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Abstract

Aspect-based sentiment analysis is a natural language processing task whose

aim is to automatically classify the sentiment associated with a specific aspect

of a written text. In this study, we propose a novel model for aspect-based

sentiment analysis, which exploits the dependency parse tree of a sentence us-

ing graph convolution to classify the sentiment of a given aspect. To evaluate

this model in the domain of health and well-being, where this task is biased

towards negative sentiment, we used a corpus of drug reviews. Specific aspects

were grounded in the Unified Medical Language System, a large repository of

inter-related biomedical concepts and the corresponding terminology. Our ex-

periments demonstrated that graph convolution approach outperforms stan-

dard deep learning architectures on the task of aspect-based sentiment analysis.

Moreover, graph convolution over dependency parse trees (F-score of 0.8179)

outperforms the same approach over a flat sequence representation of sentences

(F-score of 0.7332). These results bring the performance of sentiment analysis

in health and well-being in line with the state of the art in other domains.
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parsing, neural network, graph convolutional network.
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1. Introduction

Sentiment analysis (SA) is a natural language processing (NLP) task which

aims to classify the sentiment expressed or implied by a given piece of text. It

can be applied at different levels of text organisation: the whole document [1],

an individual paragraph or sentence, or a specific aspect [2]. This study focuses5

specifically on aspect-based SA. This task is particularly difficult in the domain

of health and well-being, where the performance of sentiment analysis was found

to lag behind the state of the art [3].

Recent proliferation of online platforms designed to share health-related in-

formation with other users sparked research interest in sentiment analysis in10

this domain. However, existing research in aspect-based SA is typically con-

ducted using user reviews of products and services such as mobile devices and

restaurants, but also pharmaceutical drugs, which are related to one’s health

and well-being. Sentiment analysis of drug reviews can be used to support

pharmacovigilance by detecting new adverse drug reactions [4].15

In the case of drug reviews, current research efforts in sentiment analysis are

focusing on the whole document (i.e. review) and not on an individual aspect.

This is partly related to the availability of annotations that can be used to train

supervised classification approaches. Reviews typically come together with star

rating, which can be easily converted into sentiment labels. Aspect-based SA20

requires manual data annotation, which has been identified as one of the key

obstacles to machine learning approaches in clinical NLP [5]. SentiDrugs [2]

represents a dataset relevant to the current study: it consists of drug reviews in

which aspects were manually identified and annotated for sentiment. Unfortu-

nately, this dataset is not publicly available.25

In terms of methods used to support sentiment analysis in health and well-

being, a recent systematic review revealed that rule-based and traditional ma-

chine learning approaches are used most commonly [3]. Both approaches require

manual engineering of either rules or features, which limit their portability across

different tasks and domains. On the other side, deep learning does not suffer30
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from these limitations and has demonstrated considerable success in a variety of

NLP tasks including SA. For example, deep learning has been successfully ap-

plied to support SA of user reviews of hotels and restaurants as well as product

reviews (phones, cameras, laptops, etc.) [6, 7]. Incorporating syntactic structure

into the deep learning process to model sentiment compositionality can improve35

the performance of sentiment analysis by almost 10 percent points as confirmed

by Socher et al. [8] who trained a recursive neural network on constituency parse

trees. Dependency parse trees directly capture syntactic dependencies between

the words and in that respect may be better placed to support aspect-based SA

by traversing dependencies associated with the target word or phrase. From the40

existing variety of neural network architectures, graph convolutional networks

(GCN) are most naturally suited to traversing the graph structure of syntactic

dependencies.

In this study, we hypothesise that a GCN approach should outperform tradi-

tional neural network architectures on the task of aspect-based SA. To test this45

hypothesis, we developed a new approach to aspect-based SA based on graph

convolution, where the aspect of interest is represented as a vertex in the graph

representation of a sentence and convolution performed along its edges and those

of its neighbours. To examine the effect of syntactic dependencies on sentiment

polarity of a given aspect, we tested the proposed approach on two graph rep-50

resentations of a sentence including a simple sequence and a dependency parse

tree. The experiments asserted the importance of features incorporating syn-

tactic dependencies over sequential order for aspect-based SA.

This paper is organized as follows. Section 2 provides an overview of relevant

literature. Section 3 describes the methodology. In Section 4, we evaluate the55

approach. Finally, Section 5 concludes the paper and outlines the future work.

