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Abstract: This paper focuses on using the Bees Algorithm (BA) to tune the parameters of the proposed
Fuzzy Proportional–Integral–Derivative with Filtered derivative (Fuzzy PIDF), Fractional Order PID
(FOPID) controller and classical PID controller developed to stabilize and balance the frequency
in the Great Britain (GB) power system at rated value. These controllers are proposed to meet
the requirements of the GB Security and Quality of Supply Standard (GB-SQSS), which requires
frequency to be brought back to its nominal value after a disturbance within a specified time. This
work is extended to employ the proposed fuzzy structure controller in a dual-area interconnected
power system. In comparison with controllers tuned by Particle Swarm Optimization (PSO) and
Teaching Learning-Based Optimization (TLBO) used for the same systems, simulation results show
that the Fuzzy PIDF tuned by BA is able to significantly reduce the deviation in the frequency and
tie-line power when a sudden disturbance is applied. Furthermore, the applied controllers tuned by
BA including the Fuzzy PIDF prove their high robustness against a wide range of system parametric
uncertainties and different load disturbances.

Keywords: load frequency control (LFC); GB power system; dual-area interconnected power system;
the Bees Algorithm (BA); fuzzy logic control (FLC)

1. Introduction

A secure supply of power energy is the main concern in power system operation,
i.e., reliable electricity with appropriate quality is supplied to the customers at all times.
Thus, it is essential that energy production is continuously balanced with demand: this
guarantees that the system’s frequency is maintained within strict limits and centered at
nominal value, through load frequency control (LFC) [1]. In the Great Britain power system,
over 30% of the energy produced is based on a renewable energy source (RES), such as
wind turbine generators (WTG) [2]. Over the last half-decade, capacity from the RES has
increased by a factor of three, with a corresponding 33% drop in the contribution of fossil
fuel, with power stations being closed due to a loss of economic viability or completion
of their lifespan. RES is set to remain strategically significant to GB’s power system, with
predictions that it will contribute around 50% of energy production by 2025. The rationale
for this growth is to achieve reductions in carbon emitted [3]. The increased use of energy
from RESs decreases the system inertia in power systems, and this reduced inertia presents
challenges for keeping frequency within a permissible limit. The reduced inertia can also
cause major increases in the absolute value of the rate of change of frequency (RoCoF),
with the risk that the system may be destabilized when subjected to suddenly occurring
disturbances—for example, rising or dropping production or demand. This leads to the
need for fast frequency response technologies that can address the challenges that lower
inertia presents [4]. While providing a fast and stable response is required by the control
system to the high RoCoF, it should be considered that system oscillation can result from
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very fast responses. In order to control the frequency in power systems, various control
loops are involved: primary, secondary, tertiary and emergency in specified conditions.
In the GB power system, the primary loop, which is also recognized as dynamic power
generation, reaches the maximum in ten seconds, where the secondary control takes thirty
seconds to reach its maximum operative capacity. Frequency response services are classified
into dynamic services, which respond automatically to any frequency alternation, and
non-dynamic, which are triggered via load frequency relays. When the generation power
and the demand is significantly imbalanced, the system will experience major frequency
deviations; frequency fluctuation is required by GB-SQSS to remain within an acceptable
range, as demonstrated in Table 1 [5]. Figure 1 shows the actable frequency deviations in
the normal operating conditions and when a generation loss of up to 1800MW (representing
a substantial nuclear generator) or less suddenly occurs [1,6].

Table 1. Frequency limits for the GB power system.

Frequency Constraints (Hz) Case Description

±0.2
System frequency in normal operational conditions and the

acceptable frequency deviation following a generation loss or
connecting demand to ±300 MW.

±0.5 The maximum deviation in frequency when generation units
over 300 MW and of up to 1320 MW is lost.

−0.8
The maximum deviation in frequency following a generation
loss over 1320 MW and up to 1800 MW, requiring restoration

of frequency to a minimum of 49.5 Hz in 60 s.
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Recently, a number of strategic approaches have been suggested for LFC in power
systems: this is to keep the frequency and tie-line power flow of the system within a
permissible range even when the system experiences sudden perturbation. The GB power
system in particular has received considerable attention in tackling the problem of fre-
quency deviation, particularly with the increase in RES penetration and its impact on the
total system inertia [7–10].

