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Abstract

A level set topology optimization (LSTO) using the stabilized nodally integrated reproducing kernel particle method (RKPM)
o solve the governing equations is introduced in this paper. This methodology allows for an exact geometry description of

structure at each iteration without remeshing and without any interpolation scheme. Moreover, useful characteristics of the
KPM such as the easily controlled order of continuity and the ability to freely place particles in a design domain wherever
eeded are illustrated through stress based and design-dependent surface loading examples. The numerical results illustrate
he effectiveness and robustness of the methodology with good optimization convergence behavior and ability to handle large
opological changes. Furthermore, it is shown that different particle distributions can be used to increase efficiency without
dditional complexity.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Level set topology optimization; Reproducing kernel particle method; Naturally stabilized nodal integration; Stress-based;
esign-depended

1. Introduction

The vast majority of topology optimization methods are based on the finite element method (FEM). In recent
ears, authors started exploring meshfree methods in topology optimization and take an advantage of their
seful features such as mesh independency, flexible control of approximation and smoothness and convenience
n performing adaptive local refinement. Indeed, in the last decade meshfree methods have been shown to be useful
n a wide range of problems. Examples include nonlinear fracture mechanics [1], large deformation problems [2]
nd contact mechanics [3]. Over the years, a wide variety of meshfree methods have been studied and they can
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generally be categorized into collocation and Galerkin meshfree methods. Collocation methods are based on the
strong form of partial differential equations (PDEs). Galerkin meshfree methods on the other hand, are based on
the weak form of PDEs. The element free Galerkin method (EFG) [1] and the reproducing kernel particle method
(RKPM) [4,5] are typical Galerkin meshfree methods. A recent review on meshfree methods can be found in [6].

A significant part of the literature on meshfree topology optimization combines meshfree methods with density-
ased approaches such as the Solid Isotropic Material with Penalization (SIMP) method. Especially the use of
alerkin based methods has been shown to alleviate the need for sensitivity filtering due to the higher order

moothness of the meshfree shape functions and avoid mesh-dependence phenomena [7,8]. Commonly, density-
ased meshfree methods are based on point-wise density interpolation schemes, with either the densities at the
auss points considered directly as design variables or with the nodal densities defined as design variables and

hen used to interpolate the density field at the computational points based on the meshfree shape functions as
xplained in the next paragraph.

Du et al. [9] used the EFG method integrated into topology optimization with the SIMP method for the
esign of thermomechanical compliant mechanisms with geometrical nonlinearities. To eliminate the appearance
f discontinuous scattered points in the topology, sensitivity filtering is used to smear out the numerical instability.
or the integration of the weak form Gaussian quadrature on rectangular background cells is used, and the artificial
ensities at the Gauss points are considered as the design variables. The EFG method with Gaussian integration on a
ackground mesh in combination with the SIMP method was subsequently used by other authors to study a variety
f problems. Gong et al. [7] presented a study with multiple loading conditions and compliance minimization under
tress constraints. The densities at the particles are chosen as the design variables and are used to interpolate the
ensities at the computational Gauss points using the meshfree shape functions. This exploits the smoothness of the
eshfree shape functions to improve the smoothness of the density field and eliminate the checkerboard problem.
heng et al. [10] studied free vibrating continuum structures with the objective of maximizing the fundamental
igenvalue and considering the nodal density as design variable and [11] applied the EFG-SIMP method to the modal
opology optimization method for maximizing the first-order natural frequency. Luo et al. [8] proposed an approach
n which the Shepard function is applied to construct a physically meaningful dual-level density approximant, due
o its non-negative and range-restricted properties. The density at any computational point is interpolated by the
hephard function and the density values of nodes inside the influence domain of the current point. This density
pproximant acts as a heuristic filtering scheme to enhance the smoothness of the density field. Geometrically
onlinear structures were considered by He et al. [12]. The approach is based on a similar point-wise material
ensity field and Shepard interpolation used in [8]. The major difference in this work is that the density design
ariable points are freely positioned independently of the displacement nodes used in the displacement analysis.
owever for ensuring well-posedness of the optimization problem, the density points should be distributed in a

easonable manner according to the displacement node arrangement. Gong et al. [13] proposed a SIMP based
opology optimization-EFG method based on moving particles rather than “soft delete” or “hard delete”. The moving
f particles is controlled based on the density values change in each optimization step, by moving particles with
ensities lower than a threshold value to positions with higher density values and keeping high density particles still.
hang et al. [14] used the EFG method combined with the rational approximation of material properties (RAMP)
odel for topology optimization of heat conduction in both isotropic and anisotropic materials. The densities of the
FG nodes are chosen as design variables and the densities at the Gauss points are computed by the interpolation
f the nodal densities with the moving least squares (MLS) shape function in the domain of influence.

There are also implementations based on different schemes in terms of the meshfree method and integration
cheme. Cho and Kwak [15] used the reproducing kernel particle method in combination with a density-based
pproach for the topology optimization of geometrically non-linear structures. The bulk density at the integration
oints of the background mesh is interpolated using the nodal densities with support domains covering each
ntegration point using the RK shape function. Du et al. [16] used the EFG method for multi-material topology
ptimization based on the alternating active-phase algorithm and within the SIMP framework. The nodal relative
ensity which is taken as the design variable is obtained through the Shepard interpolation in combination with the
LS shape function. In contrast with most meshfree topology optimization methods presented in the literature, this
ork employs nodal integration instead of Gauss quadrature which increases the computational efficiency. Due to

he order smoothness of the MLS shape functions sensitivity filtering is not used. A direct coupling between the

EM and EFG was presented by Zhang et al. [17] to reduce the computational cost of the EFG method. A constraint
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centroidal Voronoi tessellation (CCVT) algorithm linked with the density variable of SIMP is used to generate the
point set for discretizing the EFG domain. A dual-level density approximant is adopted to formulate a continuous
material distribution. The density field at the Gauss points is interpolated by the density field at the FE and EFG
nodes in the influence domain using two different Shepard functions. The domain integration is performed using the
Gauss quadrature on the background cells whereas multilevel Gauss quadrature points are used to further reduce the
computational cost. The authors later extended the approach to topology optimization of hyperelastic structures [18].
Zhou and Zou [19] presented a meshless topology optimization method based on the implicit topology description
and the reproducing kernel particle method using nodal design variables and the smoothed Heaviside function with
a regular background mesh for the integration of the weak form in the domain.