2. Related work

A recent systematic review paper [3] provided evidence that a vast majority

of approaches to SA in health and well-being is based on rule-based and tra-
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ditional machine learning, whose results are sub-par to those achieved in other60

domains. These approaches tend to employ simple features such as distribution

of words and n-grams, but which fail to capture syntactic dependencies between

words and, consequently, the effect of syntax on semantics or, in this case, sen-

timent. Deep learning, on the other hand, can discover structural dependencies

in the form of graphs or, when these dependencies are already known, easily65

integrate them into the learning process.

Traditional rule-based and machine learning approaches require features to

be engineered manually. In contrast, deep learning applies layers of linear and

non-linear data transformations to learn a representation of the problem that

is best suited for the end task. Popular deep learning architectures include re-70

current neural network (RNN) [9], long short-term memory (LSTM) [10], bidi-

rectional LSTM (BiLSTM) [11], gated recurrent unit (GRU) [12], convolutional

neural network (CNN) [13] and graph convolutional network (GCN) [14].

The RNN architecture is designed to process data sequentially, where the

hidden state of the current element represents the memory of the network at the75

particular time step by capturing information about all previous time steps. The

LSTM architecture is a type of RNN, which improves modelling of long range

dependencies. This architecture contains three types of gates (input, forget and

output gates), which are used to calculate the hidden state. BiLSTM consists

of two LSTMs, where information is propagated in both forward and backward80

direction. GRU has a slightly simpler architecture than LSTM as it contains two

gates (reset and update gates) which are used to memorize relevant information.

The CNN architecture is translation invariant and it can extract important

local features. Its subtype, GCN acts as a message passing algorithm, where

the information between vertices in the graph is propagated along the edges,85

allowing the vertices to aggregate information from their neighbours.

Different deep learning architectures, although most commonly LSTM, have

been applied to solve the problem of aspect-based SA. A groundbreaking ap-

proach employed hierarchical BiLSTM on constituency parse trees to perform

aspect-based SA on restaurant and laptop reviews [6]. Similarly, an LSTM90
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approach achieved the accuracy of 84.0% and 89.9% on classifying customer

reviews into positive and negative sentiment, respectively [7]. More recently, an

LSTM-based architecture was combined with a lexicon to analyse the sentiment

of restaurant reviews with an accuracy of 82.86% [15]. A deep learning approach

to aspect-based SA in health and well-being performed below 80% accuracy as95

illustrated by a GRU architecture that achieved an accuracy of 78.26% on drug

reviews [2]. Although such underperformance may be attributed to differences

in architectures used and specific properties of the training data, it is in line

with a previous finding from [3] that SA in health and well-being does lag behind

the state of the art in other domains. This is mainly due to generally negative100

connotation of health-related concepts, which tends to skew the results of SA

toward negative polarity. It is, therefore, ever so important to carefully examine

the context when such concept are used as aspects in SA.

Bidirectional Encoder Representations from Transformers (BERT) is rep-

resentative example of pre-trained language models in NLP [16], which can105

easily be fine-tuned using additional text to solve specific NLP tasks such as

aspect-based SA. BERT itself provides contextual word representations, which

are generated using transformers [17], which use an attention mechanism rather

than recurrence. The attention mechanism is used to determine which words

and sequences are important for the overall context. These features can then be110

exploited by an additional output layer on top of the base BERT model to make

it task specific. The aspect-based SA task can be formulated as a sentence-pair

classification task, such as question answering, by using the aspect as an aux-

iliary sentence [18, 19, 20]. Attention may not necessarily coincide with direct

syntactic relations. To explicitly capture the compositional sentiment semantics115

and improve performance on phrase-level sentiment classification, SentiBERT

was implemented as a variant of BERT that uses a recursive constituency parse

tree structure to learn to predict the sentiment of the phrase nodes [21].

