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Abstract

Fair machine learning has been focusing on the development of equitable algorithms that
address discrimination. Yet, many of these fairness-aware approaches aim to obtain a
unique solution to the problem, which leads to a poor understanding of the statistical
limits of bias mitigation interventions.

In this work, a novel methodology is presented to explore the tradeoff in terms of a
Pareto front between accuracy and fairness. To this end, we propose a multi-objective
framework that seeks to optimize both measures. The experimental framework is focused
on logistiregression and decision tree classifiers since they are well-known by the machine
learning community.

We conclude experimentally that our method can optimize classifiers by being fairer
with a small cost on the classification accuracy. We believe that our contribution will
help stakeholders of socio-technical systems to assess how far they can go being fair
and accurate, thus serving in the support of enhanced decision making where machine
learning is used.

Keywords: algorithmic fairness, group fairness, multi-objective optimization

1. Introduction

Algorithmic and data-driven decision making has rapidly swept through several social,
political and industry contexts. Beyond the possible misuses of technology, there is an
increased awareness that these processes are not neutral and can reproduce and amplify
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past and current structural inequalities [1, 2]. Within this context, particular interest is
paid to the role of machine learning (ML) with well known examples of models biased
against historically discriminated groups [3, 4, 5] or the intersection of these groups
[6, 7]. Fairness, Accountability, Transparency and Ethics (FATE) in ML has emerged
as a community initially motivated to develop technological solutions to the disparate
impact and treatment by biased algorithms [8, 9, 10, 11, 5] that also moves to a broader
and multi-disciplinary understanding of the issues of socio-technological interventions
[12, 13, 14, 15]. The present work contributes to this field by studying how far bias
mitigation can go whilst satisfying the accuracy of the models, providing a tool for a
wider understanding of accuracy and fairness tradeoff.

Bias mitigation techniques can broadly be divided into three non-exclusive categories
[16]: (1) preprocessing, (2) inprocessing, and (3) postprocessing. The preprocessing
techniques attempt to learn new representations of data to satisfy fairness definitions.
The inprocessing methods involve modifying the classifier algorithm by adding a fairness
criteria to the optimization problem. The postprocessing methods aim at removing
discriminatory decisions after the model is trained. Normally, in inprocessing approaches
the fairness criteria are used as an optimization constraint rather than as a guide to build
a more equitable prediction model. As a result of the optimization process, those fixed
restrictions will come out with a degree of equity that might not match the problem
requirements whereas the space of solutions that can be reached remains unknown so
that decision makers cannot observe the range of possibilities and their behavior.

The main contribution of this paper is a methodology that explores optimal ML so-
lutions and evaluates the boundaries of fairness in relation to other dimensions of the
evaluation of an ML model. We claim that multi-objective evolutionary algorithms might
be used to direct a meta-learning process for optimizing the hyperparameters of a clas-
sifier. Thus, we propose to use a genetic algorithm to tune learner hyperparameters
to find models that offer a wide repertoire of balances between precision and fairness.
The architecture of this methodology can be applied to any type of classifier and hy-
perparameter set and the optimization is independent of the definition of fairness and
precision. In particular, we focus the study on the suitability of both logistic regression
and decision trees as base learners because of their properties of good accuracy with
considerable simplicity (in the former case) and transparency (in the latter case). As a
result of the meta-learning process, the method produces a Pareto front with a set of
sub-optimal feasible solutions. In this way, the method addresses the previous issues of
single constrained optimization proposals to build fair models.

We conduct an extensive set of experiments based on 5 real-world datasets which
are widely used in the FATE literature. The solution space obtained by our approach
indicates that there exists a wide number of optimal solutions (Pareto optimal) that are
characterized by not being dominated by each other. We also evaluate the boundaries
between accuracy and fairness that can be achieved on each problem, giving an empirical
visualization of the limits between both measures. In addition, we assess how decision
trees hyperparameters are affected by this tradeoff. Finally, a convergence analysis is
also presented to evaluate the evolutionary methodology.

As far as we know, multi-objective optimization has not yet been used in the field
of FATE in ML, so we believe that the proposal will open a very fruitful and beneficial
research line, enriching the current state-of-the-art.
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2. Background

To ground our methodology, we begin by reviewing relevant works in bias mitigation
(Section 2.1). We then introduce evolutionary algorithms for multi-objective optimiza-
tion (Section 2.2).

2.1. Optimizing fairness and accuracy

Bias mitigation algorithms often explicitly or implicitly add fairness constraints on
model group performance. Typically there is a categorical binary variable for group mem-
bership which is often refereed as sensitive attribute. In this section, we introduce some
related works that aim at optimizing for fairness and accuracy. For further information
on the relation between accuracy and fairness measures we refer to [17].

Logistic regression algorithms have been widely used in fairness literature. For in-
stance, the authors in [8] presented a flexible convex optimization framework that mini-
mizes the accuracy loss function subject to fairness constraints. The method is valid for
boundary-based classifiers such as logistic regression and proved that it allows to control
fairness, often at a small cost in accuracy. In the context of decision trees, in [18] the
information gain function used for splitting and pruning is modified to add the entropy
with respect to the sensitive attribute as splitting or pruning criteria. The authors ex-
plored several options. The first one considers the entropy with respect to the class label,
but it does not allow splitting if it introduces discrimination with respect to sensitive
attribute. The second alternative implements a tradeoff between objectives by dividing
the gain in accuracy by the gain in discrimination however this option did not achieve
suitable results.

More recently, authors in [19] proposed to reduce fair classification to a sequence of
cost-sensitive classification tasks to obtain Pareto optimality between overall accuracy
and any fairness definition. In a related work [20], Balashankar et al. find a Pareto
optimal point which maximizes multiple subgroup accuracy measures while satisfying
equality of opportunity.

Zafar et. al [21] formulated the problem as a convex constrained optimization problem
that allows a dual formulation in which accuracy is optimized under fairness constraints.
In their formulation, fairness is introduced in terms of a measure of the fairness of the
decision boundary that serves as a proxy to many fairness statistical metrics. The tradeoff
between accuracy and fairness due to disparate mistreatment is expressed as a threshold
parameter established by the user. Moreover, the formulation allows introducing several
attributes as constraints, e.g. race and gender.

Hu et al. [22] transformed the constrained loss minimization problem into a social
welfare maximization problem. Using SVM’s regularization path and techniques from
parametric programming, they showed that always preferring more fair solutions does
not abide by the Pareto Principle. They concluded that applying strict fairness criteria
can lead to worse welfare outcomes for the groups.

This brief literature review reveals the research interest in exploring the simultaneous
optimization of accuracy and fairness. While some proposals obtain Pareto optimal
solutions that implicitly set a tradeoff between objectives, other works introduce a user
parameter to explicitly define the tradeoff. As an alternative to this, our work aims to
provide the whole Pareto front as a means to train learners and to explore the impact
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of the models, and, in general, to better understand the behavior of the combination
between a dataset and knowledge representation.