For LFC, recent studies have applied decentralized PID controllers based on different
optimization techniques. Genetic algorithm (GA) is used to tune the PID controller as
applied in interconnected power networks [11]. Meanwhile, [12] assesses Particle Swart
Optimization (PSO) for PID applied for LFC. Work in [13] shows that the Teaching Learning-
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Based Optimization (TLBO) algorithm could be used to tune I and PID controllers applied
to a single- and multi-area multi-source with or without an HVDC link. This algorithm
performed more optimally than the Differential Evolution algorithm (DE)-based PID
controller. A Fractional Order Proportional Integral (FOPID or PIλDµ) controller provides
an extra two supplementary degrees of flexibility in comparison to the traditional PID
controller, in addition to the main three parameters [14]. Researchers in [15] examined the
potential capabilities of this controller for LFC in a two-area hydro-thermal power system.
Additionally, the Big Bang Big Crunch algorithm was applied in [16] to optimally find the
gains of an FOPID controller’s parameters applied for a deregulated multi-area automatic
generation control (AGC) scheme.

Researchers have also widely investigated fuzzy logic controllers to control the fre-
quency in power systems. Researchers in [17] designed and implemented a fuzzy controller
as a part of an AGC system for the National Control Centre of Eskom. In [18], the Impe-
rialist Competitive Algorithm was applied in optimizing a fuzzy proportional–integral
controller’s output scaling factor, using the criterion of the Integral of Squared Error (ISE) to
enhance the performance of LFC in a dual-area power system. Fuzzy fractional PIλD with
filtered derivative mode is investigated in [19], and the Cuckoo optimization algorithm
is used to find the optimal values of the gains of the suggested controller. The authors
of [20] proposed a novel approach to enhance the frequency performance of a hybrid
dual-area power system via coordination between an optimized fuzzy fine-tuning scheme
and Gate-Controlled Series Capacitors (GCSC). In [21], a design involving a robust fuzzy
logic-based fine-tuning approach used to tune the parameters of the classical proportional–
integral controller is proposed for LFC in a multi-area power system. Further, a two-stage
robust-intelligent controller design is proposed for LFC in a single-area power system: this
design is based on the Kharitonov theorem and fuzzy logic to enhance the performance of
a PI controller [22].

The research works discussed above aimed to determine optimized controllers’ pa-
rameter values for speeding up power provision as well as reducing frequency deviations
to enhance the stability of power systems. A state-of-the-art review of the recent techniques
based on different theories proposed for LFC in power systems is provided in [23].

Accordingly, as demonstrated in the literature, in recent years, there has been con-
siderable progress in intelligent algorithm-based controllers attempting to better control
LFC systems, which have solved the problem to a great extent. However, to the best of
the authors’ knowledge, no attempt has been made to utilize the BA in designing the
secondary frequency control of a power system. Since this algorithm has demonstrated
a high level of superiority and effectiveness as an optimization tool in many different
fields [24–27], this promising achievement motivated the authors to make use of this very
powerful optimization technique to determine the optimum parameters’ gains of the PID,
FOPID and Fuzzy PIDF for LFC in power systems. The main investigations of the present
work are:

• To propose a metaheuristic algorithm, the Bees Algorithm (BA), inspired by the natural
behavior of honeybees, for the LFC of the GB power system.

• To optimize PID and FPID controllers’ gains and study their dynamic performance for
the GB power system.

• To design and optimize the fuzzy logic controller (FLC) scale factor gains and study
its dynamic performance for GB power system.

• To compare the dynamic performance of BA-based PID, FPID and FLC controllers
with those of PSO and TLBO-tuned different controllers for the same system.

• To investigate the effects of parametric uncertainties of the system with different load
disturbances when the proposed controllers are implemented for LFC.

• This study is then extended to examine the validation of the proposed Fuzzy PIDF
in a two-area interconnected power system; the robustness analysis of Fuzzy PIDF
against parametric uncertainties in this system is also validated.
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It may be worth mentioning that the reason behind choosing PSO and TLBO for
comparison with BA is due to their wide use in the area of LFC and their superior perfor-
mance as a tool of optimization. Therefore, if the proposed algorithm provides a frequency
response similar to or better than these two algorithms, this will be another successful use
of BA in engineering applications.