The sentiment of a specific aspect is directly influenced by its modifiers and

not necessarily the entire context, which may end up adding unnecessary noise120

to the problem representation. Proximity and order are often used as proxies in
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lieu of explicit dependencies. Therefore, most often, context will be represented

using n-grams or sequences. Constituency parse trees also take advantage of the

notions of proximity and order to group words together into coherent phrases,

which represent key features for semantic analysis and thus can support appli-125

cations such as question answering and information extraction [22]. However,

applications such as aspect-based SA depend crucially on the use of modifiers,

which can change or emphasise a particular word in a sentence. Universal de-

pendencies represent grammatical relations between words in a sentence [23]

in the form of triplets (name of the relation, governor and dependent), which130

give rise to a graph representation of a sentence, which is often collapsed into a

tree [24]. In aspect-based SA, such structure can be used to explore those words

that are logically associated with the given aspect regardless of their physical

proximity and ignore (or downplay) those that are less relevant with respect to

the expression of sentiment.135

GCN which performs convolution over a graph, is a most naturally suited

neural network architecture for this type of sentence representation. In NLP, this

type of architecture has previously been employed to extract semantic relations

from syntactic dependency trees in [25]. Most recently, GCN has been used to

perform aspect-based SA on product reviews in [26] and on Twitter data in [27].140

In [27] GCN was additionally combined with the syntactic dependencies.

In this study, we propose an approach to aspect-based SA based on GCN over

a dependency parse tree of the sentence and compare its performance against

other deep learning architectures.

3. Methodology145

Aspect-based SA is a fine-grained sentiment analysis task, where the goal is

to identify the sentiment of the specific aspect, rather than the overall sentiment

of the document. This study considers binary classification of the given aspect,

where the goal is to classify the sentiment of the given aspect into one of the

two classes, positive or negative.150
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The overall system design is shown in Figure 1. A set of drug reviews was

collected from Drugs.com [28], is the largest, most widely visited, independent

pharmacologic drug information web site, which allows its users to post reviews

describing personal experience about their use. All reviews were automatically

annotated with concepts from the Unified Medical Language System (UMLS), a155

large repository of inter-related biomedical concepts and the corresponding ter-

minology [29]. These concepts represent aspects whose sentiment needs to be

classified. Input documents are processed by Stanford CoreNLP [30] to convert

individual sentences into dependency graphs. Individual words representing ver-

tices in such graphs were mapped onto their embeddings, which were pretrained160

on web data from Common Crawl using the GloVe method [31]. Each input

sentence is represented as a sequence of tokens S = (w1, w2, ..., wn). When

combined with word embeddings, this representation gives rise to a matrix of

dimensions n x d, where n is the total number of tokens and d is the size of

the embedding vector space. These data were combined with sentiment labels165

to train a neural network to classify the sentiment associated with individual

UMLS concepts. The architecture of this neural network, shown in Figure 2,

was based on graph convolution. The input consists of the dependency graph

of the sentence whose vertices are convoluted by propagating information from

other vertices across the edges of the graph. After two successive convolutions,170

the vertex corresponding to the aspect is mapped onto 2-dimensional classi-

fication space whose dimensions correspond to positive and negative polarity,

respectively. This means that the two polarities produced as an output are

extracted directly from the aspect and indirectly from its neighbours via convo-

lution, and therefore their values may vary across different aspects within the175

same sentence.

3.1. Sentence representation

Sentence S is a sequence of tokens that can be represented as a graph

G = (V,E). Graph is an ordered pair (V,E), where V is a set of vertices (nodes)

and E is a set of edges that represent pairs of vertices. Graph G = (V,E) of180
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Figure 1: System design for aspect-based SA of drug reviews.

Figure 2: Graph convolutional network over dependency graphs. The sentiment of an aspect,

highlighted in the graph, is classified.
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a sentence can be modelled in different ways, for example sequence graph, de-

pendency graph, relational dependency graph, or constituency graph. Vertices

represent the tokens within the sentence, and edges connect the vertices, i.e. to-

kens. The structure of sequence, dependency and relational dependency graph

can be seen in Figure 3.185

We decided to represent a sentence using its dependency parse tree, which

is a special case of a directed dependency graph. Here, each vertex has a single

parent except for the root. Figures 4 and 5 provide illustrations of dependency

parse trees that are used as sentence representation. In order for the convolution

to flow in both directions across a dependency graph, we chose to ignore the190

direction.

3.2. Graph convolution

Graph convolutional network (GCN) is a neural network architecture that

takes a graph as an input and outputs an updated representation of each vertex

in the given graph. The updated representation of each vertex is a function195

of the current representation of the given vertex and its neighbouring vertices.

Various GCN architectures have been proposed [32]. In this study, we used two

types of GCN architectures, which were applied to the sentence dependency tree.

The architectures in question are GraphSAGE GCN (GS-GCN) [33] and rela-

tional (R-GCN) [34]. These are commonly used GCN architectures which have200

been found to provide good performance in empirical comparisons of different

GCN architectures [35]. We now describe the details of each GCN architectures

considered.