2.2. Multi-objective Evolutionary Algorithms

Multi-objective optimization is a field of decision making which aims at optimizing
simultaneously more than one objective function. This field of research has developed
a large number of applications in engineering, economics and logistics, where optimal
decisions need to be taken in the presence of tradeoffs between two or more competitive
objectives. Maximizing comfort and energy saving in a climatization system is a practical
example of multi-objective problem involving two objectives. Mathematically, this can
be formulated as:

min (f1(x), . . . , fn(x)) s.t. x ∈ X,

where n > 1 is the number of objective functions and X is the set of feasible solutions.
When multiple objective functions appear in a problem, no single solution exists that

optimizes each function at once. Otherwise, the presence of multiple objectives gives
a set of optimal solutions, possibly infinite. A solution is non-dominated whether does
not exist another solution that dominates the current one, i.e., it does not improve one
objective function without worsening other objective functions. Formally:

Definition 2.1. A solution x ∈ X is said to dominate another solution x′ ∈ X, if it is
better or equal in all the objectives and strictly better in at least on of them, i.e.:

❼ fi(x) � fi(x
′), ∀i ∈ {1, . . . , n} and,

❼ fj(x) ≺ fj(x
′), for at least one index j ∈ {1, . . . , n}.

A solution is called Pareto optimal if there does not exist another solution that
dominates it. Consequently, the set of all Pareto optimal solutions is defined as Pareto
front or boundary. Assessing this frontier allows decision makers to select any efficient
solution, depending on the worthiness of each objective function.

Evolutionary algorithms is a family of bio-inspired meta-heuristic algorithms which
often are well-suited for solving optimization problems. Inspired by some aspects of
natural evolution, the basic idea is that fitter individuals, this is the solutions to a
problem, are more likely to survive and thus contribute to the gene pool of the offspring
while unfit members will not likely contribute to the following generations. Over the
last decades, a number of multi-objective evolutionary algorithms have been developed
to search for multiple Pareto optimal solutions.

3. Multi-objective method for accurate and fair machine learning

We propose a methodology based on the NSGA-II algorithm (see Appendix A) to
train a set of classifiers that best tradeoff accuracy and fairness. To obtain the Pareto
optimal solutions, the meta-heuristic algorithm will optimize the combination of learner
parameters. The selection mechanisms are inspired by the elitist NSGA-II method [23]
which was described in the previous section. As proof of concept, we tested our method-
ology with logistic regression and decision trees as base ML classifiers.

4



h1 h2 h3 h4 h5gen1

gen2

genN

…

(f1,f2)1

(f1,f2)2

(f1,f2)N

NSGA-II

M

E

T

A

-

L

E

A

R

N

I

N

G

… …
INITIALIZATION LEARNING EVALUATION

repeat G generations

population
objective 

functions
individuals

(crossover, mutation, selection of best 

individuals)

h1 h2 h3 h4 h5

h1 h2 h3 h4 h5

training dataset
learning dataset validation dataset

Figure 1: This diagram overviews the flow of the proposed meta-learning. The first population is
randomly generated at the initialization step. Given the values of each gene, N learners are trained and
evaluated with each combination of hyperparameters afterwards. The NSGA-II ranks the individuals,
i.e. the trained learners, by evaluating the objective functions on the validation set. After that, the
NSGA-II generates an offspring population which is also evaluated. Finally, the method selects the best
N -members among parents and children to form the next population using a selection mechanism known
as elitist non-dominated sorting. This process is repeated until the last generation G is reached.

3.1. Meta-learning approach

The pseudo-code of the meta-learning approach is presented in Algorithm 1. Addi-
tionally, Figure 1 presents a visual diagram of the workflow.

Specifically, the meta-learning consists of dividing the training set into two subsets
(learning and validation) where the classification models will be built from the first set,
and fairness and accuracy will be measured with the second one. The multi-objective
algorithm will ensure that, in each iteration, the set of the best hyperparameter configu-
rations will survive so that the NSGA-II will explore new settings around them. At the
end of the meta-learning process, a set of suboptimal solutions is returned and evaluated
with the testing set.

The main advantage of the proposed method is that it can obtain a wide number of
suboptimal solutions in one run. Also, the method allows to use any ML classifier without
modifying it as unlike the inprocessing technique. These learner-dependent components
(coding scheme and initialization) are described in next Section 3.2, while subsequent
Sections 3.3 to 3.5 extensively describe the rest of evolutionary algorithm components
that are independent of the base learner used.
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Algorithm 1: Meta-learning algorithm

Input: objective function of accuracy and fairness (f1 and f2), number of
hyperparameters of the ML classifier (m), intervals of hyperparameters (min (hi) and
max (hi) ∀i ∈ {1, . . . ,m}), datasets, and the protected attribute

Output: Set of ML models with different accuracy-fairness tradeoffs
Data: training (learning and validation) and testing dataset (Dlearn, Dval, and Dtest)
Parameters: number of generations (G), population size (N), crossover probability

(pc), mutation probability (pm), mutation parameter (µ)
begin

initialize population P1

evaluate objective functions (P1, Dval)
non-dominated rank individuals of P1

while k ≤ G do

P
(1)
k ← elitist selection (Pk−1)

P
(2)
k ← crossover (P

(1)
k )

P
(3)
k ← mutation (P

(2)
k )

while 1 ≤ l ≤ N do

create Skl solution by training classifier (Ikl, Dlearn)
evaluate objective functions (Skl, Dval)

end while

non-dominated rank individuals of population P
(3)
k

Pk ← elitist non-dominated replacement (P
(3)
k , Pk−1)

end while

return non-dominated solutions in Pk

end
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3.2. Coding scheme and pool initialization: machine learning classifiers

The coding scheme and the pool initialization are the two only components of the
proposed method that depends on the base machine learner. In this section we explain
the coding scheme and initialization for logistic regression and decision trees.

3.2.1. Logistic regression

Classifier. Logistic regression, also referred to as logit, is considered one of the most used
learning methods for classification. This classifier is a very transparent and intelligible
model, it fits a linear equation that predicts an outcome for a binary variable. However,
the input data needs to be standardized in order to properly interpret the coefficients
and the relationship between the input and output.

One important concept related with logistic regression is regularization. Any mod-
ification of a learning method to improve performance on the unseen datasets is called
regularization. Generally, in the logistic regression model a penalty term is added to the
loss function, which is known as the l2 penalty.

Hyperparameters. We have considered the following hyperparameters of the logistic re-
gression:

❼ max iter: Maximum number of iterations taken for the solvers to converge.

❼ tol: Tolerance for stopping criteria.

❼ lambda: Cost parameter to control the influence of the regularization penalty.

❼ l1 ratio: It is used to specify the norm (l1 or l2) used in the regularization.

