
School of Physics
and Astronomy

Compact Binary Astrophysics

Joseph Cameron Mills

Submitted for the degree of Doctor of Philosophy
School of Physics and Astronomy

Cardiff University

3/8/2021



August 10, 2021

– i –



– ii –



Summary of thesis

This thesis brings together several projects in compact binary astrophysics that
intersect at two main loci. The first being calculations of the science that is pos-
sible with future gravitational-wave detectors. On this front, chapter 2 provides
localization estimates for a variety of future gravitational-wave network configura-
tions, to inform the science case and observing strategies for future gravitational
and electromagnetic detectors. In chapter 3 we predict the constraints that future
observations will make on the inclination of the orbital plane of compact binaries.
Finally, chapter 7 explores the observability and parameter estimation of seed black
holes with future gravitational-wave networks. The second focus of this thesis is
determining what is measurable in a gravitational-wave signal emitted in a binary
coalescence. In chapter 3, we describe in detail degeneracies in the amplitude of the
dominant emission of the two gravitational-wave polarizations, which limits our abil-
ity to measure their luminosity distance. Chapter 4 describes how higher harmonics
in the waveform can break these degeneracies, and introduces a simple criterion for
their observation. Using this criterion, and a related one for precession, in chapters
5 and 6 we explore the evidence for higher harmonics and precessions in the signals
detected in the first half of LIGO-Virgo’s third observing run.
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Chapter 1

Introduction

The observation of gravitational wave signals from coalescing black holes and neutron

stars has established the field of gravitational wave astronomy [21, 5, 25, 26, 27, 28,

29, 30, 31, 16, 32]. As well as representing a completely new domain for enquiry, this

new science has provided a fresh perspective on old problems in a variety of fields.

For instance, to highlight just a few examples, gravitational wave observations have

led to new measurements of the nuclear equation of state [33, 34], the discovery

of a major site for nucleosynthesis of elements heavier than iron [35, 36, 37, 38],

strong-field tests of the theory of general relativity [39], measurements of the Hubble

constant [40] and fresh questions about the origin and nature of compact objects

[31, 12, 14, 15, 13]. These scientific outputs, and many others, depend on our ability

to infer the nature of the compact system from the gravitational wave data: its

location on the sky, the inclination of its orbital plane with respect to earth, the mass,

spin, and tidal deformation of its components. There is a complex interplay between

the way the properties of the colliding objects are encoded in the gravitational wave

signal, how this signal interacts with gravitational-wave antennas here on earth to

produce a data stream, and the techniques used to reconstruct the source properties

from this data stream. As a result, some properties are easier to measure than

others.

This thesis will review some of the possibilities and limitations of these mea-

surements, with a view to contributing to the interpretation of events detected in

the third observing run of the LIGO-Virgo network. In addition, we make predic-

tions about the prospects for future observations. In doing so, we inform the science

case for future gravitational wave networks, including Voyager [41], the Einstein

Telescope [42, 43, 44], Cosmic Explorer [1], and LISA [45].

We begin in chapter 2 with an assessment of the localization ability of future

ground-based gravitational wave networks. It is expected that future networks of

gravitational wave detectors will possess great potential in probing various aspects

of astronomy. An important consideration for successive improvement of current

detectors or establishment on new sites is knowledge of the minimum number of
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detectors required to perform precision astronomy. We attempt to answer this ques-

tion by assessing the ability of future detector networks to detect and localize binary

neutron stars mergers on the sky. Good localization ability is crucial for many of the

scientific goals of gravitational wave astronomy, such as electromagnetic follow-up,

measuring the properties of compact binaries throughout cosmic history, and cos-

mology. We find that although two detectors at improved sensitivity are sufficient to

get a substantial increase in the number of observed signals, at least three detectors

of comparable sensitivity are required to localize majority of the signals, typically to

within around 10 deg2 — adequate for follow-up with most wide field of view optical

telescopes.

Next, in chapter 3, we examine the capacity of ground-based gravitational wave

networks to accurately constrain the inclination of the orbital plane of compact

binaries relative to the line-of-sight. We discuss in detail a degeneracy between

the measurement of the binary distance and inclination which limits our ability to

accurately measure the inclination using gravitational waves alone. This degeneracy

is exacerbated by the expected distribution of events in the universe, which leads us

to prefer face-on systems at a greater distance. We use a simplified model that only

considers the binary distance and orientation and show that this gives comparable

results to the full parameter estimates obtained from the binary neutron star merger

GW170817. For the advanced LIGO-Virgo network, it is only binaries which are

close to edge-on, i.e. with inclinations ι & 75◦, that will be distinguishable from face-

on systems. Extended networks which have good sensitivity to both gravitational-

wave polarizations will only be able to constrain the inclination of a face-on binary

at signal-to-noise ratio 20 to ι . 45◦. Even for loud signals, with signal-to-noise

ratio of 100, face-on signals will only be constrained to have inclinations ι . 30◦.

In the absence of observable higher modes or orbital precession, this degeneracy

will dominate the mass measurements of binary black hole mergers at cosmological

distances.

A possible way to break this degeneracy is through the observation of higher

harmonics of the waveform. In chapter 4, we investigate the observability of higher

harmonics in gravitational wave signals emitted during the coalescence of binary

black holes. We decompose each harmonic into an overall amplitude, dependent

upon the masses and spins of the system, and an orientation-dependent term, de-

pendent upon the inclination and polarization of the source. Using this decomposi-

tion, we investigate the significance of higher multipole moments over the parameter

space and show that the ` = |m| = 3 harmonic is most significant across much of

the sensitive band of ground-based interferometric detectors, with the ` = |m| = 4

harmonic having a significant contribution at high masses. We introduce the higher

harmonic signal-to-noise ratio (SNR), and show that a simple threshold on this SNR

can be used as a criterion for observation of higher harmonics. Finally, we investi-

gate observability in a population of binaries and show that higher harmonics will
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be observable in a few percent of binaries, typically those with unequal masses and

viewed close to edge-on. We find that the majority of binaries with mass ratio

greater than 4:1 will have an observable ` = |m| = 3 harmonic.

LIGO and Virgo’s third observing run brought the first clear detection of higher

harmonics, with the detection of GW190412 [9] and GW190814 [12]. In chapter

5, we quantify these detections using the method presented in chapter 4. We find

that in both cases the ` = |m| = 3 harmonic is confidently detected at the three

and five sigma level respectively. This has an important impact on the parameter

estimation of these systems. GW190412 was the first observation of a compact

binary with confidently asymmetric masses. Higher harmonics in the signal were

decisive here, removing any lingering support in the posterior for comparable masses.

For the first time, and again thanks to the (3,3) multipole in the data, the inclination

of the orbital plane could be constrained away from face-on/face-off. A similar

impact on the inclination measurement by the (3,3) multipole was witnessed in

GW190814. This binary was interesting for another reason. Its lighter component

was constrained to be both less massive than any black hole and more massive than

any neutron star previously detected in a compact binary. We find that a waveform

including both precession and higher multipoles bring about the most stringent

constraint on the mass.

Precession of the orbital plane is another physical effect that had not been ob-

served prior to 2019. In chapter 6 we discuss the evidence for precession and higher

multipoles for all binary black hole mergers detected in the first half of LIGO-Virgo’s

third observing run [16]. We find that GW190412’s signal exhibits evidence for pre-

cession, and one further event shows evidence for a (3,3) harmonic in the signal, both

with p-values less than 3%. Further we highlight the potential for strong higher har-

monics GW190521, which may have been missed in the original analysis [16] but are

indicated by the posterior distributions presented in Ref. [13].

Finally in chapter 7 we return to the science case for the next generation of

detectors, with an investigation into the prospects of observing and measuring the

properties of seed black holes, the hypothetical progenitors of supermassive black

holes. The hypothesis is that light black hole ”seeds” of several 102M� grow through

successive mergers and accretion to swiftly transit into the supermassive regime,

some within the first billion years of cosmic time. Accretion of these systems pro-

duces electromagnetic radiation too faint to be detected by even the deepest future

facilities. Mergers, however, will emit gravitational waves detectable with next gen-

eration networks at a broad range of redshifts 2 < z < 15. The large detector

frame masses of these binaries means they are only in band for just a few cycles,

making precise estimation of parameters challenging. Observation of the dominant

harmonic oscillating at twice the orbital frequency typically results in broad con-

straints on both mass ratio and the inclination angle between the orbital angular

momentum and line of sight. This latter parameter is important as it is degenerate
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with redshift and therefore also source frame masses. We find that higher harmonics

ringing at 1.5 and 2 times the frequency of the dominant will be observable for the

majority of these systems, allowing a greater fraction of these seeds to be detected.

These additional harmonics also result in tighter constraints on both mass ratio and

inclination angle. This improves the prospects for differentiating light seed black

hole candidates from black hole mergers of stellar origin.
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Chapter 2

Localization of binary neutron

star mergers with second and

third generation

gravitational-wave detectors

Code: The code that produced the main results in this chapter will be made

publicly available here: https://github.com/sfairhur/simple-pe/

Collaboration: This chapter was published in Ref. [46]. CM was responsible

for most of the results and writing. SF contributed to the writing and conception

throughout. VT contributed the majority of section 2.2.1 on future detectors,

in addition to contributing ideas and edits throughout, and calculations at an

earlier stage of the project.

2.1 Introduction

One hundred years after gravitational waves were predicted [47], the first detection of

a binary black hole (BBH) coalescence by the advanced LIGO detectors [48] heralded

the beginning of the era of gravitational wave (GW) astronomy. Less than two years

later, and with the advanced Virgo detector also in operation, the detection of GWs

from a BNS merger marked another landmark event [5]. Over the coming years,

the sensitivity of the advanced LIGO and Virgo instruments will improve, and the

KAGRA and LIGO India detectors will join the global network [49, 50, 51, 52,

53]. This network of advanced gravitational-wave detectors is expected to observe

many more BBH and BNS mergers, as well as GWs emitted during the merger

of neutron star–black hole (NSBH) binaries [54, 55]. Additionally, GWs emitted

by non-symmetric neutron stars, core-collapse supernovae, and other astrophysical

transient events may be observed [56, 57].

The observation of electromagnetic (EM) counterparts to GWs is a major goal
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2.1. Introduction

for astronomy, and will be critical for extracting the maximum science from fu-

ture events. Despite the expectation that stellar mass BBH mergers don’t produce

electromagnetic signals, there was broadband follow-up of GW150914 [58]. This

demonstrated the willingness of the wider astronomical community to engage in

multi-messenger observation of GW sources. In contrast to BBHs, compact binary

systems composed of at least one neutron star have plausible EM counterparts across

gamma, x-ray, optical, infrared, and radio bandwidths (for possible counterparts see

[59, 60, 61, 62, 63, 64, 65, 66, 67]). Indeed, the follow-up campaign for the BNS

merger GW170817 was phenomenally successful, measuring counterparts across the

EM spectrum [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 36,

85, 86, 87, 35, 87, 88, 89]. This multimessenger data provided convincing answers

to many outstanding questions. For instance, the detection of a short Gamma Ray

Burst (GRB) 1.7 seconds after GW170817 [69, 70, 71], and subsequent kilonova

[73, 74, 75, 76, 72, 81, 35, 82, 83, 84, 36, 85, 86, 87], confirmed that BNS mergers

are a progenitor of these events. Lanthanide signatures in the kilonova light curves

also showed BNS mergers to be a major site for nucleosynthesis of elements heavier

than iron [35, 36, 37, 38]. Furthermore the measurements of the EM redshift and,

from the GW signal, the luminosity distance, allowed an independent estimate of the

Hubble constant to be made [90], thus demonstrating a thirty year old prediction

[91]. Crucial to these scientific results was the localization provided by the LIGO

and Virgo interferometers.

Our ability to measure counterparts, and statistically identify host galaxies when

no counterparts are present, depends on the GW localization. Unlike most EM

telescopes, GW detectors are not pointing instruments, and localization is achieved

primarily by measuring the differences in arrival times of the signal in different

detectors [92]. Consequently, searching the relatively large GW localization regions

(O(100 − 1000 deg2) for the first detections [56, 93, 94]) represents a challenge for

even wide field of view UV, optical and infared telescopes. These telescopes have

fields of view on the order of 10 deg2 or less [95, 96, 97]. The addition of Virgo has

improved the localization ability of the network by about an order magnitude [98, 5].

Extra detectors in India and Japan will further reduce localization regions, allowing

many signals to be localized to within tens of square degrees [51, 99, 100, 101].

There are plans for future gravitational-wave detectors that will be significantly

more sensitive than the current generation of advanced detectors. These include

upgrades to the existing detectors, such as A+ and LIGO Voyager [41], which

gives the best possible sensitivity within the current LIGO infrastructure. Addi-

tionally, entirely new detectors have been proposed. The Einstein Telescope is a

next-generation European gravitational-wave observatory [42, 43, 44], and Cosmic

Explorer [1] is a proposed US-based future detector, both of which improve on the

advanced detector sensitivity by a factor of ten or more. As well as revealing new

sources of gravitational waves, these detectors will allow us to observe BBH merg-
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ers throughout most of the history of the universe [102] and BNS to cosmological

distances [103, 104, 105, 106]. Furthermore, the nearby signals will be very loud

in these detectors, allowing for unprecedented tests of Einstein’s general relativity,

and observation of matter at supra-nuclear density inside neutron stars. As with

the advanced detector network, joint GW -EM observations will be vital in fully

extracting the science from these observations [107, 64, 60, 108].

The science case for these new facilities is still evolving, and will continue to do

so as further gravitational wave observations are made. Estimates of the accuracy

with which networks of third and second generation detectors can reconstruct pa-

rameters will inform decisions over the viability of new facilities. There have been

previous studies of ET that estimate the detection efficiency and the accuracy of

mass measurements [104, 109, 105, 106]. Estimates of the localization ability of

various third generation networks were also considered as part of a comprehensive

parameter estimation study [102], and in analytical studies focussing on the low

frequency benefits of 3G detectors [110] and the implications for cosmology [111].

Furthermore, detailed studies of the optimal location of future detectors have been

performed [112, 113, 114].

One practical consideration is whether it would be advantageous to accelerate

the development of third generation detectors, perhaps at the expense of further

upgrades to the second generation, or if the operation of a heterogeneous network of

detectors is preferable. To date, there is rather little in the literature on the merits

of such networks. Here we investigate the differences between homogeneous and

heterogeneous networks of detectors. For concreteness, we focus primarily on the

sky coverage of the networks and the accuracy with which they are able to localize

sources. We consider the network localization accuracy for both face-on BNS systems

at a fixed distance as well as a population of BNS distributed isotropically and with

a redshift distribution that follows the star formation rate shifted to account for the

delay between star formation and binary merger.

Previous estimates of network localization errors largely fall into two distinct

categories: the first being analytical estimates that bypass the full task of param-

eter estimation and reduce the parameter space by focusing primarily on source

localization [92, 113, 115, 116, 117, 118, 119, 120, 121, 122, 99, 123, 124]; the second

being full parameter estimation studies that extract detailed parameter estimates

using Bayesian statistics [125, 126, 127, 128, 100, 129, 130, 131, 132]. Performing

the full analysis has the advantage of being more accurate, but due to the compu-

tational cost the number of sources that can be considered is typically small. On

the other hand, analytical studies using only the timing information [92, 121] have

been shown to overestimate the localization error region [133]. Here, we make use of

an improved, analytical method that incorporates amplitude and phase consistency

between the sites, as well as timing [134].

This chapter is organized as follows. Section 2.2 will describe the networks used
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in this study. Section 2.3 introduces the method for calculating the localization error

regions. We present and analyse our main results in Section 2.4 before concluding

in Section 2.5.

2.2 Future Detectors and Networks

2.2.1 Future detectors

GW detector sensitivity is limited by a number of fundamental noise sources. These

noise sources can be broadly separated into two categories: displacement noise and

sensing noise. Displacement noises cause motions of the test masses. Noise sources

such as seismic noise and mechanical resonances are in this category. Sensing noises,

on the other hand, are phenomena that limit the ability to measure those motions;

they are present even in the absence of test mass motion. Shot noise and thermal

noise are included in this category. In addition, there are technical noise sources

which must be understood and mitigated in order that the detector sensitivity is

limited by fundamental noise. Typically, low frequency sensitivity is limited by

seismic noise, mid frequencies are limited by thermal noise and higher frequencies

are limited by quantum noise. LIGO underwent a series of upgrades from its ini-

tial to advanced configuration to address each of the noise sources [135]. Seismic

noise is being suppressed by the use of multi-stage mechanical seismic isolation and

quadruple pendulum suspension systems. Thermal noise arises in test masses and

suspensions and is determined by material properties and beam size. Compared to

initial LIGO, advanced LIGO uses a larger beam size. This results in better av-

eraging of beam on a larger surface area which combined with better coating and

suspension material results in efficient dissipation of heat. Quantum noise arises

due to statistical fluctuations in the detected photon arrival rate. Quantum noise is

overcome by increasing the beam power and increasing the weight of the test masses

to overcome the increased radiation pressure.

Many technologies have been proposed to further increase the sensitivity of

ground based detectors. For example, building detectors underground to suppress

gravity gradients [42], improving mirror coatings (Section 5.9.3 in [136]) and cryo-

genically cooling the mirrors for reducing the thermal noise, and using squeezed

light for lowering the noise floor due to quantum noise [137]. A detailed discussion

on possible technology improvements is given in [136]. In the following, we briefly

introduce several proposed future detector configurations and their corresponding

sensitivities (see Fig. 2.1). These are used in the following sections when comparing

the performance of different networks.

LIGO Voyager: Various upgrades have been proposed for the advanced LIGO

detectors [41] leading to the proposal for an upgrade to A+ in 2020 followed by a

further upgrade to LIGO Voyager which is envisioned to be operational around 2025.
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Voyager improves on the sensitivity of advanced LIGO by around a factor of three

across a broad frequency range. The increased sensitivity is intended to be achieved

by improvements in all the departments (seismic isolation system, coatings of mir-

rors, heavier and larger test masses, increased beam power, etc.) of the advanced

LIGO infrastructure combined with frequency dependent squeezing and cryogenic

cooling of mirrors [138, 139, 140].

Einstein Telescope: Various studies have shown that further increase in sen-

sitivity is required for performing precise gravitational-wave astronomy, testing of

general relativity and improving our understanding of exotic phenomenon like the

equation of state and tidal deformability of neutron stars [59, 103, 141, 142, 143].

The Einstein Telescope is a proposed next-generation European gravitational-wave

observatory [42, 43, 44] with sensitivity an order of magnitude higher than advanced

LIGO and extending down to 1Hz. It intends to achieve this improvement through

a combination of longer arms and improved technologies. The original design called

for a triangular configuration of three interferometers with 10 km arms and 60◦ angle

between the arms. In addition, the proposed xylophone configuration allows installa-

tion of separate high and low-frequency detectors. High frequency sensitivity is most

easily achieved with high laser power, but this generates significant complications

at lower frequencies. The divided detector avoids this issues by allowing to pursue

different strategies in optimising the noise for each frequency range. Additionally,

it also reduces the length of tunnel required (as each tunnel is used by two of the

interferometers) and also makes the detector sensitive to both gravitational-wave

polarizations [136].

Cosmic Explorer: There is also a proposal for a Cosmic Explorer detector [1, 41],

which would be around a factor of three more sensitive than ET. The design and

technology used is similar to ET but with arm length that can stretch out to between

40 to 50 km. Although the possibility of these detectors only lies in the far future, it is

noteworthy that these detectors would see GW150914 like BBH mergers throughout

the visible universe.

In figure 2.1 we show the sensitivities of the proposed future detectors [1], as well

as the advanced LIGO design sensitivity. We show the ET xylophone configuration,

called ET-D. Also included for comparison is ET-B, which is an alternative ET

configuration where every interferometer is optimized for best overall sensitivity,

but at the expense of some low frequency sensitivity. For all ET simulations in this

study, ET-D sensitivity is assumed.

2.2.2 Networks

We will consider five networks of gravitational-wave observatories beyond the ad-

vanced detectors that are currently being built, commissioned and operated. Specif-

ically, we consider:
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Figure 2.1: Target noise curves for existing and future detectors [1]: advanced LIGO
at design sensitivity (aLIGO); LIGO Voyager; Einstein Telescope (two proposed
configurations, ET-B and ET-D) and Cosmic Explorer (CE).

(i) A network comprising detectors at the three LIGO sites (Hanford, Livingston

and India) where the detectors have been upgraded to LIGO Voyager sensi-

tivity. (Voyager)

(ii) A network comprising the three LIGO Voyager detectors complemented by a

triangular ET detector in Europe. (Voyager-ET)

(iii) A network with three L-shaped detectors at ET sensitivity distributed globally.

(3ET)

(iv) A network comprising a triangular ET detector and two Cosmic Explorer de-

tectors (CE-ET)

(v) A network of three Cosmic Explorer detectors (3CE).

Networks (i) and (ii) arise naturally from existing proposals, but there is cur-

rently no global plan for a third generation network. Although there is no proposal

for a network of ET detectors, we include this as configuration (iii), to facilitate

comparison with the heterogeneous Voyager-ET network. It can be shown that

the triangular ET detector has the same sensitivity to the two gravitational-wave
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polarizations as two co-located L-shaped detectors of length 10.6 km whose orienta-

tions differ by 45◦[42].1 For simplicity, we use a network of L-shaped ET detectors

with three detectors each of comparable sensitivity to one of the two effective L-

shaped detectors in the triangular ET. However, the freedom to orient and place

the detectors far apart results in a network typically with improved localization and

diminished ability to resolve both polarizations. We also consider a comparable

network comprised of Cosmic Explorer detectors as well as a heterogeneous CE-ET

network. Both the Voyager-ET and CE-ET networks exhibit substantial heterogene-

ity of sensitivities with a factor of three difference over a broad frequency range. The

majority of previous studies, have assumed that the detectors in the network have

identical sensitivity [99, 121, 92, 112].

The locations of future gravitational-wave detectors have not yet been finalized.

In this study we make use of the detector locations derived in [112] to optimize

the location of future detectors. There, a three part figure of merit is used to

determine the optimal location of detectors in a network, comprising equal parts:

1) How equally the network can determine both polarizations; 2) a simple measure

of localization ability based on the area of the triangle formed by the detectors and

3) how accurately the chirp mass can be measured. The locations and orientations

of all detectors are reported in Appendix 2.A.

For the LIGO Voyager network, the location of the Hanford and Livingston

detectors is fixed. Their orientations were chosen so that they were, as much as

possible, sensitive to the same gravitational-wave polarization, thus improving the

chances of coincident detection [113]. The location of the LIGO India detector has

not been announced at this time, so we use the optimal location from [112], which

places it in a seismically quiet location. The triangular ET detector is added to this

network to form the Voyager-ET network. In [112], it was shown that a location

in Slovakia gave maximum flexibility when constructing a global network, so we

choose this. Since ET is equally sensitive to both gravitational-wave polarizations,

the orientation of the detectors does not affect the results. It should be noted that

the precise location in Europe of the triangular ET does not have a significant impact

on results.

For the 3ET and CE networks, we are free to optimally site all three of the new

detectors. In [112], with the additional requirements that the detectors lie on the

land and avoid areas with a high degree of human activity, the authors arrived at two

comparable networks for three triangular ET detectors. The best configurations had

detectors in either Australia, Central Africa and the USA or in Australia, Europe

and South America. Although the optimization was performed for triangular ET

1This does, however, lead to an increase in 40% in the length of tunnels required. In the case
where the cost of constructing the tunnels is dominant, one could instead construct two 7.5km
interferometers within the same tunnel, making use of each tunnel twice as is done in the triangular
ET design. In this scenario the tunnel length of the two L-shaped detectors is equal to the triangular
configuration [144].
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detectors, we use the first set of locations for both the 3ET and CE networks. We

then optimize the orientation of the detectors based on part 1 of the figure of merit

— sensitivity to both gravitational wave polarizations — as parts 2 and 3 will be

largely insensitive to the orientation (this is described further in Appendix 2.A).

Finally, for the CE-ET network, we retain the two CE detectors in the USA and

Australia and augment the network with a triangular ET detector in Europe.

This by no means covers the full set of proposed future detectors and networks,

but is sufficient to allow us to explore the impact of a heterogeneous set of detector

sensitivities and compare this to networks where all detectors have the same, or

similar, sensitivity.

2.2.3 Network Sensitivity

The response of a detector to the two polarizations of a gravitational wave is given

by F+ and F×, which are functions of the sky location and polarization of the wave

[145]. By writing the response time-independently, we assume the strain is constant

during the light round-trip time in the interferometer arms. For Voyager this is

generally a good approximation. However for CE, and to a lesser extent ET, where

the round trips are respectively 20 and 5 times longer, the response pattern of a

detector can differ in both amplitude and phase significantly from the static case for

GW frequencies &2kHz [146]. Nonetheless, for compact binary coalescences (CBCs)

the vast majority of the SNR is accumulated at frequencies .2kHz, and the static

response is a good indication of sensitivity to these sources. We also do not account

for the motion of the earth. The loudest BNS signals could last hours to days in the

detector bandwidth, introducing a time dependence in the detector response. This

can be used to improve the localization, particularly when the network is operating

with just one, or two, detectors and baseline triangulation is not possible [110, 111].

However for the majority of signals this effect will be small.

For networks of equally sensitive detectors, the network response at a given sky

point is given by
[∑

i(F
i
+)2 + (F i×)2

]1/2
[119, 112]. However, when dealing with

heterogeneous networks, we must generalize the expression to take account of the

detector sensitivity. To do so, we introduce a sensitivity measure σh,i defined as

[147]2

σ2
h,i = 4

∫ ∞

0

|h̃o(f)|2
Si(f)

df (2.1)

where h̃o(f) is the gravitational-wave strain from a fiducial system placed overhead

the detector at a fixed distance and face-on, and Si(f) is the power spectral density

(PSD) of the detector noise. Then σh,i gives the expected SNR for such a signal

in detector i. For our study, we take h̃o(f) to be the signal from a face-on binary

2This quantity is typically often denoted σ. To avoid confusion with the signal bandwidth, σf ,
introduced in the next section, we have introduced the subscript h here.
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neutron star system at 1 Mpc from the detector. Then, we weight the response of

each detector by the sensitivity, defining [148]

wi+,× = σh,iF
i
+,× . (2.2)

The relative sensitivity of the network at a given sky point is then defined as the

network response,

NR =

(∑
i

[
(wi+)2 + (wi×)2

]
∑

j σ
2
w,j

)1/2

, (2.3)

where the indices i, j run over the detectors. Using this definition, the maximum

network response is unity and this will only be achieved when all detectors are aligned

to be maximally sensitive to the same sky position. This extends the definition of

[119] to a heterogeneous network and is closely related to the network sensitivity to

generic transients introduced in [118].

We are also interested in the relative sensitivity to the two gravitational-wave

polarizations. To define this unambiguously, we must identify a preferred choice of

the + and × polarizations or, equivalently, a choice of polarization angle. We define

the Dominant Polarization Frame [149, 148], which gives the maximum sensitivity

to the + polarization. To do so, we introduce

wnet
+,× =

(
w1

+,×, . . . , w
N
+,×
)
. (2.4)

The dominant polarization frame, for a given sky location, is the unique frame

such that: (1) wnet
× · wnet

+ = 0; (2) the network is maximally sensitive to the +

polarization, thus ensuring |wnet
+ | > |wnet

× |. The ratio of |wnet
× | to |wnet

+ | is called the

network alignment factor [149] and will vary from one — equal sensitivity to both

polarizations — to zero — sensitivity to a single polarization.

In Figure 2.2, we plot the Network Response and Alignment Factor as a function

of sky location for the five networks under consideration. The Voyager network has

the best sensitivity above and below the location of the two US LIGO detectors, as

expected. It has limited sensitivity to the second polarization over large parts of

the sky, including the locations with best network sensitivity. In the Voyager-ET

network, the ET detector dominates the sensitivity so, as expected, we see the best

sensitivity above and below the ET detector. The triangular ET is equally sensitive

to both polarizations, and so the Voyager-ET network has good sensitivity to the

second polarization over the majority of the sky. Even in regions where ET has poor

sensitivity, the second polarization is reasonably well measured by a combination of

ET and the three LIGO Voyager detectors.

The 3ET and 3CE networks are comprised of detectors in identical locations,

so the relative sensitivity over the sky will be identical for these networks. These

networks have good coverage over much of the sky, but the peak sensitivity is no-
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Figure 2.2: Relative sensitivity of the different networks over the sky: Voyager,
Voyager-ET, 3ET/3CE and CE-ET. Left: network response as a function of sky
position and right: alignment factor as a function of sky position. Also shown
are the locations of detectors in each network. Magenta markers are for Voyager
detectors, white for ET, and red for CE. Since both NR and the alignment factor
are invariant under an overall scaling in network sensitivity, 3ET and 3CE will have
identical patterns.
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ticeably lower than the other networks — it is only 75% of the maximum possible if

all detectors were aligned, in comparison to over 90% for the other networks. This

is to be expected, as the location of the detectors has been chosen to maximize sky

coverage; three co-located detectors would provide the greatest peak sensitivity but

much worse sky coverage. The homogeneous 3ET and 3CE networks have markedly

better sensitivity to the second polarization than the Voyager network. This arises

because the detector orientations were optimized to give good sensitivity to the

second polarization, whereas the LIGO Hanford and Livingston detectors were de-

liberately aligned to be sensitive to the same polarization. Finally, the heterogeneous

CE-ET network shows best sensitivity over the north atlantic and Australia, which

is expected given the detectors are located in the US, Europe and Australia. It

has relatively poor sensitivity to the second polarization over the sky. However, in

contrast to the Voyager network, CE-ET has good sensitivity to both polarizations

in areas of good overall sensitivity.

The Sky Coverage [119] of a network is defined as the fraction of the sky for

which the response is greater than 1/
√

2 of the maximum. The Sky Coverage of

the homogeneous ET and CE networks is 79%. Even though the LIGO Voyager

network also has three equal sensitivity detectors, the similar orientations of the

LIGO Hanford and Livingston detectors lead to a sky coverage of 42%. For the

heterogeneous CE-ET and Voyager-ET networks, the sky coverage is 44% and 37%

respectively. This confirms what the plots suggest and indicates that the 3ET and

3CE networks have the most uniform response across the sky.