The input to each GCN architecture is the undirected dependency graph

of the sentence, where each vertex is initialized with the corresponding 300-205

dimensional word embedding vector. Vertex representation is updated with

each convolution over the graph. A sequence of k convolutions will propagate

information across the graph to the k-th order neighbour. Our architectures each

contain two graph convolution layers, which means that every vertex will get

information from the second order neighbour. Specifically, the first convolution210
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Figure 3: Three types of graphs that are considered for sentence representation: sequence

graph, dependency graph, and relational dependency graph with different edge types from

top to bottom respectively.

Figure 4: Example of negation in a dependency parse tree.
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Figure 5: Example of the dependency parse tree.

layer reduces the dimensionality of the input vectors from 300 to 125 and the

second layer will outputs a 100-dimensional vector. In the GS-GCN architecture

the hidden state ht
i corresponding to vertex i and layer t after one convolution

is updated as follows:

ht
i = σ(W t · concat(ht−1

i , aggregate(ht−1

j , ∀j ∈ N(i)) + bt) (1)

where N(i) denotes a set of neighbors of vertex i, σ(·) is a non-linear function,215

concat(·) represents concatenation of vectors horizontally and aggregate(·) indi-

cates the summation of the neighbours of the corresponding vertex. Moreover,

W t and bt are weight matrix and bias, respectively, for the t-th convolutional

layer, which are the parameters of the model that are learned. Non-linear func-

tion σ(·) in this architecture is rectified linear unit (ReLU). The potential down-220

side of this method can be that the edge types are not taken into consideration.

The solution to that is to use another graph convolution algorithm known as

relational graph convolution (R-GCN) [34]. In order to perform R-GCN, a

graph is represented as a triplet G = (V,E,R), where R is a set of relations ri

corresponding to each edge ei. In the R-GCN architecture the hidden state ht
i225

corresponding to vertex i and layer t after one convolution is updated as follows:

ht
i = σ





∑

r∈R

∑

j∈Nr

i

1

ci,r
W t−1

r ht−1

j +W t−1

0
ht−1

i



 (2)

where Nr
i denotes a set of neighbors of vertex i that are connected with relation

r ∈ R, ci,r is a normalization constant. Relations r are directly extracted are

extracted from the output of the Stanford CoreNLP dependency parser. Fig-

ures 4 and 5 provide examples of different edge types including nsubj - nominal230
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subject, neg - negation modifier, obj - object, etc. More detailed explanation

about the syntactic relations can be found in Universal Dependencies documen-

tation [24, 36]. An overview of the different graph types used in our experiments

for sentence representation is shown in Figure 3.

3.3. Classification235

After two successive graph convolutions, the hidden state of the sentiment

aspect is retrieved and mapped into the classification space by a linear transfor-

mation, reducing the dimensionality of its embedding from 100 to 2, where the

two dimensions corresponds to positive and negative polarity, respectively. The

2-dimensional vector is then passed through the softmax layer, which provides240

the probability distribution over the two sentiment polarities.

4. Experimental results and analysis

To validate the model proposed in this work we performed two sets of ex-

periments. The first set compares different types of graphs as input to the GCN

models, whereas the second set compares different neural network architectures245

including GCN, RNN and LSTM. All methods were implemented in the Python

programming language using the PyTorch library for deep learning. The source

code is available at https://github.com/ispasic/ABSA-with-GC-over-Syntactic-Dependencies.

4.1. Data

The raw data was originally collected from Drugs.com [28], the largest in-250

dependent pharmacologic drug information web site, which allows its users to

post their reviews. We re-used a subset of these reviews described in [37]. This

subset was previously annotated for aspect-based SA [2], but unfortunately it

is not publicly available. The choice of aspects in this study was motivated by

the likely practical applications of SA on this dataset. The most obvious ap-255

plications are related to the drugs’ efficacy and safety, which could be inferred

from the sentiment associated with the signs and symptoms discussed in drug

reviews. To extract signs and symptoms, we automatically annotated a total

12



lexicon description

AFINN [39, 40]
A list of 2477 words and phrases with an integer value as

a sentiment score between -5 (negative) and 5 (positive).

EmoLex [41, 42]
A lexicon where items are annotated with 8 basic emotions

and sentiment score of either positive or negative.

Harvard General Inquirer [43, 44] Lexicon that provides 1915 positive and 2219 negative words.

MPQA [45, 46] A lexicon of around 8000 items that provides sentiment scores.