Some works exist in the literature working with the smoothed particle hydrodynamics (SPH) method. Lin
t al. [20] introduced the corrective smoothed particle method and total Lagrangian formulation to eliminate intrinsic
roblems in the (SPH) such as inconsistency and instability. Each SPH particle is assigned a density design variable
nd topology optimization is performed using a modified SIMP approach. In contrast to the Galerkin meshfree
opology optimization methods, this approach requires a sensitivity filter to avoid the formation of checker-board
atterns. Minimization of compliance was considered in the examples. The corrective smoothed particle method
CSPM) was also used by Li et al. [21] for optimizing linear structures under multiple load cases. Particle’s density
s chosen as the design variable and it is approximated using the Shepard interpolation scheme to make it smooth
nd range-restricted in [0, 1]. The modified SIMP method is applied to determine the Young’s modulus, which is
elated to the particle densities. A sensitivity filtering technique is also introduced to enhance the numerical stability
nd prevent the checker-board patterns.

In the context of level set methods, Luo et al. [22] proposed a meshless Galerkin parametric level set method
ased on compactly supported basis functions (CSRBFs). CSRBFs are used to both parameterize the level set
unction and to construct the shape functions for the meshfree approximation. For the domain integration a fixed
ackground mesh is employed with 4 × 4 Gaussian quadrature. The particles were placed at the nodal positions

of the background mesh and their positions remain unchanged throughout the optimization process. To account
for the boundary discontinuity, the CSRBFs were used to interpolate the level set function at quadrature points
based on the discrete level set function nodal values. Quadrature points with a positive or zero level set value were
considered as solid whereas a weak material was assigned to points with negative level set values. Compliance
minimization for linear elastic structures under constant point loads was solved in this work and the authors later
extended methodology to the optimization of compliance multiphysics actuators [23]. Subsequent level set works
based on meshless methods also used interpolation schemes and Gaussian integrations on fixed background meshes.
For example the parametric level set method based on CSRBFs was also used by Ai and Gao [24] to optimize two-
dimensional microarchitected periodic metamaterials for the cases of single and multiple materials. Similarly to Luo
et al. [22], the material discontinuity is treated by an interpolation scheme in which the level set function value at a
Gaussian quadrature point is determined through the interpolation of the field nodes in the support domain using the
meshfree shape functions. Khan et al. [25] combined the EFG method with the level set topology optimization using
the Hamilton–Jacobi equation with a topological derivative term. Two-dimensional linear elastic problems under
single and multiple point loads were examined considering compliance minimization as the objective function.
The particles were at fixed locations throughout the whole optimization process. Recently, Neofytou et al. [26]
employed the reproducing kernel particle method in combination with level set topology optimization to solve
minimum compliance problems with design-dependent pressure loads. The capability of RKPM to freely place
particles along the structural boundary is exploited in this work to apply the moving loads directly onto the structural
boundary, avoiding the need to use any load interpolation scheme. The particle distribution coincides with the nodal
positions of the background mesh plus extra particles placed along the boundary defined by the level set method.
An interpolation scheme based on the RK shape functions and level set values at the particles is used to treat the
boundary discontinuity during the domain integration.

The bi-directional evolutionary structural optimization (BESO) method was also used in combination with the
EFG method by Shobeiri [27] employing uniformly distributed nodes and Gaussian quadrature in the examples for
minimum compliance of linear elastic structures. Zhao [28] incorporated an improved meshless density variable
approximation into the BESO method and used the Shepard function to create a physically meaningful dual-level
density approximation based on the previous work by Luo et al. [22]. The shape functions of the meshless Galerkin
method are constructed using CSRBFs and domain integration is performed on a regular background cell structure
using high order Gauss quadrature.
3



A. Neofytou, T.-H. Huang, S. Kambampati et al. Computer Methods in Applied Mechanics and Engineering 385 (2021) 114016

l
b
a
a
(
a
o
s
o
a
o
s
i
t
o
i
a
a
a
a
s
o
w
r
t
o
l
a

w
s
w
T
e
M
b
t

m
G
m
s

2

t
a

As seen from the literature, previous works are based on interpolation schemes based on nodal densities. Even
evel set methods use such interpolation schemes thus not transferring the clear boundary representation generated
y the level set method on the computational domain. Conventionally, in level set topology optimization fixed grids
nd interpolation schemes are used to avoid the cumbersome task of remeshing the structure at each iteration. As an
lternative, immersed methods such as the extended finite element method (XFEM) [29] and the finite cell method
FCM) [30] can be used to maintain the crisp boundary. The XFEM achieves this by adding enrichment functions
nd additional degrees of freedom to nodes around the boundary discontinuity. However, several difficulties can
ccur due to the cut elements. For example, noise and ill-conditioning of the discretization may occur in case of
mall intersections of finite elements (i.e., cut elements with small solid fractions) [31]. Another potential source
f error is the situation of non-physical coupling when the gap between solid components is less than the size of
n element [32]. The FCM can be seen as an extension of the classical finite element method that uses higher-
rder non-boundary-fitted meshes. An adaptive quadrature scheme is used by decomposing the cut elements into
ub cells which may lead to an increased number of quadrature points, since full Gauss quadrature is employed
n each sub-cell [33]. On the other hand, works that employ LSTO with remeshing have also been presented in
he literature. For example, the work by Xia et al. [34] uses such a remeshing approach for stress-based topology
ptimization. In this work, a conforming triangular mesh is created at each iteration. This is done by modifying an
nitial background mesh such that intersected elements are first clipped to conform to the boundary, and subsequently
djusted to improve the quality of the mesh. Then only solid elements are considered for the analysis. Later the
uthors extended this work by converting the triangular mesh to a quadrilateral body-fitted mesh for improved
ccuracy [35]. Allaire et al. [36] also presented such an approach based on mesh evolution and demonstrated its
pplicability in a range of different physics such as coupled thermal fluid–structure interactions [37]. Nevertheless, a
eries of operations have to be performed at each optimization step to ensure mesh quality. One of the main benefits
f the meshfree methods is the ability to freely place particles in the design domain without relying on a mesh and
ithout the problems caused by mesh dependency. This can allow for an exact representation of shapes without

emeshing and the requirement of element quality operations. However, meshfree topology optimization approaches
hat use interpolation schemes do not fully exploit the advantages of the meshfree methods and lose the potential
f an exact representation of the structural geometry. Furthermore, most Galerkin meshfree methods used in the
iterature use Gauss integration on a background mesh with higher order quadrature. This is necessary to ensure
ccuracy, as it was identified in [1] as a requirement due to misalignment of the support with the background cells.