❼ class weight: It is used to give weight to each class, which is considered when
measuring the quality of the splits. It is very useful for unbalanced datasets where
models usually misclassified the minority class. It takes values in [0, 1]. The positive
class is weighted with class weight, while the negative one is 1−class weight.
A value of 0.5 means both classes are evenly considered.

Using the logistic regression learner, the jth-individual, Ikj , of the kth-population,
Pk, is a trained model. In turn, this model is trained with a m-tuple gen, gkj , which
contains the values of each hyperparameter h = {h1, . . . , hm} on each corresponding
position, hence m = 5:

Ikj := logistic regression(gkj)

h := {max iter, tol, lambda, l1 ratio,class weight}.

Pool initialization. The initialization step generates the first pool. The first individual
generated (I11) is created with default values of hyperparameters: g11 = (100, 0.0001, 1, 0, None).
The second individual (I12) is created with the same values, but selection the l2 norm:
g11 = (100, 0.0001, 1, 1, None).
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3.2.2. Decision tree

Classifier. Decision trees are considered white box models, since it is easy to analyze
the steps taken to classify data [24]. They are easy to interpret, and they can be sum-
marized in a set of rules. This fact supports another of the FATE community’s claims,
which is transparency. By using decision trees as classifiers, we allow decision makers to
understand the behavior of the model.

In addition, these kind of algorithms do not require data normalization or dummy
variables creation, since they are able to use both numerical and categorical data. This
fact simplifies the preprocessing step, which can directly affect the accuracy and fairness
of the classifier [16].

Hyperparameters. We consider the following hyperparameters of the decision tree learner:

❼ criterion: This function measures the quality of a split. Decision trees split nodes
as long as this value decreases. The purity of a node can be measured with the
Gini index and the entropy.

❼ max depth: The maximum depth of the tree. Deeper trees are more complex.

❼ min samples split: The minimum number of samples required to divide an in-
ternal node. In this case, a higher number of samples tends to produce simpler
trees.

❼ max leaf nodes: Total number of leaves in a tree. The higher the number of leaves,
the more complex the tree.

❼ class weight: Same as before (See hyperparameters of logistic regression).

The criterion, max depth, and min samples split adjust the size of the tree in
different directions, which means that different balances between precision and complex-
ity can be found. Moreover, if the search of the best set of hyperparameters is guided
by any fairness metric, the structure of the tree can be regulated towards branches that
do not generate disparities among groups. The class weight hyperparameter addresses
disparity by transferring instances between false positives and false negatives.

In this case, the jth-individual, Ikj , of the kth-population, Pk, is a trained decision
tree. In turn, this tree is trained with a m-tuple gen, gkj , which contains the values of
each hyperparameter h = {h1, . . . , hm} on each corresponding position, hence m = 5:

Ikj := decision tree(gkj)

h := {criterion, max depth, min samples split, max leaf nodes,

class weight}.

Since three of the hyperparameters are categorical or integer numbers, those genes are
rounded after their decoding in order to obtain the proper value for the classifier.
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Pool initialization. The initialization step generates the first pool. The first individual
generated (I11) is created with default values of hyperparameters: g11 = (Gini,∞, 2,∞, 0.5).
The purity of the node is measured with the Gini index; the tree can be widened and
deepened as needed since the limits for the depth and number of leaves within a node is
not fixed and the lowest minimum of samples to split is used; both positive and negative
class have the same weight. After training the first tree with these hyperparameters, the
remaining individuals are generated considering the actual values of depth and leaves of
that first tree as limit. The second individual will be generated with entropy criterion and
those limits, while the rest of individuals are generated with random hyperparameters
within the limits fixed by the first individual.

For a better understanding of the previous paragraph, we propose a practical case.
Given the first individual of the first generation of the meta-learning (I11), the first tree is
trained with the specific values of the hyperparameters (Gini,∞, 2,∞, 0.5). Thereafter,
the decision tree has a depth of value depth(I11) = D and a total number of leaves equals
to leaves(I11) = L. The second individual (I12) is then trained with the following hyper-
parameter set: (entropy,D, 2, L, 0.5). These limits for the depth and number of leaves
of the tree (D and L) will be preserved throughout the process until completion, i.e.,
I1j = (c, d, s, l, w) with c ∼ {Gini, entropy}, d ∼ U(1, D), s ∼ U(2, training set size),
l ∼ U(1, L), and w ∼ U(0, 1). In this way, this ad hoc modification will let the meta-
learning to better adjust to dataset characteristics.

3.3. Crossover operator

The crossover generates two individuals (Ikj and Ik,j+1) that inherit the hyperparam-
eters given by two parents (Ik−1,a and Ik−1,b), depending on the crossover probability
(pc). Concretely, this match is based on a given parameter u ∼ U(0, 1) which follows
a uniform distribution. If this value is u ≤ pc, the crossover function assigns the same
hyperparameter value of the parents to the children. Otherwise, it assigns a linear combi-
nation of parents’ hyperparameters (gk−1,a and gk−1,b), where the parameter β ∼ U(0, 1):

gkj =
gk−1,a + gk−1,b

2
+ β
|gk−1,a − gk−1,b|

2

gk,j+1 =
gk−1,a + gk−1,b

2
− β
|gk−1,a − gk−1,b|

2

After that, genes of the resulting offspring are rounded off and decoded in order to
obtain the proper values for the hyperparameters. In integer genes, the rounded values
replaces the decimal ones to ensure a more effective search space.

3.4. Mutation operator

The mutation operator changes the real membership function hyperparameter values
encoded in the chromosome, according to the mutation probability (pm) per individual.
The gene (hyperparameter) to be mutated is randomly selected over the five genes. Then,
given u′, u′′ ∼ U(0, 1), the chromosome is mutated as follows:

gkj =

{

gkj + δ(gkj −min (hi)), u′ < 0.5
gkj + δ(max (hi)− gkj), u′ ≥ 0.5

where,
9



δ =

{

−1 + 2u′′
1

µ+1 , u′′ ≤ 0.5

1− 2(1− u′′)
1

µ+1 , u′′ > 0.5.

3.5. Multi-objective approach

The multi-objective optimization is based on two objective functions to be minimized:
f1 evaluates the accuracy and f2 the fairness of the model. Thus, f1 is focused on
improving the prediction performance while f2 is used to mitigate the discrimination of
the ML algorithm.

Both concepts of accuracy and fairness can be defined in several ways, referring to
different meanings. Although the proposed methodology is totally flexible for using any
definition, in this work we focus on two of them. We define y as the binary class label
vector where 1 is the positive outcome and 0 is the negative outcome; ŷ is the predicted
outcome of the ML classifier; z is the associated protected feature of each individual,
where 1 is the privileged class.