The Artificial Bee Colony (ABC) optimization algorithm has also different applications
for LFC [28,29]. Despite some similarities in the mechanism of the proposed Bees Algorithm
(BA) and the ABC algorithm, the proposed BA has outperformed the ABC algorithm as an
optimization tool [30]. However, a new study to further investigate the differences and the
superiority between these algorithms for LFC applications may be considered for future
work in the authors’ research.

2. The Simplified GB Power System Model

A simplified model of the GB power system shown in Figure 2 was developed using
MATLAB Simulink; this model is utilized to analyze the power system frequency and
then design an appropriate controller. The characteristics of the generators employed in
the system are considered in this simplified model, as well as damping from the loads
depending on frequency. Within this, synchronous coal-powered, gas-powered, hydro-
power and nuclear plants are responsive to any decline in frequency and increase their
generated output power correspondingly. In the model, such synchronous generators are
represented by first-order transfer function blocks used to model the governor and the
turbine. The governor droop gain R represents the turbine velocity control; this gain is the
combined value of all droops of generator speed governors in the system. Tg is the typical
time constant of the governor. Stable performance of the speed control is guaranteed by
introducing transient droop compensation represented as lead-lag between the governor
and turbine. The output mechanical power following the response of the governor which
defines the turbine model is characterized in this simulation by the time constant Tt. The
system inertia in this simplified model is represented by the time constant Heq, which
was considered to represent the current scenario of the GB power system with the high
penetration of RERs. The damping obtained from frequency-dependent loads is represented
by an equivalent gain value D. The effect of an electrical vehicle (EV) was also considered
in this design, which was modeled as an aggregated value represented by a feedback gain
in the primary loop, with an estimated aggregated load equal to 2.16 GW. The value of
this load was considered to be =1.35 pu (EV load × f/(Network base)), where the network
base value is equal to 79.2 GW [2]; the effect of EV gain on the primary loop response is
provided in Appendix A. The secondary control applied in this model is the main study of
this paper, which will be examined via different controllers tuned by proposed algorithms
including the Bees Algorithm, which represents the main contribution of this work. The
parameters applied in this simplified model are tabulated in Table 2 [2,6,31]. It should be
noted that the model used in this study to examine the frequency response of the GB power
system is simplified; accordingly, the small effect of nonlinearities such as governor dead
band (GDB) and generation rate constrain (GRC) is neglected.

Table 2. Parameters for the simplified model of the power system.

R Tg T1d T1g Tt Heq D Ev

−0.09 pu 0.2 s 2 s 12 s 0.3 s 8.88 s 1 pu 1.35 pu
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3. Control Strategies and Objective Functions
3.1. Classical Controllers

PID controllers are the most widely applied feedback controller for the process sector.
Easy to understand and offering robustness, strong performance in spite of the differing
and dynamic properties of the process plant and the low cost are the main merits of this
controller. The PID controller essentially includes proportional, integral and derivative
modes. While a proportional controller decreases the rise time, it cannot completely
remove the steady-state error. Integral controls, on the other hand, eliminate steady-state
error, yet they can worsen transient responses. Derivative controls improve the system
stability, decrease the overshoot/undershoot and enhance transient responses. Current
industrial applications most frequently rely upon the proportional–integral (PI) controller.
Controls without derivative action are applied in the following circumstances: when it is
not important for the system to respond rapidly; when significant noise and disturbance
are experienced during the system operation. The overall stability of the system can be
improved by adding the derivative mode as it enables an increase in the proportional
gain and decrease in the integral, thus increasing the speed response of the controller.
Accordingly, PID controllers are frequently applied in systems that require stability with a
fast response. Considering these points, this study investigates the effectiveness of a PID
controller for the LFC of the GB power system. Equation (1) illustrates the transfer function
of this controller, where Kp is the proportional gain, KI the integral gain, and KD is the
derivative gain.