2.3 Source Localization

To investigate the ability of different networks to localize sources, we use the for-

malism introduced in Refs. [92] and [121] and references therein. In those papers,

it was shown that localization is primarily determined by the timing accuracy, σt

in each detector which, in turn, is inversely proportional to the signal strength and

frequency bandwidth σf of the signal in the detector. Specifically, given a signal

h(t), the effective bandwidth is defined as

σ2
f =

(
4

ρ2

∫ ∞

0
df
f2|h(f)|2
S(f)

)
−
(

4

ρ2

∫ ∞

0
df
f |h(f)|2
S(f)

)2

, (2.5)

where the SNR, ρ, in the absence of noise, is given by

ρ2 = 4

∫ ∞

0

|h(f)|2
S(f)

df .

The timing accuracy for a signal with SNR ρ is then given by

σt =
1

2πρσf
. (2.6)
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Thus, σt scales inversely with the SNR of the GW, ρ, and the effective bandwidth,

σf , of the signal in the detector.

Using these expressions, it is possible to calculate the reduction in network SNR

due to errors in sky location and derive, at leading order, a relatively simple expres-

sion for the localization area. The probability distribution for the location of the

source (from a sky location R) is given by

p(r|R) ∝ p(r) exp

[
−1

2
(r−R)TM(r−R)

]
(2.7)

where r is the reconstructed position of the source, p(r) is the prior distribution

(taken as uniform on the sphere), and the matrix M describes the localization ac-

curacy and is given by

M =
1∑
k σ
−2
tk

∑

i,j

(Di −Dj)(Di −Dj)
T

2σ2
ti
σ2
tj

(2.8)

and Di gives the location of the i-th detector. Thus, the localization is improved by

having greater separation between the detectors and good timing accuracy, i.e. high

SNR and large bandwidth of the signal in the detectors.

Localization can be improved by accounting for the relative amplitude and phase

of the signal observed in each detector. These are necessarily constrained in a net-

work of three or more detectors by the fact that a gravitational wave has only two

polarizations. When taken into account, this leads to a more rapid falloff in the

network SNR away from the correct sky location which, in turn, leads to an im-

provement in localization. This has been discussed in detail in [134], and a similar

analysis was presented in [120]. The resulting probability distribution for the local-

ization has the same form as eq. (2.7) with a modified expression for the matrix M,

which nonetheless remains quadratic in the detector separations Di −Dj .

Based on timing information alone, a source observed in three detectors can be

localized to two regions in the sky. The two locations lie above and below the plane

formed by the three detectors. When we require the signal to be consistent with two

gravitational-wave polarizations, this places restrictions on the relative amplitudes

and phase differences between the detectors. In many cases, this information can be

used to exclude the mirror location and restrict the source to a single sky position.

Of course, with four or more sites, timing information alone can be used to localize

a source to a single sky location.

In the following studies, we generate a population of events and determine which

events would be detected by a given network and how accurately they would be

localized. In all instances, we use the above formalism and ignore the effects of

noise which would change the recovered SNR and offset the optimal sky location

from the expected values. We require that signals would be confidently detected
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by the detector network. Specifically, we require a network SNR of at least 12 as

well as an SNR above 5 in at least two detectors in the network.3 Furthermore,

since the localization methods described above are accurate only to leading order,

our localization results are based only upon detectors for which the signal has an

SNR greater than 4. As discussed in [92], at lower SNRs the approximations used

here break down. Due to these approximations, and our neglect of the changing

detector response within a localization region, one should not expect exact agreement

between our results and those obtained using existing codes (such as [122]). Detailed

comparisons between our method and existing codes are planned in the future, see

[134] for details.

The thresholds used mimic those used in the analysis of GW data [151] to obtain

events with a false alarm rate of less than 1 per century [122, 121] and are the same

as used in previous studies [92, 121]. In addition, they seem appropriate based on

the initial gravitational wave observations, where GW150914 and GW151226 both

satisfied these requirements while LVT151012 had a network SNR of 10 and was

not unambiguously identified as a signal [54]. As GW observations become more

common, and searches are further improved [152], it is possible that the detection

thresholds will be reduced. While this will change the details of the results presented

below, the relative performance of the networks will remain similar.

2.4 Results

2.4.1 Face on Binary Neutron Star Mergers

We first investigate the ability of the networks to localize a given source at a fixed

distance, as a function of the sky location of a source. We simulate 1.4 − 1.4 M�

BNS systems that are oriented face on (i.e. with inclination, ι = 0) at a fixed

distance at each point along a two dimensional 16 by 16 grid of sky coordinates.

We repeat the study for sources at redshifts of z = 0.2 (DL = 1Gpc) and z = 0.5

(DL = 3Gpc). At each sky location, we calculate the expected SNR in each of the

detectors in the network. For any signal that meets the detection and localization

criteria given above, we calculate the 90% localization region. Since the BNS systems

are face on, the GWs are circularly polarized, i.e. both polarizations have the same

amplitude. Thus it is the overall sensitivity, and not the relative sensitivity to

the two polarizations that will affect the localization ellipses [99]. This small set

of sources with fixed distance and inclination allows for simple comparison with

previous studies, e.g. [99, 51]. Furthermore, for sources which are inclined at an

angle ι . 45 deg, the relative amplitude of the two GW polarizations renders them

indistinguishable from face-on signals [153, 134] and, indeed, the GW signals seen

to date, including GW170817, have all been consistent with face-on binaries [90].

3For a discussion of the effects of changing these thresholds and, in particular, removing the
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Figure 2.3: The localization ellipses at different sky locations for face-on 1.4-1.4 BNS
binaries at a redshift of: left - z = 0.2 (luminosity distance of 1 Gpc) and right - z
= 0.5 (luminosity distance of 3 Gpc). The red crosses indicate that the BNS at this
sky position would not be detected — either due to a network SNR less than 12, or
not having SNR > 5 in at least two detectors. The blue + symbols indicated sources
that would be detected, but not well localized due to being identified in only two
detectors. The ellipses give the 90% localization regions for a source from a given
sky location. Detector locations are shown with golden markers.

Figure 2.3 shows the localization regions for these BNS sources in the five net-

works under consideration. In the figures, a red cross indicates that the detection

criteria (network SNR > 12 and two detectors with SNR > 5) were not met for a

BNS at this sky position and redshift; a blue plus indicates that the source would

be detected but fails our localization criterion (SNR > 4 in three or more sites). For

signals which would be confidently detected, and observed in at least three sites, the

green ellipses show the 90% confidence region for the localization.

For BNS mergers at z = 0.2, the LIGO Voyager network would observe the signal

over the majority of the sky. There are, however, four patches where the signal would

not be found, which correspond to areas of poor sensitivity for the two US LIGO

detectors. Furthermore, there are regions where the signals would be detected but

not localized, based on our conditions, and these correspond to locations where

single detector thresholds see [150].
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LIGO India has poor sensitivity. For those signals which are localized, the areas

are typically large, as these events will be close to the detection threshold in the

network. We can clearly identify a band for which the localizations are extended

in one dimension. These points are close to the plane defined by the three detector

locations. A large change in sky location, in a direction perpendicular to the plane

of the detectors, leads to a relatively small change in the relative arrival times and

consequently poor localization. These results are consistent with those obtained for

the advanced LIGO network (incorporating LIGO India) given in [99].

The Voyager-ET network is able to detect sources at z = 0.2 over the essentially

the whole sky. For localization, we require the signal to be observed at three sites;

although all three of the detectors in the triangular ET will observe the signal, they

provide rather poor localization by themselves. Thus, the network is limited by the

requirement that two LIGO Voyager detectors observe the signal. The sky locations

where sources are not localized correspond to the locations for which the US LIGO

detectors have poor sensitivity, and these sources are only detected in ET and LIGO

India. The 3ET network also gives excellent coverage over essentially the whole sky.

There are still a handful of points for which localization is not possible. Again,

these correspond to points where one of the detectors has close to zero sensitivity.

As before, we see the characteristic extended ellipses at locations which lie close to

the plane defined by the three ET detectors.

For signals at z = 0.5 we consider the three networks comprised of ET and CE

detectors. In all cases, the sources are observed over essentially the whole sky. For

the 3ET network, there are significant regions where the source is not well localized

as it is seen in only two detectors, but the size of these regions shrinks for the CE-ET

and 3CE networks due to the increased sensitivity of the CE detector. Finally, as

expected, the signals are relatively poorly localized in directions close to the plane

defined by the three detectors.

For a two-site observation, the localization is typically restricted to a fraction of

a ring in the sky with an area of hundreds of square degrees [48, 54] and we consider

these sources to not be localized. The degeneracy along the ring is broken by relative

amplitude and phase measurements in the different detectors. For events observed

with the triangular ET detector and a single L-shaped detector, the localization may

be greatly improved — the triangular detector recovers the amplitude and phase

of both GW polarizations so a single, additional observation will provide enough

information to break the sky location degeneracy. Furthermore, when there are

additional detectors in the network that did not observe the event, this information

can be used to further improve the localization. We do not consider these effects

here, but note that it would be interesting to examine in detail localization with a

network comprised of one triangular and one L-shaped detector.

In these plots we are ignoring the fact that sources detected at three sites may

be localized to two distinct patches in the sky, one above and one below the plane

– 19 –



2.4. Results

formed by the three sites. In many cases, the degeneracy can be broken based

on consistency of the observed amplitude and phase of the signal in each of the

detectors. For the systems at z = 0.2, both the 3ET and Voyager-ET networks

will provide localization to a single region for essentially all sky locations. Voyager

localizes to one patch on the sky 70% of the time, and so about a third of the

localization ellipses shown below will be augmented by a similar sized region in the

mirror location. At z=0.5, the CE and ET networks all localize to a single patch

for at least 95% of sky locations.

2.4.2 A Population of Coalescing Binary Neutron Stars

Figure 2.4: The detection and localization efficiency as a function of redshift and
luminosity distance of the Voyager, Voyager-ET and 3ET networks (left column) and
the 3ET, CE-ET and 3CE networks (right column). For visual comparison, 3ET is
plotted as a solid line in both. Left column: Voyager-ET and Voyager are the dashed
and dotted lines respectively. Right column: CE-ET and 3CE are the dashed and
dotted lines respectively. From bottom to top, the rows show the fraction of events
at a given redshift/distance that will be detected and localized within 100, 10 and
1 deg2.

Now, let us consider network localization for a population of BNS coalescences.

We follow Singer et. al. [122] in choosing the BNS component masses uniformly in

the astrophysically motivated range 1.2 − 1.6M�. This encompasses the masses of

all observed neutron stars in binaries and the 1-sigma interval of the initial mass

function for a variety of formation mechanisms [154, 155]. The orientation of the

sources is uniformly distributed: uniform in polarization, cosine of source inclination

and the phase of the GW at merger. We distribute the sources isotropically and

assume their redshift distribution to follow the star formation rate density (SFRD)

shifted to account for the delay between star birth and BNS merger [3], assuming
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standard cosmology [156],

dRBNS
dz

=
dV

dz

ΨBNS(z)

1 + z
(2.9)

where dV/dz is the differential comoving volume. The (1 + z)−1 factor accounts

for the fact that a time interval ∆tz in the rest-frame at z will be redshifted in the

detector frame (1 + z)∆t. The rest-frame merger rate density is given by

ΨBNS(z) =

∫ t(z)

t∗

ψ(z(tf ))P (t− tf )dtf (2.10)

where ψ(z(tf )) is proportional to the observed cosmic SFRD (Eq. (15) from [2]),

evaluated at the redshift the binary formed, and P (t − tf ) encodes the delay time

distribution. We assume the earliest epoch of star formation t∗ to be at zf =

20. The integral is normalised to give a local merger rate density of ΨBNS(0) =

1500 Gpc−3y−1 [5]. We assume a distribution of possible delay times between star

formation and BNS merger P (tD) ∝ 1/tD, and a minimum delay of tmin
D = 0.2 Myr

corresponding to the smallest time a star can supernova and form a BNS [4]. The

choice of tminD has little effect on the overall distribution. The t−1
D distribution of

delay times is motivated both by population synthesis studies [4] and observations

of merger times for six neutron star binaries [157] (see [158] and references therein).

Figure 2.4 shows the detection efficiency — the fraction of events that would be

observed — for each network as a function of redshift or distance. For those BNS

mergers which are detected by a given network, we calculate the 90% confidence sky

localization using the prescription given in Section 2.3. We also show the fraction

of events that would be localized within 1, 10 and 100 deg2 for each network as a

function of redshift.

On the left hand side of Figure 2.4, we consider the Voyager, Voyager-ET and

3ET networks. The Voyager-ET and 3ET networks have rather comparable sensi-

tivities, both networks identify over 90% of sources within a redshift of z = 0.2 and

the majority of signals within a redshift of z = 0.4. The LIGO Voyager network has

good all sky sensitivity within a redshift of z = 0.1, after which it drops rapidly with

essentially no sensitivity beyond z = 0.4. Since we require a source to be observed

in three sites for good localization, it is unsurprising that the Voyager and 3ET

networks are capable of localizing the majority of observed sources — in particular,

essentially all sources are localized within 100 deg2 and the majority within 10 deg2.

For the heterogeneous Voyager-ET network, the fraction of sources localized is much

lower than the fraction detected. For example, at z = 0.4 over half of all sources

are detected but only 10% are localized within 10 deg2. These are the events which

are too distant to be observed by the LIGO Voyager detectors so, while they are

observed by ET they cannot be localized. For all three networks, only a fraction

of events will be localized to within 1 deg2 and those will be primarily nearby, loud
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events. For a 3ET network, half of the events at a redshift of z = 0.15 with be

localized to within 1 deg2.

The right panel of Figure 2.4 shows the same results for the CE and ET based

networks. The results are comparable to those described above: detection efficiency

is limited by the second most sensitive detector in the network, while localization

requires a third detector to observe the signal. In particular, we note that while the

CE-ET and 3CE networks have similar overall detection efficiencies, the 3CE net-

work provides much better localizations. For example, 3CE localizes 50% of sources

at z = 2 to 100 deg2 while the CE-ET network is unable to give good localizations

for signals at this redshift. We note that those signals which are localized in the

heterogeneous CE-ET network are typically localized within 10 deg2 as they will be

recovered with high SNR in the Cosmic Explorer detectors. Finally, it is again only

the loudest, nearby signals which are localized within 1 deg2. The CE-ET and 3CE

networks localize half of signals within 1 deg2 to a redshift of z ∼ 0.25.

Figure 2.5: The number of BNS observations and localizations per year with future
networks, as a function of redshift and luminosity distance. The y-axis is scaled so
that the area under the curves gives the number of events per year. This assumes
an isotropic redshift distribution that follows the star formation rate [2]) shifted to
account for the delay between star birth and BNS merger [3] and a distribution of
possible delay times P (tD) ∝ 1/tD, with a minimum delay of tmin

D = 0.2 Myr [4].
The local merger rate density is taken as ΨBNS(0) = 1500 Gpc−3y−1 [5]. Note that
the y-axis on 1 deg2 plot is different from the others. For visual comparison 3ET
is plotted as a solid line in both column. Left column: Voyager-ET and Voyager
are the dashed and dotted lines respectively. Right column: CE-ET and 3CE are
the dashed and dotted lines respectively. From bottom to top, the rows show the
number density of events at a given redshift/distance that will be detected and
localized within 100, 10 and 1 deg2.

Figure 2.5 shows the expected number of observed events as a function of redshift

for the five networks, and the overall results are summarized in Table 2.1. In order

to obtain these results, we have taken a population of sources assumed to follow the
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star formation rate. While the star formation rate is reasonably well constrained up

to its peak at a redshift of one to two, observational evidence at higher redshifts,

and for the distribution of delay times between binary formation and merger, is

relatively scarce. Furthermore, we use an intrinsic merger rate of 1500 Gpc−3y−1,

which lies within the current range of predicted rates [5], and we use this fiducial rate

when comparing the network sensitivities. There is at least an order of magnitude

uncertainty on the rate of BNS mergers. Overall changes to the merger rate will

simply scale the number of observations for all networks equally but changes in the

redshift evolution of the rate will affect relative performances.

As expected, the number of events detected by the 3ET and Voyager-ET net-

works are comparable. The 3ET network is sensitive to 50% more BNS mergers

than Voyager-ET, while the Voyager network observes less than a tenth as many

mergers. However, due to the differences in localization, the Voyager-ET localizes

only a quarter as many events as the 3ET network and, for events localized within

10 deg2 the peak of the redshift distribution is at 0.2 rather than 0.4 (and within

1 deg2 the peak is at 0.06 rather than 0.2). We see similar results for the CE-ET

and 3CE networks: they are both able to detect a comparable number of events,

but significantly fewer are localized by the heterogeneous network.

For the results presented above, we have assumed a 100% duty cycle for all

detectors in the network. Here we consider how the results would change for a more

realistic observing scenario. Experience from previous observing runs tell us that at

design sensitivity duty cycle for an individual detector is about 80%, although it is

possible that this may be different for third-generation detectors. Thus, we assume

an 80% duty cycle for all detectors in the network, with uncorrelated operating

times between the detectors, with the exception of the triangular ET where we

assume perfect correlation of up-time between the interferometers. For the three

detector networks, this means that roughly half the time all three detectors will

be operational. For an additional 40% of the time, two detectors will be operating

and they will, on average, be sensitive to half as many signals as the three detector

network and, based on our criteria for localization, not localize any of them. With

the four site Voyager-ET network, we will have all four detectors operating 40% of

the time. There will then be 10% of the time when the three Voyager detectors

are operating, and an additional 30% when ET plus two of the Voyager detectors

are running. Localization with ET and two Voyagers will vary depending on which

Voyager detector is offline. For instance, a network of the triangular ET augmented

by the two American Voyagers at Hanford and Livingston would localize 70% as

many within 100 deg2 as Voyager-ET but only provide 30% as many sub-squared

degree localizations. This is due to the fact that the alignment of Hanford and

Livingston maximises the chances of the network meeting the localization criteria,

but coupled with the smaller baseline between these detectors, the alignment also

limits the precision of the localization. On the other hand, when one of the American
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Network Voyager Voy-ET 3ET CE-ET 3CE

Detected 6000 83000 120000 1300000 1600000
Localized 5500 23000 100000 470000 1400000

Within 1 deg2 100 830 5600 24000 37000
Within 10 deg2 1900 14000 73000 300000 650000
Within 100 deg2 4800 23000 95000 450000 1300000

Median Area (deg2) 22 - 7 - 13
Single Patch 45% 99% 84% 97% 90%

Table 2.1: Performance metrics for Voyager, Voyager-ET, 3ET, CE-ET and 3CE
networks for a population of BNS coalescences distributed uniformly in comoving
volume with an intrinsic merger rate of 1500 Gpc−3y−1. From top to bottom: The
number of sources per year that are detected and localized by each network; the
number of sources localized per year within 1, 10 and 100 deg2 respectively; the
median localization area of all detected sources and the fraction of localized sources
whose position is restricted to a single patch in the sky. Note, the median source is
not localized by the two heterogeneous networks CE-ET and Voyager-ET.

Voyager detectors is offline, only about half of the number will be localized within

10 deg2 and 100 deg2 as Voyager-ET, with 60% (40%) as many sub squared degree

localizations when the Livingston (Hanford) detector is offline.

2.4.3 Implication for EM Followup

The observation of broad-band electromagnetic emission associated with GW170817

provided conclusive evidence that BNS mergers are a progenitor of short GRBs, and

also power kilonova emissions [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,

82, 83, 84, 36, 85, 86, 87, 35, 87, 88, 89]. The primary motivation for accurate

localization of future GW signals is to facilitate the observation of electromagnetic

counterparts. The requirements on localization will depend upon the strength of

the electromagnetic emission accompanying a BNS merger, as well as the ability of

wide-field telescopes to cover the error region. While short GRBs can be observed to

cosmological distances, they are believed to be rather tightly beamed, so that only a

small fraction of BNS mergers would be accompanied by a GRB counterpart [159].

However, observations of GW170817 imply that the GRB emission is structured [70]

with a broader, weak emission, possibly powered by a cocoon [37, 160, 161]. Since

the GRB emission is likely to be essentially concurrent with the merger, it will be

difficult to use GW observations to provide advanced warning to GRB satellites. On

the other hand, kilonova emission is expected to last for days or possibly weeks in

the optical and near infared bands [162, 163]. Furthermore while GRBs are beamed,

kilonovae are relatively isotropic, and thus are the more likely counterpart to a

typical BNS merger [63]. We therefore focus the rest of the discussion on kilonovae.

The neutron-rich ejecta from BNS and NSBH mergers will undergo r-process

nucleosynthesis, producing heavy elements which will subsequently decay; this decay
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process will power an electromagnetic transient known as a kilonova (see e.g. [164]

for details). There are various models for the kilonova emission, which depend upon

the mass of the ejecta as well as its opacity [162, 163]. Broadly, the prediction is for

an optical or near infrared emission, which will last for days or possibly weeks. The

luminosity of the kilonova emission is uncertain, but we take a fiducial model with

magnitude 22 emission from a source at 400Mpc, equivalent to the kilonova emission

from GW170817 [165]. To date, there has been one other putative near-infrared

kilonova observation from GRB 130603B which was observed with a magnitude of

25.8 at redshift of z ≈ 0.35 (equivalently 22.5 at 400 Mpc) [166, 167], which is

broadly consistent with this picture.

Taking our fiducial kilonova model, the current generation of wide-field tele-

scopes, such as DECam [74], Pan-STARRS [84] and VISTA [36], which have limiting

magnitudes around 22 would be able to observe kilonova emission to z ≈ 0.1 or a

luminosity distance of 400Mpc. The results in Figures 2.4 and 2.5 show that the

Voyager network has good sensitivity within the range of the current generation of

telescopes, and would identify and localize the majority of BNS mergers at z . 0.1

to within 10 deg2. All of the other networks are able to detect, and localize within

10 deg2, essentially every event at z . 0.1, thereby enabling followup with one, or a

handful, of pointings.

For LSST [168], with a limiting magnitude around 25-26, kilonovae could be

observed to z ≈ 0.4 or 2 Gpc. At these distances, the sensitivity of the Voyager

network is sufficient to identify only a minority, let alone provide accurate local-

izations. The Voyager-ET network would observe the majority of BNS within this

range. However, the more distant signals would be observed only by the ET detec-

tor and consequently be poorly localized. Again using the fiducial kilonova model,

around one third of BNS mergers producing a kilanova observable by LSST would

be localized within 10 deg2. A 3ET network would identify a similar number of

mergers,and localize twice as many LSST-observable kilonovae as the Voyager-ET

network. The networks with CE detectors are complete with LSST’s kilonova hori-

zon, and localize the vast majority of sources to within 10 deg2.

Of course, the details of kilonova emission are still uncertain and there are models

that predict significantly stronger or weaker emission. For example models, typically

with a smaller ejecta mass, predict magnitude 22 emission at 200 Mpc [164]. In this

case the Voyager network would be sufficient to detect and localize the majority

of signals within the range of the current generation of telescopes. The Voyager-

ET network would localize the majority of signals within the LSST range for these

signals. Thus, the case for localization capacity of future GW networks remains

intimately tied to our knowledge of the range of EM emission from these mergers.

As some of the strongest emissions are predicted from NSBH mergers, it is in-

teresting to briefly consider them. While we have not performed simulations with

NSBH systems, it is straightforward to provide approximate sensitivities based on
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the BNS results given above. The sensitivity of gravitational-wave detectors scales,

at leading order, as M5/6, where M is the chirp mass. Consequently, for a signal

at a fixed distance, orientation and sky location, the SNR with which NSBH will be

observed can be approximated as

ρNSBH ≈ 1.1

(
MBH

MNS

)1/2(
1 +

MBH

MNS

)−1/6

ρBNS (2.11)

where MBH is the black hole mass and MNS is the neutron star mass. Thus, the

observed SNR for a NSBH with MBH = 5M� is 1.6 times that of a BNS, and 2.1

times for MBH = 10M�. Consequently, to a reasonable approximation, we can scale

the distances in Figure 2.4 by these factors to obtain NSBH sensitivities.

A network’s localization accuracy to NSBHs at a given distance will be improved

relative to BNSs, due to higher SNR but will be reduced due to lower frequency

bandwidth (as defined in Eq. 2.5). The effective bandwidth of a NSBH binary with

a 5M� (10M�) black hole is 10% (30-40%) less than a BNS. Thus localization areas

will be roughly a factor of 1.52 smaller for NSBH than BNS at a given distance. So,

we can approximate NSBH localizations by rescaling the distances in Figure 2.4 by

a factor of 1.5.

For the most optimistic NSBH kilonova emissions, which predict magnitude 20

emission at 200 Mpc powered by fallback accretion [164], a network with three ET

or CE detectors would identify and localize most sources within the LSST range;

Voyager augmented by ET would identify but not localize the more distant sources

and Voyager alone would have a range comparable to existing wide-field telescopes.

2.5 Discussion

We have compared the sensitivity of proposed future gravitational-wave networks

to BNS signals, and their ability to accurately localize these events. We find that

a minimum of two detectors, which includes the triangular ET, at an improved

sensitivity are sufficient to provide a substantial increase in the number of observed

sources. For example, the addition of ET to a network of LIGO-Voyager sensitivity

detectors could increase the rate of observations by an order of magnitude. However,

in order to obtain good source localization, we require a minimum of three sites to

observe the event. Consequently, in networks with one or two detectors that are

significantly more sensitive than the others, we find that the majority of detected

sources are not well localized. In contrast, when the three most sensitive detectors

in the network have comparably sensitivity, the majority of signals are well localized

with a median localization area around 10 deg2.

Previously it has been argued that building more detectors further apart im-

proves localization (see for example [118, 121]). However, we find that this is only

true when the sensitivities of the detectors in the network are approximately homo-
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geneous, as is often assumed for the advanced detector (2nd generation) networks

[92, 121, 99]. In the case of heterogeneous sensitivities, such as the Voyager-ET

network, the localization will often be limited since the event cannot be detected

by the less sensitive detectors. In such a network, we expect that for a majority of

events we will obtain limited directional information.

The interpretation of our results depends critically upon the science question

of interest. In particular, the utility of accurate GW localization as a function of

redshift will depend upon the strength and spectrum of the associated EM emission,

and the sensitivity and field of view of the associated telescopes and satellites. For a

standard kilonova model, the LIGO Voyager network provides adequate sensitivity

to identify and localize potential kilonova signals for currently operating telescopes

but the network must be augmented by at least one ET or CE detector to provide

adequate sensitivity to localize all kilonovae that could be observed by LSST. For the

models predicting the strongest kilonova emission, a three detector network of ET

or CE detectors could increase, by a factor of a few, the number of events observed

jointly with GW signals.

In this study, we have neglected a number of factors that affect the size of local-

ization errors in real detector networks. Though the time of arrival and amplitude

and phase of GWs carry most of the information relevant to localization, other infor-

mation can reduce the size of the localization errors. These include, realistic prior

distributions on other astrophysical parameters — particularly source inclination

and distance, correlations with other parameters such as component masses [133],

spin and precession effects. Furthermore, we continue to assume that a signal must

be identified in two detectors to be detected, and three to be localized. Ideally,

performing a fully coherent analysis of the data [150, 169], would improve the per-

formance of heterogeneous networks when the SNR in the less sensitive detectors

is low and would, in effect, remove our requirement of a signal being clearly identi-

fied in at least two detectors. While it is possible to localize sources with only two

detectors, the first GW observations make it clear that the localization areas will

typically be hundreds of square degrees, so our approximation that these sources are

not localized is reasonable. However, incorporation of non-detection (or weak detec-

tion) in additional detectors, as was done for GW170817 [5], can lead to improved

localizations.

We have neglected systematic uncertainties in the results presented here. Errors

introduced by mismatches between template waveforms and signals [92] are expected

to introduce a similar effect in all detectors and therefore the effect on the time

difference, and localization, is likely to be negligible. On the other hand, errors

in the calibration of GW detectors [170] will be uncorrelated, and these errors can

significantly impact localization. For instance, roughly one third of the localization

error budget for GW150914 was due to strain calibration uncertainty [54, 170].

At high SNR, calibration errors are expected to dominate the overall error budget
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for localization [92]. Thus, the ability to achieve the reported sub square-degree

localizations predicted here will depend critically on the calibration accuracy of the

detectors, with likely requirements of uncertainties under 1% in amplitude and 1◦

in phase. The impact of calibration on gravitational-wave localization with future

networks deserves further study.

Finally, in this chapter we have restricted attention to localization of BNS signals.

For many science questions, accurate localization itself is not critical but is required

for accurate measurement of the distance to the source. The gravitational wave

signal from the inspiral and merger of BNS, NSBH and BBH leads to the accurate

measurement of only the luminosity distance DL and the redshifted masses M(1+z).

One goal of gravitational-wave astronomy is to map the merger history of black

holes and neutron stars through cosmic time. Accurate distance measurements are

required not only to infer the redshift of the source, but also to obtain the mass of

the source. For tests of cosmology, we require an independent measurement of the

redshift. There are numerous methods proposed for this measurement, including

identification of a host galaxy from EM counterpart; statistical association with a

host galaxy [171]; assumption of a narrow mass range of neutron stars in binaries

[158]; observation of post-merger features in the waveform [172]. In all cases, an

accurate measurement of the distance (and consequently good source localization) is

essential. A detailed investigation of these issues is beyond the scope of this chapter.

Nonetheless, it seems likely that a network of three or more detectors of comparable

sensitivity will increase scientific returns from a future gravitational-wave network.
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2.A Optimal Detector Orientations

Table 2.A.1 contains all the final locations and orientations of all detectors used

in this study. In order to fix the orientations of the detectors for the ET and CE

networks, we make use of the following FoM, taken from Ref. [112],

I =

(
1

4π

∮
|wnet

+ − wnet
× |2dΩ

)−1/2

(2.12)

Holding the USA detector fixed at 0◦ we rotated the Central Africa and Australia

detectors from 0-90◦ (due to rotational symmetry of the polarizations all other ro-

tations map to this basis). We optimize the ability of the ET and CE networks to

observe both polarizations by choosing the orientation angles to maximize 2.12.

Detector Longitude Latitude Orientation

LIGO Livingston Voyager -90.77 30.56 162.3
LIGO Hanford Voyager -119.41 46.46 234.0

LIGO India Voyager 76.4 14.2 346.8
European ∆ ET 18.7 48.5 -

Central Africa CE/ET 17.2 -9.9 82.4
Australia CE/ET 146.9 -35.8 84.4

USA CE/ET -98.4 38.9 0

Table 2.A.1: The locations and orientations of the detectors used in this study. All
numbers are given in degrees and the orientation angle is defined clockwise relative
to a hypothetical L-shaped interferometer with arms due North and East.
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Chapter 3

Constraining the inclinations of

binary mergers from

gravitational-wave observations

Code: The code that produced the main results in this chapter will be made

publicly available here: https://github.com/sfairhur/simple-pe/

Collaboration: Published in Ref. [173]. SU and CM produced most of the

results and writing. SF contributed to the writing and conception throughout,

and was responsible for Fig 3.3.2.