In this work we combine a level set topology optimization method with the reproducing kernel particle method
ith nodal integration for the domain. The RKPM is used here to solve the governing equations, then the level

et function is used for topology optimization. The aim is to have an exact geometry description of the structure
ithout remeshing. This is achieved by placing particles within the structure and on the structural boundaries.
his way, the clear boundary generated by the level set method is maintained on the computational mesh with an
xact description of shapes without any interpolation scheme, enjoying the full advantages of the meshfree method.
oreover, several useful features of RKPM are investigated such as the ability to have different orders of continuity

y choosing different kernel functions, the freedom of having different particle distributions, and the efficiency due
o the use of nodal integration compared to Gauss quadrature approaches.

The remainder of the paper is organized as follows: Section 2 outlines the level set topology optimization
ethod. Section 3 describes RKPM and its main ingredients such as construction of RK shape functions,
alerkin formulation and the naturally stabilized nodal integration. Section 4 describes the implementation of the
ethodology. In Section 5 stress-based and design-depended numerical examples are presented. Section 6 offers

ome concluding remarks.

. Level set topology optimization method

This section briefly summarizes the level set topology optimization method used in this study. More details of
he method can be found in [38] and [39]. In the level set topology optimization, the structural boundary is defined
s the zero level set of an implicit function:⎧⎨⎩ φ(x) ≥ 0 x ∈ Ω

φ(x) = 0 x ∈ Γ (1)

φ(x) < 0 x /∈ Ω

4
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where φ is the level set function, Ω is the structural domain and Γ is the structural boundary. Conventionally, the
implicit function is initialized as a signed distance function [40,41].
The structural boundary is optimized by iteratively solving the following Hamilton–Jacobi equation

∂φ(x, t)
∂t

+ |∇φ(x)| Vn(x) = 0 (2)

here t is a fictitious time domain for the level set evolution and Vn is the normal velocity.
he level set function at each node is updated by solving the following discretized Hamilton–Jacobi equation using
p-wind differential scheme,

φk+1
r = φk

r − ∆t
⏐⏐∇φk

r

⏐⏐ Vnr (3)

here r is a discrete node in the design domain, Vnr is the normal velocity at node r , k is the iteration number
nd

⏐⏐∇φk
r

⏐⏐ is computed for each node using the Hamilton–Jacobi weighted essentially non-oscillatory method (HJ-
ENO). To improve the computational efficiency, the level set update is restricted to nodes within a narrow band

lose to the boundary. This means that φr is given by a signed distance to the boundary only within the narrow
and. To correct this effect, φr is periodically reinitialized to a signed distance function. For the reinitialization
nd velocity extension the fast-marching method is used [42]. The velocities required for the level set update are
btained by solving the linearized optimization problem,

minimize
Ω

∂ f
∂Ωk ∆Ω k

subject to ∂gm
∂Ωk ∆Ω k

≤ −gk
m

(4)

where f is the objective function, gm is the mth inequality constraint function, ∆Ω k is the update for the design
omain Ω and gk

m is the change in the mth constraint. Shape derivatives that provide information about how
he objective and constraint functions change with respect to the boundary movement, typically take the form of
oundary integrals [41]:

∂ f
∂Ω

∆Ω = ∆t
∫
Γ

s f VndΓ (5)

∂gm

∂Ω
∆Ω = ∆t

∫
Γ

sgm VndΓ (6)

here s f and sgm are the shape sensitivity functions for the objective and the mth constraint, respectively. The
ntegrals in Eqs. (5) and (6) can be estimated as,

∂ f
∂Ω

∆Ω ≈

nb∑
j=1

∆tVnj s f, j l j = C f · Vn∆t (7)

∂gm

∂Ω
∆Ω ≈

nb∑
j=1

∆tVnj sgm, j l j = Cgm · Vn∆t (8)

here j is a discrete boundary point, Vnj , s f, j and sgm, j are the normal velocity and sensitivities for the objective
nd mth constraint functions, respectively, at point j . l j is the length of the local boundary around the boundary
oint j , C f and Cgm are vectors containing the product of boundary lengths and shape sensitivities and Vn is the
ector of normal velocities.

The linearized optimization problem is solved using the Simplex method [43]. The obtained optimum boundary
oint velocities are then used in Eq. (3) to update the level set function and this process is repeated until convergence
s obtained. This method is implemented in the object oriented C++ code [44] and is available as opensource at
ttp://m2do.ucsd.edu/software/. Further explanatory details on the implementation of the LSTO method described
ere can also be found in [45].