TFPID = KP +
KI

S
+KDS (1)

Generally, for LFC, conventional methods of control remain the main approach, but in
more complex systems, such approaches can become inadequate. A recently introduced
control approach used for LFC tasks is known as non-integer control, developed on the
basis of fractional calculus, which is generalized from integer order calculus. Fractional
calculus is a generalization of differentiation/integration to a non-integer order, and thus
provides n degrees of additional freedom when designing controllers, which can make
them more efficient, flexible and robust [14]. The FOPID controller’s transfer function
is shown in Equation (2), where λ is the order of integration, and µ is the order of the
differentiator.

TFFOPID= KP +
KI

Sλ
+KDSµ (2)

As highlighted in the literature, fractional-order control (FOC) has emerged to address
the problem of LFC. However, this is the first attempt to tune the parameters of this
controller using the Bees Algorithm.
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3.2. Fuzzy PID Logic Control

There has been a broad implementation of fuzzy PID controllers in different structures
to solve the LFC problem and a significant enhancement in performance has been achieved,
as reported in the literature. It is also proven that in order to gain further enhancement in
the overall system performance and improve the stability, a simple filter for the derivative
mode of the fuzzy PID controller can be applied [32,33]. Moreover, the performance of
these controllers mainly relies on the selection of the scaling factor gains of the input and
output of the controller, but it is difficult to find the optimum values of these gains using
the trial-and-error technique. In view of the above, a fuzzy PID controller with derivative
filter (Fuzzy PIDF), in which the scaling factor gains are tuned by the Bees Algorithm, is
proposed in this section for LFC. The structural design of this controller is illustrated in
Figure 3. As is clear from the figure, the controller has two inputs, ∆F and the derivative of
∆F and one output; in the case of employing this controller in a multi-area power system,
the two inputs are the Area Control Error (ACE) and the derivative of (ACE).
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The scaling factor gains of the input are (K1 and K2) and four scaling factors in
the output, namely Kp, KI, KD and KF is the filter gain. Due to its simplicity and the
lower computation time needed for this type of membership, five triangular membership
functions are used for the inputs and the output variables shown in Figure 4, namely
Negative Big, Negative Small, Zero, Positive Small and Positive Big. Thus, 25 rules are
required to generate the fuzzy output of the controller. Table 3 depicts the rule base of
the proposed controller. Since the performance of the controller depends on these rules,
the tabulated rules are generated by a comprehensive study of the dynamic behaviors of
the testbed power system. The “Mamdani” interface tool is used in this controller for the
fuzzification stage, while the “Centroid” method is used in the defuzzification stage to
convert the fuzzy output value of the controller to a real value.
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Table 3. Fuzzy rule base of the proposed controller.

∆F
∆F

NB NS Z PS PB

NB NB NB NB NS Z
NS NB NB NS Z PS
Z NB NS Z PS PB
PS NS Z PS PB PB
PB Z PS PB PB PB

3.3. Objective Functions

In the design of modern controllers and for any controlled system, stable perfor-
mance and fast response are required. However, in practice, both requirements are never
achievable simultaneously. Therefore, a compromise between quick response and excellent
stability is considered when designing a controller, which is achievable by adequately
selecting an appropriate controller and designing it by minimizing a properly selected
cost/objective function with the aid of an optimization algorithm. The objective function
used to tune the controller mainly relies on a performance criterion that considers the
overall closed-loop response of the system. Many objective functions have been proposed
in the control design, in which four kinds are most often used for LFC. Because of their
better performance compared to the other criteria [13], the Integral of Square Error (ISE)
illustrated in Equation (3) and Integral Time Absolute Error (ITAE) expressed in Equation
(4) are used in this paper. Therefore, PID, FOPID and Fuzzy PIDF controllers are designed
for the LFC of the GB power system by minimizing the defined objective functions with
the help of the Bees Algorithm and other two techniques.

ISE = J =
∫ Tsim

0
(∆F)2 × dt (3)

ITAE = J =
∫ Tsim

0
|∆F|× t × dt (4)

It is proven that with ISE, large errors are more penalized than smaller ones. Thus,
control systems designed to minimize ISE are more most likely to eliminate large errors
quickly. However, they have to tolerate small ones that are continuous for a long period
of time. ITAE calculates the integration of the absolute error multiplied by the time over
the simulation period. This criterion is based on weighing errors that occur after a long
time more largely than those that exist during the beginning of the response [34]. Control
systems specified based on ITAE tuning tend to settle much more quickly than the ISE
tuning methods.