3.5.1. Error

We consider the Geometric Mean (G-mean) to evaluate the performance of the as-
sessment task. G-mean is also widely used for quantifying the classifier performance
in class imbalanced problems, since it evaluates both positive and negative classes. It
combines True Positive Rate (TPR) (Pr(ŷ = 1 | y = 1)) and True Negative Rate (TNR)
(Pr(ŷ = 0 | y = 0)):

G-mean(ŷ, y) =
√

P (ŷ = 1 | y = 1) · P (ŷ = 0 | y = 0).

By maximizing this measure, we ensure the cost of false positive and false negative to
be low. Since our method is designed for a minimization problem, we consider the first
objective function as the G-mean error, i.e. f1(ŷ, y) = 1−G-mean(ŷ, y).

3.5.2. (Un)fairness

There is no unified statistical or computational formalization of (un)fairness and thus
multiple definitions have been proposed in the late years [25]. Indeed, the general consen-
sus is that the meaning and implication of each approach highly depends on the context
and consequential decisions associated with an intelligent system [26]. Fairness can be
procedural or substantive, what is also referred to as equal treatment or opportunity-
based vs. outcome-based notions of bias [15]. Proposals can be widely categorized as
individual, similar individuals will get similar predictions, and group fairness, as equal
impact on groups. In real conditions, individual and group fairness are often incom-
patible objectives [27, 11] and thus the selection criteria corresponds to each particular
context [26]. For instance, it has been argued that equal opportunity is a suitable metric
for designing non discriminatory loan strategies [28] whereas disparate false positive rate
is a widely used metric to quantify discriminator behavior of recidivism algorithms [4].

For the purpose of this work, we selected one unfairness metric as one of the objective
functions for all the datasets but any of the metrics available in the literature could
be used (notice that the proposed method optimizes hyperparameters of learners and,
therefore, the fairness criteria do not need to be differentiable, thus allowing a wider
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bank of definitions). We consider the difference of the unfairness measure proposed for
avoiding disparate mistreatment, defined as False Positive Rate (FPR) [8, 27]. This
definition ensures that misclassification rates are balanced across groups of the protected
attribute z:

f2(ŷ, y) = FPRdiff(ŷ, y) = |P (ŷ 6= y | z = 0, y = 0)− P (ŷ 6= y | z = 1, y = 0)|.

3.5.3. Domination criterion

In case of using logistic regression as base learner, the domination criterion is stan-
dard, i.e., a set of hyperparameters X dominates other set Y if the classification model
generated from X is better or equal than the one generated by Y in both accuracy and
fairness and strictly better in at least one of them.

In case of using decision trees, the domination criterion is more sophisticated in order
to achieve a more effective optimization. Given X the genotype (learner’s hyperparame-
ters) and Y the phenotype (classification model, i.e., decision tree), the f : X → Y map
obtained by the proposed method is characterized by being a non-injective non-surjective
function. It is not injective as different values of hyperparameters can lead to obtain ex-
actly the same decision tree. It is not surjective as the image (set of all possible decision
trees generated by our method) does not fill the whole codomain, i.e., it is not possible
to obtain any decision tree, only those generated by the learner. The cardinality of Y is
much more lesser than the cardinality of X.

As a result, there are many different individuals that generate exactly the same
decision tree, and so the same objective functions. This impairs the search process as
variations generated by crossover and mutation do not change the objective functions.
To palliate this effect, we have improved the domination criterion as follows. Once two
individuals have the same values for both objectives, we consider that the individual that
generates the tree with the lowest number of leaves dominates the other one. In case
of a tie also in this value, the individual with the lowest value of the hyperparameter
max leaf nodes is considered to dominate the other one.

4. Experimental Analysis

In this section we first describe the datasets used for assessing the proposed method-
ology. After that, we define the parameter setup used in these experiments. Finally, the
obtained results and its analysis is provided.

4.1. Datasets

We ran experiments based on five realworld datasets from different domains like
salaries, recruitment processes, credit risks, or recidivism risk assessment. These datasets
have been widely used as benchmarking in state-of-art in fairness [16]. They are freely
available in a Github repository4. A brief description of the dataset context is given
below:

4https://github.com/algofairness/fairness-comparison/tree/master/fairness/data. Last date
accessed: November 8, 2020
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- Adults: This dataset contains demographic information about US citizens in
19945. There are 32,561 instances and 14 attributes. The prediction task is to
asses whether an individual earns more (positive class) or less (negative class) than
✩50K per year. The protected attribute considered is race.

- German: It contains financial information about individuals6. There are 1,000
instances and 20 attributes. The prediction task is to assess the credit risk of
individuals. The protected attribute considered is age.

- ProPublica: This dataset is about the performance of COMPAS algorithm, a
statistical method for assigning risk scores within the US criminal justice system
created by Northpointe. It was published by ProPublica in 2016 [4], claiming that
this risk tool was biased against African-American individuals. In this dataset,
they analyzed the COMPAS scores for “risk of recidivism” and checked to see how
many were charged with new crimes over the next two years. It contains individuals
from the Broward County (Florida) in 2013 and 2014. There are 7,214 individuals
containing 52 attributes. From these attributes, we have used the following 12 in
the experiments of this paper [16]: sex, age, age cat, race, juv fel count,

juv misd count, juv other count, priors count, c charge degree, c charge desc,

decile score, score text. The prediction variable is whether the individual will
be rearrested in two years or not. The protected attribute is race.

- ProPublica violent: This dataset describes the same scenario as the previous
one, but in this case the outcome is whether the rearrest happened within two
years was for a violent crime [4]. It contains 4,743 individuals and also the 12
attributes. The protected attribute is also race.

- Ricci: This dataset comes from labor law case from the United States, where
several firefighters from New Haven (Connectitut, US) claimed for disparate impact
on the promotion decision. It contains the scores obtained in the exam taken to
be promoted [3]. There are a total number of 118 rows and 4 attributes. The
protected attribute is race.

Each dataset is preprocessed to assure that the input data satisfies the classifier
requirements by removing features that should not be used for the classification task,
imputing missing values or transforming features like dates, etc. We also transform all
the protected attributes into binary (e.g., “white”-“not white”, “younger than 25 years
old”-“older than 25 years old”, “caucasian”-“not caucasian”). Table 1 shows the number
of features selected for each dataset and class distribution.

4.2. Parameter setup

The experiments are replicated 10 times with different seeds to ensure stability and
reproducibility. In each seed, the training (75%) and testing sets (25%) are randomly
sampled. Then, the training set is split again in the learning (75%) and validation (25%)
sets. Therefore, the testing set is never used in the learning phase. The parameters for
the evolutionary method are set as follows:

5http://archive.ics.uci.edu/ml/datasets/adult
6http://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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Table 1: Summary of datasets.