Opinion lexicon [47, 48] A list of approximately 6800 positive and negative words.

Wordnet Affect [49, 50]
An extension of WordNet, each item in the lexicon is labeled

as positive, negative, ambiguous, or neutral.

Table 1: A selection of sentiment lexicons.

of 128,581 reviews with concepts from the Unified Medical Language System

(UMLS), a large repository of inter-related biomedical concepts and the corre-260

sponding terminology [29]. We focused on a single subclass of UMLS concepts

that represents clinical signs and symptoms [38]. We then cross-referenced these

concepts against six lexicons described in Table 1 to identify those with negative

sentiment. This choice was based on a previous finding that the negative con-

notation of health symptoms tends to skew the SA results toward the negative265

spectrum [3]. In other words, the sentiment of such aspects is more challenging

to classify. In this study, we want to focus specifically on this bias by explor-

ing the ways in which the context (represented by syntactic dependencies) can

modify the negative polarity associated with signs and symptoms.

The most frequently mentioned signs and symptoms were selected to repre-270

sent aspects whose sentiment needs to be classified: burning, constipation, dizzi-

ness, dizzy, dry, fatigue, headache, nausea, nauseous, nauseated, pain, painful,

sick, sickness, symptom, tired and tiredness. The silver-standard sentiment of

each aspect was inferred from the corresponding user review’s star rating rang-

ing from 1 and 10. To easily convert star rating into sentiment, we annotated275

reviews with star rating of 1 or 2 with negative sentiment, those with rating of

9 or 10 with positive sentiment and removed the remaining reviews from further

consideration. The overall distribution of sentiment before the selection of short

reviews is shown in Figure 6.
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Figure 6: Distribution of aspect-based sentiments.

To obtain a reliable sentence-level sentiment, which may vary across a long280

document, we only used reviews consisting of a single sentence. This reduced

the need for manual annotation albeit at the cost of reducing the size of the

dataset. As a result, we ended up with a set of 806 positive and 612 negative

reviews, which were then curated manually. After incorrectly annotated reviews

were removed, 79.28% of positive reviews and 96.89% of negative reviews were285

retained. Finally, each aspect (i.e. a reference to a sign or symptom from Fig-

ure 6) was mapped to the sentiment of the corresponding sentence, providing a

total of 1,232 annotated aspects out of which 639 were positive and 593 nega-

tive, which represents a well-balanced set despite the fact that the chosen signs

and symptoms are otherwise inherently negative.290

Data were split randomly to use 80% for training and keep the remaining 20%

for testing. From the training subset, 20% was used to tune hyperparameters

prior to training the model on the remaining 80%. The distribution of sentiment

within training, validation and testing is provided in Table 2.

14



positive negative total

train 410 378 788

validation 99 98 197

test 130 117 247

total 639 593 1232

Table 2: The distribution of sentiment in the training, validation and test sets.

4.2. Hyperparameters295

The model was trained with backpropagation by minimising cross entropy

loss function, and optimized with the Adam optimizer. Learning rate was set

to 0.001. To avoid overfitting we applied early stopping, where the training

was stopped if the validation loss increased in five consecutive epochs, therefore

the patience was set to 5. Apart from early stopping, dropout was used as300

regularization and set to 0.2, which means that during the training process 20%

of the weights were set to zero.

4.3. Evaluation measures

The measures used to evaluate the performance of the model included accu-

racy, F-score and cross entropy loss. Accuracy is calculated as the percentage of305

correctly classified instances. Precision and recall are calculated using true pos-

itives (TP), true negatives (TN), false positives (FP) and false negatives (FN)

in the following way: P = TP/(TP + FP ) and R = TP/(TP + FN). These

two values are combined into the F-score as follows: F = 2 ∗ P ∗ R/(P + R).

Cross entropy loss for binary classification is defined as:310

loss = −
1

n

n
∑

i=1

ln(pi) (3)

4.4. Sentence representation

To investigate whether dependency graph is better suited for modelling

aspect-based SA than a simple sequence (also represented by a graph), we used

both and compared the results. In both cases, we performed experiments with

15



graph type loss F-score accuracy (%)

sequence 0.6348 0.6529 65.59

undirected sequence 0.5635 0.7332 73.68

dependency 0.5953 0.7001 70.04

undirected dependency 0.4570 0.8179 81.78

Table 3: Evaluation of the GS-GCN architectures over sequence and dependency graphs with

different edges.

both directed and undirected graphs. The results achieved using the GS-GCN315

model over different types of input graphs are reported in Table 3. The best

performance across all considered measures were achieved when an undirected

dependency graph was used for sentence representation.

