. The external
field was removed while the LCE system was equilibrated at 450K for another 17 ns and the
nematic phase was found to be stable. The nematic order S = (P>(cosf;)) is shown in figure 6b
during the quenching and equilibrium state. Subsequently, the second stage of cross-linking was
performed within the nematic LCEs. The nematic system was then quenched down to 300 K and
the nematic order was found to be well maintained. Throughout the whole process of constructing
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Table 1. Parameters for interatomic potentials used in the MD simulation [84,85].

parameters value (units)
k, bond energy constant 520.0156 (kcal/mol/A?)

Cé‘”, non-branched torsion energy constant

((4)

1", branched torsion energy constant

nematic LCEs, NPT calculations were performed using a time step of 1 fs in the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) with periodic boundary conditions
along three dimensions. At the isotropic-nematic transition, a spontaneous deformation was
observed in the MD simulations shown in figure 6b, owing to the alignment of ellipsoidal
mesogens along the Z-direction. The nematic LCE at 300K has three dimensions: ¢ = 99.6537 A,
Iy =88.1515 A and I2¢ =185.7362 A. During the isotropic-nematic phase transition, the volume
of LCEs should demonstrate a negligible change [92]. However, the MD simulations of LCEs
using Gay-Berne potentials are known to show thermal expansion effects [93]. To eliminate these
non-physical effects, the isotropic LCE at 500K was quickly quenched down to 300K and the
three dimensions for the isotropic phase were measured as i° = 120.3505 A, liySO =118.7118 A and

lizs" =117.2290 A. The respective stretch ratios were then calculated as Ay = 0.8280, A, = 0.7426 and
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Figure 7. The first Piola—Kirchhoff tensile stress in the nematic LCE system when (a) the director is parallel to the tensile force
and (b) the director is perpendicular to the tensile force. (Online version in colour.)
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Figure 8. The first Piola—Kirchhoff shear stress in the nematic LCE system when (a) the director is parallel to the shear force,
(b)the director is perpendicular to the shear force and (c) the director is perpendicular to the shear plane. (Online version in
colour.)

Az =1.5844. Ideally, the biaxial Gay-Berne potential for mesogen-mesogen interaction should
yield the same stretch ratio along the X- and Y-directions. Here, however, the small size of the
LCE system in the MD simulations gives rise to slightly different 1, and Ay. To eliminate the
size effect on the spontaneous deformation, these stretch ratios were averaged to Ay—, =0.7853.
Then the anisotropy ratio can be estimated as r~ A, /Ax—y =2.0176, Poisson’s ratio is v~ 0.5 and
a=r?~4.0706.

After obtaining the nematic LCE at 300 K, we subjected the system to either stretch or
shear deformations as described in §§3 and 4, respectively. For each deformation, we can
calculate the evolution of the first Piola—Kirchhoff stresses with respect to the strains. We first
calculate the Cauchy stress tensor in LAMMPS based on Tj; = Elg\] My ki vij [V + Z‘Ii\] / rkifk]- /V, where
my represents the mass of the kth atom, vy; denotes the velocity of the kth atom in the ith
dimension, N is the total number of atoms, V is the total volume of the system, N’ is the
number of atoms pairs and ri; and fy; are the positions and forces of atom k along the ith
and jth dimensions, respectively [94]. Next, given the deformation imposed, we construct the
elastic deformation tensor A and, subsequently, the corresponding first Piola-Kirchhoff stress
tensor P, following (2.6). Then, imposing the spontaneous deformation tensor G, or simply
following (3.6), (3.7), (4.6), (4.9) or (4.12), we obtain the final ﬁl(]nc) The results are shown in
figures 7 and 8, respectively, where all the cases demonstrate some nonlinearity in the stress-
deformation relations. From the two stretch deformations, we derive the effective stretch moduli
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EM =2253.4 MPa and E®@ = 775.475 MPa. From the three shear deformations, we find the effective
shear moduli xM =132.78 MPa, u® = 258.26 MPa and 1 =889.97 MPa. Thus,

20 @ @)
s _o0341<2, K 1950~ K
ED ) e

=3.4460 > r. (6.2)
These relations are in agreement with (5.24) when E|/E| > 1 and pj/pn1 <1 (see also fig. 7 of
[38], fig. 7 of [45], fig. 6 of [48] and fig. 3 of [51]). Our theoretical results are independent of
the manufacturing history. Experimentally, the mechanical properties of main-chain and side-
chain LCEs are compared in [51]. In future work, it would be interesting to carry out separate
simulations for these different cases to compare their behaviour computationally as well.

7. Conclusion

We studied theoretically and computationally the mechanical behaviour of nematic LCEs
under different stretch and shear deformations. Theoretically, we first examined ideal nematic
elastomers characterized by a homogeneous isotropic elastic strain-energy density, then also
phenomenological models incorporating an additional nematic energy. We showed that these
cases are qualitatively different, and that the generalized model does not necessarily order
stretch moduli in the same way as the shear moduli. We also performed molecular dynamics
simulations to analyse numerically the responses of simulated systems under a similar set of
deformations, and found different mechanical responses in different directions. Therefore, the
trifecta of experiments, computations and theory leads us to conclude that the contribution of
the nematic free energy cannot be ignored, even in small deformations, and that LCEs are best
understood as aeolotropic materials. When Frank effects also play an important role, they need to
be taken into account as well. However, the deviation from isotropy is well captured by including
the nematic energy, and this constitutes an important step in the constitutive modelling of liquid
crystalline solids.
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Appendix A. Stresses in nematic solids

In this appendix, we formulate the stress tensors of a nematic material described by the strain-
energy function given by (2.1) in terms of the stresses in the base polymeric network. These
relations were originally presented in [65] and are provided here for convenience.

If the nematic director is ‘free’ to rotate relative to the elastic matrix, then F and n are
independent variables, and the Cauchy stress tensor for the nematic material with the strain-
energy function described by (2.1) is calculated as follows:

1 9 W(nc)

T(nc) _ ]7
oF

2%
FT _ p(nC)I :]71G71 %ATG _ p(nC)I :]71G71TG, (A 1)

where T is the Cauchy stress tensor defined by (2.5), ] = detF and the scalar p™ represents the
Lagrange multiplier for the internal constraint ] =1. Then

PO — TOICof(F) = GITA T =G~ 1P (A2)
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is the first Piola—Kirchhoff stress tensor for the nematic solid material, with P the first Piola—
Kirchhoff stress given by (2.6).

If the nematic director is ‘frozen’, the Cauchy stress tensor for the nematic material takes the
form

(A3)

/.f(nc) =]_1G_1TG B ]_117 (I _ Fng ® Fno) Fng

|Fno|? |Fng|”

where T is the Cauchy stress defined by (2.5), ] = detF, p(“c) is the Lagrange multiplier for the
volume constraint | =1 and g is the Lagrange multiplier for the constraint (2.4). Then

P = T™9Cof(F) (A4)

is the first Piola—Kirchhoff stress tensor for the nematic solid.
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