Dataset # Features # Positive # Negative

Adults 14 7,841 24,720
German 20 300 700

ProPublica 12 3,251 3,963
ProPublica Violent 12 775 3,968

Ricci 4 56 62

❼ 300 generations (G = 300),

❼ 50 individuals (N = 50),

❼ 1 as crossover probability (pc = 1),

❼ 0.3 as mutation probability (pm = 0.3),

❼ 5 as mutation parameter (µ = 5).

The code is implemented in Python using libraries such as pandas for data pro-
cessing, sklearn.linear model.LogisticRegression for logistic regression classifier,
sklearn.tree.DecisionTreeClassifier for decision tree classifier (CART algorithm)
and numpy for numerical processing. The original code of the NSGA-II algorithm is avail-
able at github.com/baopng/NSGA-II (last date accessed: June 9, 2020). This research
complies with research reproducibility principles. Code and data are made open and
available in a public repository: https://github.com/anavaldi/fairness_nsga (last
date accessed: November 8, 2020).

4.3. Analysis of results

In this section, we empirically study the limits of the accuracy-fairness tradeoff. We
first analyze the properties of the Pareto optimal solutions obtained when optimizing
both together. We also analyze the relationship between decision tree learner’s hyper-
parameters and measures’ values. Finally, we present the convergence properties of the
meta-learning approach.

4.3.1. Analysis of accuracy-fairness tradeoff

The averaged results over 10 runs are shown in Tables 2 and 3 for the five real-
world problems. To represent the average distribution of the obtained results, we have
computed the average of the ten runs at minimum value of error in validation dataset
(Errorv), 25

th percentile (Q1), 50
th (Q2), 75

th (Q3) and maximum value of error. As
the set of inferred solutions are Pareto efficient, the corresponding values of unfairness
are reversely sorted. In the case of the two ProPublica problems, the results obtained
by COMPAS are also included to better understand the room for improvement in those
cases.

The obtained results in Ricci are very particular. We found that this problem is very
easy to be solved in terms of accuracy, i.e., it is possible to obtain solutions with almost
zero error and, therefore, almost one unfairness. In fact, in some partitions the solution
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Table 2: Accuracy-fairness tradeoff (how fair can we go) in each real-world problem with logistic regres-
sion classifiers. The table shows the averaged distribution of error (1−G-mean) and unfairness (FPRdiff)
measured in the Pareto optimal solutions for validation (v) and test (t).

Errorv Unfairnessv Errort Unfairnesst

A
d
u
lt

min .22171 .14605 .22833 .23870
Q1 (25%) .24668 .08250 .26651 .16854
Q2 (50%) .30253 .04525 .33614 .06859
Q3 (75%) .38124 .01792 .44643 .01827

max .55002 .00000 .66207 .00051

G
e
r
m
a
n

min .25026 .25581 .29674 .40670
Q1 (25%) .26723 .19179 .31927 .22520
Q2 (50%) .29794 .13682 .35017 .16746
Q3 (75%) .38014 .08188 .40965 .10518

max .59302 .02313 .55505 .04560

P
r
o
P
u
b
li
c
a min .31820 .10792 .33085 .38621

Q1 (25%) .34400 .06296 .35429 .09125
Q2 (50%) .42376 .04289 .41944 .06044
Q3 (75%) .55705 .02613 .53796 .04111

max .78094 .00343 .80841 .00843
COMPAS .35002 .12519 .34759 .14751

P
r
o
P
u
b
li
c
a
V
io
le
n
t min .30517 .11799 .33315 .20196

Q1 (25%) .34591 .06655 .38866 .07698
Q2 (50%) .40163 .03914 .42673 .05837
Q3 (75%) .49521 .01753 .52636 .02962

max .70346 .00061 .71792 .00727
COMPAS .32388 .13474 .33494 .13897

R
ic
c
i

min .00000 1.0000 .09053 .83833
Q1 (25%) .02715 .73786 .10505 .78631
Q2 (50%) .04870 .57073 .12571 .73429
Q3 (75%) .06685 .50466 .14074 .71394

max .08776 .43860 .14821 .69359
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Table 3: Accuracy-fairness tradeoff (how fair can we go) in each real-world problem with decision tree
classifiers. The averaged distribution of error (1−G-mean) and unfairness (FPRdiff) measures in the
obtained Pareto optimal solutions for validation (v) and test (t) datasets are shown. Depth and leaves
(complexity) are the actual values of the generated decision trees.

Errorv Unfairnessv Errort Unfairnesst Depth Leaves

A
d
u
lt

min .17644 .06743 .18238 .07218 8.4 95.5
Q1 (25%) .19374 .04036 .19412 .05822 12.1 211.2
Q2 (50%) .21715 .02423 .22220 .04577 14.5 352.4
Q3 (75%) .26488 .00971 .26804 .02620 16.8 518.9

max .35766 .00034 .35759 .00794 22.6 945.6

G
e
r
m
a
n

min .26780 .12406 .32393 .16990 6.9 22.3
Q1 (25%) .27830 .08135 .34387 .13916 7.9 28.1
Q2 (50%) .29442 .04411 .35488 .11279 9.1 34.0
Q3 (75%) .31977 .01989 .37343 .07821 9.4 40.2

max .38101 .00099 .43214 .02597 10.3 47.6

P
r
o
P
u
b
li
c
a min .32759 .12471 .33676 .12871 6.7 50.5

Q1 (25%) .34078 .08052 .35094 .08936 10.0 145.2
Q2 (50%) .35572 .03476 .36223 .07011 12.1 238.4
Q3 (75%) .38492 .01362 .39121 .04591 14.4 312.0

max .39997 .00293 .40881 .03026 16.7 467.4
COMPAS .35002 .12519 .34759 .14751 — —

P
r
o
P
u
b
li
c
a
V
io
le
n
t min .31366 .10367 .33176 .10261 6.2 34.6

Q1 (25%) .33651 .06047 .35422 .07879 8.9 71.7
Q2 (50%) .35388 .03446 .37430 .05461 10.8 109.6
Q3 (75%) .38638 .01011 .41021 .03251 12.2 148.2

max .48942 .00021 .50264 .01794 14.4 210.1
COMPAS .32388 .13474 .33494 .13897 — —

R
ic
c
i

min .04487 1.0000 .12249 .80222 1.8 2.9
Q1 (25%) .09006 .71526 .15782 .66326 2.1 3.4
Q2 (50%) .13134 .46007 .18936 .54931 2.4 3.8
Q3 (75%) .17195 .30838 .21820 .43881 2.6 4.1

max .21268 .15669 .24781 .32831 2.9 4.4
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found was perfect. Consequently, the multi-objective optimization tends to obtain very
spread Pareto solutions, so we decided to leave this problem out of the rest of the analysis.