. Reproducing kernel particle method (RKPM)

This section outlines the reproducing kernel particle method (RKPM) and the main ingredients of the method-

logy used here. For more details the readers are referred to [46].
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3.1. Reproducing kernel approximation

To construct the RK approximation for a finite dimensional solution of the PDEs, the domain Ω is discretized by
set of nodes {x1, x2, . . . , xN P}, where xI is the position vector of node I , and N P is the total number of particles,

hen the RK approximation of a function u(x), denoted by uh(x), is expressed as,

u(x) ≈ uh (x) =

N P∑
I=1

ΨI (x) u I (9)

here ΨI (x) is the RK shape function at node I , and u I is the corresponding nodal coefficients to be determined.
Then the RK shape function can be expressed as

ΨI (x) = HT(0)M−1(x)H(x − xI )Φa(x − xI ) (10)

where the basis vector H(x − xI ) is defined as

HT(x − xI ) = [1, x − x I , y − yI , z − z I , (x − x I )2, . . . , (z − z I )n] (11)

where n is the specified order of completeness and the moment matrix M(x) is

M(x) =

N P∑
I=1

H(x − xI )HT(x − xI )Φa(x − xI ) (12)

he kernel function Φa(x − xI ) centered at xI with compact support size a controls the smoothness (continuity)
nd locality of the approximation function. The order of continuity in this approximation can be introduced without
omplexity. For example, the box function gives C−1 continuity, the hat function leads to C0 continuity, the quadratic
pline function results in C1 continuity, the cubic B-spline function yields C2 continuity and the quartic and quintic
unctions give C3 and C4 continuity, respectively. This is illustrated in Fig. 1 where the C0 linear B-spline (tent)
ernel is compared with the C2 cubic B-spline kernel function:
inear B-spline (tent),

Φa(x − xI ) =

{
1 − z I f or z I ≤

1
2

0 f or z I > 1
(13)

Cubic B-spline,

Φa(x − xI ) =

⎧⎨⎩
2
3 − 4z2

I + 4z3
I f or z I ≤

1
2

4
3 − 4z I + 4z2

I −
4
3 z I

3 f or 1
2 < z I ≤ 1

0 f or z I > 1
(14)

where z I is defined as:

z I = ∥x − xI ∥ /aI (15)

The support size aI is typically defined as:

aI = c̃h I (16)

where c̃ is the normalized support size, chosen between 1.5 and 2.0 in practice, and h I is the nodal spacing associated
with point xI [46]. The scheme for defining the nodal spacing in this work is explained in Section 4.2.

3.2. Galerkin formulation

In this work we consider the case for linear elasticity

σi j, j + bi = 0 on Ω
σi j n j = hi on Γ hi

ui = gi on Γ gi

(17)

here ui is the displacement, σi j is the Cauchy stress, n j is the surface normal, bi is the body force and hi and gi
hi gi
re the prescribed traction and displacement on the Neumann and Dirichlet boundaries, Γ and Γ , respectively.

6
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a

w
β

Fig. 1. Different kernel functions: (a) Linear B-spline (C0 continuity) and (b) Cubic B-spline (C2 continuity).

The RK shape functions lack the Kronecker delta property and thus applying the essential boundary conditions is
not as straightforward as in FEM. Several approaches have been proposed for this purpose. In this paper, Nitsche’s
method [47] is used which results in the following matrix equations

δuT (Ku − f) = 0 (18)

where

KI J =

∫
Ω

BT
I CBJ dΩ + β

∫
Γ gi

ΨT
I SΨJ dΓ

−

∫
Γ gi

BT
I CnSΨJ dΓ −

∫
Γ gi

ΨT
I ST nT CBJ dΓ

(19)

fI =

∫
Ω

ΨT
I bdΩ +

∫
Γ hi

ΨT
I hdΓ + β

∫
Γ gi

ΨT
I SgdΓ −

∫
Γ gi

BT
I CnSgdΓ (20)

nd for the two-dimensional case

BI =

⎡⎣ΨI,x (x) 0
0 ΨI,y(x)

ΨI,y(x) ΨI,x (x)

⎤⎦ ΨI (x) =

[
ΨI (x) 0

0 ΨI (x)

]
(21)

n =

⎡⎣nx 0
0 ny

ny nx

⎤⎦ S =

[
sx 0
0 sy

]
b =

[
bx

by

]
h =

[
hx

h y

]
g =

[
gx

gy

]
(22)

here K is the stiffness matrix, B is the gradient matrix, C is the elasticity tensor, β is the penalty taken as
= βnor

E
h̄

with βnor the normalized penalty parameter, E the Young’s modulus and S is used to impose each
component of the boundary displacement by setting si = 0 or 1.

3.2.1. Naturally stabilized nodal integration (NSNI)
Galerkin meshfree methods such as RKPM are based on the weak form of PDEs. Thus, domain integration is

required to evaluate the integrals in the weak form. This can be done either by performing Gaussian integration with
background cells as the quadrature domains or by using nodal integration employing nodal representative domains.
7
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Fig. 2. Voronoi diagram and SCNI integration scheme.

In this work we employ the naturally stabilized nodal integration (NSNI) technique proposed in [48] which presents
good accuracy and stability while maintaining the efficiency of nodal integration. An outline of the method is given
in this section whereas for a more in-depth discussion the reader is referred to [46].

To employ the NSNI, a smoothed gradient Ψ̃I,i of the shape functions at each nodal point is computed using the
ivergence theorem as follows,

Ψ̃I,i (xN ) =
1

AN

∫
ΩN

ΨI,i (x)dΩ =
1

AN

∫
ΓN

ΨI (x)ni dΓ (23)

here AN is the area of the nodal representative domain ΩN associated with node N , ΓN is the boundary of the nodal
epresentative domain, and ni denotes the i th component of the outward unit normal vector to the representative
omain. The nodal representative domains can be constructed by Delaunay triangulation or Voronoi diagram as
hown in Fig. 2. For the evaluation of Ψ̃I,i at the nodal points using Eq. (23), boundary integration of the nodal
epresentative domain is needed. This is done in this work using a one-point Gauss integration rule [49]

Ψ̃I,i (xN ) ≈
1

AN

SN∑
k=1

ΨI (x̃k
N )ni (x̃k

N )Lk (24)

where SN is the number of midpoints for each boundary segment of the Voronoi cell associated with node xN and
Lk is the length of the kth segment.

Finally the smoothed gradient matrix B̃I for the two-dimensional case can be expressed as

B̃I =

⎡⎣Ψ̃I,x (xN ) 0
0 Ψ̃I,y(xN )

Ψ̃I,y(xN ) Ψ̃I,x (xN )

⎤⎦ (25)

The smoothed gradient matrix B̃ can now replace matrix B in Eqs. (19) and (20). It is important to emphasize
hat although the strain smoothing involves evaluation of shape functions at the edges of the representative nodal
omain, it is only needed for shape functions. The stiffness is integrated entirely at the particles. Also, since the
moothed gradient matrices are consistent with the weights in the nodal integration, the distribution of weights, i.e.
he areas of the cells, have marginal effect on the solution accuracy.