3.1 Introduction

With its ground-breaking detections in the first years of its operation, the upgraded

Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo detectors

have opened up the door to discovering new information about the universe. The col-

laboration’s many gravitational-wave (GW ) detections from binary systems, includ-

ing GW150914 [48] and GW170817 [174], have allowed us to draw new insights from

these astrophysical sources. These developments include constraining the nuclear

equation of state [33] and constraining binary black hole populations [175, 176, 177].

With more detections, we hope to learn even more about our universe, such as

more accurately measuring the Hubble constant H0 [40, 91] or detailing the open-

ing angle for gamma ray bursts (GRBs) from binary neutron star systems (BNS )

[159, 178, 70]. However, both of these measurements rely on the accurate mea-

surement of the distance to the binaries and the inclination of their orbital angular

momentum with respect to the line of sight. A degeneracy exists between distance

and inclination making the measurement of these two parameters very difficult. Of

the compact binary detections made by LIGO and Virgo, only the BNS merger

GW170817 has had a tightly constrained inclination and distance. The detection

of a kilonova afterglow allowed for an accurate distance measurement [36, 179],
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breaking the degeneracy with inclination. When this type of external information is

unavailable, the degeneracy severely limits our ability to measure these parameters.

In this chapter, we will show that this degeneracy is typical for binary merg-

ers. The measured amplitude and phase of the gravitational-wave signal encode

the properties of the binary. In particular, it is the differing amplitude of the two

polarizations of the gravitational waveform that allow us to determine the binary

inclination. However, the plus (+) and cross (×) polarizations have nearly iden-

tical amplitudes at small inclination angles (less than 45◦) and significantly lower

amplitudes at large inclination angles (greater than 45◦). This leads to two simple

observations: first, that the signal is strongest for binaries which are close to face-

on (ι ∼ 0◦) or face-away (ι ∼ 180◦) and thus we will be observationally biased to

detecting binaries whose orbital angular momentum is well-aligned (or anti-aligned)

with the line of sight [180, 119]. Second, for small angles, the amplitudes of the

two polarizations are close to equal and we cannot measure distance or inclination

separately. Therefore, for the majority of detections, this face-on degeneracy will

limit our ability to constrain both electromagnetic (EM ) emission models and the

Hubble constant. There are various ways to break this degeneracy, such as using the

EM measured distance or using jet modelling to constrain the opening angle. These

techniques were used to improve the constraints on the inclination and distance for

the BNS merger GW170817 [181, 182, 183, 6, 184].

Since an inclined binary system would produce both a high-amplitude plus po-

larization and a lower-amplitude cross polarization, creating a network of detectors

which is sensitive to both the plus and cross polarization has been suggested to

constrain the inclination using only gravitational waves [185]. A single L-shaped

detector is sensitive to just one polarization of a gravitational wave. Hanford and

Livingston are almost aligned, and see essentially the same polarization, while Virgo

is anti-aligned and is sensitive to the orthogonal polarization. The addition of KA-

GRA [53] and LIGO-India [52] would further increase the network’s sensitivity to

the orthogonal polarization. Thus it is hoped this five-detector network could better

constrain the inclination angle and distance. We examine this possibility of con-

straining the inclination using only the measurement of the two GW polarizations.

There have been many studies looking at inclination constraints. From the GRB

perspective they are largely divided into two groups: the first focuses on exploring

the possibility of nailing down the viewing angle by comparing the rate of GRB

sources observed in GWs with those in gamma rays [186, 159, 153]. The second

focuses on measurements for individual detections, mainly in the case where the

event has been three dimensionally localized by an EM counterpart [187, 188]. In

[189], it was observed that the inclination measurement is poor for binaries with an

inclination less than seventy degrees when there is no redshift information. They

attribute this to a combination of the degeneracy between distance and inclination

and the prior on the distance. Here we explore the origin of the degeneracy in detail
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and discuss the importance of an additional degeneracy when the binary is circularly

polarized [190].

Inclination constraints have also been discussed in the context of distance es-

timates for cosmology [191, 180, 192] and as part of wider parameter estimation

investigations [193, 100, 194, 195]. It was noted in [180] that adding detectors to

a network did not seem to greatly improve the inclination measurement. Here we

investigate the extreme case: a network that measures both polarizations equally as

would be expected over the majority of the sky for the Einstein Telescope [196].

3.2 Measuring Distance and Inclination

3.2.1 Origin of the degeneracy

The degeneracy between distance and inclination arises directly from the dependence

of the gravitational waveform on these parameters and has been discussed several

times previously [191, 193, 180]. The gravitational-wave signal, h(t), incident on a

gravitational-wave detector is [197]

h(t) = F+(αs, δs, χ)h+(t) + F×(αs, δs, χ)h×(t), (3.1)

where F+ and F× are the detector response to the plus and cross polarizations,

respectively. The detector responses depend on the location (αs, δs) of the source,

where we have used subscripts to distinguish the right-ascension of the source αs from

a later use of α to represent the alignment factor — a networks’ relative sensitivity

to the second polarization. In addition, we must specify a polarization angle χ to

fully specify the radiation frame. It is common [149, 148] to define a dominant

polarization frame, for which the detector network is maximally sensitive to the

plus polarization. With this choice, we can naturally characterize the network by

its overall sensitivity and the relative sensitivity to the second polarization [149, 46].

This simplifies the comparison of different networks.

For a waveform where it is appropriate to neglect higher order modes and pre-

cession, the two polarizations given in Equation 3.1 can be expressed in terms of the

two orthogonal phases of the waveform:

h+(t) = A1h0(t) +A3hπ
2
(t) (3.2)

h×(t) = A2h0(t) +A4hπ
2
(t) (3.3)

where h̃π
2
(f) = ih̃0(f). The Ai are overall amplitude parameters, and depend on
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Figure 3.1.1: The relative contributions of the plus and cross polarizations of a
gravitational-wave signal, dependent on the inclination. The red solid line indicates
the amplitude of the plus polarization, while the dashed red solid line indicates the
amplitude for the plus polarization with a negative phase. The blue solid line indi-
cates the amplitude of the cross polarization. The shaded regions show the percent
differences between the plus and cross polarizations. The red portion represents
when the plus and cross polarization are less than 1% different. The blue region
represents where the polarizations are between 1% and 5% different. The grey region
represents where the polarizations are between 5% and 10% different.
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Figure 3.2.1: The relative sensitivity of detector networks to the second polariza-
tion, as encoded in the parameter α, defined through F× = αF+ (in the dominant
polarization frame where the network is maximally sensitive to the plus polariza-
tion). The left plot shows the expected distribution of α for second-generation
gravitational-wave networks, while the right plot shows the distribution for poten-
tial third generation networks. In both cases, the distribution is the expected nor-
malized distribution for a population of events, distributed uniformly in volume,
and observed above threshold in the detector network. Thus, directions of good
network sensitivity are more highly weighted. In the legends, ᾱ denotes the mean
α for each network. The second generation networks considered are LIGO Han-
ford and Livingston (HL); two LIGO detectors and Virgo (HLV); LIGO-Virgo and
KAGRA (HLVK) and LIGO-Virgo-KAGRA with LIGO-India (HLVKI). As more
detectors are added to the network, the average sensitivity to the second polariza-
tion increases. The right plot shows results for the Einstein Telescope (ET), which is
comprised of three 60-degree interferometers, ET and three LIGO-Voyager detectors
(Voyager-ET) and ET with either one or two Cosmic Explorer detectors (1CE-ET
and 2CE-ET). As the ET detector has good sensitivity to both polarizations, net-
works where ET is the most sensitive detector will have large values of α. Third
generation target noise curves are taken from [1].

the distance dL, inclination ι, polarization ψ and coalescence phase φ0 [198, 199]:

A1 = A+ cos 2φ0 cos 2ψ −A× sin 2φ0 sin 2ψ (3.4)

A2 = A+ cos 2φ0 sin 2ψ +A× sin 2φ0 cos 2ψ (3.5)

A3 = −A+ sin 2φ0 cos 2ψ −A× cos 2φ0 sin 2ψ (3.6)

A4 = −A+ sin 2φ0 sin 2ψ +A× cos 2φ0 cos 2ψ (3.7)

where A+ and A× are amplitudes for the plus and cross polarizations in the source

frame, which is aligned with the binary’s orbital angular momentum. They are given
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by

A+ =
d0

dL

1 + cos2 ι

2
(3.8)

A× =
d0

dL
cos ι, (3.9)

where dL is the luminosity distance and d0 is the reference luminosity distance.

The variation of the two polarization amplitudes with inclination ι is shown in

Figure 3.1.1. We note that there is an arbitrary choice of the radiation frame and

this will affect the value of the angles ψ and χ and consequently the values of the

Ai. However, the signal observed at the detectors is independent of this choice.

In principle, we should be able to measure all four of the amplitude parameters

by accurately measuring both the amplitude and phase of both the plus and cross

polarizations of a gravitational wave. From here, we could then infer the distance

and orientation of the source binary. However, degeneracies limits our ability to

accurately measure these parameters.

In order to identify the inclination of the binary system using the polarizations of

the gravitational wave, we must distinguish the contributions of the plus and cross

polarizations. When the binary system is near face-on or face-away, the two ampli-

tudes A+ and A× have nearly identical contributions to the overall gravitational-

wave amplitude. In Figure 3.1.1, we see the relative difference between plus and

cross is less than 1% for inclinations less than 30◦ (or greater than 150◦) and 5% for

inclinations less than 45◦ (or greater than 135◦). This is the main factor that leads

to the strong degeneracy in the measurement of the distance and inclination.

3.2.2 Network sensitivity

As we have already described, gravitational-wave detectors with limited sensitivity

will preferentially observe signals which are close to face-on or face-off. In addition,

when the binary is close to face-on and the emission is circularly polarized, the

waveform is described by a single overall amplitude and phase (as the two polariza-

tions are equal, up to a phase difference of ±90◦). Thus it is no longer possible to

measure both the polarization ψ and phase at coalescence φ0 of the binary, but only

the combination φ0±ψ (with the +/− for face-on/away binaries respectively). This

degeneracy, combined with the distance prior, leads to a significantly larger volume

of parameter-space which is consistent with face-on, rather than edge-on systems.

To exclude face-on binaries from a marginalized posterior probability distribution

on the inclination, the network must accurately measure the amplitude and phase

of both of the polarizations. In general, gravitational-wave detectors are not equally

sensitive to the two polarizations. For a given sky location, we choose a plus and cross

polarization such that the detector network is most sensitive to the plus polarization

and the remaining orthogonal component becomes the cross polarization. We can

– 35 –



3.2. Measuring Distance and Inclination

think of this as a detector network comprised of a long plus-detector and a shorter

cross-detector (with a fraction α the length of the arms of the plus-detector). Thus

we can estimate the proportional sensitivity to the second polarization, called the

network alignment factor [149], through the relation F× = αF+, where α varies

between 0 and 1. Therefore the sensitivity of the network to the second polarization

can be determined by looking at the values of α over the sky.

Figure 3.2.1 shows the distribution of alphas for various detector networks. As

might be expected, the sensitivity to the second polarization increases as more de-

tectors are added to the network. For the two LIGO detectors, the typical value is

α ∼ 0.1 because the two detectors have very similar orientations. When the Virgo

detector is added to the network, the mode is α ∼ 0.3 and this increases to α ∼ 0.5

when KAGRA and LIGO-India join the network. The Einstein telescope (ET ) is

a proposed future detector with a triangular configuration [196]. For an overhead

source, ET is equally sensitive to both polarizations, giving α = 1. While ET does

not have equal sensitivity to both polarizations over the whole sky, the majority

of signals will be observed with α > 0.9. For the future networks, we consider an

ET detector complemented by either the advanced LIGO detectors with sensitivity

improved by around a factor of three (LIGO Voyager), or by one or two Cosmic

Explorer (CE ) detectors [1, 46]. When the ET detector dominates the network’s

sensitivity, we have excellent measurement of both polarizations but, in the CE-ET

networks where CE is more sensitive, the relative sensitivity to the second polariza-

tion is comparable to the current networks.

3.2.3 Parameter estimation

When a gravitational-wave signal is observed in the data from the LIGO and Virgo

instruments, the goal is to obtain estimates for the parameters that describe the

waveform. Typically, Bayesian inference [200, 201, 202] is used to obtain a posterior

distribution for the parameters of the system θ given the observed data d. As

described in detail in [203], the likelihood of obtaining data d given the presence of

a signal h(θ) and under the assumption of Gaussian noise characterized by a power

spectrum S(f) is

Λ(d|θ) ∝ exp

[
−1

2
(d− h(θ)|d− h(θ))

]
. (3.10)

Here, we have introduced the weighted inner product

(a|b) := 4Re

∫ fmax

0

ã(f)b̃(f)?

S(f)
df . (3.11)

The likelihood for a network of detectors is simply the product of likelihoods for
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Figure 3.2.2: The marginalized posterior distribution for the distance and incli-
nation of the binary neutron star system GW170817, detected with a signal-to-
noise ratio ρ ∼ 32 and network alignment factor α ∼ 0.13. The left plot was
generated using only the data from gravitational-wave detectors, while the right
plot also uses the independent distance measurement (40.7 Mpc, ±2.4 Mpc at
90% confidence) from electromagnetic observations. The coloured portion of the
plot shows the probability distribution obtained using our approximate analy-
sis, normalized such that the peak probability is 1. The orange contours repre-
sent the 90% and the 50% confidence intervals obtained by performing the full
analysis of the LIGO-Virgo data (posterior samples are publicly available here:
https://dcc.ligo.org/LIGO-P1800061/public) [6].

the individual detectors:

Λ(d|θ) ∝ exp

[
−1

2

∑

i∈dets

(di − hi(θ)|di − hi(θ))

]
. (3.12)

The posterior distribution for parameters θ given the data d is given as

p(θ|d) ∝ Λ(d|θ)p(θ), (3.13)

where p(θ) is the prior distribution for the parameters. The posterior distribu-

tions are typically calculated by performing a stochastic sampling of the distribution

[204, 201, 202, 205, 206]. Distributions for a subset of parameters are obtained by

marginalizing, or integrating out, the additional parameters.

In this analysis, we are interested in obtaining the joint distribution of the lumi-

nosity distance dL and binary inclination ι. This is calculated as

p(dL, cos ι|d) =

∫
dµΛ(d|µ, dL, cos ι)p(µ, dL, cos ι) (3.14)

Typically, µ contains all parameters describing the system, including the masses,

spins, sky location, orientation and parameters describing the nuclear equation of

state. For our work, we consider a simplified model, for which the only additional
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parameters contained in µ are the binary’s polarization ψ and coalescence phase

φ0. We choose uniform priors on these parameters, as well as a uniform prior on

cos ι, which leads to a uniform distribution of binary orientation. Furthermore, we

use a uniform-in-volume prior for the distance p(dL) ∝ d2
L. For binaries at greater

distance, we need to take into account cosmological effects and use a prior with

sources uniform in comoving volume and merging at a constant local rate. At even

greater distances, the local merger rate would follow the star formation rate [2],

which peaks at redshift z ∼ 2. We take this into account later in this chapter for

binary black hole systems, (BBH ), which can be detected throughout the universe

with future detectors.

In our approximation, we fix the sky location and arrival time of the signal,

as well as the masses and spins of the system. Fixing the sky location is reason-

able, as one of the main motivations for this work is to investigate the accuracy

of gravitational-wave measurements of distance and inclination after the signal has

already been identified and localized by the detector network. We also investigate

how inclination measurements from gravitational-wave observations can be com-

bined with electromagnetic observations. An unknown sky location will only lead

to larger uncertainties in the distance and inclination measurements arising from

varying detector sensitivities over the sky.

While the masses and spins of the binary will not be known, in most cases these

parameters have little impact on the inferred distance and inclination. This is

especially true for low mass systems such as binary neutron stars which typically

have component masses in the range 1.2 − 1.6M� [154, 155]. These systems are

in-band for a large number of cycles, O(104 − 106), allowing the accurate measure-

ment of the phase evolution of the binary. In these cases the chirp mass M — the

parameter determining the leading order phase evolution — is measured with great

precision. Therefore, though M also appears in the amplitude, the uncertainty in

M will be negligible relative to the total uncertainty in the amplitude and can be

safely ignored for when considering uncertainteis in measurement of the distance

and inclination. For higher mass binaries such as BBH, typically fewer cycles of the

waveform are visible O(101− 103). This results in a less precise measurement of the

binary chirp mass. This extra uncertainty in the overall amplitude will widen the

posteriors on both the distance and inclination. The estimates here should thus be

seen as best-case, and any extra uncertainty in mass and sky position will simply

widen the posteriors. In the analysis presented here, we focus only on the dominant

gravitational-wave emission at twice the orbital frequency. For unequal-mass sys-

tems, the other gravitational-wave harmonics can significantly affect the waveform,

particularly when the binary has a high mass ratio, i.e. one of the compact objects

is significantly more massive than the other [207]. This can lead to improvements

in the measurement of the binary orientation [20].

Spins which are misaligned with the orbital angular momentum lead to precession
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Figure 3.2.3: The progression of the probability distributions over a cos ι and dis-
tance parameter space for a signal detected with alignment factor α = 0.1 and signal
to noise ratio ρ = 12. The white star represents the injected signal. The top panel
shows the distribution for a face-on signal. The bottom panel shows the distribution
for an edge-on signal. The leftmost plots are the distribution for only the likelihood.
This is generated by calculating the SNR fall-off over the parameter space. Since
we have not yet marginalized over the phase φ0 and polarization ψ, the orientation
angles are set equal to the values used in the injection, in this case zero for both φ0

and ψ. The middle plots show how these distribution change when marginalizing
over ψ and φ0. Lastly, the rightmost plots are the complete probability distribution,
calculated by applying a distance-squared weighting to the likelihood. This is to ac-
count for the expectation that binary systems are distributed uniformly in volume.
Recall that α = 0.1 is the mode sensitivity for the Hanford-Livingston network.
The white star represents the hypothetical signal. The white contours represent the
50% and 90% confidence intervals obtained from our simplified model. Note that
these contours do not represent the results of full parameter estimation, as they did
in Figure 3.2.2. From these plots, we can see that at this α, a side-on signal is
indistinguishable from a face-on/face-away signal.

of the binary orbit [208] which can, in principle, lead to an improved measurement of

the binary orientation. To date, there is no evidence for precession in the observed

GW signals [54, 209, 210, 211, 212], so the approximations discussed here would

therefore be applicable. Furthermore, neutron stars observed to merge within a

Hubble time [213, 214] are not expected to achieve a spin high enough to have

observable precession within ground-based detector bandwidths [208, 6].

To verify that fixing the masses and spins has limited impact on the recovered

distance and inclination, we compare results from our model with those from the full

parameter estimation of GW170817. We recreate the posterior distribution for the

multi-messenger signal GW170817, with and without distance information from the

coincident electromagnetic signal, and compare it to the full, Bayesian parameter

estimation, with a fixed sky location, using the observed LIGO and Virgo data [6].
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Figure 3.2.4: The probability distribution over a cos ι and distance parameter space
for a signal detected with alignment factor α = 0.5 and signal to noise ratio ρ = 12.
The white star represents the injected signal. The white contours represent the 50%
and 90% confidence intervals obtained from our simplified model. Note that these
contours do not represent the results of full parameter estimation, as they did in
Figure 3.2.2. A face-on signal (where cos ι = 1) returns a nearly identical probability
distribution of the parameter space as a signal from a binary with an inclination of
about 66 degrees (cos ι = 0.4). For inclinations in the range 0.1 < cos ι < 0.4, though
the distribution now peaks at the correct inclination, there is support extending
across from face-on to an inclination of ι ∼ 80◦ − 90◦. In these cases it is not
possible to distinguish the binary inclination. The signal is only clearly identified as
not face-on after cos ι < 0.1.

The results are shown in Figure 3.2.2. To generate our results, we approximate the

data d by a gravitational-wave signal at a distance of dL = 40.7 Mpc [181] and

an inclination of 153◦ [6]. We then generate a posterior distribution for the four

dimensional parameter space of distance dL, inclination ι, polarization ψ and coa-

lescence phase φ0. From this, we calculate the posterior distribution, p(dL, cos ι|d)

by marginalizing over the polarization and phase angles. As is clear from the figure,

our approximate method gives a posterior on distance and inclination which is in

excellent agreement with the full results from the real data.1

The results in Figure 3.2.2 show an example of the degeneracy in the measured

values of the distance and binary inclination. The 50% confidence interval includes

both a face-away binary at a distance of 45 Mpc and a binary inclined at 135◦ at a

distance of 35 Mpc. It is only when the gravitational-wave data is combined with

the electromagnetically determined distance 40.7 ± 2.4 Mpc [181] that the binary

inclination can be accurately inferred.

1We note that the results in [6] show this distribution as a function of inclination ι instead of
cos ι. This leads to a different distribution, and different 90% confidence intervals as these are
defined to be the minimum range that contains 90% of the probability, and this is dependent upon
variable choice. As we discuss later, there is no evidence in the GW data alone that the signal is
not face-off, and since the prior is flat in cos ι we believe that plotting the distribution against cos ι
leads to a clearer understanding of the distribution.
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3.3 Accuracy of measuring distance and inclination

Now that we understand how the degeneracy between inclination and distance arises,

we can explore the expected accuracy with which these parameters will be measured

in various gravitational-wave detector networks. For concreteness, in the examples

that follow, we fix the signal-to-noise ratio (SNR), denoted ρ, of the signals to be

12. While this might seem low, we note that for a detection threshold of 8, the mean

SNR observed from a uniform-in-volume population would be 12 [119]. We discuss

higher SNR signals later in the chapter. Rather than specifying a network and sky

location, we instead investigate the ability to measure distance and inclination as

we vary the network’s relative sensitivity to the second polarization, encoded in

the variable α. For convenience, we fix the masses of the system to be 1.4M� and

set the sensitivity of detector network to the plus polarization of GW to be equal

to that of a single advanced LIGO detector at design sensitivity for an overhead

source. This places a face-on system at approximately 300 Mpc at SNR of 12. For

inclined systems, the distance will be smaller to ensure that the network still receives

an SNR of 12. While we have fixed the masses and detector sensitivities to make

the plots, the results are essentially independent of these choices, up to an overall

rescaling of the distance. Thus the results will be applicable to any system for which

it is reasonable to neglect precession effects and the impact of higher modes in the

gravitational waveform.

Let us begin by considering a network with relatively poor sensitivity to the

second GW polarization, with F× = 0.1F+. This is typical for the LIGO Hanford-

Livingston network and is common for the LIGO-Virgo network, as described in

Figure 3.2.1. We consider two signals, both with SNR of 12, but one which is face-

on (ι = 0) at a distance of 300 Mpc while the second is edge-on (ι = 90◦) at a

distance of 150 Mpc and a polarization angle of ψ = 0 so that the GW power is

contained in the plus polarization. The first column of figures in Figure 3.2.3 shows

the likelihood across the distance-inclination plane. Here, we simply kept the values

of φ0 and ψ equal to zero, the value used in generating the signal. Note that the

contours here are calculated for our simplified model and do not represent the results

of full parameter estimation analyses, as they did in Figure 3.2.2. As expected, the

maximum likelihood occurs at values of distance and inclination which exactly match

the signal. We observe a degeneracy in distance and inclination, so that there is some

support for the edge-on binary to be face-on (or face-away). There is also degeneracy

for the face-on binary, which is marginally consistent with an edge-on binary, but

face-away orientation can be excluded. With an SNR of 12 and α = 0.1, for a face-

on signal we expect an SNR of about 1.2 in the cross polarization. These results

show that the presence or absence of this signal is sufficient to down-weight, but not

exclude, an edge-on orientation when the source is really face-on, and vice-versa.

For a face-away system, the expected signal in the cross polarization is the same
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amplitude, but entirely out of phase from the face-on system, and this is sufficient

to distinguish the two.

In the second column, we show the likelihood marginalized over the polarization

and phase angles. This marginalization does not have a significant impact on the

face-on binary, but completely changes the distribution for the edge-on binary —

with the marginal likelihood now peaked at cos ι = ±1. Typically, we would expect

to be able to measure the two phase angles with accuracy ∼ 1/ρ thus to a crude

approximation, marginalizing over the phase angles would give a contribution ≈
(1/ρ2)Λmax, where Λmax is the maximum likelihood. When the binary is recovered

(nearly) face-on the two amplitudes A+,× are (nearly) equal. Consequently, the

signal is circularly polarized, with the phase determined by φ0 + ψ. Changing the

value of φ0 − ψ has no effect on the waveform. Thus, when marginalizing over the

polarization and phase, we obtain a factor ∼ (π/ρ)Λmax. Thus, for this signal at

SNR 12, marginalizing of the polarization and phase will lead to a relative increase

of nearly 40 in favour of the face-on signal.

Finally, in the third column, we include the distance prior by re-weighting by d2
L

to place sources uniformly in volume. This gives an additional factor of four weight-

ing in favour of the face-on signal over the edge-on one. Once all these weightings

are taken into account, the probability distributions between a face-on and edge-on

signal are similar for a network with this sensitivity. The edge-on signal has slightly

more support at cos ι ≈ 0, and this is still included at 90% confidence. Additionally,

the edge-on signal is consistent with either a face-on or face-away orientation. It may

seem strange that we will not recover the parameters of the edge-on system accu-

rately. However, this is appropriate. As we have discussed, the volume of parameter

space consistent with a face-on system is significantly larger than for the edge-on

case. Thus, even if we observe a signal that is entirely consistent with an edge-on

system, it is more likely that this is due to a face-on system and noise fluctuations

leading to the observed signal than it is that the signal is coming from an edge-on

system.We note that this effect is also seen in [194]. Their figures 4–6 show two

LIGO detectors recovering edge on systems as face-on or face-away, which results in

the wrong sky location being measured.

Our next example investigates differing inclinations for a signal detected by a

network with an F× = 0.5F+, i.e. a network with half the sensitivity to the cross

polarization as the plus polarization. This is the predicted mean sensitivity expected

for the best near-future detector network consisting of the Hanford, Livingston,

Virgo, KAGRA and LIGO-India detectors. Again, the SNR is set to 12 for all

hypothetical signals, and now we consider three different inclinations: ι = 0 (face-

on) and two inclined signals, one with ι = 66◦ and the other with ι = 78◦. In Figure

3.2.4, we show the posterior distribution for distance and inclination for the three

cases. Here, we have marginalized over the phase angles and included the distance

prior weighting, so the plots are equivalent to the third column of plots in Figure
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Figure 3.3.1: The un-normalized marginalized posterior for cos ι for a face-on source
as measured for three networks with alignment factors α = 0.1, α = 0.5, α = 1.0
and signal to noise ratio ρ = 12, ρ = 12, ρ = 50 respectively. The solid line shows
the expected cos3 ι form of the likelihood.
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Figure 3.3.2: This plot shows a detector network’s ability to constrain the inclination
of a face-on signal with 90% confidence. The x-axis shows the network alignment
factor α, whereas the y-axis shows the signal-to-noise ratio (SNR) of the hypothetical
gravitational-wave signal. The colour represents the upper limit on the inclination
angle. For weak signals or for networks which are not very sensitive to the cross
polarization, the network can only constrain the inclination to being less than about
45◦. Even for the most sensitive detector network detecting the loudest hypothetical
signals, the network would be unable to constrain the inclination to being less than
30◦. However, we note that at these SNRs, the detector network may be able to
identify higher order modes, which would break the degeneracy between distance
and inclination, allowing more precise measurement of the inclination
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3.2.3.

The leftmost plot shows the probability distribution for a face-on signal. This

distribution is similar to the one for α = 0.1, though now the most inclined and

face-away points in parameter space are excluded from the 90% credible region.

The second plot is for a binary inclined at 66◦ (cos ι = 0.4). Here, the peak of the

inclination distribution corresponds to a face-on system and, indeed, the posterior is

nearly identical to that obtained for the face-on system. Thus, for a typical system

with close-to-threshold SNR we will remain unable to distinguish between face-on

signals and those inclined at 60◦ based on gravitational-wave observations alone.

The best near-future detector therefore would be unable to measure a difference in

inclination between these two hypothetical signals. For inclinations in the range

0.1 < cos ι < 0.4 the 90% credible region includes peaks at both the true inclination

and face-on. In this region, we cannot tell if the difference in polarization amplitudes

arises from an inclined signal or from a signal with parameters in the much larger,

and prior-preferred, volume of parameter space near face-on, with a noise fluctuation

giving rise to the observed data. For values of cos ι < 0.1, the posterior is peaked at

the correct value of ι and excludes face-on from the 90% credible region.

The results shown in Figures 3.2.3 and 3.2.4 show the general features of the

distance and inclination distribution. It is characterized by three components: one

consistent with a face-on signal, one with a face-off signal and a third contribution

peaked around the true values of distance and inclination. In all of the cases we have

shown, only one or two of the contributions are significant. There are, however, cases

where we obtain three distinct peaks in the posterior for the inclination, although

these are rare. In Appendix B of [190], an approximate expression for probability

associated with each peak was obtained, which is valid for networks sensitive to a

range where a d2
L prior is still appropriate. This provides an analytic expression

for the probability associated to each of the three contributions, as a function of

SNR, inclination, polarization and the network sensitivity to the second polarization,

encoded in the variable α.

To get a sense of how accurately binary inclination will be measured, we simu-

lated a set of 1,000,000 events isotropically and uniformly in both volume and orien-

tation, keeping only those which would be observed above the detection threshold of

the network (typically leaving 30,000-80,000 events). For each event, we then deter-

mine whether the event would be recovered as definitely face-on — over 90% of the

probability associated to the face-on (and face-away) components of the distribution

— definitely inclined or uncertain. These results are summarized in Table 3.3.1, for

a series of networks each with an increasing number of detectors. For all networks,

essentially all events with a true inclination less than 45◦ will be recovered face-on.