While the validation dataset is used to guide the meta-learning algorithm, the test
dataset is never used. When comparing validation and test columns, we observe that,
although the scores in test are slightly worse than validation (as expected), the Pareto
efficiency in test also remains in both learners (logistic regression and decision trees),
which shows the robustness of our methodology. Yet the results are overfitted regarding
the unfairness measure (i.e., strong differences between Unfairnessv and Unfairnesst)
when it comes to very low values, being this effect more pronounced in the decision tree
case.

When comparing the average results of the first (min) and 50th (Q2) positions of
error (Q1 in Adult), we are able to estimate the percentage of accuracy that needs to
be sacrificed to improve fairness. In the case of logistic regression, the accuracy lost in
test (Errort) is 17%, 18%, 27% and 28% in Adult, German, ProPublica, and ProPublica
Violent problems, respectively, whilst the fairness improvement in test is 71%, 41%, 16%
and 29%, respectively. In the case of decision trees, the accuracy lost in test is 6%,
10%, 8% and 13% in Adult, German, ProPublica, and ProPublica Violent problems,
respectively, whilst the fairness improvement is of 81%, 66%, 54% and 53%, respectively.
This reveals how the meta-learning algorithm is able to balance accuracy and fairness
in practice. It is clear how decision trees are able to get better fairness levels with a
moderate degradation of accuracy. Indeed, logistic regression has difficulties to improve
the fairness without noticeably degrading the accuracy in the two ProPublica datasets.
This gives us an idea of how it is possible to optimize the ML process to generate fairer
solutions, specially when using decision trees, without an excessive loss of precision, which
should encourage ML designers to incorporate fairness criteria into these processes.

Focusing on the two ProPublica problems, where the prediction made by COMPAS
is widely known, we can analyze the accuracy and fairness achieved by the Northpointe’s
software when assessing a criminal defendant’s likelihood to re-offend. We can observe
that, with a similar accuracy, the fairness of the solutions got by our methodology is much
fairer than the obtained by COMPAS regardless of the classifier used. This demonstrates
the improvement margin of fairness in these problems when guiding the ML process by
unbiased measurements. When using decision trees, if we interpolate the fairness scores
got by our methodology for an accuracy equal to COMPAS’s, the test results would
be (Errort,Unfairnesst) = (0.3476, 0.0987) in ProPublica and (Errort,Unfairnesst) =
(0.3349, 0.0992) in ProPublica Violent, showing that our method improves the fairness
of COMPAS’s solutions in 67% and 71%, respectively, without compromising accuracy.

When analyzing the performance of solutions, we are additionally concerned with
transparency of the classifiers. Indeed, in the problems considered in our experimental
analysis, where wrong outcomes may discriminate unfavored social groups, to under-
stand the reasoning behind a machine decision is critical. Therefore, we analyze in which
degree the Pareto optimal models are also easy to interpret in the case of considering
decision trees as classifiers. The fact of being using this kind of structure to represent
the knowledge helps to understand the machine decision criteria compared with other
black-box models, but the complexity of these trees will also influence on its interpretabil-
ity, as an excessively fine-grain decision boundary (high number of leaves) and complex
multivariate conditions (high depth of the tree) would be hardly understandable.

Analyzing the complexity results in Table 3, we observe that the number of leaves is
16



relatively low in the most accurate solutions, but tends to increase as fairness improves.
This effect shows that the method needs to use more leaves to improve fairness with a
minimum loss of accuracy. This is an expected result since equalizing false positive rates
between the two people groups forces a finer partitioning of data. The high depth with
a relatively low number of leaves suggests the construction of unbalanced decision trees
(keep in mind than a perfectly balanced binary tree would need 2depth leaves, which is
very far from what we get). That is, some few leaves need a high depth (i.e., extensive
multiple conditions) to be effective.

Analogously, it is well known that a lower error implies a higher complexity, so it is
curious to observe that this relation is not shown in the obtained results. The reason is
simply that the complexity (number of leaves and depth) is not considered as a criteria
to be optimized by our methodology, so this variable is freely adapted to the two contra-
dictory objectives (accuracy and fairness), both of them demanding higher complexity
to be reached. It seems that the fairness objective ends up winning the battle. In other
words, the algorithm finds it harder to improve fairness than accuracy with a reduced
complexity. Nevertheless, this interesting effect deserves a deeper study that would divert
us from the main goal of our research in this paper, so we leave it as a further research
line.

To better understand the behavior of the proposed method, Figures 2 and 3 plot
the obtained Pareto optimal solutions with the two base classifiers considered in this
paper, with gray dots being the solutions of each run and brown (logistic regression)
or violet (decision trees) dots connected by lines represent the average Pareto front.
This average Pareto is obtained by firstly getting the rounded mean number of different
solutions n (which corresponds to the number of solid dots) and then obtaining the
average values at n different percentiles positions equally distributed. For example, if
we have three runs where we got 3, 5 and 7 Pareto optimal solutions, we would obtain
the n = 5 evenly distributed percentiles (i.e., 1th, 25th, 50th, 75th and 100th) with linear
interpolation between adjacent ranks in each run and then calculate the average value
for each percentile. The interquartile range (Q3−Q1) of the error is represented with the
light brown/violet area in the figures.

The spread of the dots (especially in fairness dimension) and the width of the in-
terquartile range suggests us that the attainable levels of accuracy and fairness is quite
sensitive to the dataset partitions into training and test. This is particularly serious in
German. The exception is represented by Adult, where the solutions in different data
partitions are very compact. This may be due the fact that Adult has a considerably
high number of data, so that the bias of the data partitioning is mitigated. As our
methodology splits the training data into learning and validation, it suffers when very
little data is available, as in German.

As we can observe from the plotted Pareto fronts, the contradictory condition between
accuracy and fairness is clear: more accuracy implies less fairness, and vice versa, as
analyzed in previous works [19, 20]. Although what is really interesting to analyze is
the shapes of the averaged Pareto fronts as they provide valuable information about how
the combination dataset and classifier is working. In fact, beyond generating a wide
repertoire of solutions with different balances of accuracy and fairness, our methodology
also returns a greater understanding of the problem by explaining how these contradictory
criteria are related.

Let us take as example the ProPublica problem with decision trees (Figure 3c). The
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Figure 2: Solutions obtained with logistic regression classifiers. Gray dots represent Pareto optimal
solutions—minimizing error (1−G-mean) vs. unfairness (FPRdiff)—found by the proposed algorithm
in different problems. Brown dots indicate the average Pareto set, which is a way of representing how

fair can we go with logistic regression in a specific problem or, in other words, which shape takes the
accuracy-fairness tradeoff with such a kind of classifier. Light brown area is the interquartile range.
Our methodology is effective to find a wide spread of solutions that are accurate and fair at the same
time. In the two ProPublica datasets, the meta-learning algorithm also finds better solutions than the
obtained by COMPAS (red dots), showing that there is a wide range of possibilities to be fairer without
worsening accuracy

accuracy-fairness relation is rather linear in the range [0.026, 0.125] of unfairness, i.e.,
range [0.328, 0.361] of error. Then, we see a clear knee of the curve below an unfairness
of 0.026, meaning beyond this threshold, improving a bit the fairness has a relatively
high cost in accuracy. Similar conclusion can be taken in the other problems, where
the unfairness threshold is around 0.01 in Adult, and 0.02 in German and ProPublica
Violent with decision trees. In the case of logistic regression, the knees are around 0.03
in the two ProPublica datasets and 0.12 in German. This knowledge could be used by
other researchers and practitioners to set different fairness requirements depending on
the problem and the type of classifier that is being used.