4. The Proposed Algorithm

Over the last two decades, considerable interest has been shown by many researchers
to propose algorithms inspired by the lifestyle of different animals and insects as well as the
behavior of natural phenomena. Most of these algorithms have successfully demonstrated
their potential in many applications to solve different optimization problems. This section
precisely summarizes the main concept in steps that explain the Bees Algorithm (BA). Since
its invention by Pham et al. in 2005 [24], several studies have been introduced based on
this algorithm and different problems in many fields have been successfully solved using
the BA [24–27]. The simplest pseudo-code for this algorithm is shown in Figure 5.
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As with any optimization algorithm, a number of parameters are required to be set—
specifically, the number of scout bees (n), number of selected sites for search out of n visited
patches (m), number of best (elite) sites among them selected sites (e), number of recruited
bees in the best-selected e sites (nep), number of bees sent to the other (m-e) selected sites
(nsp), the initial size of each patch (ngh), which includes the site and the neighborhood,
area as well as the stopping criteria. The mechanism of this algorithm begins with placing
the n scout bees randomly in the search space. In step 2, the evaluation of the fitness of sites
visited by the n scout bees is done. The m sites with the highest fitness in specified “chosen
sites” in step 3 are selected for neighborhood or local search. The algorithm in steps 4 and
5 conducts searches in the neighborhood of the selected sites, with more bees assigned to
the best e sites. Selection of the best sites could be conducted directly based on the fitness
associated with them. Alternatively, using the fitness values, the probability of sites being
selected is determined. Searches in the neighborhood of the best e sites which represent the
most promising solutions are made more prominent by recruiting more bees for them than
for the other selected sites. Together with scouting, this differential recruitment is a key
operation of the Bees Algorithm. For each patch, only the one bee that has found the site
with the highest fitness (the “fittest” bee) is selected in step 5 to form part of the next bee
population. In steps 6–8, the remaining bees in the population n are assigned randomly
around the search space to scout for potential new solutions or to conduct the global search.
These eight steps are repeated until a stopping criterion is met. The colony will have two
parts to its new population at the end of each iteration: representatives from each selected
patch and other scout bees assigned to conduct random searches [35].

5. Results and Discussion

This work was implemented in MATLAB (2019a), the BA, TLBO and PSO codes were
programmed in (.m files), and the model of the GB power system was developed in the
MATLAB Simulink environment. The parameters of BA and PSO were set as depicted
in Tables 4 and 5, respectively. With TLBO, the population size was set to 50, and the
maximum number of iterations was taken as 40 for all algorithms.

Table 4. The BA parameters.

n m e nep nsp ngh

30 12 6 11 7 0.011
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Table 5. The PSO parameters.

No. Particles Wmin Wmax C1 C2 CR

30 0.4 0.9 2 2 0.65

To study the dynamic performance of the GB power system, a step load perturbation
of 0.03955 pu (at t = 5 s) represents a loss of generation unit equal to 1.32 GW (two of large
generators, 660 MW) of the total generation power of the GB system used, which occurred
in the GB system on 27th May 2008 [2].

ITAE and ISE are taken separately as objective functions to tune the parameters of the
proposed controllers using the above-mentioned algorithms for LFC in the generalized
GB power system model. Initially, the parameters of the PID controller are optimized; it is
found that the PID tuned by the proposed algorithms performs satisfactorily to damp out
the drop in the frequency. However, a reduced drop in frequency with a slow response
is achieved when ISE is considered as an objective function, while with ITAE, the drop
in frequency worsened with the fast response obtained, bringing the frequency back to
the nominal value in a shorter period of time. Then, the gains of FOPID are tuned; in this
regard, it is worth highlighting that, in general, the tuned FOPID tuned by BA designed
via minimizing ITAE provides better results compared to the tuned PID. However, FOPID
designed with ISE fails to bring the frequency back to its nominal value. Thereafter, Fuzzy
PIDF parameters are tuned, where a significant improvement is achieved in comparison
with PID and FOPID.