Only for those events with inclination greater than 45◦ do we start to be able to

distinguish the orientation. Between 45 and 60◦, networks with three or more de-

tectors will classify a small fraction of events as inclined, and this fraction increases
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Network 0◦ ≤ ι < 45◦ 45◦ ≤ ι < 60◦ 60◦ ≤ ι < 75◦ 75◦ ≤ ι < 90◦

face-on uncertain inclined face-on uncertain inclined face-on uncertain inclined face-on uncertain inclined
HL 100% 0% 0% 97% 3% 0% 80% 18% 2% 47% 32% 21%

HLV 100% 0% 0% 86% 13% 1% 47% 44% 9% 29% 27% 44%
HLVK 100% 0% 0% 78% 21% 1% 27% 59% 14% 17% 20% 63%
HLVKI 100% 0% 0% 67% 32% 1% 7% 72% 21% 7% 13% 80%

Table 3.3.1: The table shows the ability of various networks to distinguish the
orientation of a population of binary mergers with given inclination, ι. For each
network and range of ι, we give the percentage of binaries for which the posterior
on the inclination peaks at ι = 0 or 180◦ (face-on) and this peak contains over 90%
of the probability; those binaries for which the recovered inclination peaks at the
correct value, and greater than 90% of the probability is consistent with this peak
(inclined); and those for which the posterior includes significant contributions for
both face-on and inclined orientations (uncertain). For all networks, essentially all
binaries with ι < 45◦ will be recovered face-on. As the inclination increases further,
the ability to clearly identify the binary as inclined increases significantly with the
number of detectors in the network as this improves the average sensitivity to the
second gravitational-wave polarization.

with both the inclination of the system and the number of detectors (which directly

effects the typical value of α). However, even for events which have an inclination

greater than 75◦, the LIGO Hanford–Livingston network would recover half as face-

on and only 20% as definitely not. This improves for the five detector network where

less than 10% are face-on and 80% are clearly identified as being inclined. We note

that similar results have been obtained independently in [189].

Next, let us consider the general accuracy with which we can measure the in-

clination for a binary which is (nearly) face-on. In this case, the distribution for

the inclination angle can be approximated in a simple way. If we begin by assuming

that the degeneracy between distance and inclination is exact, then orientations with

| cos ι| ≈ 1 are preferred due to the prior on the distance. This can be clearly seen by

comparing the second and third columns of plots in Figure 3.2.3. The distribution in

the second column (when we do not apply the uniform-in-distance weighting) shows

a broad degeneracy with equal probability along lines of constant A = cos ι/dL. It

is only by applying the distance re-weighting that the peak shifts more to cos ι = 1.

We can obtain the posterior probability for a fixed value of ι by integrating over a

given distribution, p(cos ι/dL):

p(cos ι) =

∫
d2
Lp(cos ι/dL)ddL

∝
∫

cos3 ιA−4p(A)dA

∝ cos3 ι (3.15)

Thus, it follows that, where the degeneracy holds, the posterior on cos ι will be
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Figure 3.3.3: Marginalized posterior distribution for a 10M� − 10M� binary black
hole at redshift z = 10 detected by the Einstein Telescope in the most sensitive part
of the sky, i.e. directly above the detector. Here, the alignment factor is α = 1
and the signal-to-noise ratio is ρ = 20. The white star represents the injected signal
at three different inclinations: ι = 66◦, ι = 60◦ and ι = 0◦. The white contours
represent the 50% and 90% confidence intervals obtained from our simplified model.
Note that these contours do not represent the results of full parameter estimation, as
they did in Figure 3.2.2. We use a prior that is a uniform in comoving volume with
a rest frame rate density that follows the star formation rate [2]. At this redshift the
prior varies by a factor of ∼ 12 across the degeneracy and now favours more inclined
binaries. Thus binaries that are face-on will be recovered as being more inclined.
The redshift uncertainty ∆z/z ∼ 40% dominates the statistical error in the recovery
of the binary chirp mass. All conversions between luminosity distance and redshift
assume standard cosmological parameters [7].

proportional to cos3 ι. In Figure 3.3.1, we show the posterior for three examples of

face-on signals : SNR ρ = 12 with α = 0.1 and 0.5, and SNR ρ = 50 with α = 1.

All three distributions follow the cos3 ι distribution for small inclinations. The high-

SNR signal deviates at around 30◦ — at this inclination there is enough difference

from a circularly polarized signal for larger inclinations to be disfavoured. However,

for the lower-SNR signals (and also lower values of α) the approximation remains

accurate to greater than 45◦.

We can improve the approximation by noting [190] that the SNR lost by pro-

jecting an inclined signal onto a circular signal is

∆ρ2 =
α2ρ2

(1 + α2)2

(1− cos ι)4

4
. (3.16)

This loss in SNR leads to a reduction in the likelihood associated with the inclined

signal, which causes the probability distribution to fall off more rapidly away from

ι = 1. In particular, we obtain

p(cos ι) ∝ cos3 ι exp

(
−∆ρ2

2

)
. (3.17)

We can use this expression to determine how well a network with sensitivity α

would be able to constrain a signal’s inclination ι given the SNR of the signal. In

Figure 3.3.2, we specifically look at how tightly we can constrain a face-on signal.
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We can see that for low-SNR signals or for networks with little sensitivity to the

cross polarization, GW observations will only be able to constrain the signal to

being less than about 45◦. Even with an extremely loud signal and a very sensitive

detector network, we are only able to constrain the signal to about 30◦. This effect

has also been observed in the results of full parameter estimation runs in [195]

where even with a network of two ETs and for sources nearby (at redshifts z < 3),

the median 90% credible interval for the cosine of the inclination was found to be

∆ cos ι ∼ 0.15, which at face-on corresponds to an inclination constraint of 30◦. It is

important to note here that at these SNRs, higher-order modes or precession in the

gravitational-wave signal may be observable. If these are detected, the degeneracy

between distance and inclination would be broken, and we would be able to more

tightly constrain the inclination.

Finally, it is interesting to consider what effect the inclination distance degener-

acy would have on the mass estimate of binary black holes. GW detectors actually

measure the redshifted mass Mdet = (1 + z)Msource where the subscripts denote

detector-frame and source-frame respectively [193]. There is no way to determine

the redshift directly from the gravitational waveform of a binary black hole. How-

ever, the measured value of the luminosity distance can give the redshift if a cos-

mology is assumed. In this way, the inclination-distance degeneracy will map to

an uncertainty in the rest-frame masses. For the next generation of gravitational-

wave detectors which will be sensitive to BBH mergers throughout the universe, the

uncertainty in the redshift will likely be the dominant uncertainty in the masses.

As such, we explore the inclination measurement with ET for a BBH merger at a

redshift of z = 10 with intrinsic masses of 10M� each, corresponding to a detector

frame chirp mass ofMdet = 96M�. We place the source directly above the detector,

in the most sensitive part of the sky. In this case, α = 1 and ρ = 20, where we have

assumed standard cosmology [7].

At these cosmological distances, a d2
L prior for the distance is no longer appro-

priate. Rather, we use a distance prior that is uniform in comoving volume where

the rest-frame binary merger rate density follows the cosmic star formation rate [2]

with a delay between star formation and binary merger ∆t, and a distribution of

delay times p(∆t) ∝ 1/∆t [3] (see Section 5 of [46] for details). The new prior peaks

at z ∼ 1.4. Therefore at z ∼ 10, the nearer, more inclined binaries are a priori more

likely.

In Figure 3.3.3, we show the marginalized posterior for three different inclina-

tions: ι = 66◦, ι = 60◦ and ι = 0◦. For the second generation networks in Figure

3.2.4, the ι = 66◦ (cos ι = 0.4) source is recovered as face-on. With the higher signal

to noise ratio and improved sensitivity to the second polarization, ET can identify

the signal as edge-on. At an inclination of ι = 60◦, the degeneracy still extends

across 25◦ < ι < 70◦, though smaller inclinations are now excluded from the 90%

credible interval. This is the effect of the new distance prior which is a factor of 12

– 48 –



Chapter 3. Constraining the inclinations of binary mergers from gravitational-wave observations

larger at redshift 6 than at redshift 10. Thus, though the 90% credible region of

the marginalized likelihood extends right up to face-on, the prior is able to partially

break the degeneracy. For less inclined binaries ι < 60◦, the 90% probability interval

extends up to face-on.

For the face-on binary in the rightmost plot, the prior shifts the peak of the pos-

terior away from the true value. Although the value of the likelihood at face-on and

redshift 10 is a factor of 12 larger than it is at an inclination of 60◦ and redshift 6,

these two points in the parameter space are equally likely after the prior re-weighting.

If the detector frame chirp mass of the binary is measured to beMdet = 96M�, the

degeneracy between the inclination and distance results in Msource = 96M� and

Msource = 61M� being equally likely. The detector-frame chirp mass Mdet would

be determined to an accuracy similar to the accuracy of the GW phase measure-

ment ∆Mdet/Mdet ∼ 1/(ρNcycles) [215, 180]. Parameter estimation for GW150914

yielded a precision in the detector-frame mass estimate of ∆Mdet/Mdet ∼ 10% for

a comparable SNR [216]. Everything else being equal, GW150914 with a detector

frame chirp mass of Mdet ∼ 30M� will have more cycles than the ET binary with

detector-frame chirp mass Mdet = 96M� above say 20Hz. However ET’s improved

sensitivity at low frequencies compared to LIGO means that we can expect the pre-

cision of the detector-frame mass estimate of GW150914 and the ET binary to be

roughly the same. Thus the broad uncertainty in the intrinsic masses due to the

distance inclination degeneracy ∆Msource/Msource ∼ 40% will dominate the total

error budget.

3.4 Conclusion and Future Work

Our work demonstrates that even with a network equally sensitive to both polar-

izations of the gravitational wave, we would be unable to precisely measure the

inclination or distance of a nearly face-on binary due to a strong degeneracy be-

tween distance and inclination. However, we have focused on non-spinning binaries

and assume that the sky location, masses and arrival times of the detectors are all

known. Introducing these parameters would increase the uncertainties. Exploring

how these parameters affect the overall measurement of the distance and inclination

could give a more accurate summary of a gravitational-wave network’s ability to

measure distance and inclination.

The degeneracy between inclination and distance described here could be bro-

ken in a few different ways: by using distance or inclination from electromagnetic

measurements, by detecting higher order modes [20] and by measuring precession

[217]. Binary neutron star systems produce a variety of EM signatures, as were

observed for GW170817 [174]. Neutron star-black hole binaries (NSBH ) could pro-

duce EM signatures should the neutron star be tidally disrupted. However, tidal

disruption only happens at relatively small mass ratios [218]. For larger mass ra-
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tios, the neutron star falls into the black hole before tidal disruption can produce

EM signatures. Interestingly, both precession and higher modes have a larger effect

on the gravitational waveform at higher mass ratios [219, 220]. The polarizations

of the higher modes have a different dependence on the inclination, and the pre-

cession of the orbital plane would result in changing amplitudes for the plus and

cross polarizations. These effects can make it easier to identify the inclination angle

[20, 220, 221, 222, 217]. For NSBH, the degeneracy can thus be broken by either

information from the EM emission or from higher modes or precession. [217] demon-

strated that precession would break the distance-inclination degeneracy in NSBH for

a few binaries with a few values of the precession angle and large, highly spinning

black holes. It would be an interesting follow up to this study to explore this with

a realistic distribution of spins, to see when precession plays a significant role in

measuring binary parameters.
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Chapter 4

Measuring gravitational-wave

higher order multipoles

Code: The code that produced the main results in this chapter will be made

publicly available here: https://github.com/millsjc/eventhm

Collaboration: Published in Ref. [10]. CM produced most of the results and

writing. SF contributed to the writing, conception and presentation throughout.

4.1 Introduction

Gravitational waves emitted during the coalescence of black hole and/or neutron

star binaries are emitted predominantly at twice the orbital frequency, during the

inspiral phase of the coalescence [223]. However, it is also well-known that the

gravitational wave signal cannot be completely characterized by a single harmonic

but, rather, is better decomposed as a sum of spin-weighed spherical [224, 225]

(or spheroidal [226, 227, 228, 229, 230]) harmonics. The dominant harmonic is the

(`, |m|) = (2, 2) harmonic, but there is also power in higher harmonics, most notably

the (`, |m|) = (2, 1), (3, 2), (3, 3) and (4, 4) harmonics 1 [231, 232]. The importance of

these additional harmonics increases as the mass ratio between the two black holes

increases and also increases for observed signals where the late inspiral and merger

of the objects contribute significantly to the SNR [233, 234, 235, 236, 237, 238, 232,

239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250]. Recent semi-analytical

and numerical relativity models have provided expressions for an increasing number

of the higher harmonics accurate across the inspiral, merger and ringdown regimes

[251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 230, 261, 262, 263].

Clear evidence of higher gravitational-wave harmonics has been observed in two

recent observations, GW190412 [9] and GW190814 [12], as well as weaker evidence in

the high-mass system GW170729 [264]. These observations provide further evidence

that Einstein’s general relativity is an accurate description of gravity, including in

1When we refer to a multipole by the label (`,m) we always mean (`, |m|).
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the strong-field, highly dynamic regime of the merger of two black holes [231, 265].

By incorporating knowledge of the higher harmonics into a search for gravitational

waves, the sensitivity of gravitational wave searches can be improved, leading to an

increase in the rate of observed systems [245]; furthermore these observations would

typically be from less densely populated regions of the parameter space [266], for

example high mass binaries and those with unequal mass components. Finally, the

observation of higher harmonics enables more accurate measurement of the proper-

ties of system [267, 9, 12]. For example, the measurement of multiple harmonics can

be used to break well-known degeneracies between the measured distance and orien-

tation of the system [173], or the mass ratio and spins of the black holes [268, 269].

The observation of other features in the gravitational waveform, most notably

spin-induced orbital precession in black-hole binaries [270, 271] and matter effects

in binaries containing neutron stars [272, 273], will also enable more accurate mea-

surements of the source properties. Measurements of neutron-star structure have

been inferred from GW170817 [33, 34], while there is some evidence for precession

in the black hole binary mergers GW190521 [14] and GW190412 [9]. The inclusion

of matter effects will not affect the applicability of the spin-weighted spherical har-

monic decomposition discussed above, and we do not consider these effects in this

chapter.

Orbital precession does change the structure of the emitted gravitational wave-

form. The waveform can still be decomposed into a basis of spin-weighted spherical

harmonics, but now each of the harmonics shows the characteristic amplitude and

phase modulations associated with time-dependent evolution of the orbital plane

[254]. Alternatively, this can be understood as the splitting of each gravitational

wave multipole into several precession-induced harmonics, which are offset by mul-

tiples of the precession frequency [274, 254, 275]. Thus, a full analysis of the ob-

servability of higher multipole moments requires a detailed treatment of precession.

However, for the majority of events observed to date [16], there is little, if any, evi-

dence for precession. In this chapter, we restrict attention to aligned-spin systems,

which do not exhibit precession. This will provide good insight into the significance

of higher gravitational wave multipoles in the observed population.

While the gravitational waveform is comprised of an infinite number of harmon-

ics, it is the unambiguous measurement of a second harmonic, in addition to the

(`, |m|) = (2, 2) harmonic, which will lead to a step-change in our ability to mea-

sure the properties of the system; additional harmonics will then further refine the

measurement accuracy. In this chapter, we perform an in-depth investigation of the

importance of the higher harmonics across the parameter space and identify regions

of the parameter space where particular harmonics are most likely to make a signifi-

cant contribution. The amplitude of each harmonic depends both upon the intrinsic

parameters of the system (its masses and spins, both magnitudes and orientations)

as well as the extrinsic parameters (the orientation of the binary and the detector
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network’s sensitivity to the two polarizations of gravitational waves). For simplicity,

we decompose the harmonics into an overall amplitude factor, dependent only upon

the intrinsic parameters, and an orientation dependent term. We then investigate

the significance of each harmonic across the parameter space.

Next, we turn to the question of when additional harmonics have been unam-

biguously observed. From a model selection perspective, this can be addressed by

considering the evidence in favour of a waveform containing higher harmonics against

one without. Here, we introduce the higher-harmonic signal to noise ratio, and ar-

gue that it can be used as an alternative method of establishing the observability of

higher harmonics. 2 It is straightforward to calculate the SNR contained in each of

the higher waveform harmonics, and compare to the expectation due to noise-only

in the higher harmonics. This approach has been used to verify the observation of

higher harmonics from the binary mergers observed as GW190412 and GW190814

[9, 12].

The structure of the chapter is as follows. In section 4.2, we provide a brief

review of the gravitational waveform, incorporating the higher harmonics, and use

this to fix the notation for the remainder of the chapter; in section 4.3 we explore

the significance of the higher harmonics over the parameter space, both intrinsic

(masses and spins) and extrinsic (binary orientation); in section 4.4 we investigate

the observability of higher harmonics and introduce a simple criterion for detection;

finally in section 4.5 we investigate observability for a population of events.

4.2 The Gravitational Waveform

The measured gravitational wave strain h can be written as

h = F+h+ + F×h×, (4.1)

where the antenna factors F+ and F× depend upon the sky location (right-ascension

and declination) of the source, as well as the polarization of the source. It is often

convenient to explicitly extract the unknown polarization angle ψ and then consider

the detector response to be a known quantity dependent upon only the details of

the detector and the direction to the source. Thus, we write the detector response

as,

F+ = w+ cos 2ψ + w× sin 2ψ,

F× = −w+ sin 2ψ + w× cos 2ψ, (4.2)

where w+ and w× are the detector response functions in a fixed frame — for a single

detector it is natural to choose w× = 0 and w+ = 1, and for a network to work in

2A similar prescription has recently been introduced for precessing systems [276, 275].
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the dominant polarization, in which for each sky point the polarization angle χ is

chosen to maximize the network sensitivity to w+ [277, 278]. The relative amplitude

of w× to w+ describes the sensitivity of the network to the second gravitational

wave polarization. The unknown polarization of the source relative to this preferred

frame is denoted ψ.

The radiation-frame gravitational wave polarizations h+ and h× can be decom-

posed into multipole moments using spin-weighted spherical harmonics of spin weight

−2, −2Y`m, which are functions of the inclination angle ι and a reference phase φo

(see Appendix 4.A for a more detailed discussion of the decomposition).

For binaries with aligned spins, the orbital plane remains unchanged during the

merger, and this provides a natural fixed basis for the spherical harmonic decom-

position. However, if spin-induced precession is present, the orbital plane changes

during the course of the merger (equivalently, the inclination angle becomes time

dependent). In this case, it is natural to consider the waveform in a co-precessing

frame, i.e. a frame which is locked to the binary’s orbit [274, 279]. While it is still

possible to decompose as a series of spin-weighted spherical harmonics, each multi-

pole moment of the waveform in the observer’s frame involves a sum over multiple

harmonics in the co-precessing frame [254]. In this chapter, we restrict attention

to binaries which do not exhibit precession. While we do expect generic black hole

binaries to have spins which are mis-aligned with the orbital angular momentum

(and hence will precess), in the majority of observations to date [16] there has been

little evidence for precession and low black hole spins are inferred from current ob-

servations. Furthermore, as discussed in [275], the (2, 2) multipole moment of a

precessing waveform can be decomposed into five precession harmonics with the two

leading harmonics providing the majority of the signal power. A similar decompo-

sition is possible for the higher (`, |m|) multipoles and, over much of the parameter

space, it is only the leading precession harmonic of the higher (`, |m|) multipoles

that will provide significant power. Consequently, for many signals with non-zero

in-plane spins, our analysis will remain valid. We leave the detailed examination of

the interplay between precession and higher harmonics to future investigations.

For a binary merger which does not exhibit precession, the waveform can be

expressed in the frequency domain, using the stationary-phase approximation, as

h̃+(f) =
do
dL

∑

`≥2

∑̀

m=0

A`m+ (ι)eimφo h̃`m(f) (4.3)

h̃×(f) =
do
dL

∑

`≥2

∑̀

m=0

A`m× (ι)ieimφo h̃`m(f)

where dL is the luminosity distance, do is a fiducial distance used to normalize the

waveforms h̃`m. In this chapter, we use the IMRPhenomHM model for h̃`m, defined

in Eq. (2) of Ref. [252]. The amplitude factors A`m are functions only of the
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Figure 4.2.1: The absolute amplitude factors Alm (see Eq. 4.4) of the (2, 2), (2, 1),
(3, 3), (3, 2) and (4, 4) harmonics as a function of the inclination ι of the binary. The
(2, 2) multipole moment is normalized to unity at ι = 0◦ while other multipoles are
normalized to unit amplitude in the + polarization at ι = 90◦. Left: + polarization
Right: × polarization.

inclination angle and are given below for the most significant harmonics:

A22
+ = 1

2(1 + cos2 ι) (4.4)

A22
× = cos ι

A21
+ = sin ι

A21
× = sin ι cos ι

A33
+ = sin ι(1 + cos2 ι)

A33
× = 2 sin ι cos ι

A32
+ = 1− 2 cos2 ι

A32
× = 1

2(cos ι− 3 cos3 ι)

A44
+ = sin2 ι(1 + cos2 ι)

A44
× = 2 sin2 ι cos ι

There is a freedom in choice of overall normalization for these amplitude factors,

which corresponds to an overall rescaling of the waveform defining each harmonic,

h̃`m. For the (`, |m|) = (2, 2) multipole moment, it is customary to choose a normal-

ization such that A22
+ = A22

× = 1 for a face-on system, and we use that normalization

here. Since many of the higher harmonics vanish for face-on systems, we instead

choose a normalization for the higher-harmonic amplitude factors, A`m+,× in Eq. (4.4),

by requiring that for the plus polarization A`m+ = 1 at ι = π
2 , i.e. when the system

is edge on 3.

Fig. 4.2.1 shows the dependence of the multipole moments on inclination. The

3The normalization obtained by directly expanding the spherical harmonics from Eq. (4.27) in

Eq. (4.31) differs by multiplicative factors of 1
4

√
5
π

, 1
4

√
5
π

, − 1
8

√
21
2π

, − 1
4

√
7
π

and 3
16

√
7
π

for the

(2,2), (2,1), (3,3), (3,2) and (4,4) multipoles respectively. The calculation is presented in Appendix
4.A.
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plus polarization of the (2, 2) harmonic peaks at face-on, while the (2, 1) and (4,

4) harmonics peak at edge-on. The (3, 2) amplitude factor is maximum at both

face-on and edge-on orientations while the (3, 3) harmonic peaks at sin ι =
√

2
3 .

The different dependence of the harmonics on the binary orientation can lead to the

improved measurement of the inclination, when more than one harmonic is observed

[9, 267], breaking the well-known degeneracy between distance and inclination angle

that arises when observing only the dominant harmonic [173].

During inspiral, the frequency evolution of a multipole, ω`m, is related to the

orbital frequency, ωorb, as ω`m ∼ mωorb [231]. Phenomenologically, it has been

qualitatively observed that during the ringdown the frequency approximately evolves

as ω`m ∼ lωorb [227, 280]. Thus it is possible to scale the frequencies of the (2,

2) multipole moment in quite a simple manner to obtain an approximate phase

evolution of the l = m harmonics, for example the phase evolution of the (3, 3)

multipole moment is approximately a factor of 1.5 times ω22 [281].

4.3 The Significance of Higher Harmonics

In this section, we investigate the observability of the different (`,m) multipole

moments, and how this varies across the mass and spin parameter space. For con-

creteness, we restrict attention to a single detector with a sensitivity comparable to

that achieved by the LIGO observatories during their third observing run [8].

The key metric for waveform observability is the optimal SNR defined as

ρ̂ =
√

(h|h) , (4.5)

where we have introduced the inner product weighted by noise (characterized by a

power spectrum S(f)) as

(a|b) := 4 Re

∫ fmax

0

ã(f)b̃(f)?

S(f)
df . (4.6)

Consider the situation where the (`, |m|) = (2, 2) harmonic has been observed,

and we are interested in obtaining an estimate of the expected SNR in the other

harmonics. As is clear from Eq. (4.3), the SNR in the higher harmonics will depend

upon the detector sensitivity to the higher harmonic waveform, h̃`m, as well as the

amplitude factor A`m+,×.

Let us examine the single-detector case in detail. For simplicity, we choose a

detector sensitive only to the + polarization (in the preferred frame), so that w× = 0,

and we take w+ = 1. Furthermore, we simplify the calculation to consider only two

multipole moments, the (2, 2) harmonic and one other generic (`,m) harmonic. The

amplitude of each multipole depends on both the intrinsic properties of the system

and the orientation relative to the network of detectors.

– 56 –



Chapter 4. Measuring gravitational-wave higher order multipoles

The waveform observed at the detector defined in the preferred frame with F+ =

cos 2ψ and F× = − sin 2ψ is

h = cos 2ψ(h22
+ + h`m+ )− sin 2ψ(h22

× + h`m× ) , (4.7)

where h`m+,× are the two orthogonal components for the (`,m) multipole moment of

the waveform. In the frequency domain, these are defined as a single (l,m) index

pair from the summation introduced in Eq. (4.3):

h̃`m+ (f) :=
do
dL
A`m+ (ι)eimφo h̃`m(f)

h̃`m× (f) :=
do
dL
A`m× (ι)ieimφo h̃`m(f) . (4.8)

A simple substitution of Eq. (4.7) into Eq. (4.5) gives the optimal SNR for a

signal comprising two harmonics as

ρ̂2 = cos2 2ψ
[
|h̃22

+ |2 + |h̃`m+ |2 + 2(h̃`m+ |h̃22
+ )
]

+ sin2 2ψ
[
|h̃22
× |2 + |h̃`m× |2 + 2(h̃`m× |h̃22

× )
]

−2 sin 2ψ cos 2ψ
[
(h̃22

+ |h̃`m× ) + (h22
× |h`m+ )

]
(4.9)

where the cross terms (sin 2ψ cos 2ψ) between polarizations for a single mode cancel

since (h̃`m+ |h̃`m× ) = 0.

The cross terms between different multipole moments, (h̃`m+,×|h̃22
+,×), can be both

positive or negative, causing constructive or destructive interference between the har-

monics. As discussed previously, the frequency during inspiral scales with m while

the ringdown frequency has been observed to scale approximately with `. Conse-

quently, there is typically little overlap between the (2, 2) multipole and multipoles

for which both ` 6= 2 and m 6= 2. Thus, in many cases, the cross terms between

different harmonics will not make a significant contribution. We examine in detail

the importance of the overlap between different multipole moments in section 4.3.1.

For now, we restrict to the case where these terms can be neglected.

Neglecting the cross terms between harmonics, (h̃`m+,×|h̃22
+,×), we are able to re-

express the optimal SNR as

ρ̂2 =(cos2 2ψ|h̃22
+ |2 + sin2 2ψ|h̃22

× |2)

+ (cos2 2ψ|h̃`m+ |2 + sin2 2ψ|h̃`m× |2)

=: ρ2
22 + ρ2

`m . (4.10)

We have defined, in the obvious way, the power in the (2, 2) and (`,m) multipole

moments as ρ2
22 and ρ2

`m respectively.
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Next, using the form of h`m+,× from Eq. (4.8), we can write

ρ2
`m =

[
(A`m+ )2 cos2 2ψ + (A`m× )2 sin2 2ψ

]
|h̃`m|2 , (4.11)

which is also valid for (`,m) = (2, 2). The SNR in the (`,m) harmonic is given

by an orientation contribution, dependent upon inclination and polarization, and

a term that depends upon the overall amplitude of the given multipole moment.

Consequently, we can express the SNR in the higher harmonic as:

ρ`m = ρ22 α`mR`m , (4.12)

where α`m encodes the relative, intrinic amplitude of the (`,m) multipole moment

relative to the (2, 2) multipole and R`,m encodes the relative size of the orientation

factors. Specifically,

α2
`m =

(h̃`m|h̃`m)

(h̃22|h̃22)
(4.13)

and

R2
`m =

[
(A`m+ )2 cos2 2ψ + (A`m× )2 sin2 2ψ

]
[
(A22

+ )2 cos2 2ψ + (A22
× )2 sin2 2ψ

] . (4.14)

In general, the relative amplitudes R`m will depend upon both the inclination

and polarization angles. However, for the ` = m multipole moments, the expression

simplifies as the relative amplitudes are the same for both +,× polarization. In this

case, there is no dependence upon the polarization angle and 4

R33(ι) = 2 sin ι

R44(ι) = 2 sin2 ι . (4.15)

In Section 4.3.1, we explore the dependence of the relative amplitudes α`m over

the mass and spin parameter space and, in Section 4.3.2, the expected distribution

of R`m for a population of sources.

4.3.1 Dependence upon intrinsic parameters

The two important intrinsic parameters determining the relative power in the higher

harmonics are mass ratio and total mass, with spin effects entering at higher post-

Newtonian (PN) order for most harmonics [232]. The contribution of a higher har-

monic relative to the (2,2) harmonic generically increases with an increasing mass

ratio. The relative amplitudes of the multipole moments are independent of the total

mass of the system. However the frequency content of each multipole does depend

upon the total mass and thus, depending on the shape of the detector power spectral

density, certain higher harmonics might be preferentially observed. In particular,

4In this case, the cross term between polarizations in Eq. (4.9) also vanishes.
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Figure 4.3.1: Ratio of the intrinsic amplitude, αlm, (defined in equation (4.13)) of
signal harmonics to the (2,2) harmonic as a function of the total (detector frame)
mass and mass ratio of the system, in a detector with sensitivity matching the
Advanced LIGO detectors during O3 [8]. Upper left: the (3,3) harmonic; Upper
right: the (4,4) harmonic; lower left: the (2,1) harmonic; lower right: the (3,2)
harmonic. In all cases, the spins of the black holes are set to zero. The solid
white line corresponds to α`m = 5.3/20 and the dashed line to α`m = 2.1/20,
which correspond, approximately, to the threshold for the higher harmonics being
confidently/marginally observable for a signal with SNR=20 in the (2,2) multipole.
Note that the colorbar is normalized differently between the top and bottom row to
improve the visibility of the weaker harmonics.

the contribution of higher harmonics can become more significant at high masses,

for which the merger frequency of the dominant harmonic lies below the optimal

sensitivity of the detector.

In Fig. 4.3.1 we show the relative amplitude, αlm, of the four multipoles that

we are considering: the (3,3), (4,4), (2,1) and (3,2) harmonics. The amplitudes

have been calculated using the PhenomHM waveform [252], for a signal observed in

a detector with LIGO O3 sensitivity [16, 8], as a function of the (detector frame)

total mass and mass ratio of the system.