The NSNI introduces an implicit gradient expansion of the strain field based on the first order Taylor expansion
f strain around xN , to avoid instabilities associated with conventional nodal integration techniques. The implicit
radient is expressed as

Ψ∇(x) = HT M−1(x)H(x − x )Φ (x − x ) i = x, y (26)
I i i I a I

8
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where for a linear basis the vector Hi takes the following forms

Hx = [0, −1, 0]T

Hy = [0, 0, −1]T (27)

The stiffness matrix can be expressed as

Kc
I J =

N P∑
N=1

⎛⎜⎝B̃T
I (xN )CB̃J (xN )AN  

SCNI

+ B∇
T

I 1 (xN )CB∇

J1M1(xN ) + B∇
T

I 2 (xN )CB∇

J2M2(xN )  
Stabilization

⎞⎟⎠ (28)

here B∇

I 1(xN ) and B∇

I 2(xN ) are defined as

B∇

I 1(xN ) =

⎡⎣Ψ∇

I x,x (xN ) 0
0 Ψ∇

I x,y(xN )
Ψ∇

I x,y(xN ) Ψ∇

I x,x (xN )

⎤⎦
B∇

I 2(xN ) =

⎡⎣Ψ∇

I y,x (xN ) 0
0 Ψ∇

I y,y(xN )
Ψ∇

I y,y(xN ) Ψ∇

I y,x (xN )

⎤⎦ (29)

ith Ψ∇

I i, j (xN ) obtained by direct differentiation of Ψ∇

I i in Eq. (26) with respect to x j [48].
The terms M1(xN ) and M2(xN ) are the second moments of inertia in each nodal integration domain given by

M1(xN ) =

∫
ΩN

(x − xN )2dΩ

M2(xN ) =

∫
ΩN

(y − yN )2dΩ
(30)

Stabilization with Eq. (28) is termed naturally stabilized nodal integration (NSNI) since the constants M1(xN )
nd M2(xN ) associated with the additional terms occur completely naturally, and thus no tuning of any parameters
s required, which is in contrast to other stabilized methods [50,51].

. Level set method and nodally integrated RKPM

The nodally integrated RKPM is used in this work within the context of level set topology optimization to achieve
n exact description of structural geometry without re-meshing. The level set boundary and signed distance values
re used for the particle distribution and the construction of the Voronoi diagram of the nodally integrated RKPM
ethod as explained in this section. In turn, the LSTO benefits from the useful properties of the RKPM method such

s placing particles on the discretized boundary points to compute sensitivities, and the higher order basis functions
o improve accuracy. This section describes several ingredients of the methodology which are further demonstrated
hrough the examples in Section 5.

.1. Particle positions and boundary sensitivity

As explained in Section 2, to obtain the optimum velocities required for the update of the level set function and
hus the topology, shape sensitivities need to be computed at the discretized boundary points i.e. the points at which
he boundary intersects the elements of the level set mesh. The positioning of particles at these boundary points
re shown in Fig. 3, allows for direct computation of sensitivities. Thus, at each optimization iteration, particles
re always placed at the boundary points first. These boundary particles are stored at the beginning of the list
f all particles to separate them from the particles in the interior of the structure. The particles in the interior of
he structure can be freely positioned. For example in Fig. 4(a) the particles are regularly positioned at the nodal
ositions of the level set mesh with the respective Voronoi diagram for the NSNI shown in Fig. 4(b). In Fig. 4(c)
he particles are randomly positioned and the resulting voronoi diagram is shown in Fig. 4(d). Based on the above
iscussion on boundary sensitivity, accuracy is more critical close to the boundary. In Section 5.1.1 a particle
lacement scheme where more particles are strategically placed within a region close to the boundary is discussed

nd illustrated through a stress minimization example.

9
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Fig. 3. Particles are first placed at the discretized boundary points.

4.2. Construction of voronoi diagram

For the construction of the nodal representative domains used in the NSNI, the Voronoi diagram is employed here
using the open source software library voro++ [52]. For the construction of the diagram, the particle coordinates
are given as an input which results in an unclipped Voronoi diagram. An example is shown in Fig. 5. Fig. 5(a) shows
the unclipped diagram for a rectangular plate with a hole, with the cells along the boundary extending outside of the
structure and get intersected by the boundary segments. In order to make the diagram conforming to the structure,
which is employed for the NSNI method, the intersected cells need to be clipped as shown in Fig. 5(b). For such
clipping process, the signed distance values at the vertices of each intersected cell are employed as described in
Fig. 6. The intersections of level set boundary segments with the edges of the Voronoi cells are first computed. For
the most part, the cells of boundary particles will be intersected by the boundary segments, however it can happen
that interior cells are intersected as well. If an intersected cell is also a boundary cell, the intersections along with
the particle to which the cell belongs split the cell into two polygons as shown in Fig. 6(a). When interior cells
are intersected, only the intersection points split the cell into polygons as shown in Fig. 6(c). The polygon with
the biggest sum of the signed distance values at its vertices is kept as the new clipped cell, while the vertices of
the remaining polygon are being removed. This is illustrated in Figs. 6 (b) and (c) for boundary and interior cells,
respectively. The remaining polygon after clipping, for example polygon A in Figs. 6(b) and (c), is then used as
the integral domain to calculate the stiffness matrix. Since this clipping operation only has to be done for the cells
along the boundary and maybe a few neighboring interior cells, the process is not computationally expensive.

4.2.1. Size of support domain
The voronoi diagram information can also be used to define the support domain size for each particle in a way

that it is consistent with the density of the particle distribution around it, as explained in [53]. The neighbors of
each particle are identified as those that share an edge with the particle’s cell. For example in Fig. 7 particles 2–11
are neighbors of particle 1. The support size aI of particle 1 is then defined as

a = c̃ · dmax (31)

here dmax is the distance to the furthest neighbor as shown in Fig. 7 in which the distance between particles 1
nd 11 is the maximum amongst all neighbors. The normalized support size c̃ is chosen as 2.0, which is twice the
rder of the linear basis used in this work. As can be seen in the figure, in areas with denser particle distribution
upport sizes are smaller than areas with less dense distribution.