Finally, for a better comparison of the behavior of the two base classifiers analyzed
in this paper, Figure 4 shows the average Pareto obtained in each problem with logistic
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Figure 3: Solutions obtained with decision tree classifiers. Gray dots represent Pareto optimal solutions—
minimizing error (1−G-mean) vs. unfairness (FPRdiff)—found by the proposed algorithm in different
problems. Violet dots indicate the average Pareto set, which is a way of representing how fair can we

go with decision trees in a specific problem or, in other words, which shape takes the accuracy-fairness
tradeoff with such a kind of classifier. Light violet area is the interquartile range. Our methodology
is effective to find a wide spread of solutions that are accurate and fair at the same time. In the
two ProPublica datasets, the meta-learning algorithm also finds better solutions than the obtained by
COMPAS (red dots), showing that there is a wide range of possibilities to be fairer without worsening
accuracy

regression and decision trees. As we already mentioned when analyzing the tables of
results, we can observe that the use of decision trees as base learners makes our proposed
methodology to perform better. This is very clear in Adult dataset, where the decision
trees’ Pareto completely dominates the logistic regression’s one. In the other three cases,
however, we can see how logistic regression can achieve a slightly better accuracy (with
subsequent worse fairness). Nevertheless, when it comes to fairness, decision trees allow
a greater improvement with a more restrained degradation of accuracy than logistic re-
gression. We believe this effect is related with the highest capability of decision trees to
partition the attribute space, as they are able to fix decision boundaries that compart-
mentalize data with a finer grain than the linear planes fixed with logistic regression.
This finer division of data allows to distribute better the false positive ratio between
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Figure 4: Comparison between using logistic regression vs. decision trees as classifiers in the proposed
meta-learning algorithm. Average Pareto sets are plotted.

groups, thus being able to better reduce disparate mistreatment.

4.3.2. Analysis of learner’s hyperparameters

As we are proposing a meta-learning method that indirectly controls the generated
classification models by tuning the hyperparameters of the learner, we are also interested
in assessing the impact of learner’s hyperparameters on the performance. We will focus
this study on decision trees. We have already discussed in the previous section the
effect of demanding optimal fairness in the complexity of the trees (good fairness needs
higher number of leaves). Here we analyze the effect of two other hyperparameters:
min samples split and class weight. We did not find significant results in the fifth
hyperparameter (criterion). Figure 5 shows the values of these two hyperparameters
in the obtained Pareto optimal solutions of ProPublica Violent. The mean values over
all the runs is plotted as lines and dots, while the shaded areas and error bars correspond
to the standard deviation. Blue color is used for error and red color for unfairness, both
in test datasets (Errort and Unfairnesst).

In the case of min samples split, the results confirm our guess that in order to
improve fairness it is necessary to deepen certain branches of the tree, so that a low
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Figure 5: Effect of two hyperparameters of the decision tree classifier in ProPublica Violent. Notice how
different values of them impacts varyingly on accuracy and fairness. Low threshold to split a node and
low weight of the positive (minority) class favor the generation of decision trees with a good fairness

value of the limit of samples needed to divide a node helps to generate fairer trees. It
is interesting to see here how a high value of this limit hurts fairness a lot but does not
influence accuracy.

With regard to class weight, which controls the importance of the positive class
(and reversely the negative one), the effect is as follows. In accuracy, a higher weight of
the positive class implies generating more accurate solutions in this imbalance dataset
(there are five times more of the negative than the positive). This makes sense as G-
mean measure rewards balanced predictive precision in the two classes, so making more
important the minority (positive) class helps to this goal. This hyperparameter has the
contrary effect in fairness. Here, fairer solutions are obtained when a positive class weight
in [3, 5] is given (moreover, with a low variance that ensure statistical significance), i.e.,
to decrease the importance of the positive class (which in the analyzed problem means
that the criminal defendant re-offends) reduces the false positives, which makes easier
to generate decision trees with a better balance of false positive rates between the two
groups (Caucasian vs. rest of ethnics). In other words, giving less credibility to the
positive class (re-offend) allows for fairer classifiers. However, we cannot ignore that this
could also be a side effect of the Pareto efficiency followed by the optimization process.

4.3.3. Analysis of convergence

An algorithm converges when there is no significant improvement in the values of the
objective functions of the population from one to the next generation. This aspect is
important to be studied in order to assess efficiency of the method. At the same time, its
analysis can reveal the resistance of each problem to allow improvements of the accuracy
and fairness measures.

In multi-objective optimization, convergence is more complex to analyze as many
optimal solutions evolve at the same time. To summarize the behavior of the process,
Figure 6 presents the mean, Q1 and Q3 of the two objectives (error and unfairness in
validation set) for the obtained Pareto set at each generation (averaged results over 10
runs are plotted) when using decision tree as base classifier. In some way, the mean gives
an idea about the quality of the solutions (the lower the better) while the interval [Q1,Q3]
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Figure 6: Evolution of non-dominated solutions through 300 generations of the meta-learning algorithm
with decision tree as base classifier. To represent the distribution of these Pareto sets, mean (line) and
Q1-Q3 (area) of error and unfairness objectives (i.e., in validation set) averaged over 10 runs are plotted.

represents the diversity of the Pareto sets (the wider the better). In Ricci, the algorithm
fully converges very quickly (these values do not change at all after 27 generations), so
we omit this plot for the sake of clarity of the paper.

We observe that low unfairness is faster to get than low error, so in the first third of
the evolution good fairness is reached in all the problems, while the accuracy is slowly
improved until the end of the process. Adult has the most stable convergence of the four
shown problems due to the reduced bias in data partitions as above said. German also
converges very well, but with a slight improvement of accuracy in the last 40 generations
at the expense of making fairness slightly worse. ProPublica shows the most continu-
ous convergence where accuracy and fairness are persistently improved. In ProPublica
Violent, good fairness is very quickly obtained while accuracy is continually enhanced.

5. Conclusions

In this work we propose a meta-learning multi-objective optimization algorithm to
explore the boundaries of fairness in real world problems. We present a methodology that
(1) enables standard ML algorithms to be fairness-aware, (2) obtains the experimental
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frontier of the accuracy-fairness tradeoff, (3) uses interpretable models as base learners
to comply with transparency values, and (4) converges rapidly to optimal solutions. To
the best of our knowledge, this is the first work that proposes both accuracy and fairness
as objective functions for a multi-objective ML approach.