Over much of the parameter space, the (3,3) harmonic is the most significant,

with the relative amplitude of the (3,3) harmonic increasing with mass ratio. For

example, at a total mass of 50M�, the (3,3) harmonic has 10% of the amplitude

of the leading harmonic at a mass ratio of 2:1 and 20% at 5:1. At high masses,

and significant mass ratios, the relative sensitivity to the (3,3) harmonic is greater
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Figure 4.3.2: Absolute value of the noise-weighted inner product between multipoles,
evaluated using the Advanced LIGO (O3) sensitivity, as a function of mass ratio and
total mass for non-spinning black holes (χeff = 0). Left: the overlap between the
(2,2) and (2,1) multipoles; Right: the overlap between (2,2) and (3,2) multipoles.

than one third of the (2,2) multipole. The (4,4) multipole is generally the third

most significant, after the (2,2) and (3,3) harmonics. However, sensitivity to the

(4,4) multipole increases rapidly as the mass of the system increases so that for

total mass above ∼ 75M� and mass ratio less than 2:1, the (4,4) multipole is more

significant than the (3,3) multipole.

The intrinsic amplitudes of the (2,1) and (3,2) harmonics are always lower than

at least one of the (3,3) and (4,4) harmonics, over the mass and mass ratio ranges

explored in Figure 4.3.1. As with the other harmonics, their relative importance

increases as the mass ratio decreases and also, for the (3,2) harmonic in particular,

as the total mass increases. The (2,1) multipole is the only subdominant multipole

considered in this chapter which has spin terms in the amplitude at 1 PN order [232].

For this reason, the (2,1) multipole is more significant for binaries with large anti-

aligned spins: the intrinsic amplitude roughly doubles for a binary with effective spin

χeff = −0.8, relative to a non-spinning system. Even then, the relative contribution

of the (2,1) harmonic is less than the (3,3) harmonic.

For the power in these higher harmonics to be observable, it must be possible to

distinguish the signal in the higher harmonic from the (2,2) harmonic. Generally,

it is only the contribution which is orthogonal to the (2,2) harmonic which will

be observable. Any contribution from the higher harmonics which is proportional

to the (2,2) harmonic will simply serve to change the power observed in the (2,2).

Consequently, we are interested in knowing whether the waveforms are orthogonal or,

equivalently, in the overlap between the harmonics. Here, we define the normalized

overlap maximized over the reference phase, φo,

O(`m, 22) =
Maxφo(h̃`m|h̃22)

|h̃`m||h̃22|
. (4.16)

The overlap between the (3,3) and (4,4) multipoles with the (2,2) harmonic is
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Figure 4.3.3: Distribution of R33(ι) and R44(ι) for all binaries (Universe) as well
as that subset that would be detected above a fixed SNR threshold for the (2,2)
harmonic (Detected). We show both the results from a Monte-Carlo simulation as
well as the analytical prediction.

< 10% across the parameter space explored, as expected due to the fact that the

frequency evolution of these harmonics differs significantly from the (2,2). However,

the overlap of the (2,2) harmonic with the (2,1) and (3,2) multipoles can be signif-

icant. These overlaps are shown in Fig. 4.3.2 as a function of total mass and mass

ratio. As the (2,1) multipole has approximately the same frequency as the (2,2)

multipole during ringdown, we expect a significant overlap at higher masses when

the (merger and) ringdown occur within the sensitive band of the detector. Sim-

ilarly, for the (3,2) multipole, the frequency evolution during the inspiral matches

closely with the (2,2) multipole and we therefore expect a significant overlap between

the (2,2) and (3,2) multipoles, particularly for low masses. Consequently, it can be

difficult to identify these harmonics in the signal. Interestingly, one of the most

significant impacts of the (3,2) multipole can be to produce an incorrect estimate

of the amplitude of the (2,2) harmonic, and consequently introduce an error in the

measured distance, as power from the (3,2) multipole will be mistakenly attributed

to the (2,2) harmonic [265].

4.3.2 Dependence upon extrinsic parameters

The observed SNR in the higher harmonics depends upon the orientation of the

binary, through the R`m factor defined in Eq. (4.14), in addition to the intrinsic

amplitude of the harmonics discussed above. We can make several immediate ob-

servations from Fig. 4.2.1 or, equivalently, directly from the functional form of the

spin-weighted spherical harmonics. The (3,3), (4, 4) and (2, 1) multipoles vanish for

a signal observed face-on (ι = 0), so the miminum value of R`m for these harmonics

is zero; in contrast, there is no orientation for which both polarizations of the (3,

2) harmonic vanishes. Next, there is no orientation where the (2,2) harmonic van-

ishes, but the other harmonics do not — the (2,2) harmonic only vanishes for the ×
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polarization for an edge-on system, but all other harmonics we are considering also

vanish there. Thus, there is a finite, maximum value of R`m for all harmonics, and

it’s easy to see from Fig. 4.2.1 that Rmax
`m = 2, which occurs for edge-on systems.

In Fig. 4.3.3 we plot the distribution of the geometrical factors R33(ι) and R44(ι).

We have restricted attention to the (3, 3) and (4, 4) multipoles as these are the most

significant, as seen in Fig. 4.3.1, and also the expression for R`m is independent of

the observed gravitational wave polarization. We consider the distribution of R`m

for a population of sources distributed uniformly in volume 5 and with uniformly

distributed orientation. We show both the distribution of R`m for a uniform popu-

lation of sources, as well as the expected observed distribution. In order to obtain

the observed distribution for R33(ι) and R44(ι), it is sufficient to consider selection

effects only on the inclination angle. If binaries are uniformly distributed in vol-

ume and orientation the distribution of inclinations for signals above an arbritrary

detection threshold is known analytically [283] (see Eq. (4.34)). This allows us to

derive analytical expressions for the p(R33(ι)) and p(R44(ι)) distributions shown in

Fig. 4.3.3, which we do in Appendix 4.B.

For both the (3,3) and (4,4) harmonics, the distribution peaks at R`m = 2,

the value for an edge-on system, with mean values of R̄33 = 1.57 and R̄44 = 1.33.

However, since the emission in the (2, 2) harmonic is weakest when the system

is observed edge on, selection effects serve to significantly reduce the peak in the

observed population. For the (3, 3) harmonic, the peak remains at Robs
33 = 2, but

the distribution is broad, with significant support over the full range from 0 to 2

and a mean value of R̄obs
33 = 1.16. The mode of the observed Robs

44 distribution is

zero, although again there is broad support over the range from 0 to 2 with a mean

value of R̄obs
33 = 0.79.

For other harmonics, the expected distribution of R`m will depend upon the

sensitivity of the detector network to the two polarizations of the gravitational wave

— the distribution for R`m will differ between a single detector, sensitive to only one

polarization, and a network with good sensitivity to both polarizations. Nonetheless,

the distribution for R21 will share features with R33 and R44, namely it will take

values between 0 (face on) and 2 (edge on), with a peak at R21 = 2 which is reduced

by selection effects in the observed population. The distribution for R32 will also

be bounded between 0 and 2, although, due to the fact that the (3, 2) multipole

doesn’t vanish for face-on sources, there is also a significant contribution at R32 ≈ 1

from face-on sources.

5Realistically, we do not expect sources to be uniformly distributed, due to both cosmological
effects and a redshift dependent star formation and, hence, merger rate [282]. Nonetheless, this
simple model provides a reasonably approximation to gain an understanding of the likely values of
R.
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4.4 Observing Higher Harmonics

When a gravitational wave signal from a binary merger is observed, it is natural to

ask whether the higher multipoles have been observed. Typically, the searches that

identify events do not use higher harmonics to extract events from the data [284,

285, 286] (although see [245] for ways to incorporate them). However, parameter

estimation routines do incorporate higher harmonics into the recovery of parameters,

and a natural way to ask whether higher harmonics have been observed is to calculate

the Bayes factor (or odds ratio) between parameter recovery with and without higher

multipoles in the waveform [9, 12]. In this Section, we show that the SNR in higher

harmonics is also an effective tool in determining observability of higher harmonics.

4.4.1 Measured SNR in higher harmonics

We assume that the (2, 2) harmonic has been observed and consider the SNR con-

tained in the higher multipoles. As in Eq. (4.7), we consider only two harmonics,

the (2, 2) harmonic and a single additional harmonic. Since the (2, 2) harmonic has

been identified, it is straightforward to calculate the SNR in the (`,m) harmonic,

by generating the h̃`m waveform, with the same masses, spins and arrival time, and

filtering it against the data. If the overlap between the (`,m) and (2, 2) harmonics

is non-zero, then this will pick up power contained in the (2, 2) harmonic, and it is

necessary to remove it by first computing the orthogonal component,

h̃⊥`m = h̃`m −
1

|h̃22|2
[
(h̃`m|h̃22)h̃22 + (h̃`m|ih̃22)ih̃22

]
. (4.17)

Here, h̃22 and ih̃22 denote the two orthogonal phases of the (2, 2) harmonic. Filtering

h̃⊥`m against the data, s, gives

(ρ⊥`m)2 =
1

|h̃⊥`m|2
[
(s|h̃⊥`m)2 + (s|ih̃⊥`m)2

]
. (4.18)

When the parameters of the waveform are known, or have been inferred through

parameter estimation, we can calculate the expected SNR in the (`,m) multipole as

ρ̂⊥`m = ρ̂`m
√

1−O(`m, 22)2 , (4.19)

where ρ̂`m is the expected SNR in the (`,m) harmonic, as defined in Eq. (4.12)

and O(`m, 22) is the overlap between the (`,m) and (2, 2) waveforms as defined in

Eq. (4.16).

In Fig. 4.4.1 we show the inferred posterior probability distribution for ρ̂⊥33 for

a binary with masses m1 = 40M�, m2 = 10M� inclined at cos ι = 0.7 (ι ≈ 45◦)

and with ρ22 = 22 under a variety of assumptions for signal and model. 6 For the

6All parameter estimates reported in this chapter were obtained with LALInference [200] assum-
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Figure 4.4.1: Posterior probability distribution for ρ̂⊥33, the orthogonal optimal
signal-to-noise ratio of the (3, 3) multipole. The simulated waveform corresponds
to system with m1 = 40M�, m2 = 10M� and cos ι = 0.7. The two solid histograms
show the posterior distribution when the (3, 3) multipole is included in the wave-
form, either with (green) or without (orange) Gaussian noise. The dotted histogram
shows the posterior on the SNR in the (3, 3) harmonic inferred from the measure-
ment of the (2, 2) harmonic alone. The vertical line indicates the simulated value of
ρ̂⊥33 and the dashed lines indicate the expected distribution, based on a non-central
χ distribution with two degrees of freedom and assuming a flat prior (as derived in
Section 4.4.2), in the presence and absence of a signal in the (3, 3) harmonic. Also
shown as a solid brown line is the predicted posterior distribution for a signal with
ρ̂⊥33 = 5.5, but instead using the inferred distribution from the measurement of the
(2, 2) harmonic (the dotted blue histogram) as a prior. We see general agreement
between the predicted and measured posteriors, with the measured values slightly
smaller than predicted (see Section 4.4.3 for discussion).
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Figure 4.4.2: 2D Posterior probability distribution for left: inclination and distance,
right: polarization and phase at coalescence for a signal model containing top: only
the dominant (2, 2) multipole and bottom: the (2, 2) and (3, 3) multipoles. The
simulated waveform corresponds to a system with m1 = 40M�, m2 = 10M� and
cos ι = 0.7. The solid (dashed) white contours denote 90% (50%) credible regions.
These are not shown for polarization–phase for the (2, 2) waveform, due to the clear
degeneracy.

simulated signal the relative amplitude of the (3, 3) harmonic is α33 ≈ 0.18, and

the orientation factor is R33 = 1.4, which implies ρ̂33 ≈ 5.5 and, since the overlap

between (2, 2) and (3, 3) harmonics is small, ρ̂⊥33 ≈ ρ̂33. The recovered distribution

of ρ̂⊥33, both with and without noise [(3,3) zero noise and (3,3) Gaussian noise in

the figure], matches well with the simulated value but is shifted to lower values. We

discuss this shift in Section 4.4.3.

We can also infer the power in the (3, 3) harmonic even when we use only the (2,

2) harmonic to recover the parameters, particularly masses and binary orientation,

of the system. Unsurprisingly, the distribution of ρ̂⊥33 no longer matches well with

the simulated value and now spreads over a broad range from 0 to 8. In this case,

it seems clear that the (3, 3) harmonic has been observed, as its inclusion leads to

a significant change in the inferred SNR in the (3, 3) harmonic.

In Fig. 4.4.2 we show the inferred posterior probability distributions of inclina-

tion, distance, polarization and phase at coalescence using waveform models that

do/do not include the higher harmonics. Although the binary is generated with

the orbital plane inclined at an angle of ι ≈ 45◦, using only the (2, 2) harmonic,

ing a HLV network with the sensitivities achieved during O3 [8].
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the system is recovered consistent with face-on, due to well-known degeneracies be-

tween distance in inclination [173]. Consequently, the only well measured quantities

are the amplitude and phase of the circularly polarized waveform that is recovered:

A22 ≈ cos ι
DL

and φ22 ≈ ψ + φo, with the inclination bounded between 0 ≤ ι ≤ 45◦.

When the (3, 3) harmonic is added, the degeneracy is broken and the distance,

inclination, polarization and phase are all measured with good accuracy.

4.4.2 Expectation due to noise

The question, then, is whether an observed SNR in a given higher harmonic is evi-

dence that the higher harmonic has been observed, or if this is to be expected due

to noise alone. Similar questions have been addressed multiple times in the gravi-

tational wave literature, for example in [287, 288, 289, 290, 291]. Here, we follow

the methods developed in those earlier papers, focusing on a specific application to

higher harmonics. We calculate the expected distribution of ρ̂⊥`m under some sim-

plifying assumptions. Specifically, we consider the scenario where measurement of

the (2, 2) harmonic has already fixed the parameters which determine the phase

evolution of the binary (primarily the chirp mass, but also a combination of aligned

spin and mass ratio [291]), the time of arrival and sky location of the system. Fur-

thermore, we assume that the (`,m) multipole is the second most significant (in

many cases, this is the (3, 3) harmonic), and other multipoles do not contribute

significantly.

We will treat the overall amplitude and phase of the (`,m) multipole as uncon-

strained by the observation of the (2, 2) harmonic. As shown in Fig. 4.4.2, there

are degeneracies in the measurement of distance/inclination and polarization/phase

when observing only the (2, 2) harmonic. The amplitude of the higher harmonics,

and in particular the (3, 3) and (4, 4) harnomics, varies significantly over the range

0◦ ≤ ι ≤ 45◦ and can therefore be treated as unconstrained. Similarly, the overall

phase of these multipoles differs from the (2, 2) by a factor of (m − 2)φo and is

therefore unconstrained by the measurement of the (2, 2) harmonic. Another way

to see this is to look at the posterior probability distribution for the (3, 3) amplitude

inferred when using a waveform containing only the (2, 2) multipole in Fig. 4.4.1.

The distribution is broad and has support across a large range of ρ̂⊥33. This argu-

ment will only hold for the subdominant harmonic: once the amplitude of a second

harmonic is fixed, the four orientation parameters of the binary are determined and,

consequently, the amplitude of the remaining harmonics is significantly constrained.

We are interested in obtaining the expected distribution for ρ̂`m
7 under the noise-

only hypothesis (i.e. only power in the (2, 2) harmonic). In this case, we are fitting

7For simplicity of presentation, we drop the ⊥ from the equations in the remainder of the section.
Where the harmonic has overlap with the (2, 2) waveform, the calculation should be understood to
be performed with the orthogonal component.
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the data with a template waveform

h̃ = ah̃`m + ibh̃`m + ch̃22 + idh̃22 , (4.20)

where h̃`m and ih̃`m are the two phases of the waveform of the `m harmonic, a and b

control the overall amplitude of this harmonic, and h̃22, c and d give the contribution

of the dominant harmonic to the waveform. We are interested in the expected

distribution of a and b when there is no power in higher harmonics. Based upon the

discussion above, we choose a uniform prior π(a, b) on a and b. In what follows we

neglect the terms related to the dominant harmonic as they are unaffected, to the

level of our approximation, by the presence of the higher harmonics. The posterior

will be

p(a, b|s) ∝ Λ(a, b)π(a, b) . (4.21)

where the likelihood of a signal s given the amplitudes a, b and Gaussian noise is

Λ(s|a, b) ∝ exp

[
−1

2

(
s− h̃(a, b)|s− h̃(a, b)

)]
. (4.22)

Using polar variables ρ̂`m =
√
a2 + b2 and φ̂`m = arctan(b/a), and assuming a

uniform prior we can write the posterior probability distribution for the amplitudes

a and b given a signal s as

p(a, b|s)dadb ∝ Λ(a, b)dadb

∝ e
[
a(s|h`m)+b(s|ih`m)−a

2+b2

2

]
da db

= ρ̂`mdρ̂`mdφ̂`m×

e

[
− ρ̂

2
`m
2

+ρ̂`m[cos φ̂`m(s|h̃`m)+sin φ̂`m(s|ih̃`m)]

]

Defining the matched filter signal-to-noise ratio, ρ`m as in Eq. (4.18) and the phase

φ`m = arctan
(s|ih̃`m)

(s|h̃`m)
(4.23)

and marginalizing over φ̂`m, we obtain

p(ρ̂`m|s) ∝ ρ̂`me
[
− ρ̂

2
`m
2

] ∫ 2π

0
e[ρ̂`mρ`m cos(φ̂`m−φ`m)]dφ̂`m

∝ ρ̂`m exp

[
− ρ̂

2
`m + ρ2

`m

2

]
I0(ρ̂`mρ`m) (4.24)

where I0 is the modified Bessel function of the first kind. We recognize Eq. (4.24)

as the non-central chi distribution with 2 degrees of freedom and non-centrality

parameter equal to ρ`m. In the absence of signal power in the higher harmonics,
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Figure 4.4.3: Posterior probability distribution for ρ̂⊥33, the orthogonal optimal
signal-to-noise ratio of the (3, 3) multipole, when the simulated signal contains
the (3, 3) multipole for a variety of models and noise realizations. The injected
parameters are m1 = 40M�, m2 = 10M� at cos ι = 0.7.

the probability distributions for the filters (s|h̃`m) and (s|ih̃`m) are zero-mean, unit-

variance gaussians and ρ`m is chi-distributed with 2 degrees of freedom.

4.4.3 Observation of higher harmonics

In Fig. 4.4.3 we show the distribution of ρ̂33, in the absence of a signal in the (3,

3) harmonic. First, we have the recovered distribution when performing parameter

estimation on a signal containing only the (2, 2) harmonic and the zero instance of

the noise distribution. Based upon the calculation above, we expect this to follow

the χ distribution with two degrees of freedom, and we see that it does. We also

show the distribution for three different instances of Gaussian noise. In each of these

cases, the distribution is expected to follow a non-central χ distribution, where the

non-centrality parameter is given by the matched filter SNR in the (3, 3) harmonic

– in this case, there is no signal and any power is simply due to noise. For two of the

noise realizations (Gaussian noise 1 and Gaussian noise 3), there was minimal power

in the (3, 3) harmonic and the ρ̂33 distribution matches closely with the zero-noise

case. However, in the Gaussian noise 2 realization, the SNR in the (3, 3) multipole

is higher, and the mode of the distribution is moved significantly away from zero.
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We propose a simple test for the observability of higher multipole moments in a

gravitational waveform: if the SNR in the second most significant harmonic satisfies

ρ`m > 2.1, this signifies the observation of power in the higher multipole moments.

We have argued that the matched filter SNR, in the absence of signal, will be well

approximated by a χ distribution with two degrees of freedom. We expect Gaussian

noise to produce an SNR greater than 2.1 less than 10% of the time and therefore

require ρ`m > 2.1. 8

The estimate of ρ`m can be obtained either by matched filtering, or by fitting the

measured distribution of ρ̂`m from parameter estimation results and obtaining the

non-centrality parameter. Based on this criteria, our third noise trial would show

marginal evidence for presence of the (3, 3) harmonic. This prescription can be easily

extended to a criterion for confident detection of the higher harmonics: a “5-sigma”

observation could correspond to ρ`m > 5.3. In Fig. 4.3.1, we have added contours at

values of α`m = 2.1/20 and 5.3/20. These indicate the approximate boundaries in

the mass space where higher harmonics would be marginally/confidently observed

for a signal at SNR = 20. Of course, the actual higher harmonic SNR will depend

also on the orientation factor R`m, which varies between 0 and 2, with a median

value around 1 for the (3, 3) and (4, 4) harmonics.

Next, we return to Fig. 4.4.1 and note that the distribution of ρ̂33 for the signal

containing higher harmonics matches well with expectation – a non-central χ distri-

bution with non centrality parameter 5.5 – but is shifted to lower values. A more

accurate prediction for the distribution can be made by revisiting our assumptions.

The derivation of the expected distribution Eq. (4.24), assumed a uniform prior for

ρ̂33. We note that the dotted histogram in Fig. 4.4.1 is the probability of ρ̂33 before

we probe the likelihood associated with the (3,3) harmonic and so is approximately

equivalent to the prior on ρ̂33. Thus, the prior distribution is broad but not flat.

The solid curve in Fig. 4.4.1 shows the product of the likelihood in Eq. (4.24) with

the prior as approximated by the dotted histogram. We see that this results in

a more accurate predicted posterior. Remaining differences between the predicted

and measured posteriors can be sourced to our assumption that the phase evolution

(or equivalently the masses and spins) of the waveform templates are fixed. During

inference, as the masses and spins are varied, the matched filter SNR is never larger

and is usually lower than the simulated value. By fixing the SNR to the simulated

value we therefore overestimate the actual value and the distribution is shifted to

larger values of ρ̂33.

An alternative method of establishing the observability of higher harmonics is

to compare the Bayes factor (or evidence) between a waveform model additionally

8In [292], the authors propose an observability criterion specifically for higher harmonics observed
during the ringdown of the final black hole. They require an SNR in each harmonic above 5,
corresponding to our 5-sigma detection. In addition, require distinguishability between the ringdown
mode frequencies which (as can be seen in their Table 1) is virtually always satisfied if the modes
can be observed.
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containing the (3, 3) multipole and a model with only the (2, 2) multipole [9, 12]. The

difference in Bayes factor, obtained by marginalizing the likelihood [200], between the

two parameter estimation runs (with and without (3, 3) harmonic) is log10 BF = 4.7.

We can compare this to our results on the SNR in the higher harmonics by noting

that an increase in SNR corresponds to an increase of the likelihood by a factor of

≈ eρ
2/2. Our injected value of ρ33 = 5.5, leads to an estimate of log10 Bayes factor

of 6.6 (log10 of the increase in the likelihood). For a more accurate comparison, we

should also account for the prior distribution, as well as the width of the posteriors.

Since both the (2, 2) only and higher harmonic waveforms are described by the

same parameters, the priors are unchanged. However, as is clear from Fig. 4.4.2,

the posterior is significantly more peaked when the higher harmonics are included.

The improved constraints from the (3, 3) multipole reduce the prior volume by a

factor of ∼ 2 in the distance inclination plane (assuming a uniform in volume prior),

and a factor of ∼ 5 in the polarization phase plane. This implies the Bayes Factor

based purely on the increased likelihood be reduced by a factor of ∼ 10, equivalent to

reducing the log10 Bayes Factor by one to 5.6. Finally, as discussed above, the higher

harmonic SNR is generally inferred to be smaller than the simulated value. Indeed,

from Fig. 4.4.1, the peak occurs at ρ̂33 ∼ 5.0, which corresponds to a log10 Bayes

Factor of 4.4. This is in close, but not perfect agreement with the full parameter

estimation result.

4.5 Higher Harmonics in a Population of Binary Merg-

ers

Here, we consider the likelihood of observing the higher harmonics in signals drawn

from a population. To do so, we generate a large number of potential signals from a

given population and assess which would be observable above a given threshold and,

of those, which would have sufficient power in the (3, 3) and/or (4, 4) harmonics

for them to be observable (above the threshold of ρ`m = 2.1). We choose a mass

distribution of black holes in binary systems where the mass of the more massive

black hole is taken from a power-law distribution p(m1) ∝ m−α1 and choose the power

law parameter of α = −2.35, while restricting the mass to lie in the range [5, 50] M�;

the distribution for m2 is taken to be uniform in the range [5M�,m1]. The spins of

the individual black holes are assumed to be isotropically distributed, with low spin

magnitudes (the magnitude is a triangular distribution peaked at spin magnitude

of zero and falling to zero at maximal spin) [177]. Binaries are assumed to be

isotropic on the sky, with uniform orientations and distances distributed uniformly

in comoving volume.

In Fig. 4.5.1 we show the subset of this population which would be detectable

with the HLV network operating at the sensitivities achieved during O3 [8]. More
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Figure 4.5.1: The mass ratio, total mass and orientation distribution for a simulated
population of black hole binaries, and for that subset of systems for which the (3,
3) or (4, 4) harmonics are visible. The population is modelled as a power law in
masses, with isotropic distribution of orientations, further details of the population
are given in the text. The distribution is shown as a function of Left: mass ratio;
Middle: total mass’ right: orientation. The subset of sources for which the (3,
3) or (4, 4) multipole moment is observable are shown by the dashed/dotted lines
respectively, and those with observable (4, 4) multipole where the (3, 3) multipole is
not observable are shown by the dot-dashed line. We show the observed population
divided by 10 as a grey solid line, and on the mass ratio plot, without reweighting
as a black line. The total number of observed binaries in the simulation is 78,000.

pertinently, we also plot the subset from this detected population which result in

gravitational waves with a measurable signal in the two loudest subdominant multi-

poles. Overall around 5.5% of binaries are expected to have sufficient power in the

higher harmonics for them to be observed. Of these, the vast majority will have an

observable (3, 3) harmonic (5.3%), with the (4, 4) harmonic observable in 0.85% of

binaries, but for the majority of these, the (3, 3) harmonic will also be observable.

Only two to three observable events in 1,000 from this population are expected to

have an observable (4, 4) harmonic but not observable (3, 3).

The higher harmonics are preferentially observable in signals with unequal masses

and for sources for binaries which are significantly inclined. In particular, for binaries

with mass ratio between 4:1 and 10:1, the majority of signals will have observable

higher harmonics, and even at a mass ratio of 2:1, around 10% of binaries will have

observable higher harmonics. Convolving the observed distribution with the fraction

of binaries with significant higher harmonics gives a peak of signals with observable

higher harmonics around a mass ratio of 3:1. Interestingly, for binaries close to equal

mass, it is the (4, 4) harmonic which is more likely to be observed, and essentially

all binaries where the (4, 4) but not (3, 3) is observed have close to equal masses

(between 1:1 and 5:4).

4.6 Discussion

We have explored the relative significance of the higher gravitational wave harmon-

ics in binary merger signals. For simplicity, we have decomposed the harmonics
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into an overall amplitude — dependent upon the masses and spins of the system

— and an orientation-dependent term — dependent upon the inclination and po-

larization. This allows us to easily identify the most significant harmonics, and the

regions of parameter space where they are most likely to be observable. As is well

known [231, 232, 267], the higher harmonics are most significant when the binary is

observed edge on. As expected, our orientation amplitudes are largest for edge-on

systems although, due to selection effects, we observe that the most likely observed

configuration is a binary with axes orientated at around 45◦ to the line of sight. In

addition, we show that for much of the binary parameter space, the (3, 3) multipole

will be the most significant sub-dominant harmonic, with an amplitude about one

tenth of the (2, 2) harmonic for a mass-ratio 2 binary (over a broad range of masses).

The (4, 4) multipole becomes more significant at higher masses and, although the

relative amplitude is less than 0.1 for much of the parameter space, it is still the most

significant sub-dominant harmonic for high-mass systems where the two components

have comparable masses

For signals which are observed at low SNR, it is likely that at most one additional

harmonic will be clearly observable. Thus, for simplicity, we have introduced an

observability criterion for the second harmonic. In many cases, the amplitude and

phase of the second harmonic is largely unconstrained by the observation of the (2,

2) multipole: there are often large degeneracies between the measurement of the

distance and inclination of the binary and also the polarization and phase [173].

Consequently, in the absence of a signal, the power in the second most significant

harmonic will be χ2 distributed with two degrees of freedom, corresponding to the

unknown amplitude and phase of the harmonic. If there is power in the higher

harmonic, the distribution will be non-central χ2, where the non-centrality is given

by the SNR in the higher harmonic. We have performed a series of simulations

that demonstrate this expectation is valid. Using this simple observation, we have

introduced a criterion for observation of power in a higher harmonic: if the observed

SNR in the second most significant harmonic is above 2.1, then this is unlikely to

occur due to noise alone so there is marginal evidence of a higher multipole signal,

while an SNR > 5.3 would provide strong (“5-sigma”) evidence.

We have identified regions in the parameter space where higher harmonics are

most likely to be observed. These regions are those where higher harmonics are likely

to be observed, but also which are relatively common in the underlying population

of observed gravitational wave signals [266]. We find that these correspond to signals

with mass ratios between 2:1 and 5:1 — for more equal masses, the higher harmonics

are too weak, more unequal mass binaries are thought to be rarer. Furthermore,

the most likely orientation is for the axis to be inclined at between 30◦ and 60◦ to

the observer — less inclined systems have insufficient power in the higher harmonics

while more inclined systems have a weaker overall emission.

There are several applications of the work presented here. As already mentioned,
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the criterion for observability of higher harmonics has been in used, along with other

methods [281], in establishing the presence of power in the (3, 3) harmonic in the

observed signals GW190412 and GW190814 [9, 12]. Furthermore, the method can

be used in a straightforward way to determine whether it is likely that the higher

harmonics will be observable in a given system, and we have provided an exam-

ple in the population study presented in section 4.5. This is directly applicable to

signals observed using a search for the dominant harmonic. Based upon the ob-

served parameters, we can calculate the expected power in the higher harmonics

and identify the expected SNR. If significant SNR is expected in higher harmonics,

then it becomes worthwhile to undertake the (computationally costly) parameter

estimation with waveforms containing several gravitational wave harmonics. This

will lead either to the observation of higher harmonics, and the subsequent improve-

ment of parameter measurement, or the non-observation of higher harmonics and

subsequent restriction of the binary parameters to regions of the parameter space

where the higher harmonic amplitudes are low.