. Examples

In the literature of Galerkin meshfree methods, stress-based computations have been used to validate against the

EM in terms of accuracy and convergence properties [1,54,55] for linear elastic structures. As a simple illustration,

10
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Fig. 4. Different particle distributions: (a) Regularly placed particles, (b) voronoi diagram for regularly placed particles, (c) irregularly placed
articles and (d) voronoi diagram for irregularly placed particles.

he example of a linear elastic plate with a hole is presented here as shown in Fig. 8(a). Specifically, the FEA is
arried out via the partial differential equation toolbox in MATLAB, using linear, triangular elements. The FEA
esh is shown in Fig. 8(b). For the RKPM analysis, the mesh generated in MATLAB is used to place the particles

t the nodal positions of the elements in order to create a comparable discretization. The particles along with the
oronoi diagram are shown in Fig. 8(c). Symmetry conditions are applied at the left and bottom edges. The plate is
oaded uniaxially and analyzed under plane stress conditions. The values used for Young’s modulus and Poisson’s
atio are 1 and 0.3, respectively. The von Mises stress is computed by the two methods at the nodes on the circular
oundary to compare the accuracy of each approach against the analytical solution [1]. As can be seen in Fig. 8(d),
he solution obtained by RKPM is in good agreement with the analytical solution for this specific discretization,
hich consists of 230 degrees of freedom (DOF). Of course, when a finer FEA mesh is used as shown in Fig. 8(d)
or 5114 DoF, FEA also provides an accurate solution as expected.
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Fig. 5. Construction of Voronoi diagram: (a) Unclipped diagram, (b) Clipped diagram.

In the context of topology optimization, stress-based problems are challenging and remain an active area of
research [39,56–58]. For the aforementioned reasons, stress-based problems are thus chosen here to illustrate
the effectiveness of the proposed RKPM-LSTO methodology and to investigate several interesting features such
as different particle distributions, kernel functions and efficiency. A design-dependent problem with hydrostatic
pressure loads is also used to show how the crisp representation of the level set boundary in combination with
particle placement at boundary points can straightforwardly handle the design dependency without interpolation for
either the loads or the domain integration. For the examples Young’s modulus value is set to 1, Poisson’s ratio
is 0.3, the dimensionless support size c̃ is 2.0 and the normalized penalty parameter βnor for Nitsche’s method is
chosen as 1000. Convergence of the objective is checked during 5 consecutive iterations and the tolerance is 0.001.

5.1. Stress-based examples

The p-norm function is used here which approximates the maximum stress in the structure. This is a global
stress measure and can be used either as an objective for stress minimization, or as an inequality constraint. The
p-norm functional defined in the domain Ω can be written as follows

G(Ω ) = σP N =

(∫
Ω

σ p
υmdΩ

) 1
p

(32)

here p is the p-norm parameter, σP N denotes the p-norm stress and συm is the von Mises stress.
For the solution of the stress-based problems the shape sensitivity, G ′(Ω ), of the p-norm functional G(Ω ) is

sed, the derivation of which can be found in [39],

G ′(Ω ) =
G(Ω )1−p

p

∫
Γ

(
σ p

υm + Cε(u) · ε(λ)
)

(33)

here C is the elasticity tensor, ε represents the mechanical strain and u and λ denote the state and adjoint variable
ectors respectively. Eq. (33) indicates how the p-norm stress functional changes when a structural boundary point
oves in its normal direction. The shape sensitivity terms are computed directly at the boundary points where
KPM particles are placed.
12
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Fig. 6. Clipping process for intersected cells for: (a) Boundary intersected cells and (b) interior intersected cells. First, an intersected cell is
plit into two polygons based on intersection points with the boundary segments. The next step is clipping the cell based on signed distance
alues at the vertices. The sum φ1 + φ2 + φ5 is larger than φ3 + φ4 and thus polygon B is removed.

.1.1. Example 1: Stress minimization
Stress minimization under a volume constraint for the L-bracket shown in Fig. 9(a) is considered as a first

xample. The optimization problem is expressed as follows

minimize σ P N

subject to
∫
Ω dΩ ≤ V̄

(34)

here V̄ is the limit for the volume constraint set as 70% and the p-norm value used is 6. Starting from a design
ithout any holes as shown in Fig. 9(b), the optimum hook-like structure of Fig. 9(c) is obtained as expected. For

his result the cubic kernel spline was used for the construction of RK shape functions. In the following paragraphs
e make use of this example to investigate the effects of different features such as particle distribution and kernel

unction choice.

egular particle distribution

Having a regular particle distribution is useful when trying to reduce the computational cost during the
ptimization procedure. This is because with such a distribution, new particles are only inserted along the boundary

t each iteration. The supports of these newly inserted particles cover the particles in the region around them and

13
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Fig. 7. Support domain size definition based on Voronoi diagram information.

Fig. 8. Plate with a hole example: (a) Problem setup, (b) FEA mesh, (c) RKPM particles and Voronoi diagram and (d) von Mises stress
computation at the nodes along the circular hole by FEA and RKPM, and comparison with the analytical solution.
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Fig. 9. L-bracket example: (a) problem definition, (b) von Mises stress field for the initial design and (c) von Mises stress field for the
optimum solution.

thus, shape functions of the particles only in that region need to be corrected to ensure polynomial reproductivity.
The particles further away from the boundary, i.e. greater than a certain value of the signed distance function, do not
see any change and thus their information can be stored before the optimization starts and then re-used throughout
the optimization process. This is illustrated in Fig. 10. In Fig. 10(a) the information for particle “P” including support
domain and stiffness matrix are computed on the regular grid. In Fig. 10(b) after new particles have been inserted
on the boundary created by the circular hole, the information for particles within the highlighted region has to be
computed at this step, whereas since particle “P” is unaffected its information can be read from the previous step.
Support sizes vary depending on neighbor distances. However, since particles are irregular only up to the neighbors
of boundary points, this variation is limited compared to support sizes of the regularly distributed particles in the
interior region. This means that the size of the zone within which the shape functions need to be re-computed
does not have to be much larger than the size of the average support size. A size of twice the size of a support
of an interior particle is a sufficiently large value. This size makes sure that prestored information is only used for
particles that are not covered by new particles. The scheme described above is shown for the stress minimization
of the L-Bracket example in Fig. 11. The dark highlighted zone indicates particles for which the information has to
be re-computed. The light highlighted regions indicate particles for which the prestored information can be used. In
terms of computational efficiency, we compare the overall time for the whole optimization process with and without
the prestoring scheme for the same number of iterations. The prestoring scheme turns out to be 1.4 times faster than
the normal computation (wi thout prestore