Accuracy vs. Fairness: Throughout the experimental analysis, we show the optimal
fitness that can be achieved by optimizing the geometric mean of the predictive pre-
cision of each class versus false positive rate equality of the groups, i.e., no disparate
mistreatment as defined in [21]. The cost in accuracy when satisfying fairness criteria
has been theoretically studied (e.g. [17, 21]). These studies demonstrate the existence of
a unavoidable tradeoff between accuracy with respect to the target variable and fairness
with respect to the sensitive attribute. That is, when one objective is improved by the
model the second one is penalized. Or what is the same, these two objectives are con-
tradictory. Based on this assertion, we design in this paper an optimization process able
to push both objectives to the frontier where the mentioned Pareto efficiency is reached,
thus returning a plethora of solutions with different accuracy-fairness balances. Besides,
the experimental analysis shows how fair can we go in a specific problem by logistic
regression and decision trees, providing further insight about the capability of standard
ML algorithms to get good fairness and the flexibility of the problem (dataset) to allow
this. In fact, we show how the fairness of the COMPAS solutions in the two ProPublica
datasets can by improved by about 70% without compromising accuracy.

Logistic Regression vs. Decision Trees : The paper presented two examples of the
methodology by using either logistic regression or decision trees as base classifiers within
the proposed meta-learning. The comparative experimental analysis yields interesting
results. It can be observed that decision trees are superior than logistic regression as far
as fairness is concerned; in other words, with decision trees we can obtain fairer solutions
with a lower accuracy sacrifice. This effect may be due to the fact that the decision
boundaries managed by trees can split data in a finer way, which is a competitive advan-
tage when it comes to fairness, as in this way it is possible to better distribute data to
balance the false positive ratio between groups, thus favoring a fairer treatment. How-
ever, it is important to emphasize that these results are achieved thanks to the intensive
tuning of hyperparameters that our methodology performs, so a standard application of
these two learners with default hyperparameters values might not make the remarkable
difference obtained in this paper. What is clear is that by learning decision trees there
is much more room for improvement of the fairness with a restrained loss of accuracy.

Fairness vs. Transparency : As it is well known in ML, decision trees can improve
accuracy (at least, while the sweet spot without overfitting is reached) often by increasing
the model complexity (i.e., tree depth and number of leaves). Moreover, we believe that,
in order to improve fairness, the decision tree needs to be deeper for a fine-grain data
partition to hold misclassification parity between different groups having different values
of the sensitive attribute. Therefore, both accuracy and fairness demand more complex
decision trees. When optimizing accuracy and fairness together, we find that the process
tends to solve the conflict by generating more complex trees in fairer solutions even when
their accuracies are not so good. This may be due to the fact that, when optimizing
learner’s hyperparameters as our methodology do, fairness is mainly reached by more
complex trees while there are other chances of improving accuracy by fine tuning the
remaining hyperparameters.

Convergence: Evolutionary algorithms are sharply criticized because of its low con-
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vergence in many problems. Nevertheless, we show that this methodology early achieves
optimal solutions. Objective functions cooperate to generate good solutions in the first
generations, but they compete to obtain optimal solutions at the end.

Future Work : Although we know that technology interventions alone will not address
social injustice, there are several interesting directions highlighted by our findings. From
the obtained results, it is clear a further research is needed to understand the role of
transparency (in terms of model complexity) in the accuracy-fairness tradeoff. There-
fore, we propose to add the complexity of the trees as a third objective function (f3).
Regarding the fact that fairness can be defined in multiple ways, we plan to develop
further analysis with different measures of mistreatment. In relation to claims by [17],
it would be interesting to study dataset properties, such as correlation of the sensitive
attribute with the target variable. We are aware that the experiments presented in this
work only include one binary sensitive attribute. We propose to consider more attributes
in further experiments to analyze how convergence is affected. Differential fairness [29]
is a growing concept highly related with this work, which addresses intersectionality. We
propose to run new experiments of our meta-learning algorithm proposing this new fair-
ness definition. Finally, it is worth mentioning that our approach is completely flexible,
and its design allows the use of any type of classifier and hyperparameters, that serving
as a tool to experimentally analyze several dimensions of the behavior of ML methods.

Appendix A. NSGA-II

The non-dominated Sorting Genetic Algorithm (NSGA) [30] was one of the first EAs
developed for multi-objective problem optimization. Yet this approach was criticized due
to: (1) the high computational complexity, (2) the lack of elitism, and (3) the low spread
of solutions. Then, the NSGA-II [23] was proposed as a modification to address these
disadvantages. To solve (1) the authors proposed a non-dominated sorting procedure
where all the individuals are sorted according to the level of non-dominance. Issue
(2) is mitigated thought an elitism strategy that stores all non-dominated solutions and
avoids removing good solutions from the pool. This aspect also enhances the convergence
property of EAs [31]. Finally, they adapted a suitable automatic mechanism based
on the crowding distance to ensure diversity in a population and then solve (3). This
distance function assigns a distance metric to all individuals within a population and
then compares whether two solutions are close enough. A solution with a smaller value
is more crowded by other solutions, therefore is more likely to not survive in further
populations.

This approach starts by creating a random parent population P of size N . The pop-
ulation is evaluated by the objective functions and sorted following the non-dominance
criteria 2.1. After that, each solution is ranked where the first level corresponds to the
best individuals, the second level is the next-best set of members, and so on. After that,
the binary tournament selection, crossover, and mutation operators are used to create an
offspring population. These children are also evaluated by the objective functions and
combined together with the previous population. All individuals are then ranked and
sorted by the non-domination rank and the crowding distance, which is considered the
elitist step. The N -best members are then selected to pass to the following generation
that will complete the next population of solutions by applying crossover and mutation
operators. Finally, the algorithm ends when last generation is reached.

24



References

[1] C. O’Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democ-
racy, Crown Publishing Group, New York, NY, USA, 2016.

[2] V. Eubanks, Automating Inequality, St. Martin’s Press, 2018.
[3] S. C. of the United States, Ricci v. DeStefano, 557 U.S. 557 (2009) 174.
[4] J. Angwin, J. Larson, S. Mattu, L. Kirchner, Machine bias, ProPublica, May 23 (2016) 2016.
[5] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, A. T. Kalai, Man is to Computer Program-

mer as Woman is to Homemaker? Debiasing Word Embeddings, in: 30th Conference on Neural
Information Processing Systems (NIPS 2016), Barcelona, Spain, 2016, p. 9.

[6] M. Kearns, S. Neel, A. Roth, Z. S. Wu, Preventing Fairness Gerrymandering: Auditing and Learn-
ing for Subgroup Fairness, in: J. Dy, A. Krause (Eds.), Proceedings of the 35th International
Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, PMLR,
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