While the method introduced here is straightforward, there are several clear lim-

itations. Most obviously, the discussion has limited attention to a single observable

harmonic. In many cases, this will be a reasonable approximation as there will

be one harmonic which is significantly larger than the others (as can be seen from

Fig. 4.3.1). Furthermore, from simple parameter counting, it seems likely that the

observation of a single higher harmonic will be sufficient to significantly improve pa-

rameter recovery, most notably the binary orientation. Nonetheless, the observation

of additional multipoles will provide additional improvements. For a detailed un-

derstanding of the impact of all of the higher harmonics, a full, Bayesian parameter

estimation exploration of the issue will be necessary [267]. Additionally, through-

out this chapter, we have used a single waveform model, IMRPhenomHM [252] and

checked for consistency with a more recently updated model IMRPhenomXHM [230];

but results are likely to vary somewhat with other models of the higher harmon-

ics (for example, [257, 261, 260]). Finally, we have restricted attention throughout

the chapter to non-precessing systems. Recently, [275, 276], an analysis similar to

the one presented here was performed on precessing systems, again with a focus on

the observability of the two dominant harmonics. For systems where both higher

harmonics and precession have an significant impact on the waveform, it will be

necessary to combine these approaches to develop a straightforward categorization

of precessing systems with observable higher harmonics.

– 73 –



Appendix

4.A Spin-weighted spherical harmonic polarizations

The general form for the spin-weighted spherical harmonics is

sYlm(ι, φo) = (−1)m

√
(l +m)!(l −m)!(2l + 1)

4π(l + s)!(l − s)! sin2l
( ι

2

)
(4.25)

×
l−s∑

r=0

(
l − s
r

)(
l + s

r + s−m

)
(−1)l−r−s eimφo cot2r+s−m

( ι
2

)
,

which can be written in terms of the Wigner d-functions dlm−s(ι) (implicitly defined

here)

sYlm(ι, φo) =

√
(2l + 1)

4π
dlm−s(ι)e

imφo . (4.26)

They have the following symmetries

sȲlm = (−1)s+m −sYl(−m)

sYlm(π − ι, φo + π) = (−1)l −sYlm(ι, φo).
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The spin-weighted spherical harmonics for the harmonics we are interested in are

−2Y22 =
1

2

√
5

π
ei2φo cos4

( ι
2

)
(4.27)

−2Y2−2 =
1

2

√
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π
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( ι
2
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1

2

√
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( ι
2

)
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( ι
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( ι
2

)
sin(ι)

−2Y3−3 =
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( ι
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( ι
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( ι
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We can write the gravitational wave polarizations as a sum of these spherical har-

monics with coefficients hlm

h+ − ih× =
∑

l≥2

l∑

m=−l
−2Ylm(ι, φo)hlm . (4.28)

Three properties of hlm help to simplify Eq. (4.28). Firstly, specializing to planar (i.e.

non-precessing) binaries allows us to write hl−m = (−1)lh∗lm[223]. Secondly, in the

frequency domain, h̃∗l−m(f) = h̃lm(−f)∗. Finally we make the further approximation

[293] that if we only care about the waveform in direction n̂ we can neglect one side

of the frequency spectrum, depending on the sign of m. This approximation is valid

in particular where the stationary phase approximation has been used. We therefore

assume, with the sign convention on the Fourier transform as h̃(f) =
∫
dth(t)e+i2πft,

that

h̃lm(f) ' 0




f > 0,m < 0

f < 0,m > 0.
(4.29)

With these three properties we can obtain explicit expressions for the orientation
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dependence of each of the harmonics for positive frequencies

h+ =
1

2

∑

l≥2

l∑

m=−l

[
−2Ylm(ι, φo)hlm + −2Y

∗
lm(ι, φo)h

∗
lm

]

h̃+(f) =
1

2

∑

l≥2

l∑

m=−l

[
−2Ylm(ι, φo)h̃lm(f)

+ −2Y
∗
lm(ι, φo)h̃lm(−f)∗

]

=
1

2

∑

l≥2

l∑

m=1

[
−2Ylm(ι, φo)

+ (−1)l−2Y
∗
l−m(ι, φo)

]
h̃lm(f)

(4.30)

and similarly we can show

h× =
i

2

∑

l≥2

l∑

m=−l

[
−2Ylm(ι, φo)hlm − −2Y

∗
lm(ι, φo)h

∗
lm

]

h̃×(f) =
i

2

∑

l≥2

l∑

m=−l

[
−2Ylm(ι, φo)h̃lm(f)

− −2Y
∗
lm(ι, φo)h̃lm(−f)∗

]

=
i

2

∑

l≥2

l∑

m=1

[
−2Ylm(ι, φo)

− (−1)l−2Y
∗
l−m(ι, φo)

]
h̃lm(f) .

(4.31)

where in both cases, we have neglected the m = 0 terms in the sums as they are not

considered in the models we have used. Finally, we note that we have used a different

normalization convention in the main text, Eq. (4.3), than the one typically used

in the spin-weighted spherical harmonic decomposition described in this Appendix.

This has no impact on the results, but merely changes the values of α`m and R`m

while maintaining the same values of the SNR in the higher harmonics.

4.B Derivation of p(Rlm)

We now derive the probability distributions in Fig. 4.3.3. Assuming no preferred

orientation for binaries in the universe, the probability density function for cos ι,

p(cos ι), is

puniv(cos ι) = 1
2 (4.32)

However, binaries which emit primarily in the 22 multipole radiate most powerfully

in the direction perpendicular to the orbital plane, | cos ι| ∼ 1. Consequently, the

horizon for the subset of these binaries which are viewed edge-on is much closer and
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we preferentially observe face-on binaries. It can be shown [283] that the radiated

power of the dominant multipole as a function of inclination is

F (ι)22 = (A22
+ )2 + (A22

× )2 , (4.33)

where A22
+,× are defined in Eq. (4.4). For a detector sensitive to only one polarization

of gravitational wave, the observed power will depend upon the polarization. This

will also be the case for a network with different sensitivities to the two polarization,

but not for one equally sensitive to both polarizations of the gravitational wave. It is

possible to approximately marginalize over the polarization distribution and obtain

a probability distribution for the inclinations of detected binaries, assuming sources

are distributed uniformly in volume, as [283]

pdet(cos ι) ∝ F (ι)3/2 = (1 + 6 cos2 ι+ cos4 ι)3/2 . (4.34)

Using these results, it is straightforward to obtain expressions for the distribu-

tions for the expected power in the (3, 3) and (4, 4) multipoles, both for a uniform

population of binaries and for those which are observable above a fixed threshold.

The distribution for other multipoles can also be obtained but, since in general R`m

will depend upon polarization angle, the results will be dependent upon the details

of the network and its sensitivity to the two gravitational wave polarizations. For

the (3, 3) and (4, 4) multipole moments, the relative amplitude depends only on the

inclination angle ι.

To obtain an expression for the probability distribution for R`m, we change

variables

p(R`m) =

(
d cos ι

dR`m

)
p(cos ι) (4.35)

so that, recalling the functional form of R33 and R44 from Eq. (4.15), we obtain

puniv(R33) =
R33

4

√
1−

(
R33

2

)2

puniv(R44) =
1

4
√

1−
(
R44

2

) . (4.36)

Assuming binaries are detected with (2, 2) harmonic-only waveforms, we can apply

the same weighting factor as above in obtaining the distributions for the observed

binaries, to obtain

pdet(R`m) =

(
d cos ι

dR`m

)
pdet(cos ι) (4.37)
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which gives

pdet(R33) ∝
(

8− 2R2
33 +

R4
33

16

)
puniv(R33)

pdet(R44) ∝
(

8− 4R44 +
R2

44
4

)
puniv(R44) (4.38)

These distributions are plotted in Fig. 4.3.3, and discussed in the surrounding text.
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Chapter 5

GW190412 & GW190814: The

first binaries with measurable

higher order multipoles

This chapter is based on Refs. [9, 12], which are collaboration papers and

involve contributions from a (very) large number of people. In particular section

5.2.2 closely follows Ref. [9], within which CM was the primary author of the

section describing the (3,3) orthogonal SNR measurement (section IV B of Ref.

[9]). CM contributed the (3,3) SNR calculation in these papers which appears

in figures 5.2.4 and 5.3.5.

5.1 Introduction

Before 2019, all compact binary systems observed by the LIGO-Virgo gravitational-

wave detector network had mass ratios consistent with unity [25]. Here we report on

two compact binaries that are the first to buck this trend. In April 2019 GW190412

[9] was the first observation of an unambiguously asymmetric merger. Later that

year GW190814 [12] — a binary with even more asymmetric masses — was observed

with the unusual property of having a secondary component with a mass heavier

than any neutron star, but lighter than any black hole previously detected in a

compact binary. The unequal masses of both these binaries results in another novelty

for gravitational-wave astronomy. For the first time we observe harmonics of the

gravitational waveform oscillating at a frequency other than the dominant emission

at twice the orbital frequency. It was the power in these higher harmonics that

strengthens, or in the case of GW190412 allows, the characterization as unequal

mass systems.

In section 5.2.1 we summarize the detection of GW190412 and introduce its

properties. We focus on the most salient properties for the detection of higher
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harmonics, which is our main focus here 1. Section 5.2.2 discusses the evidence for

higher mode content. This is quantified with both the Bayesian evidence and the

orthogonal optimal signal-to-noise ratio in each harmonic [10]. Section 5.3 repeats

a similar structure for GW190814.

5.2 GW190412

5.2.1 Detection and parameter estimation

GW190412 was detected by multiple low latency searches with network SNR∼ 18−19

as a triple coincidence with high significance. Inferred parameter estimates are

shown in Table 5.2.12. The table shows results for two waveforms with similar

physics but obtained using different modelling techniques (for more information on

the models used see appendix 5.A and references therein). Combined estimates

are obtained by averaging the posterior distributions inferred with the two different

waveform models. Unless otherwise stated the properties quoted in this chapter are

these combined estimates. The component masses in the source frame are m1 =

30.1+4.6
−5.3M� and m2 = 8.3+1.6

−0.9M�, which in the detector frame combine for a total

mass of 44.2+4.4
−4.7M�.

The detection claims of both events are based on a bank of template waveforms

that include only the dominant (`,m) = (2, 2) multipole, and do not include preces-

sion. Both of these physical effects leave only small imprints on the waveform for

the majority of binaries [276, 275, 10], though their inclusion can reduce parameter

uncertainties. Larger higher harmonics are expected for binaries that have more

asymmetric masses, and are viewed closer to edge-on.

In figure 5.2.1 we see that the inclusion of higher order multipoles enables us

to constrain the mass ratio of GW190412 away from equal mass. We constrain

mass ratio to be at least 2:1 with 99% probability using a model including higher

harmonics, compared with a confidence level of 91% with a model containing only

the dominant harmonic. Figure 5.2.3 demonstrates how the power in the (3,3)

multipole is related to the properties of GW190412. Increasing either the binary

inclination (equivalent to decreasing cos ι) or the mass asymmetry will increase the

amplitude of the (3,3) harmonic in the model waveform to match the power in the

(3,3) multipole in the data. Thus for events like GW190412 there is a degeneracy

between inclination and mass ratio that is not observed when the (3,3) multipole is

1For further details about the events see Refs [9, 12]
2Symbols: mi: individual mass; M = m1 + m2; M = (m1 m2)3/5M−1/5; superscript “det”

refers to the detector-frame (redshifted) mass, while without subscript, masses are source-frame
masses, assuming a standard cosmology [294] detailed in Appendix B of [25]; q = m2/m1; Mf , χf :
mass and dimensionless spin magnitude of the remnant BH, obtained through numerical-relativity
fits [295, 296, 297, 298]; χeff , χp: effective and precessing spin parameter; χ1: dimensionless spin
magnitude of more massive BH; DL: luminosity distance; z: redshift; θ̂JN : inclination angle (folded
to [0, π/2]); ρX matched-filter SNR for the Hanford, Livingston and Virgo detectors, indicated by
subscript. ρHLV: network SNR.
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Table 5.2.1: Inferred parameter values for GW190412 and their 90% credible in-
tervals, obtained using precessing models including higher multipoles. Symbols are
described in the text.

Parameter EOBNR PHM Phenom PHM Combined

m1/M� 31.7+3.6
−3.5 28.1+4.8

−4.3 30.1+4.6
−5.3

m2/M� 8.0+0.9
−0.7 8.8+1.5

−1.1 8.3+1.6
−0.9

M/M� 39.7+3.0
−2.8 36.9+3.7

−2.9 38.4+3.8
−3.9

M/M� 13.3+0.3
−0.3 13.2+0.5

−0.3 13.3+0.4
−0.4

q 0.25+0.06
−0.04 0.31+0.12

−0.07 0.28+0.12
−0.07

Mf/M� 38.6+3.1
−2.8 35.7+3.8

−3.0 37.3+3.8
−4.0

χf 0.68+0.04
−0.04 0.67+0.07

−0.07 0.67+0.06
−0.05

mdet
1 /M� 36.5+4.2

−4.2 32.3+5.7
−5.2 34.6+5.4

−6.4

mdet
2 /M� 9.2+0.9

−0.7 10.1+1.6
−1.2 9.6+1.7

−1.0

Mdet/M� 45.7+3.5
−3.3 42.5+4.4

−3.7 44.2+4.4
−4.7

Mdet/M� 15.3+0.1
−0.2 15.2+0.3

−0.2 15.2+0.3
−0.1

χeff 0.28+0.06
−0.08 0.22+0.08

−0.11 0.25+0.08
−0.11

χp 0.31+0.14
−0.15 0.31+0.24

−0.17 0.31+0.19
−0.16

χ1 0.46+0.12
−0.15 0.41+0.22

−0.24 0.44+0.16
−0.22

DL/Mpc 740+120
−130 740+150

−190 740+130
−160

z 0.15+0.02
−0.02 0.15+0.03

−0.04 0.15+0.03
−0.03

θ̂JN 0.71+0.23
−0.21 0.71+0.39

−0.27 0.71+0.31
−0.24

ρH 9.5+0.1
−0.2 9.5+0.2

−0.3 9.5+0.1
−0.3

ρL 16.2+0.1
−0.2 16.1+0.2

−0.3 16.2+0.1
−0.3

ρV 3.7+0.2
−0.5 3.6+0.3

−1.0 3.6+0.3
−0.7

ρHLV 19.1+0.2
−0.2 19.0+0.2

−0.3 19.1+0.1
−0.3
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Figure 5.2.1: GW190412: The posterior distribution for mass ratio, m2/m1 > 1.
The inclusion of higher multipoles constrains the binary away from equal mass. All
models shown here are part of the Phenom family.

not measured. This degeneracy follows lines of constant ρ33. Also shown here is the

total mass in the detector frame, which is degenerate with mass ratio along a line

of constant chirp mass [291]. We note there appears to be some railing against the

lower bound on the total mass prior in the IMRPhenomPv2 run. Setting a smaller

lower bound on the total mass would likely result in more accurate posteriors which

show more support at lower total mass, and more equal masses. This means that

the impact of the higher multipoles is likely even greater for constraining the binary

away from equal mass.

5.2.2 Evidence for higher multipoles

As already noted, signal models that include higher multipoles are needed to infer the

strongest constraints on GW190412’s source properties. This is because if the data

contain significant imprints of higher multipoles, the appropriate models can fit the

data better than dominant-mode models, leading to a higher statistical likelihood.

Conversely, if the data would not contain imprints of higher multipoles, using more

complex models allows us to disfavor configurations in which clear imprints of higher

multipoles are predicted [252, 267, 299].

In this section, we analyse how strong the imprints of higher multipoles are in

GW190412 and ask if their contributions in the data are significantly stronger than

random noise fluctuations. We address this question using two different approaches,

each with its unique set of strengths and caveats.
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Figure 5.2.2: GW190412: The posterior distribution for the luminosity distance, DL,
and inclination, θJN (angle between the line-of-sight and total angular momentum),
of GW190412. We illustrate the 90% credible regions. By comparing models that
include either the dominant multipole (and no precession), higher multipoles and no
precession, or higher multipoles and precession, we can see the great impact higher
multipoles have on constraining the inclination and distance. All models shown here
are part of the EOBNR family. This plot is reproduced from Ref. [9].
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Figure 5.2.3: GW190412: Posterior distributions for the orthogonal optimal SNR
in the (`,m) = (3, 3) multipole, ρ33 (see section 5.2.2 and Ref. [10], the inclina-
tion angle between the line-of-sight and orbital angular momentum, ι, mass ratio
q = m2/m1 < 1 and total mass in the detector frame under different waveform
model assumptions. Results for the precessing higher multipole waveform IMR-
PhenomPv3HM model are shown as red contours, while grey contours denote the
precessing waveform IMRPhenomPv2 which contains only the (2,2) multipole in the
co-precessing frame. Both more unequal masses and more planar viewing angles
result in a larger amplitude (`,m) = (3, 3) multipole. For this reason the binary
inclination angle is degenerate with the mass ratio. Shading shows the 1σ, 3σ and
5σ credible regions. This plot was made with PESummary [11].
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Figure 5.2.4: GW190412: The probability distribution of the precessing SNR, ρp

(blue) and the orthogonal optimal SNR, ρ, contained in the strongest higher multi-
pole, (`,m) = (3, 3) (orange). We also show the expected distribution from Gaussian
noise (dotted line) and the 3-σ level (dashed line). The results indicate that there
is marginal support for precession, but the posterior supports a clearly measurable
higher multipole. This plot is reproduced here from Ref. [9].

Bayes Factors and Matched-Filter SNR

One answer to the question of which model describes the data best can be given in

the Bayesian framework. The ratio of marginalized likelihoods under two competing

hypotheses is called the Bayes factor, B [300]. Bayes factors may be used to quantify

support for one hypothesis over another. The Bayes factor does not take into account

our prior belief in the hypotheses being tested. Within GR, every compact binary

coalescence signal includes higher multipoles and the prior odds in favor of their

presence in the signal are infinite. We therefore focus on the Bayes factors and do

not discuss the odds ratio (which is the Bayes factor multiplied by the prior odds).

We find log10 B = 3.6 in favor of IMRPhenomPv3HM over its dominant multi-

pole counterpart IMRPhenomPv2. This indicates strong evidence that the observed

signal contains measurable imprints of higher multipoles. In Ref. [9] they show that

despite uncertainty of order unity in log10 B, they consistently find log10 B ≥ 3, in

favour of higher multipoles, robust to waveform and code choice.

Optimal SNR

A complementary way to quantify the strength of higher multipoles is to use parame-

ter estimation results from a signal model including higher-order multipoles [301, 10].

Each multipole is decomposed into parts parallel and perpendicular to the dominant

multipole by calculating the noise-weighted inner product [302, 287] (often referred

to as overlap) between it and the dominant multipole. Among the strongest multi-

poles that are included in our models, the (`,m) = (3, 3), (4, 4) and (4, 3) multipoles

of GW190412 are close to orthogonal to the dominant (2, 2) multipole within the

band of the detector. In contrast, the (3, 2) and (2, 1) multipoles have non-negligible
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parallel components. To quantify the strength of the higher multipoles we remove

any parallel components from the multipoles and calculate the orthogonal optimal

SNR using IMRPhenomHM [252]. We find (`,m) = (3, 3) to be the strongest sub-

dominant multipole.

The templates that include higher multipoles do not allow the amplitude and

phase of the (3, 3) multipole to be free parameters; they are determined by the

properties of the system. An analysis of this event using only the dominant (2, 2)

multipole recovers posteriors that are consistent with a broad range of inclinations,

coalescence phases, and mass ratios, while the same analysis using higher multipoles

results in significantly more restricted posteriors (see Fig. 5.2.2). This suggests that

by changing those parameters, our models can effectively treat the amplitude and

phase of the higher multipoles as tunable parameters that make their contributions

more or less pronounced. If the data only contained the dominant quadrupole mode

and Gaussian noise, the squared orthogonal SNR in the subdominant multipole will

be χ2-distributed with two degrees of freedom [275, 276, 10]. This was verified by

analysing an injection with parameters close to GW190412.

This noise-only distribution is shown in Fig. 5.2.4, along with the orthogonal

optimal SNR in the (`,m) = (3, 3) mode. The peak of the SNR distribution is

at the Gaussian equivalent three sigma level for the noise-only distribution (i.e.,

with cumulative tail probability of p = 3 × 10−3), making this the most significant

evidence for something other than the dominant multipole prior to GW190814 [303].

5.3 GW190814

5.3.1 Detection and parameter estimation

GW190814 was initially detected only by gstLAL, but later offline versions of all

matched filter searches were able to recover the event as a triple coincidence with

network SNR∼ 24−25 and high significance. Table 5.3.1 lists the inferred properties

of GW190814. Component masses are m1 = 23.2+1.1
−1.0M� and m2 2.59+0.08

−0.09M�.

Like GW190412, the constraint on the mass ratio of GW190814 was also im-

proved by the inclusion of higher order multipoles, though to a lesser extent. As

can be seen in figure 5.3.1, it is the combined effects of both higher multipoles and

precession that improves the constraint on the secondary mass. The constraint was

obtained with both EOBNR and Phenom waveform families, and is robust against

waveform systematics. This increases the confidence that the secondary object is in

the mass gap: lighter than any black hole, but heavier than any neutron star known

to exist in a compact binary system [12].

GW190814’s mass ratio and secondary component mass is most tightly con-

strained by waveform models that include spin precession effects. We understand

this as follows. The large mass ratio of GW190814 implies that the spin of the
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EOBNR PHM Phenom PHM Combined

m1/M� 23.2+1.0
−0.9 23.2+1.3

−1.1 23.2+1.1
−1.0

m2/M� 2.59+0.08
−0.08 2.58+0.09

−0.10 2.59+0.08
−0.09

m2/m1 0.112+0.008
−0.008 0.111+0.009

−0.010 0.112+0.008
−0.009

M/M� 6.10+0.06
−0.05 6.08+0.06

−0.05 6.09+0.06
−0.06

M/M� 25.8+0.9
−0.8 25.8+1.2

−1.0 25.8+1.0
−0.9

Mf/M� 25.6+1.0
−0.8 25.5+1.2

−1.0 25.6+1.1
−0.9

χ1 0.06 0.08 0.07

χeff 0.001+0.059
−0.056 −0.005+0.061

−0.065 −0.002+0.060
−0.061

χp 0.07 0.07 0.07

χf 0.28+0.02
−0.02 0.28+0.02

−0.03 0.28+0.02
−0.02

DL/Mpc 235+40
−45 249+39

−43 241+41
−45

z 0.051+0.008
−0.009 0.054+0.008

−0.009 0.053+0.009
−0.010

Θ/rad 0.9+0.3
−0.2 0.8+0.2

−0.2 0.8+0.3
−0.2

ρH 10.6+0.1
−0.1 10.7+0.1

−0.2 10.7+0.1
−0.2

ρL 22.21+0.09
−0.15 22.16+0.09

−0.17 22.18+0.10
−0.17

ρV 4.3+0.2
−0.5 4.1+0.2

−0.6 4.2+0.2
−0.6

ρHLV 25.0+0.1
−0.2 24.9+0.1

−0.2 25.0+0.1
−0.2

Table 5.3.1: Source properties of GW190814: We report the median values along
with the symmetric 90% credible intervals for the SEOBNRv4PHM (EOBNR
PHM) and IMRPhenomPv3HM (Phenom PHM) waveform models. The primary
spin magnitude and the effective precession is given as the 90% upper limit. The
inclination angle is folded to [0, π/2]. The last column is the result of combining
the posteriors of each model with equal weight. The sky location of GW190814 is
shown in Figure 2 of Ref. [12].

larger black hole dominates the total angular momentum, and spin phenomenology

of the binary. Furthermore, a large component of in plane spin on the larger black

hole would have measurable precession effects. As precession is not observed in

GW190814, we tightly constrain the in plane components of the larger black hole

as can be seen in figure 5.3.3. A constraint on the in-plane spin will also constrain

the aligned spin, as they are correlated with each other. We can thus bound the

dimensionless spin magnitude of the primary black hole to χ1 < 0.07. This is the

tightest constraint to date. It is this constraint from precession which impinges

on the χeff − q space consistent with the evolution of the binary phase [291], and

narrows the credible bounds on the mass of the lighter object.

Inclusion of higher order multipoles can also serve to also improve the constraints

on the binary orientation angles. Figure 5.3.4 shows how the improved constraint on

the binary inclination angle (between the line of sight and total angular momentum)

partially breaks the degeneracy with the luminosity distance [173] for GW190814.

It is the power in the (3,3) harmonic which drives the measurement of the incli-

nation, as the two parameters are related by ρ33 ∝ sin ι and are highly correlated
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Figure 5.3.1: GW190814: The marginalized posterior distribution for the secondary
mass obtained using a suite of waveform models. The vertical lines indicate the
90% credible bounds for each waveform model. The labels Phenom/EOBNR PHM
(generic spin directions + higher multipoles), Phenom/EOBNR HM (aligned-spin
+ higher multipoles) and Phenom/EOBNR (aligned-spin, quadrupole only) indi-
cate the different physical content in each of the waveform models. This plot is
reproduced here from Ref. [12].

as can be seen in Fig. 5.3.2. The degeneracy between mass ratio and cos ι is less

obvious for this event, partly because the mass ratio measurement appears to be

driven by the non-observation of spin.

5.3.2 Evidence for higher multipoles

GW190814 exhibits stronger evidence for higher-order multipoles than GW190412,

with log10 B ' 9.6 in favor of a higher-multipole vs. a pure quadrupole model.

The (`,m) = (3, 3) is the strongest subdominant multipole, with log10 B ' 9.1

in favor of a signal model including both the (`,m) = (2, 2) and (3, 3) multipole

moments. GW190814’s stronger evidence for higher multipoles is expected given its

more asymmetric masses and the larger network SNR.

We infer that the orthogonal optimal SNR of the (`,m) = (3, 3) multipole

is 6.6+1.3
−1.4, as shown in Figure 5.3.5. This is the strongest evidence for measuring a

subdominant multipole to date [9].
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Figure 5.3.2: GW190814: Posterior distributions for the orthogonal optimal SNR
in the (`,m) = (3, 3) multipole, ρ33 (see section 5.2.2 and Ref. [10], the inclina-
tion angle between the line-of-sight and orbital angular momentum, ι, mass ratio
q = m2/m1 < 1 and total mass in the detector frame under different waveform
model assumptions. Results for the precessing higher multipole waveform IMRPhe-
nomPv3HM model are shown as green contours. Red contours denote results for
the non-precessing higher mode model IMRPhenomHM. Grey contours denote the
precessing waveform IMRPhenomPv2 which contains only the (2,2) multipole in the
co-precessing frame. Here we see that including precession has the largest effect on
reducing the uncertainty in mass ratio. Shading shows the 1σ, 3σ and 5σ credible
regions. This plot was made with PESummary [11].
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Figure 5.3.3: GW190814: Two-dimensional posterior probability for the tilt-angle
and spin-magnitude for the primary object (left) and secondary object (right) based
on the Combined samples. The tilt angles are 0◦ for spins aligned and 180◦ for spins
anti-aligned with the orbital angular momentum. The tiles are constructed linearly
in spin magnitude and the cosine of the tilt angles such that each tile contains
identical prior probability. The color indicates the posterior probability per pixel.
The probabilities are marginalized over the azimuthal angles. This plot is reproduced
here from Ref. [12].
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Figure 5.3.4: GW190814: The posterior distribution for the luminosity distance, DL,
and inclination, θJN (angle between the line-of-sight and total angular momentum),
of GW190814. We illustrate the 90% credible regions. By comparing models that
include either the dominant multipole (and no precession), higher multipoles and no
precession, or higher multipoles and precession, we can see the great impact higher
multipoles have on constraining the inclination and distance. This plot is reproduced
here from Ref. [12].
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Figure 5.3.5: GW190814: Posterior distributions for the precessing SNR, ρp (green)
and the optimal SNR in the (3,3) sub-dominant multipole moment, ρ (orange). The
grey dotted line shows the expected distribution for Gaussian noise. This plot is
reproduced here from Ref. [12].
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Appendix

5.A Waveform models used

Table 5.A.1 provides details and references for the two waveform families used in

this chapter: Phenom (including IMRPhenomD, IMRPhenomHM, IMRPhenomPv2,

IMRPhenomPv3HM), and EOBNR (including SEOBNRv4 ROM, SEOBNRv4HM ROM,

SEOBNRv4P and SEOBNRv4PHM). Ocassionally we refer to the models by a

shortened name. Usually this is their family name followed by the letters P if they

include precession effects and HM if they include higher order multipoles.

Table 5.A.1: Waveform models used for GW190814 and GW190412. We indicate
which multipoles are included for each model. For precessing models, the multipoles
correspond to those in the co-precessing frame.

Name precession multipoles (`, |m|) Ref.

SEOBNRv4 ROM × (2, 2) [304]
SEOBNRv4HM ROM × (2, 2), (2,1), (3, 3), (4, 4), (5, 5) [256, 261]
SEOBNRv4P X (2, 2), (2, 1) [305, 306, 307]
SEOBNRv4PHM X (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) [305, 306, 307]

IMRPhenomD × (2, 2) [308, 309]
IMRPhenomHM × (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3) [252]
IMRPhenomPv2 X (2, 2) [274]
IMRPhenomPv3HM X (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3) [254]
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Chapter 6

Precession and higher order

multipoles in the first half of the

third gravitational wave

observing run

Code: The code that produced the main results in this chapter will be made

publicly available here: https://github.com/pesummary/pesummary/

Collaboration: This chapter was written by Charlie Hoy and CM, with

the former (latter) paying most attention to the precessing (higher) harmonic

measurements.

6.1 Introduction

Between 2015 and 2017, the Advanced LIGO [310] (aLIGO) and Advanced Virgo [311]

(AdV) gravitational-wave (GW) detectors performed their first and second GW ob-

serving runs (O1 and O2). During this time, the LIGO Scientific and Virgo collab-

oration (LVC) announced GWs originating from 10 binary black hole mergers [312]

and a single binary neutron star [313]. Additional compact binary candidates have

also been reported by other groups [314, 315, 316, 317].

Two important General Relativistic effects that were not clearly observed dur-

ing O1 and O2 are higher order multipoles [318, 264] and spin-induced orbital

precession [312, 319]. Higher order multipoles are terms beyond the dominant

quadrupole when a GW is expanded into multipole moments with spherical po-

lar coordinates defined in the source frame [225]. Spin-induced orbital precession

arises when there is a misalignment between the orbital angular momentum and the

spins of each compact object [270]. Including these effects in waveform models used

to infer source properties can improve parameter measurement accuracy and pro-

vides additional constraints on the in-plane spin components of the binary (see e.g.
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[252, 267, 9, 12, 271]). The importance of both of these effects increase as the binary’s

mass ratio (q = m1/m2) increases [320, 239, 247, 222, 246, 321, 322, 323, 271]. Clear

evidence for asymmetric masses was absent in the binaries detected during O1 and

O2 [312], making the observation of either precession and higher order multipoles

challenging.