≈ 1.4). The overall assembly time for the stiffness matrix for the entire

wi th prestore
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Fig. 10. Prestoring scheme: (a) Supports and local stiffness matrices are computed and stored for a regular particle arrangement before
ptimization starts and (b) Once new boundary particles are created, information only has to be computed for particles in the highlighted
one. Particles such as particle P do not see any change and thus the information can be used from the initial regular distribution.

Fig. 11. Prestoring scheme for the L-Bracket example: The darkly highlighted zone indicates particles for which the information has to be
e-computed. Lightly highlighted regions indicate particles for which prestored information can be used.

ptimization process is two times faster for the prestoring scheme. It is of course expected that this difference will
e more significant as the number of particles increase.

ifferent choices of kernel functions

RKPM provides controllable orders of continuity and completeness, independent from one another, without
dditional complexity just by choosing the kernel function Φa and the basis HT (x), respectively, in Eq. (10). We
xperiment here with three different kernel functions to see the effect on the convergence behavior. Specifically we
olve the L-Bracket example with the linear (C0 continuity) and cubic (C2 continuity) kernel functions given in
ection 3.1 and the quintic kernel (C4 continuity) given as,

Φa(x − xI ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 −

90
11 z2

I +
405
11 z4

I −
405
11 z5

I f or 0 ≤ z I ≤
1
3

17
22 +

75
22 z I −

315
11 z2

I +
674
11 z3

I −
1215
22 z4

I +
405
22 z5

I f or 1
3 ≤ z I ≤

2
3

81
22 −

405
22 z I +

405
11 z2

I −
405
11 z3

I +
405
22 z4

I −
81
22 z5

I f or 2
3 ≤ z I ≤ 1

0 f or z I > 1

(35)

The optimization is left to run for 200 iterations. Figs. 12(a), (b) and (c) show the history p−norm stress for the
linear, cubic and quintic kernel functions respectively. Figs. 12(d), (e) and (f) present the final topologies for the
16
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Fig. 12. Convergence history of the minimum stress L-bracket design for different kernel functions: (a) Linear B-spline (C0 continuity),
b) Cubic B-spline (C2 continuity) and (c) Quintic B-spline (C4 continuity), (d) optimum solution for linear kernel function, (e) optimum
olution for cubic kernel function and (f) optimum solution for quintic kernel function.

hree cases. For the 1st and the 3rd order kernels although the final structure is reached around iteration 140, the
.001 tolerance is not achieved before 200 iterations whereas with the 5th order kernel the tolerance is achieved at
48 iterations as shown in Fig. 12. The final hook-like optimum solutions are obtained in all three cases, although
oundary oscillations are visible in the case of linear kernel function as shown in Fig. 12(d). As the continuity
rder of the kernel function increases, the smoothness of the RK shape function increases accordingly. As can be
een from these results increasing the continuity order of the kernel can make the optimization process smoother
nd speed up the convergence.

uadtree particle distribution

As explained in Section 2, the level set function is updated based on shape sensitivities computed at the boundary
oints. Good accuracy is thus more important when close to the boundary than in the interior of the structure. The
exibility that RKPM offers in adaptivity can be used to create a denser particle distribution within a narrow band
17
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Fig. 13. Stress minimization for the L-bracket example with quadtree particle distribution: (a) Initial design with von Mises stress field,
b) optimum solution with von Mises stress field, (c) Voronoi diagram for initial design and (b) Voronoi diagram for optimum solution.

lose to the boundary whereas keeping the distribution coarser away from the boundary at each iteration. Such a
cheme is shown in Fig. 13 for the L-Bracket example where a quadtree structure is used to create the particle
istribution. Specifically the particles away from the boundary are kept regular and coarse, while within a narrow
and close to the boundary the distribution gets denser according to the quadtree data structure. As can be seen in
he figure, the same end result is obtained as with the fully dense particle arrangement in Fig. 9, only here much
ess particles are used. In the case of the fully dense particle distribution, the optimization starts with 6601 particles
or the first iteration and ends with 5090 particles for the last iteration, whereas the quadtree distribution starts with
838 particles and ends with 1542 particles. Regarding computational efficiency, the overall time for the whole
ptimization process is 1.5 times faster for the quadtree distribution compared to the regular dense distribution
i.e. regular distribution time

quadtree distribution time ≈ 1.5) which again will scale up as the mesh size increases. The true benefits of this
scheme are expected to be more significant for larger scale and 3-dimensional structures and this will be the aim
of our future work. Moreover, for such larger scale problems the quadtree distribution can be combined with the
prestoring scheme for the regularly spaced interior particles to achieve even better efficiency.
18



A. Neofytou, T.-H. Huang, S. Kambampati et al. Computer Methods in Applied Mechanics and Engineering 385 (2021) 114016

d

q
i
t
d
q
A
f
s
r
f
u
t
s
q

5

s

w

w
o
t
T

i
h
t

Fig. 14. Average time per iteration spent for voronoi diagram construction for (a) regular particle distribution and (b) Quadtree particle
istribution.