4.5. Neural network architectures

To establish the baseline, we also performed experiments with two archi-320

tectures, RNN and LSTM, which have previously been used to support aspect-

based SA [7, 15]. They used a sequence, which is equivalent to a sequence graph

we defined earlier. Note that, CNN was not considered because it operates on

a feature vector used to represent the whole sentence rather than each token

individually [51].325

Apart from the standard RNN, LSTM and two GCN architectures, we also

performed experiments with BiLSTM-GS-GCN, in which the input was passed

through a BiLSTM as proposed in [26] prior to performing graph convolution.

These models were trained using the Adam optimizer with learning rate of 0.001.

Dropout of 0.2 and early stopping with patience of 5 were applied to reduce330

overfitting. The results are presented in Table 4. The four architectures based

on graph convolution outperform the rest. The best results were achieved using

the GS-GCN over the undirected dependency graph. These results indicate that

a dependency graph enriches sentence representation, which in turn enables the

model to exploit syntactic dependencies for semantic reasoning.335

We used the Z-test for the equality of two proportions [52] to test statistical

16



method
sentence

representation
loss F score acc (%) pos acc (%) neg acc (%)

RNN sequence 0.6202 0.6725 67.61 76.92 57.26

LSTM sequence 0.6259 0.6725 67.61 76.92 57.26

R-GCN
undirected

dependency
0.6265 0.6833 68.42 76.92 58.97

GS-GCN
undirected

sequence
0.5635 0.7332 73.68 77.85 68.39

BiLSTM+GS-GCN
undirected

dependency
0.5095 0.7566 75.71 76.92 70.09

GS-GCN
undirected

dependency
0.4570 0.8179 81.78 78.46 85.47

Table 4: Evaluation of the baseline models and of the proposed model (GS-GCN-undirected

dependency).

significance of differences in accuracy between GS-GCN against that of the five

baseline methods, respectively. Table 5 shows that all p-values are ≤ 0.05, hence

we reject the null hypothesis and conclude that there is significant difference be-

tween the given architectures mechanisms in terms of their accuracy. Therefore,340

the GS-GCN over the undirected dependency graph is indeed significantly more

accurate than any of its counterparts.

Evaluation of the baseline architectures and of the proposed model over pos-

itive and negative sentiments can be seen in Table 4. Most of the architectures

perform better on classification of positive sentiment. This trend was overturned345

by GCN over the dependency graph, while still providing the best results on

classification of positive sentiment, suggesting that this approach makes the best

utilisation of context to perform aspect-based SA.
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method accuracy (%) p-value

RNN 67.61 0.0001

LSTM 67.61 0.0001

R-GCN 68.42 0.0003

GS-GCN (undirected sequence) 73.68 0.0152

BiLSTM+GS-GCN 75.71 0.0496

Table 5: Comparison of the GS-GCN over the undirected dependency graph with accuracy of

81.78% against the baseline methods.

5. Conclusion

We proposed a new approach to aspect-based SA based on graph convolu-350

tion over the dependency parse tree of the sentence. The experimental results

show that, relative to other neural network architectures and sentence represen-

tations, this approach makes the best utilisation of context to perform aspect-

based SA. We specifically looked at the sentiment surrounding medical signs and

symptoms because of the negative sentiment underlining their semantics, which355

makes SA in the domain of health and well-being challenging. For instance,

for someone suffering from a chronic condition, having a good quality of life is

not necessarily measured by the absence of associated signs and symptoms, but

rather by the extent to which they can be successfully managed and controlled.

However, the negative connotation of signs and symptoms tends to skew the360

results of SA toward negative polarity. This is one of the reasons SA in health

and well-being is performing below the F-score of 60% on average, lagging be-

hind the state of the art in SA on service and product reviews, where F-score

is found to be above 70% and 80%, respectively [3]. In this study, we success-

fully tackled this bias by exploring the ways in which the context (represented365

by syntactic dependencies) can modify the negative polarity associated with

signs and symptoms and effectively closed this performance gap by achieving

the state-of-the-art results regardless of the domain. Future work will consider

incorporation of the attention mechanism into the model to better differentiate

18



among syntactic dependencies that act as sentiment modifiers.370
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