Analysis of the first 6 months of data from the third GW observing run (03a) re-

vealed a further 39 GW candidates in the second gravitational-wave catalog (GWTC-

2) [23]. In contrast to O1 and O2, several events in O3a had unequivocally unequal

masses. First among these is GW190412 [9], with a mass ratio of ∼4:1. The large

mass ratio resulted in more significant higher order multipoles, and for the first

time, imprints of subdominant multipole radiation oscillating at three times the

orbital frequency were visible. Similarly, it was the first time that the amount of

precession in the system was constrained away from the prior. Several months later

GW190814 was detected with highly asymmetric component masses (∼9:1) and a

secondary component with a mass larger than any previously discovered neutron

star and lighter than any black hole [12]. GW190814 had the largest evidence of the

(3,3) multipole and the most precise precession measurement of any event observed

to date. It was demonstrated that a combination of the higher order multipoles

and the precession measurement improved parameter estimates, and in particular

reduced the uncertainty on the mass of the smaller object. Other events in O3a have

hinted at further evidence of higher order multipoles, though no single event in O3a

unambiguously exhibits spin-induced orbital precession [9, 12, 23, 324].

In this chapter, we take advantage of recent developments in quantifying the

presence of higher order multipoles [320] and precession [325, 319, 271] in GWs

to build upon these statements. We calculate the signal-to-noise ratio in the

(`, |m|)ε{(2, 1), (3, 3), (4, 4)} multipoles1 and from precession for every event in O3a

and compare it to the expected distribution from noise. Unlike Refs. [23, 324], we

show that GW190412 exhibits evidence for spin-induced orbital precession. In ad-

dition to the previously reported evidence for higher multipoles in the signals of

GW190814 and GW190412, we show that there is evidence for a (3,3) multipole

in both the GW190519 and GW190929 signals2. Further, we demonstrate how a

reanalysis of GW190521 by Nitz et al. [13] indicates a (3,3) multipole that is the

most significant, as a fraction of total signal-to-noise ratio, detected to date.

1(`,m) should everywhere be read as (`, |m|) unless otherwise indicated.
2Throughout this chapter, we denote each gravitational-wave candidate by their shortened name.

If there is only one gravitational wave on a given day, we identify it by its UTC date. If there are
multiple, we add an underscore and as much of the time as needed to ensure the events can be
distinguished.
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6.2 Method

In General Relativity, GWs are fully described by two polarizations. These polar-

izations can be decomposed into multipole moments using the −2 spin-weighted

spherical harmonic orthonormal basis (see Eq. (A1) in Ref. [10]). Coalescing com-

pact binaries predominantly emit radiation at twice the orbital frequency in the

leading order (2,2) multipole. The most important subdominant multipole for most

compact binaries is the (3,3) multipole, though the (4,4) multipole can be more

significant for binaries whose members have comparable masses [10].

For binaries where the dominant (2,2) multipole has been observed, it is natu-

ral to ask whether other multipoles can also be identified. Here, we quantify this

by using parameter estimates inferred using a waveform model that includes these

multipoles. These parameter estimates are used to generate the higher multipole

waveform and calculate the noise-weighted inner product (also known as the optimal

SNR) for each multipole using IMRPhenomXHM [230]. In general the (l,m) multi-

pole may overlap with the (2,2) signal, though for the (3,3) and (4,4) multipoles the

overlap is usually negligible [10]. To quantify the significance of the higher multipole

content it is necessary to project away the (l,m) componants that are parallel to the

(2,2) multipole. Doing this we calculate the optimal orthogonal signal-to-noise ratio

(SNR) ρ`m in the subdominant (`,m) multipoles [10, 9, 12].

It is also natural to ask if precession has been observed. A binary on a quasicir-

cular orbit is described by 8 intrinsic parameters: the individual component masses

m1 and m2 and spin angular momenta S1 and S2. For a given binary, we can calcu-

late the Newtonian orbital angular momentum L and the total angular momentum

J = L + S = L + S1 + S2. For the case where the total spin S is misaligned with L,

the system undergoes the General Relativistic phenomenon of spin-induced orbital

precession [270]. In most cases, this phenomenon leads to L precessing around the

approximately constant J. This leads to characteristic modulations in the emitted

gravitational wave [270, 326]. The strength of precession is characterised by the tilt

angle of the binary’s orbit, β, defined as the polar angle between orbital angular

momentum and total angular momentum.

Precession is often parameterised by the scalar quantity χp [327] (although al-

ternative metrics have also been proposed [328, 329]). χp takes values between 0

(non-precessing) and +1 (maximal precession) and is widely used for inferring the

occurrence of precession in gravitational-wave data (see e.g. [312, 23]).

Recently, Refs. [325, 319] introduced an alternative description for spin-induced

orbital precession. This formalisation decomposes a gravitational-wave signal into 5

“precession harmonics” where the amplitudes form a power series in b = tan (β/2).

It was demonstrated that each harmonic is equivalent to a gravitational wave emitted

from non-precessing binary. The characteristic modulations in a precessing gravita-

tional wave can then interpreted as the constructive and destructive interference of
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these harmonics. In most regions of the parameter space, b is small and therefore the

leading two harmonics are sufficient to capture significant precession effects [325].

By decomposing a precessing GW signal in this way, it was shown that the power

in the second most significant precession harmonic provides a good estimate of the

contribution from precession to the SNR of the system. If this precession SNR ρp

is small, the second harmonic is insignificant and the observed GW looks like the

dominant non-precessing signal. Analogously to the method above for higher order

multipoles, we can use the results of parameter estimation obtained with a waveform

model that includes precession to calculate the ρp that are consistent with the data.

Both ρp and ρ33 are positively correlated with more unequal masses and larger

inclination angles. In the case of precession, more unequal masses lead to a larger

tilt angle of the binary’s orbit, and in general, the larger the tilt angle the more

prominent the precession effects [270]. Likewise precession is easier to observe for

binaries close to edge on, where a modulating inclination angle introduces larger

fluctuations in the overall and relative amplitude of the two GW polarizations. The

amplitude of the (3,3) multipole is identically zero at equal mass as only even m

multipoles respect the orbital symmetry of this arrangement [330]. As more asym-

metry is introduced to the system in the form of unequal mass ratio, or misaligned

spins the relative power of the (3,3) multipole grows [330, 232]. Relative importance

of the (3,3) multipole also increases with inclination angle ι: the ratio between the

(3,3) and (2,2) amplitudes goes as sin ι [10].

A measurement of the (2, 2) harmonic alone typically does not result in tight

constraints on the parameters that most determine both ρp and ρlm. In large part

this is because it is generally not possible to distinguish the second polarization of

the (2,2) harmonic [173]. This means essentially all events are recovered as being

consistent with a face-on orientation, where the two polarizations have identical

amplitudes. Mass ratio is also typically poorly constrained by the phase evolution

of the (2,2) harmonic, where it is degenerate with spin [291]. Finally, a measurement

of the (2,2) harmonic alone does not constrain the precession parameters χp or the

precession phase. These poorly (or un-)constrained parameters translate into a

freedom in amplitude and phase of the loudest subdominant precessing and higher

harmonics, which can be tuned by adjusting the properties of the system to better

fit the data.

In order to assess the significance of precession and higher order multipoles,

we compare the inferred posterior distributions for ρp and ρlm to the distribution

expected from noise alone. Since the statistical properties of ρp and ρlm are similar,

the expected distribution has the same form for both measurements. Below we

summarize the derivation of this common distribution (parameterized by ρ which

denotes either ρp or ρlm) but we refer the reader to Refs. [271, 10] for the details.

The observed gravitational wave including subdominant multipole moments, or

the observed gravitational wave originating from a precessing system, can be ap-
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proximately written as a two component harmonic decomposition [325, 10] h =

A0(λ)h0(λ) + A1(λ)h1(λ) where Ai(λ) are overall amplitudes, hi(λ) evolve with

time, and indices 0 and 1 respectively represent dominant and loudest subdomi-

nant (precessing or higher multipole) harmonics for a set of parameters λ. The

gravitational-wave likelihood may then be factorised into two components: one de-

scribing the contribution from the dominant harmonic, Λ0(λ), and another describ-

ing the contribution from the subdominant harmonic, Λ1(λ),

p(d|λ) ∝ exp

(
−1

2
〈d− (A0(λ)h0(λ) +A1(λ)h1(λ))|d− (A0(λ)h0(λ) +A1(λ)h1(λ))〉

)

∝ exp

(
〈d|A0(λ)h0(λ)〉 − |A0(λ)|2

2
〈h0(λ)|h0(λ)〉

)
(6.1)

× exp

(
〈d|A1(λ)h1(λ)〉 − |A1(λ)|2

2
〈h1(λ)|h1(λ)〉

)

∝ Λ0(λ)× Λ1(λ),

where we have assumed that the dominant and subdominant harmonics are orthog-

onal 〈h0|h1〉 = 0. In general, the phase evolution of the gravitational waveform

is well constrained by the measurement of the dominant harmonic. For simplicity

we assume therefore that the subdominant contribution to the phase evolution is

negligible and that the squared matched filter SNR in the subdominant channel

(ρMF
1 )2 =

[
(s|h1)2 + (s|ih1)2

]
/|h1|2 is fixed, leaving only the overall amplitude and

phase of h1 to vary. Analytically marginalizing over the phase constant, we can

write the subdominant contribution to the marginalized likelihood as,

Λ1(ρ) ∝ I0(ρMF
1 ρ) exp

(
−(ρMF

1 )2 + ρ2

2

)
, (6.2)

where I0 is the Bessel function of the first kind. In gaussian noise ρMF
1 is chi-

distributed with two degrees of freedom. The expected posterior distribution for ρ

is therefore,

p(ρ|d) ∝ p(ρ) Λ1(ρ) (6.3)

where p(ρ) is the prior distribution for ρ.

For the case of uniform priors on the complex amplitude A1, p(ρ|d) takes the

form of a non-central χ distribution with 2 degrees of freedom with non-centrality

parameter equal to ρMF
1 . To a rough approximation, ρMF

1 can be estimated as the

peak of the inferred ρ distribution. For a better approximation, we can fit a chi

distribution to the posterior to obtain the non-centrality parameter.

A simple maximization (equivalent to assuming uniform priors), tends to result

in a predicted posterior distribution that overestimate the actual inferred poste-
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rior [271]. This is because the posterior probability inferred from the dominant

harmonic alone tends to prefer face-on or face-off orientations [173], and comparable

masses due to the prior that is used, where both the higher order multipole and pre-

cession harmonics are weaker. This results in a general preference for lower values

of A1 and ρ, before the actual likelihood associated with the loudest subdominant

harmonic is probed. In order to obtain a better prediction for the posterior distribu-

tion p(ρ|d), we can use the results from an analysis that includes only the dominant

multipole during parameter inference. Since generally the phase constant that is

marginalized over in Eq.6.2 is not well measured in dominant mode inference, it is

safe to assume a uniform prior. For the other parameters, we can use the results of

dominant harmonic as an informed prior in Eq.6.3 for p(ρ). This informed prior is

essentially what results from calculating p(ρ|d) in Eq.6.3 while assuming Λ1(ρ) = 1.

For precession there are additional parameters that must be marginalized over that

are not inferred with models using aligned spin templates: χp and the precession

phase. However the inference of aligned spin and mass ratio does provide additional

constraints on these parameters, and so rather than assuming the default prior on

these parameters, we condition on the measured aligned spin and mass ratio. To

obtain an estimate of the posterior including we can then reweight each sample in

the informed prior using the likelihood in Eq.6.2 calculated for a particular value

of ρMF
1 . Refs. [10, 271] demonstrated that this precedure can result in predicted

posterior distributions that more accurately resemble the inferred posterior distri-

bution.

To calculate the informed prior for ρp we use the ‘AlignedSpinIMR” dataset

where available [24]3. For ρlm’s informed prior we use parameter estimation results

for an approximant from the same family as the higher harmonic results. To obtain

an estimate of the expected posterior in noise alone, we randomly draw a sample

from the χ distribution with 2 degrees of freedom for ρMF
1 – consistent with a specific

realisation of the noise. Next, we combine the informed prior with the likelihood

from Eq. 6.2 to obtain the distribution of ρ for a specific realisation of the noise. We

repeat this procedure 100 times to represent different realisations of the noise. We

then take the median of these distributions as our estimate for ρNP
p for precession,

and the noise posterior for higher multipoles. We show the average distributions

across all events, ρ̄NP
p and ρ̄33, as black solid lines in Figure 6.3.1.

To calculate the ρlm and ρp for each GW candidate, we require samples obtained

from a precessing higher-order multipole approximant. For the majority of events,

this meant using the “PublicationSamples” dataset contained within the publically

available data files obtained through the Gravitational Wave Open Science Cen-

ter [24]. For cases where the “PublicationSamples” dataset was not obtained with

a precessing higher-order multipole approximant (see Table VIII of Ref. [23]), we

3GW190521 data release only included parameter estimation results for precessing higher-order
multipole waveform models, so we were not able to construct informed priors for this event
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Figure 6.3.1: Plot showing the Left : ρ33 and Right : ρp distributions for all obser-
vations in the second gravitational-wave catalogue (grey). In red we show the ρ33

and ρp distribution averaged across events. In black we show the average of the me-
dian expected noise distribution for Left: higher multipoles and Right: precession.
Events which are discussed in the text are colored.

use the “C01:SEOBNRv4PHM” dataset for both analyses. For all cases we used the

posterior samples re-weighed to a flat-in-comoving-volume prior to remain consistent

with Ref [23].

6.3 Results

Table 6.3.1 presents a summary of the main results. All measurements are reported

as symmetric 90% credible intervals around the median of the marginalized posterior

distribution, unless otherwise specified. Figure 6.3.1 shows the inferred posteriors

for ρ33 and ρp for all events in O3a.

The (3,3) multipole is the most significant subdominant multipole for almost ev-

ery event in O3a. This is expected for the vast majority of binaries [10]. GW190910

is the sole exception, having ρ33 = 0.66+1.31
−0.58 and ρ44 = 1.04+0.47

−0.94, both of which

are consistent with noise. This occurs because GW190910 is very close to equal

mass, m2/m1 = 1.22+0.48
−0.20, where the (3,3) multipole is zero, but has significant

support for an edge-on orientation, where the (4,4) multipole is strongest. Other

than GW190412 and GW190814, GW190519 is the only event with a median value

for ρ33 > 2.1, suggesting possible evidence for a (3,3) multipole. Close behind is

GW190929 with ρ33 = 2.0+1.6
−1.5. We discuss both these events in section 6.3.2.

The right panel of Figure 6.3.1 shows that in general there is no strong evidence

for precession in O3a as ρ̄p is almost indistinguishable from ρ̄NP
p . Of all of the

events in O3a, GW190412 [9] and GW190814 [12] have the largest ρp with ρp =

2.99+1.58
−1.51 and ρp = 1.75+1.60

−1.23 respectively. To identify which events show evidence

for precession we compute the Jensen-Shannon divergence DJS [331] between ρp

and ρNP
p (as was done in Ref [23] between χp and the conditioned χp prior). This

statistic is designed to quantify the difference between probability distributions and

is bounded between DJS ∈ [0, 1]bits. DJS = 0 suggests that both distributions are
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Event ρ33 D33
JS ρp Dp

JS

GW190408 0.5+1.1
−0.5 0.0 1.0+1.8

−0.9 0.03

GW190412 3.1+1.1
−1.1 0.28 3.0+1.6

−1.5 0.36

GW190413 13 0.7+1.2
−0.6 0.0 0.7+1.5

−0.6 0.04

GW190413 05 0.5+1.2
−0.5 0.02 0.6+1.4

−0.5 0.01

GW190421 0.5+1.0
−0.4 0.0 0.7+1.4

−0.6 0.03

GW190424 0.4+1.0
−0.4 0.0 0.6+1.4

−0.5 0.01

GW190503 0.9+1.3
−0.8 0.03 0.8+1.8

−0.7 0.03

GW190512 1.1+1.1
−1.0 0.02 0.8+1.6

−0.7 0.01

GW190513 1.2+1.4
−1.1 0.03 0.8+1.6

−0.6 0.01

GW190514 0.4+1.0
−0.3 0.0 0.5+1.2

−0.4 0.03

GW190517 0.8+1.3
−0.7 0.0 1.0+2.0

−0.8 0.02

GW190519 2.3+1.3
−1.6 0.24 1.0+1.9

−0.7 0.07

GW190521 0.9+1.9
−0.8 - 0.7+1.4

−0.6 -

GW190521 07 0.9+1.4
−0.8 0.01 1.6+2.5

−1.2 0.09

GW190527 0.6+1.1
−0.5 0.0 0.7+1.7

−0.6 0.01

GW190602 0.9+1.4
−0.8 0.0 0.5+1.0

−0.4 0.01

GW190620 1.1+1.5
−1.0 0.01 0.8+1.7

−0.6 0.01

GW190630 1.0+1.2
−0.9 0.01 1.0+1.8

−0.8 0.02

GW190701 0.5+1.1
−0.4 0.0 0.5+1.0

−0.4 0.0

GW190706 1.7+1.5
−1.4 0.08 0.5+1.1

−0.4 0.01

GW190707 0.5+0.8
−0.4 0.0 0.8+1.4

−0.6 0.0

GW190708 0.6+0.8
−0.4 0.04 0.7+1.5

−0.6 0.0

GW190719 0.7+1.3
−0.6 0.01 0.6+1.5

−0.5 0.01

GW190720 0.6+0.9
−0.4 0.01 0.7+1.2

−0.6 0.01

GW190727 0.5+1.1
−0.4 0.0 0.7+1.6

−0.6 0.02

GW190728 0.7+1.1
−0.5 0.0 0.8+1.3

−0.6 0.01

GW190731 0.5+1.1
−0.4 0.0 0.5+1.3

−0.4 0.0

GW190803 0.4+0.9
−0.3 0.0 0.6+1.4

−0.5 0.01

GW190814 6.0+1.8
−2.1 0.68 1.8+1.6

−1.2 0.03

GW190828 0634 0.4+1.0
−0.4 0.0 0.9+1.6

−0.8 0.01

GW190828 0655 1.1+1.1
−0.9 0.04 1.0+1.9

−0.8 0.03

GW190909 0.7+1.7
−0.7 0.03 0.6+1.4

−0.5 0.04

GW190910 0.7+1.3
−0.6 0.02 0.8+1.6

−0.7 0.02

GW190915 0.5+1.0
−0.5 0.0 1.7+2.5

−1.4 0.17

GW190924 0.3+0.6
−0.3 0.0 0.6+1.2

−0.5 0.0

GW190929 2.0+1.6
−1.5 0.14 0.7+1.8

−0.6 0.04

GW190930 0.6+0.9
−0.4 0.0 0.7+1.3

−0.5 0.01

GW190521 Nitz 4.1+0.9
−1.3 - - -

Table 6.3.1: Table showing the SNR in the (`,m) = (3, 3) multipole moment ρ33

and the SNR from precession ρp for all events in the second gravitational wave
catalogue [23] plus the reanalysis of GW190521 by Nitz et al. [13]. For each event
we also show two Jensen Shannon Divergences (JSDs); D33

JS and Dp
JS compare the

calculated ρ33 and ρp distributions to the expected noise distributions respectively.
Events with a larger JSD show greater evidence for higher order multipoles and/or
precession. For events where the JSD and ρ33/ρp could not be calculated, due to the
lack of publically available posterior samples, we add a hyphen. Where applicable
we report the median values along with the 90% symmetric credible intervals.
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Figure 6.3.2: ρp distributions for First row : GW190412, Second row : GW190915,
Third row : GW190814. The blue line shows the expected distribution of ρp in a
stretch of noisy data under the assumption that the source is non-precessing, ρNP

p .

The blue shaded region shows the 1σ uncertainty of ρNP
p . The black line shows the

average ρNP
p across all events.

identical. We find that most events have DJS < 0.05bits which indicates the ρp and

ρNP
p agree well, see Table 6.3.1. This highlights that for most events, the observed

signal is consistent with originating from a non-precessing binary. This is why ρ̄p

is almost indistinguishable from ρ̄NP
p . We discuss why our analysis demonstrates

GW190412 shows the largest evidence for precession in detail below. Since Ref. [23]

identified GW190521 and GW190814 as having two of the most informative χp

distributions compared to the prior, we also describe why our analysis does not

highlight these events.
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6.3.1 GW190412 and GW190814

GW190814 and GW190412 are found to be the most significant measurements of ρ33

as previously reported [9, 12] and as expected as their individual black hole masses

are the most unequal. The Jensen-Shannon divergences between the (2,2) multipole

informed prior and posterior for these events are also the largest, DJS = 0.68 bits

and DJS = 0.28 bits respectively. This suggests posteriors density estimates change

significantly with the inclusion of higher order multipoles.

GW190412 likely originated from a precessing system as the inferred ρp is sig-

nificantly larger than ρNP
p with DJS = 0.36 bits, see Figure 6.3.2. We understand

this because a) GW190412 is consistent with an exceptionally large ρp compared

to the other events in O3a owing to the second largest mass ratio q = 3.6+1.1
−1.1 and

inclination angle constrained away from face-on θJN = 0.7+0.3
−0.2 rad (folded between

[0, π/2]) and b) GW190412’s informed prior is broad ρp = 3.3+5.6
−2.7, meaning that ρNP

p

approximately peaks at the location of maximum ρMF
1 . Since ρMF

1 peaks at ρp = 1.2,

with ∼ 1% probability of random drawing a value consistent with GW190412’s large

ρp = 2.99, ρNP
p peaks at much smaller values than the inferred ρp. This results in

a large Jensen-Shannon divergence. We find that GW190412 is consistent with a

precessing system at > 97% probability. This result differs from the conclusions

presented in Refs [9, 332] which are based upon the more commonly used Bayes

factors between the precessing and non-precessing hypothesis.

Figure 6.3.2 also shows that ρNP
p is shifted to larger values than average. This

follows from the fact that GW190412’s aligned spin analysis also confidently identi-

fies GW190412 as an unequal mass ratio system (q = 3.2+1.1
−1.1). This means that for

a given in-plane spin sample drawn from the prior, the calculated value of ρp will

be larger for GW190412 than for an equal mass ratio binary.

We see that GW190814 is consistent with originating from a non-precessing

system with DJS = 0.03 bits. This is expected given the near-zero χp measurement

(χp = 0.04+0.04
−0.03). Despite this, GW190814 has the third largest ρp in O3a. This

apparent contradiction is a result of GW190814’s large mass ratio (q = 9.0+0.8
−0.6). As

shown in Figure 6.3.2, we see that because of GW190814’s extraordinary mass ratio,

ρNP
p peaks at significantly larger values than average, with ρp also entirely contained

within the 1σ uncertainty. This means that although ρp is large for this system, it

is still consistent with originating from a non-precessing binary. This explains why

DJS = 0.03bits.

6.3.2 GW190519 and GW190929

GW190519 and GW190929 have ρp consistent with noise. In order to assess the

significance of the higher multipole content in GW190519 and GW190929, we are

interested in comparing their ρ33 posteriors to distributions that could be obtained

from noise alone, i.e. in the absence of any true signal power in the (3,3) multipole.
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Figure 6.3.3: ρ33 for Left : GW190519 Right : GW190929. The blue solid lines are the
publicly available posteriors obtained with a waveform model that includes higher
order multipoles. Solid orange lines indicate posteriors obtained with models that
include only the dominant harmonic. Treating this as a prior, we multiply by the
likelihood modelled as a non-central chi distribution with two degrees of freedom and
non-centrality parameter ρMF

33 = 2.1 to obtain an estimate of a posterior that could
be obtained when the power in the (3,3) multipole is noise alone. These estimates
are shown as the grey dashed lines.

As described in section 6.2 to evaluate the prior probability associated with ρ33 we

can inspect the posteriors obtained with waveform models that include only the

dominant harmonic. These informed priors are shown in Fig. 6.3.3 as solid orange

lines. Prior to any (3,3) measurement, each event has a general preference for face-

on and equal mass parameters consistent with lower values of ρ33. Treating the

orange distribution as a prior, we multiply by a likelihood of the form in Eq. 6.2

and non-centrality parameter ρMF
33 = 2.1 to obtain an estimate of the (3,3) posterior

that would result from a draw from the noise with a p-value of 10%. This indicates

an upper limit on a posterior that is consistent with noise. These are shown as the

dotted lines in Fig. 6.3.3.

The measured posterior for GW190519 is shifted to slightly higher values com-

pared to the noise distribution. In order to fit the noise distribution to the measured

posterior results, we minimize DJS by varying ρMF
33 . The best fit noise distribution is

shown as a dashed line in Fig. 6.3.3, and corresponds to ρMF
33 ∼ 2.9, corresponding

to a p-value of 1.5%. This suggests there is evidence for higher order multipoles

in the GW190519 signal, though it is less significant than both GW190814 and

GW190412. The extra likelihood from the (3,3) multipole results in narrower pos-

teriors for mass ratio and inclination. The mass ratio is constrained more tightly

between q = 1.17 − 2.34, compared with q = 1.04 − 2.80 from the (2,2) multipole

alone. With the inclusion of higher harmonics, the inclination now peaks at edge-on,

rather than face-on/face-off. What’s more, the improved constraints in inclination

and mass ratio lead to better constraints on other properties of the system that

are correlated such as χeff , component and total masses, distance, redshift, source

frame masses and polarization angle.

As can be seen in the right hand panel of Fig. 6.3.3, GW190929’s ρ33 posterior
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Figure 6.3.4: Corner plot showing the inferred mass ratio and ρ33 for the reanalysis
of GW190521 by Nitz et al. [13] compared to the results in GWTC-2 [14, 15, 16].
Shading shows the 1σ, 3σ and 5σ confidence intervals. This plot was made with
PESummary [11].

is slightly larger than the predicted posterior for noise with a p-value of 10%. The

best fit ρMF
33 = 2.5 is expected to arise from noise alone 4% of the time. Given that

there are 38 events we repeat this procedure for, this p-value suggests inconclusive

evidence for higher harmonics in the signal. Inclusion of higher harmonics does not

improve the constraint on inclination, but does result in a slightly tighter constraint

on mass ratio with q = 1.16− 6.77 becoming q = 1.34− 5.28.

6.3.3 GW190521

GW190521 is the first evidence of a new population of black holes that resist straight-

forward interpretation as supernovae remnants, with at least one black hole lying

firmly in the pulsational pair-instability mass gap (∼ 65 − 120M�) [14, 15]. Nitz

et al. [13] challenged this view, showing it is possible to obtain parameter estimates

consistent with component masses that instead straddle the gap. They found that

when using a uniform in mass-ratio prior, GW190521 is consistent with component

masses m1 = 168+15
−61M� and m2 = 16+33

−3 M� compared to 85+21
−14M� and 66+17

−18M�

reported in Refs. [14, 15, 16]. Prior constraints on the mass ratio imposed by the

original analysis [14, 15, 16] ruled out any possibility of sampling this region of the

parameter space. It is possible, therefore, that GW190521 is consistent with largely
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asymmetric masses – a region of the parameter space where the SNR in both the

(3, 3) multipole [10] and precession [271] are expected to be large. We therefore in-

clude these alternative parameter estimates (hereafter denoted as GW190521 Nitz)

alongside those from GWTC-2 and reported in Refs. [14, 15, 16].

The inferred value of ρ33 using GWTC-2 parameter estimation results is

1.16+1.81
−1.17, consistent with gaussian noise. However the Nitz et al. analysis results

in a much larger ρ33 = 4.10+0.92
−1.27. We are unable to construct an informed prior

for GW190521 because there are no publicly available samples that include only

the (2,2) multipole. The median suggests a very significant measurement of the

(3,3) multipole with a p-value of less than three parts in ten thousand. Figure 6.3.1

shows that GW190521 Nitz has the second largest ρ33 for any candidate in O3a. As

a fraction of the total SNR, this would be the most significant measurement of the

(3,3) multipole to date. From Figure 6.3.4 we see that these large ρ33 values are a

direct consequence of the peak at high mass ratio. It is the extra likelihood from the

measurement of the (3,3) multipole that is key to the Nitz et al. reinterpretation of

GW190521 having component masses that instead straddle the mass gap. This mo-

tivates further investigation, and in particular a direct measurement of the matched

filter SNR in the (3,3) multipole would provide useful insight on this event.

GW190521 had the largest inferred χp in GWTC-2: 0.68+0.26
−0.44. Surprisingly,

GW190521 has a small ρp: 0.7+1.4
−0.6. We understand this because GW190521 is the

largest mass event detected with LIGO/Virgo. This means that GW190521 is very

short in duration: 4 cycles (2 orbits) within the detectors’ sensitive frequency band.

Consequently, GW190521 is decomposed into two near parallel “precession harmon-

ics” (with overlap |Oprec
1,0 | = 0.97+0.01

−0.03). This means that any power orthogonal to the

dominant harmonic is small and ρp is small by definition. Several explanations for

the large χp have been suggested, including possible evidence for eccentricity [333]

and head-on collisions [334]. Unfortunately we are unable to compare ρp to ρNP
p

since there are no publicly available non-precessing samples for GW190521. We do

not calculate ρp for GW190521 Nitz, as most of the samples lie outside of the validity

region of the two-harmonic approximation4.

6.4 Discussion

We have calculated the inferred precession SNR, ρp, and orthogonal optimal SNR in

the higher multipoles, ρlm (for (`, |m|)ε{(2, 1), (3, 3), (4, 4)}) for all binary black hole

events in O3a. Comparing with predicted distributions expected from noise alone,

we looked for significant excesses. In addition to the strong evidence for a (3,3) mul-

tipole previously reported for GW190412 and GW190814 [9, 12], we found evidence

4Owing to the combination of a large mass ratio and the orientation of the primary spin, the
opening angle for GW190521 Nitz is large: 94% of samples have tan(β/2) > 0.3 compared to 3%
for the GWTC-2 samples.
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for a (3,3) multipole in GW190519 and precession in GW190412. Observation of

subdominant higher multipole and precessing harmonics in these signals improves

the constraints on the properties of their source. The measurement of the (3,3)

harmonic in GW190519 results in narrower constraints on mass ratio and breaks

the inclination distance degeneracy to measure the binary orientation as peaked at

edge-on. GW190412’s precessing harmonic results in the tightest constraint on χp

away from zero to date. Finally, we have shown that a reanalysis of GW190521 by

Nitz et al. [13] suggests a significant (3,3) harmonic. This additional signal content

results in a second peak in the posterior at 10:1 mass ratio and calls into ques-

tion GW190521’s astrophysical interpretation as having component masses in the

pulsational pair-instability mass gap.