The time spent for the construction of the Voronoi diagram per iteration is shown in Fig. 14 for both regular and
uadtree particle distributions. The time comparison is done first at the initial iteration when the number of particles
s maximum and thus the process will take the most time. The comparison is repeated for iteration 120 at which point
he particle number is decreased due to the removal of material. As can be seen, the construction of the voronoi
iagram takes about 11% of the total time per iteration for the regular distribution at the first iteration. For the
uadtree distribution the process is faster due to the smaller number of particles, taking about 4.5% of the total time.
s expected, the process becomes faster for less particles at iteration 120 in both cases. Alternative implementations

or the construction of the voronoi diagram can of course further improve the computational efficiency. For example,
ince the positions of the particles in the interior of the domain do not change as the topology evolves, only partial
econstruction of the voronoi diagram close to the boundary is required. Such an efficient implementation will be
urther examined in the future. It is important however, to note that the main difference between the voronoi diagram
sed here and remeshing, is that the RKPM with NSNI is not sensitive to the shape of the polygons, as long as
he polygons are conforming. Once the diagram is constructed, no additional operations are required to modify the
hape of the polygons, whereas for FEA with remeshing additional operations are performed to improve the mesh
uality.

.1.2. Example 2: Volume minimization and stress constraint
In this next example volume minimization under stress constraint is considered. As explained in [39] the p-norm

tress is always greater than the actual maximum. Thus, an adaptive scaling scheme is used,

σmax ≈ ckσP N ≤ σ̄ (36)

here σ̄ is the stress constraint limit and c is defined as

ck
= nk σ k−1

max

σ k−1
N P

+ (1 − ηk)ck−1 (37)

here η ∈ (0, 1] controls the variations between ck and ck−1. The scaling uses information from the previous
ptimization iteration to normalize the constraint as ckσP N so it approximates the actual maximum stress σmax as
he design converges.
he optimization problem is formulated as,

minimize
∫
Ω dΩ

subject to ckσP N ≤ σ̄
(38)

The cubic kernel spline is used in this example and the evolution of the structure throughout optimization is shown
n Fig. 15 Starting from an initial design with holes, optimization converges at 178 iterations. The convergence
istory for σP N , σmax and the volume is shown in Fig. 16. This example also aims to illustrate the robustness of
he methodology in the presence of holes and large topological changes.
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Fig. 15. Volume minimization with stress constraint for the L-bracket example: Evolution of the structure with von Mises stress field.
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Fig. 16. Convergence history of the minimum volume, stress constraint L-bracket design.

Fig. 17. Piston-head structure problem definition.

5.2. Example 3: A design-dependent problem: Piston-head example

The example shown in Fig. 17 is a common one in the literature of topology optimization with design-dependent
loads [59–62] and it is used here to illustrate two useful features of the proposed methodology. The first, is the ability
to handle problems with design dependent surface loads where the loads can change in magnitude and direction
during optimization. Fluid–structure interactions and hydrostatic pressure problems fall under this category. Here we
consider hydrostatic pressure loads of constant magnitude. In such problems a clear boundary identification on the
computational model is essential to correctly apply the loads at each iteration. Due to the absence of an interpolation
scheme and the conforming description of the structure, the RKPM-LSTO methodology proposed here preserves
the clear boundary from the level set method on the computational domain. Thus, it can straightforwardly handle
such problems by directly applying the loads on the boundary without any interpolation scheme.

The second feature is the computational efficiency of this methodology compared to the Gaussian integration for
the domain. In our previous work [26] we solved this example using the Gaussian quadrature on a fixed background
mesh and an interpolation scheme based on nodal signed distance values using the RK shape functions. The two
methodologies are compared here. The aim is to minimize the compliance under a volume constraint and the problem
is formulated as,

min J = l(u)
subject to a(u, υ) = l(υ)

Vs(Ω ) − V̄ ≤ 0
(39)

where the energy bilinear functional a(u, υ) and the load linear form l(υ) are defined as:

a(u, υ) =

∫
Ω

{ε(u)}T
: D : {ε(υ)} dΩ (40)

l(υ) =

∫
ΓN

p · υdΓ (41)

ere Vs(Ω ) is the volume fraction of the structure with respect to the design domain, V̄ is the maximum allowed

olume fraction, ε is the strain tensor, υ is the virtual displacement, ΓN is the Neumann boundary on which the
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Fig. 18. Snapshots of the piston-head solution with pressure loads.

pressure load is applied and p is the pressure load. The pressure load is assumed to be constant although the method
can be generalized for varying pressure.

p = −p0n (42)
where p0 is the constant magnitude of the pressure load, and n is the surface normal.
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Fig. 19. Voronoi diagram for the piston-head example: (a) Initial diagram and (b) Diagram at the optimum solution.

Shape sensitivity for the structural compliance function when the surface load is a pressure load was derived
by [41] as,

∂ f
∂x

=

∫
ΓN

[−2div (p0u) − σ (u) · ε (u)] VndΓ , (43)

where p0 is the pressure load and Vn is the normal velocity on the boundary.
The result obtained here as shown in Fig. 18 is the same as the one in [26] and the solution is achieved in

bout the same number of iterations. However now the process is 20 times faster. This is because in the case of
he Gaussian integration approach almost 3×105 Gauss points were used to achieve the sufficient accuracy (16
auss points per cell), whereas the nodally integrated RKPM achieves the same level of accuracy with only 1800
articles. Fig. 18 shows the evolution of the structure whereas Fig. 19 shows the Voronoi diagram at the initial and
nal iterations. As it can be seen the methodology has no problem handling the large topological changes of this
xample such as holes merging and islands disappearing.

. Conclusion

In this paper a combination of the nodally integrated RKPM with the LSTO method has been proposed for
n exact geometry description of structures during optimization without any interpolation schemes and without
emeshing. The effectiveness and robustness of the methodology has been illustrated through stress-based examples
nd a design-dependent problem with hydrostatic pressure loads. As shown, the method presents useful features such
s the ability to change the order of continuity simply by changing the continuity order of the kernel function without
dding computational complexity. Increasing the order of continuity in the RK shape function has been shown to
peed up the convergence. Moreover, the method is efficient in handling different particles distributions which can
e used to increase efficiency by increasing the particle density only around the boundaries where the sensitivity
ccuracy is more crucial. Furthermore, large topological changes such as holes merging and disappearing can be
andled naturally. As meshfree methods have been shown to perform well in problems where the FEM struggles,
uch as cases with large structural deformations [6] and contact mechanics [3], we plan to explore these classes of
roblems for topology optimization.
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