The method we have demonstrated here is straightforward, and clearly identifies

the content of the observed signal that allow for improved parameter estimates. In

the future we want to expand this method to do the following. First to calculate

the subdominant higher multipole and precession SNR directly from the data. In

principle this should enable the construction of predicted posteriors including the

effects of precession and higher multipoles using posteriors computed with a simpler

waveform model. A similar method to this has been suggested for higher multipoles

[318]. There the authors demonstrated that reweighting posteriors inferred with a

(2,2) only waveform model based on the full likelihood could result in posteriors that

closely match those inferred with waveform models including higher order multipoles.

Second, work is ongoing to calculate the power in the second polarization for all O3a

events, as this can also be important in breaking parameter degeneracies [173].
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Appendix

6.A Parameter estimation samples used for ρ33

To estimate ρ33 we have used publicly available [24, 23] parameter estimation results

obtained assuming a waveform model than includes higher order multipoles. For

most events we used SEOBNRv4PHM parameter estimation results. Table 6.A.1

lists the parameter estimation waveform model for the remaining events.
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Waveform model
GW190413 13 NRSur7dq4
GW190514 NRSur7dq4
GW190412 IMRPhenomPv3HM
GW190503 NRSur7dq4
GW190521 NRSur7dq4
GW190527 NRSur7dq4
GW190727 NRSur7dq4
GW190731 NRSur7dq4
GW190803 NRSur7dq4
GW190814 IMRPhenomPv3HM
GW190521 Nitz IMRPhenomXPHM

Table 6.A.1: Waveform model assumed for parameter estimation results used to
calculate ρ33 for each event in O3a. For brevity we omit events which used SEOB-
NRv4PHM, which was the most commonly used waveform model. All parameter
estimation results are publicly available [24].
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Chapter 7

Constraining seed black hole

populations with third

generation gravitational-wave

detectors

7.1 Introduction

How do supermassive black holes form? With each discovery of a quasar at yet earlier

times, this question gains renewed urgency [335]. There are now 3 detected quasars

at redshift z > 7.5 [336, 337, 338]. The earliest of these at z ∼ 7.64 is powered by

an accreting supermassive black hole of mass ∼ 1.6× 109M� [338]. Accounting for

the existence of such a massive object only ∼ 600− 700 million years after the Big

Bang is a challenge. Eddington limited accretion would require a seed black hole

of ∼ 10000M� at redshift 30 [338]. The origin of seed black holes is unknown and

their existence is so far hypothetical (see Ref. [339] for a review). Gas is expected

to primarily fuel their growth [340, 341, 342, 343], though mergers may also play

a role. This raises the prospect of detecting their gravitational wave emission with

future detectors.

Space-based LISA [45] will probe the merger of seed black holes with masses

in the range ∼ 104 − 107M� across all cosmic ages. This may be complemented,

at lower redshift, by observations from the most sensitive future X-ray missions

such as Lynx [344] and Athena [345]. Lighter seeds, with masses in the range

∼ 102− 104M� are targets for future ground based gravitational wave detectors the

Einstein Telescope (ET) [346, 347] and Cosmic Explorer (CE) [348, 349]. Accretion

of these systems produces electromagnetic radiation too faint to be detected by even

the deepest future facilities [350]. Mergers, however, will emit gravitational waves

detectable with next generation ground-based networks at a broad range of redshifts
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2 < z < 15 (see Ref. [17] and Fig. 7.3.1), providing a unique view of these objects

at cosmic dawn.

In this chapter we review the prospects for detecting and measuring the prop-

erties of light black hole seeds with ET and CE. In section 7.2 we discuss results

of simulations of supermassive black hole formation and the growth of seed black

holes through accretion and mergers. We then explore their detectability with future

detectors in section 7.3. A prominent feature of these signals is the observability of

their higher multipole content. We discuss this and the potential consequences for

their detection chances. Finally, we investigate the prospects for accurately measur-

ing the properties of these systems in section 7.4.2.

7.2 Building a supermassive black hole: stars, seeds and

binaries

In this section we summarise prescriptions made in the simulations of the formation

of supermassive black holes (SMBHs) obtained with a semi-analytical code [351,

352, 353, 17], and presented in full in Ref. [17]. The history of three prototype

SMBHs (∼ 109M�) are reconstructed. Their properties correspond to the quasars

J1148 [354], SDSS J2345+1104 (hereafter J2345) [355, 356], and PDS 456[357, 358]

at redshift z = 6.4 near the epoch of reionization, z = 2 at the peak of star formation,

and z = 0.2, respectively.

Each SMBH resides in a dark matter (DM) halo of mass 1013M� [359]. These

halos are decomposed into progressively less massive fragments, with masses fol-

lowing the Extended Press-Schechter halo mass functions [360]. At redshift 24 the

minimum mass of a resolved halo is 106M�. While at the quasar final redshift, halos

of mass 1010M� are resolved. Structures with masses smaller form the inter galactic

medium (IGM) from which progenitor halos accrete mass.

Starting at redshift 24, star formation proceeds at a rate regulated by the radia-

tive and chemical properties of the halo and with periods of enhancement dur-

ing major halo-halo mergers (see equation (2.2) in Ref. [17]). Population III

stars form in these early metal poor environments, with a top heavy Larson ini-

tial mass distribution [361] with masses in the range 10 − 300M�. Light seed

BHs (102M� < M < 104M�) form by the collapse of these stars. Heavy seeds

(104M� < M < 106M�) form as the result of direct collapse of proto-stars of mass

105M�. As heavy seeds form in more contrived environments, they are rarer with

a relative fraction of ∼ 1% [17]. Within each halo the growth of the heaviest black

hole is tracked. The seeds grow by accretion of surrounding material. Accretion

is Eddington limited and follows the Bondi–Hoyle–Lyttleton formula (see Eq (6) of

Ref. [362]). Both directions see a flow of energy and material: material is ejected

into the inter galactic medium from accreting black holes and supernovae winds;
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the external inter galactic medium flows into the inter stellar medium enriching the

galaxy, and feeding the black hole accretion. Additional free parameters are included

in both the star formation and accretion rate. These are used to tune the simulation

to result in a system matching the observed properties of the final supermassive

black hole and its surrounding galaxy (while respecting the Eddington limit).

During major halo-halo mergers (i.e. those with halo mass ratios greater than

4:1) it is assumed the nuclear seed black holes promptly form a binary. While in

minor mergers, the evolution of the lighter black hole is no longer tracked. Black hole

binaries can also form in situ within a halo. Here we do not consider these binaries.

How black hole binaries shrink to milli parsecs to start to emit gravitationally and

finally merge is an open problem. In these simulations, the role of taxing the binary

orbit at this final stage, where other mechanisms are less efficient [363], is ascribed to

triple interactions. These interactions have a limited efficiency in triggering binary

mergers [363], and commonly result in stalled binaries with the ejection of the third

black hole.

Thus each binary is assumed to form a Keplerian orbit and then stall until a

third halo merges. The result of this interaction is evaluated statistically based on

post-Newtonian simulations of triple interactions presented in Ref. [364]. If the

merger happens at all, the simplifying assumption is made that it is immediate.

10 possible merger tree history realizations are followed of each supermassive black

hole. In what follows we show results for the merger tree realization which best

matches the simulation averaged predictions.

7.3 Observing seed black holes

During the simulated assembly of J1148 by z = 6.4, a total of 4228 light and 39

heavy seeds form. From these, 147 binaries are made and 70 are driven to merger by

triple interactions. In our prescription, a binary promptly forms upon a halo-halo

merger. This implicitly assumes that dynamical friction causes the black holes to

pair within the halo-halo merger timescale of the simulations (around 500 million

years) [365]. However, the timescale for dynamical friction can be much longer for

black hole binaries with very unequal masses [366]. Further, the gravitational wave

emission is not as strong for these binaries; we find that, averaged over orientation,

only binaries with a mass ratio greater than 10:1 are detected in ET with an SNR

greater than 10. For this reason we include only the binaries with mass ratio less

than 10:1 in our analysis henceforth. 24 merging binaries meet this criteria for the

J1148 quasar at z = 6.4.

A similar number of seed black holes form in the quasars J2345 and PDS4561,

though a larger fraction pair and eventually merge due to the larger number of halos

15327 (5319) light and 31 (40) heavy seeds form respectively.
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(and halo-halo mergers): 45 and 84 mergers with mass ratios less than 10:1 for J2345

at z = 2.0 and PDS456 at z = 0.2 respectively.

Figure 7.3.1 shows the total mass and redshift of the mergers with mass ratios less

than 10:1. Triangles, squares and circles denote mergers in the assembly histories of

J1148, J2345 and PDS456 (represented by stars on the plot). The contours indicate

the expected signal-to-noise ratio in ET, and LISA for a non-spinning system of

mass ratio q = 0.5 (corresponding to the mean value from our simulations) averaged

over orientation and sky angles2. Mergers involving heavy seeds (shown as shapes

with white edges) are loud sources for LISA, with SNRs in the range 10 − 1000.

Light seeds of several 102M� are possible sources for ET with SNRs in the range

10 − 50 at 6 < z < 15. A subset of light seeds that grow to have masses in the

thousands will also be targets for LISA. For the longer assembly histories in the

J2345 and PDS456, there is a large population of ”starved” binaries in the more

recent universe 2 < z < 8, which are also accessible to ET.

In Figure 7.3.2 we plot the different flavours of seeds along with sensitivity limits

for the future EM observatories Lynx and Athena (see Ref. [17] and the caption for

details of how this was computed). Accretion onto heavy seeds are potential sources

for EM observatories. Masses of ∼ 105M� will be observable at redshifts as high as

15 with Lynx. Light seeds, on the other hand, are likely too faint to be observed

even with the deepest future facilities. ET therefore provides a unique opportunity

to view this population of black holes forming at cosmic dawn.

The gravitational waveform observed at a detector is redshifted by the expansion

of the universe, with its frequency evolution determined by the redshifted mass

M total
det = M total

source(1 + z). Consequently, the mass range observable by ET’s limited

bandwidth depends on the redshift. In the low redshift universe ET is most sensitive

to M total
source ∼ 103M� binaries. Above redshift 10, only M total

source ∼ 102M� binaries

are detectable. As is clear from Figs. 7.3.1 and 7.3.2, light seeds densely populate

the upper right hand side of the ET waterfall contours, where the redshifted masses

are very high. This means that the majority of seeds that are not observable in ET

are simply redshifted out of band. Those light seeds that are observable in ET have

masses in the range M total
det ∼ 1000− 8000M�, and waveforms characterized by just

a few cycles.

The left panel of Figure 7.3.3 shows the waveform of a non-spinning 100−100M�

binary at redshift 10, computed with SEOBNRv2 [19]. Due to redshifting, this

binary is observed with a detector frame mass of 2200M�, corresponding to the

least massive quartile of the seeds in our simulations. We see that only a few cycles

are visible, even with a detector with good sensitivity down to 3 Hz. A sharp cutoff

in detector sensitivity at 7 Hz would mean only the final ringdown is above the

detector noise. While above ∼8 Hz the signal is no longer observable.

2Computed with the IMRPhenomC waveform [367] and the PSDs provided in Refs. [368] and
[369].
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Figure 7.3.1: Distribution of BBH coalescence events in the redshift z–mBH,T di-
agram. Data points describe cosmologically-driven BH mergers with mass ratio
q ≥ 0.1, triggered only by triple interactions among galaxy halos. Grey triangles,
blue squares and red circles denotes the total mass and redshift of the coalescences
extracted from the simulation of a 1013M� over-density, forming a ∼ 109M� SMBH
at zQSO = 6.4, 2 and 0.2 (represented with stars in the plot). Symbols with white
edges indicate mergers involving at least one heavy seed. Color-coded areas represent
lines of constant S/N ratios for ET (yellow/red) and LISA (azure/blue) computed
for non spinning binaries assuming a mass ratio q = 0.5, which corresponds to the
mean value of the merging binaries extracted from our samples. The ensemble of
the color-coded areas for a given detector is often referred to ”waterfall” plot and
provides averaged values of the S/N ratio at which a GW source is detected. Re-
produced from Ref. [17].
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Figure 7.3.2: The GW and EM landscape. Color-coded areas give the average GW
horizon computed for a detection threshold equal to S/N = 10: contour lines refer
to binaries with mass ratios q = 1, 0.5, 0.3, 0.1 both in the ET and LISA bandwidth.
Upper limits (shown as thick horizontal bars) indicate the sensitivity of the deepest
pointing, in the [0.5− 2] keV observed band, by Athena (orange) and Lynx (black)
given the limiting fluxes of 2.4 × 10−17 and 10−19 erg s−1 cm−2, respectively. The
upper limits are inferred assuming that BHs are emitting at the Eddington limit and
adopting a bolometric correction (LX/Lbol) of 10%. Ellipses highlight the islands in
the z−mBH,T plane where light (blue) and heavy (white) seeds are expected to form
as well as where light seeds are expected to grow via accretion and mergers (yellow).
The transit to the SMBH domain covers the entire LISA area and EM observations
are key to discover the high-mass tail of the SMBH distribution. The light-grey
ellipse below z ∼ 5 marks the population of long-living ”starved” seeds. Note that
in this island, coordinated multi-band observations are possible having LISA the
capability to first follow the early inspiral in intermediate-mass black holes and
ET the merger phase, enhancing the ability to carry on precise measurements of the
source parameters also at z ∼ 5 [18]. The islands have overlap with the GW horizon,
but an empty inaccessible region is present between ET and LISA, corresponding to
the Deci-Hz GW domain. The island corresponding to the stellar realm is included,
on the left, for comparison. Reproduced from Ref. [17].
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Figure 7.3.3: 100-100 M� binary at redshift 10 (i.e. with detector frame total mass
of 2200 M�) Left: time domain at different frequencies. Computed with the model
SEOBNRv2 [19]. Right: Frequency domain for (2,2) and (4,4) multipole inclined
at 40 degrees, computed with IMRPhenomHM [20]. Normalized such that area
between the waveform and noise is indicative of SNR [21]. A version of the time
domain plot appeared in the science case document for third generation detectors
[22].

An important omission from the above discussion are higher order multipoles,

which are not included in the SEOBNRv2 waveform model. Figure 7.3.3’s right

panel shows the frequency domain plot of the same system inclined at an angle of 40

degrees. The (2,2) and (4,4) multipoles are plotted separately using IMRPhenomHM

[20]. As this is an equal mass system, the (3,3) multipole is zero. Also shown

are the sensitivity curves for ET and CE [1]. This is a visual representation of

the contribution of each harmonic to the total SNR, where the area between the

noise and the waveform is proportional to signal-to-noise ratio. The (4,4) harmonic

is above the noise in both ET and CE, and merger occurs at roughly twice the

frequency of the (2,2) multipole. This highlights the prospect that the (3,3) and

(4,4) multipoles, with merger frequencies approximately at 3 and 4 times the orbital,

may still be observed even if the (2,2) is out of band.

To test this, we calculate the SNR in the (3,3) and (4,4) harmonics for each of the

light seed black hole binaries in ET, averaged over orientation and sky position. For

a binary to be considered detected we require an SNR greater than 8. An additional

harmonic is detected when the SNR in that harmonic is greater than 2.1 [10]. We find

that, due to the heavy detector frame masses, 98% of detected binaries also have a

detected subdominant harmonic. Only systems viewed very close to face-on or face-

off had higher multipole content too small to be clearly detected. This is in stark

contrast to stellar mass binaries observed in current detectors where the fraction of

detected binaries with measurable higher order multipoles is about 5% [10]. Current

matched-filter gravitational-wave searches only search for the (2,2) harmonic [284,
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285, 286]. A search also incorporating the (3,3) and (4,4) harmonics would increase

the fraction of binaries having a total SNR above the detection threshold by a factor

of 1.8. In fact, of the seeds detected with the (2,2) mode only, about 2 in 5 have a

louder signal in either the (3,3) or the (4,4) harmonic, while almost 1 in 5 have a

louder signal in both ”subdominant” harmonics. Among the set of binaries that are

detected with SNR greater than 8 in a higher multipole search, the fraction with a

larger SNR in either the (3,3) or (4,4) multipole increases to two-thirds, with 2 in 5

having both harmonics louder than the (2,2).

Figure 7.3.4 shows the relative power in the (3,3) and (4,4) harmonics (αlm,

see Chapter 4) as a function of mass ratio and detector-frame total mass in ET.

The dashed contour shows the point at which the harmonic is detected with SNR

greater than 2.1 (approximately equivalent to a p-value of 10%), assuming SNR

20 in the (2,2) harmonic3. Solid lines denote approximate 5-sigma significance for

an additional harmonic after observing the (2,2) multipole with SNR 20. We see

that for binaries with detector frame mass greater than 2000, the (4,4) harmonic is

always observable, and often with high confidence. The dotted contours show the

corner of parameter space for which the higher harmonics are equally significant to

the (2,2) harmonic: at large, unequal masses. The light seed black holes observable

in ET have detector frame masses in the range 1000−8000M�, extending to masses

beyond what is shown in this figure. The abundance of observable signal power

in higher harmonics for light seed black holes has important implications not just

for their detection, but also for parameter estimation. We discuss this in the next

section.

7.4 Parameter estimation

Measuring the properties of light seed black holes, and in particular their masses

and redshift, is important if we are to accurately determine their formation history.

As discussed above, the large detector frame masses of these binaries means they are

only in band for just a few cycles, making precise estimation of parameters challeng-

ing. Observation of the dominant harmonic oscillating at twice the orbital frequency

typically results in broad constraints on both mass ratio and the inclination angle

between the orbital angular momentum and line of sight. This latter parameter is

particularly important as it is degenerate with redshift (see Chapter 3) and therefore

also source frame masses. Usefully, higher harmonics have a different dependence

on the inclination angle and can break the inclination-distance degeneracy, reducing

uncertainties on both redshift and source-frame masses. Precession can in principle

further improve parameter estimates. However given that so few cycles of the wave-

3The relative amplitude in each harmonic also varies with inclination, with an overall term that
varies between 0-2 and a mean of roughly 1 (see Chapter 4). We assume a value of 1 for the
discussion in this paragraph
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Figure 7.3.4: Ratio of the intrinsic amplitude, αlm, of signal harmonics to the (2,2)
harmonic as a function of the total (detector frame) mass and mass ratio of the
system, in the Einstein telescope. Top: the (3,3) harmonic; Bottom: the (4,4)
harmonic. In all cases, the spins of the black holes are set to zero. The solid
white line corresponds to α`m = 5.3/20 and the dashed line to α`m = 2.1/20,
which correspond, approximately, to the threshold for the higher harmonics being
confidently/marginally observable for a signal with SNR=20 in the (2,2) multipole.
Dotted lines are at α`m = 1.
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Figure 7.4.1: Progression of the cos ι-distance probability distribution for a 100M�−
100M� binary black hole at redshift z = 10 detected overhead the Einstein Tele-
scope. The white star represents the injected signal. The top row shows the inference
with a waveform model that includes only the dominant (2,2) multipole. The bot-
tom panel shows the distribution inferred when the (4,4) multipole is also included.
The leftmost column show the distribution for the un-marginalized likelihood, gen-
erated by calculating the SNR fall-off over the parameter space. Since we have not
yet marginalized over the phase φ0 and polarization ψ, these angles are taken to
be equal to the values used in the injection, in this case zero for both φ0 and ψ.
The middle column show how these distributions change when marginalizing over ψ
and φ0. Lastly, the rightmost column show the posterior distribution, calculated by
multiplying the marginalized likelihood by the prior. We use a uniform in cos ι and
comoving volume prior. The white contours represent the 50% and 90% confidence
intervals obtained from our simplified model. From these plots, we can see that
including the (4,4) multipole in the waveform model breaks the degeneracy between
distance and inclination, resulting in a posterior peaked at the correct value and
excluding a face-off orientation.

form are visible in ground based detectors, the prospects for observing precession

are slim [271], and in what follows we neglect precession effects.

To explore the general features of parameter estimation for light seed binaries,

we perform parameter estimation on our fiducial non-spinning seed black hole binary

with component masses of 100-100 M� at redshift 10. In section 7.4.1 we will inves-

tigate the impact of higher order multipoles on the inclination distance degeneracy.

We then present results of full parameter estimation in section 7.4.2.

7.4.1 Impact of higher order multipoles on inclination distance de-

generacy

Here we are interested in the impact of higher-order multipoles on the inclination

distance degeneracy. In Ref. [173] and Chapter 3 we demonstrated that the main

features of this degeneracy can be captured by allowing just four parameters to vary

(luminosity distance dL, inclination ι, polarization angle ψ, and coalescence phase
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φ0) and fixing the rest. It is straightforward to extend this method to include the

next most significant higher order multipoles after the dominant (2,2) multipole:

(3,3) and (4,4). Apart from the additional terms in the gravitational wave polariza-

tions, the method is identical to that outlined in Ref. [173] and Chapter 3. In this

case, the gravitational wave polarizations are given by

h+(t) = A1
22h

22
0 (t) +A3

22h
22
π
2

(t) +A1
33h

33
0 (t) +A3

33h
33
π
2

(t) +A1
44h

44
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44h
44
π
2

(t)

(7.1)
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22h

22
0 (t) +A4

22h
22
π
2

+A2
33h

33
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33h
33
π
2

(t) +A2
44h

44
0 (t) +A4

44h
44
π
2

(t) .

(7.2)

The hlm0/π
2

are the waveforms for each of the harmonics. In general they are close

to orthogonal. However, their relative amplitudes αlm (see Chapter 4 or Ref. [10]

for definition) vary with mass ratio and total mass, as shown in Fig. 7.3.4. The

amplitude parameters Ailm are [198, 199, 173]:

A1
lm = Alm+ cosmφ0 cos 2ψ −Alm× sinmφ0 sin 2ψ (7.3)

A2
lm = −Alm+ cosmφ0 sin 2ψ −Alm× sinmφ0 cos 2ψ (7.4)

A3
lm = Alm+ sinmφ0 cos 2ψ +Alm× cosmφ0 sin 2ψ (7.5)

A4
lm = −Alm+ sinmφ0 sin 2ψ +Alm× cosmφ0 cos 2ψ, (7.6)

with

A22
+ =

d0

dL

1 + cos2 ι

2
(7.7)

A22
× =

d0

dL
cos ι. (7.8)

A33
+ = 2 sin ιA22

+ (7.9)

A33
× = 2 sin ιA22

× (7.10)

A44
+ = 2 sin2 ιA22

+ (7.11)

A44
× = 2 sin2 ιA22

× . (7.12)

In Figure 7.4.1 we see an example of parameter estimation for our fiducial system

at an inclination of 40 degrees4 overhead ET, with (top row) and without (bottom

row) higher multipoles. The injected value is denoted by a white star. The leftmost

column shows the unmarginalized likelihood at the injected values. Marginalizing

over phase and polarization angle produces the likelihood in the middle column.

The dominant multipole measurement only constrains to a combination of φ0 ± ψ
when the inclination is close to face-on (see Chapter 4 Fig. 4.4.2), but by including

the (4,4) multipole this degeneracy is broken. For this reason, rather than pushing

4The inclination here is folded between 0 and π/2. Equivalent to 140 degrees, or cos ι = −0.77
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Figure 7.4.2: Inferred posteriors for the (clockwise from top left) redshift z, mass
ratio q < 1, total mass in source frame M source

total and inclination cos θJN of a non-
spinning 100− 100M� binary black hole at redshift 10. The signal is detected with
SNR∼ 67 by a network including ET located at the site of Virgo, and two Cosmic
Explorers located at LIGO India and LIGO Livingston. We compare posteriors in-
ferred with waveform models containing the dominant multipole (IMRPhenomPv2)
with those inferred with additional higher multipoles (IMRPhenomHM). Dashed
vertical lines indicate the 90% credible bounds for each waveform model.

the likelihood towards face-on where there is a greater volume of parameter space,

marginalizing over phase and polarization now results in a marginalized likelihood

peaked at the correct value. The final column shows the posterior: the product

of the prior and the marginalized likelihood. Priors are chosen to be uniform in

cos ι and comoving volume5. We see that when the (4,4) multipole is included, the

system can now be recovered at the correct inclination with the posterior excluding

a face-on orientation.

7.4.2 Results from full parameter estimation

Figure 7.4.2 shows the posteriors obtained with full parameter estimation6. We show

the inferred posterior for a dominant multipole model, IMRPhenomPv2 [309], and

IMRPhenomHM [20] which has higher multipoles including the (3,3) and (4,4). We

5the prior on distance prefers nearby distances, since there is a greater comoving volume there
at high redshifts

6Obtained with the parameter estimation code LALInference [200], modified to have a uniform
in comoving volume prior.
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Figure 7.4.3: Posterior distribution for the component masses of the fiducial seed
black hole binary described in Fig 7.4.2’s caption. We illustrate the 90% credible
regions. The red cross indicates the injected values. Comparing IMRPhenomPv2, a
model which only includes the dominant multipole with one including higher mul-
tipoles, we see the great impact higher harmonics have for constraining the source
frame masses.

see a similar improvement in the inclination angle θJN due to the extra likelihood

from the (4,4) multipole, with the posterior now tightly peaked at the correct value7.

This has a domino effect across the parameter space, resulting in a large reduction

in uncertainty on the redshift, and therefore source-frame masses. The span of the

90% credible bounds for source frame total mass reduces from ∼ 60% of the value,

to ∼ 10% with the inclusion of the higher multipoles. The redshift 90% limits for

the dominant multipole roughly span from z = 6 − 12, corresponding to either a

binary observed merging when the universe was less than 400 million years old or

more than 900 million years old by which point several supermassive black holes

have formed. Higher harmonics reduce this ambiguity, constraining the merger

time to within 100 million years of its injected value. A further improvement is

seen in the measurement of the mass ratio, the other key parameter determining the

strength of the higher harmonics. The absence of a (3,3) multipole in the data despite

an inclination constrained away from face-off causes unequal masses to be highly

disfavoured. The combined improvements in the measurements of the mass ratio

and source frame total mass results in a great reduction in the range of black hole

7For precessing models the angle between the total angular momentum and line-of-sight θJN is
not necessarily the same as the angle between the orbital angular momentum and the line of sight ι.
For a non-precessing system, we do not expect this to make a substantial difference to the inferred
posterior, and so neglect it here.
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component masses consistent with the data. This is shown in Fig. 7.4.3. Here the

primary mass 90% credible bound span reduces from ∼140% of the injected value, to

∼10%. These vastly improved parameter estimates due to higher harmonics, though

only demonstrated for a single binary, suggest it may be possible to get precise

parameter estimates for other seed black holes with significant higher harmonic

content. This increases the prospects for distinguishing and studying the history of

this population with fewer detections.

7.5 Discussion

We have demonstrated that seed black holes will be targets for future ground and

space gravitational wave networks. A subset of these seeds are only detectable with

ground based detectors, and especially ET which has good low frequency sensitiv-

ity. We find that higher harmonics ringing at 1.5 and 2 times the frequency of the

dominant will be observable for the majority of these systems, allowing a greater

fraction to be detected. These additional harmonics also result in tighter constraints

on both mass ratio and inclination angle. This improves the prospects for differen-

tiating light seed black hole candidates from black hole mergers of stellar origin. In

future work we will demonstrate the expected parameter uncertainties for a broader

sample of seeds, and explore more completely the consequences this has on our

ability to distinguish populations.
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Discussion

The first half of the third observing run of the LIGO-Virgo gravitational-wave net-

work resulted in confident detections of ∼40 compact binary coalescences [16, 32].

Soon results from the second half of the observing run will uncover further candi-

dates. Data collection will resume with the onset of the fourth observing run circa

2022 [370]. KAGRA will join the LIGO-Virgo network, which will be approach-

ing its design sensitivity. The expected binary neutron star surveyed volume will

increase by a factor of ∼3.8 [370], suggesting that we can expect almost daily de-

tections of gravitational waves from colliding compact objects. Before the decade

is out, Voyager may usher in the era of overlapping signals from compact binaries

[371]. Finally, in the decades that follow, third generation networks will detect the

majority of binary black hole mergers in the observable universe [22].

Part of this thesis has been about understanding what is measurable in a

gravitational-wave signal, and how this impacts our ability to determine the prop-

erties of black holes and neutron stars. In chapter 3 we showed that measuring the

luminosity distance requires distinguishing the two gravitational-wave polarizations,

which will not be possible for the majority of gravitational waves detected in binary

neutron star mergers. Chapter 4 described how higher harmonics can break the

degeneracies in the parameter space, and demonstrated a simple criterion for their

observation. Refs. [275, 276, 271] describes a similar criterion for the observation of

precession. These viewpoints can be useful in the development of searches that in-

clude higher harmonics and precession. Upon the detection of a binary merger with

parameters a priori likely to have measurable higher or precessing harmonics, the

data can be filtered for these additional harmonics. Another future application is to

use the observation of the second polarization and precessing and higher harmonics

to predict the posterior probability distribution for the properties of compact bina-

ries. With ever increasing sensitivity, and detections, the need to produce posteriors

rapidly and with minimal computational expense becomes more pressing. Consider-

able effort has been expended on these fronts, yielding a broad variety of techniques

[372, 373, 374, 375, 376, 377, 378, 132, 379, 380, 381, 382, 383, 384, 385, 386, 387,
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388, 318, 389, 390, 391, 392, 384, 393, 394, 395, 396, 397, 398, 399, 400, 401]. This

work will complement these efforts, while also providing a simple way to interpret

parameter estimation results.

In chapter 5 and 6 we quantified the evidence for higher and precessing harmon-

ics and used this to interpret parameter estimation of events in O3a. This thesis

also aims to inform the science case for future gravitational-wave observatories. This

was done in chapter 3 where we demonstrated that uncertainty in inclination may

be the dominant source of uncertainty in the source frame masses for observations

of dominant harmonic emission with future gravitational-wave detectors. Chapter 7

showed this is unlikely to be the case for a population of black holes in the early uni-

verse that are hypothesized to grow to become supermassive black holes, due to their

higher harmonic signal content. Finally, chapter 2 presented detailed calculations of

the localization capabilities for various configurations of future gravitational-wave

networks. In addition to providing scientific justification for future gravitational-

wave detectors, these calculations will guide astronomers in the wider community

seeking to fine tune their own scientific priorities.
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