5.1. Classical Controllers

The gains of the conventional PID and FOPID controllers obtained using BA, TLBO
and PSO optimization algorithms using the suggested objective functions are depicted in
Table 6.

Table 6. Optimal gains of PID and FOPID with different algorithms for GB power system.

Proposed Optimization Algorithms/Controller Parameters

Controller Parameters BA TLBO PSO

KP 40 40 40
PID-ISE KI 18.61 18.6373 18.6347

KD 40 40 40

KP 40 40 40
PID-ITAE KI 2.3044 2.383 2.3129

KD 16.1483 14.523 15.1724

KP 40 40 40
KI 40 40 40

FOPID-ISE KD 40 40 40
λ 0.5584 0.55805 0.5562
µ 0.3441 0.3450 0.3439

KP 40 40 40
KI 40 40 40

FOPID-ITAE KD 40 40 40
λ 0.89 0.872 0.8953
µ 0.388 0.3184 0.236

Results obtained based on the proposed algorithms “BA” tuning PID and FOPID are
compared with those of TLBO and PSO; it is found to be a successful solution and provides
excellent performance in many aspects, i.e., undershoot, overshoot and settling time, which
are shown in Tables 7–10. The changes in the frequency of the GB power system when
different conventional controllers tuned by different optimization algorithms are used to
control the frequency deviation are shown in Figures 6–9.
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Table 7. Frequency response performances with PID tuned by different algorithms and designed by
minimizing ISE.

Controller Ush in Hz Osh in Hz Ts in s Error ISE × 10−5

BA-PID −0.1301 0.09148 33.777 0 2.891
PSO-PID −0.1301 0.09148 33.793 0 2.891

TLBO-PID −0.1301 0.09143 33.794 0 2.891

Table 8. Frequency response performances with PID tuned by different algorithms and designed by
minimizing ITAE.

Controller Ush in Hz Osh in Hz Ts in s Error ITAE

BA-PID −0.1840 3.51 × 10−3 9.4256 0 0.1515
PSO-PID −0.1859 3.71 × 10−3 9.2792 0 0.1508

TLBO-PID −0.1870 5 × 10−3 13.8580 0 0.1553

Table 9. Frequency response performances with FOPID tuned by different algorithms and designed
by minimizing ISE.

Controller Ush in Hz Osh in Hz × 10−4 Ts in s Error ISE × 10−6

BA-PID −0.12 8.91 8.0145 2.72 7.8
PSO-PID −0.12 7.8 7.9536 2.76 7.8

TLBO-PID −0.12 8.82 8.0137 2.73 7.8

Table 10. Frequency response performances with FOPID tuned by different algorithms and designed
by minimizing ITAE.

Controller Ush in Hz Osh in Hz Ts in s Error ITAE

BA-PID −0.1282 0.045 8.045 0 0.0581
PSO-PID −0.1324 0.0463 9.0826 0 0.0558

TLBO-PID −0.1303 0.0417 8.7397 0 0.0566
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From Figure 6 and Table 7, it is clear that when the PID is tuned using the proposed
algorithms based on ISE, almost identical responses are obtained. On the other hand, when
ITAE is used as an objective function to design the PID controller, as demonstrated in
Figure 7 and Table 8, BA shows better performance in terms of undershoot and overshoot,
with only a 0.1840 Hz drop in frequency.

As shown in Figure 8 and Table 9, FOPID designed by minimizing ISE is found to
be less effective in eliminating the steady-state error, which made this technique a less
preferable option for this system. In terms of undershoot and settling time Ts, Figure 9 and
Table 10 prove that FOPID tuned by the proposed BA using ITAE as an objective function
provides the best performance in comparison with the other classical controllers tuned by
TLBO and PSO.

5.2. Fuzzy PIDF Controller

The optimal gains of the proposed Fuzzy PID with derivative filter obtained by the
proposed BA, TLBO and PSO algorithms using the suggested objective functions are
depicted in Table 11. Simulation results obtained with the BA are compared with those of
TLBO and PSO and it is found to be an excellent tool and provides improved performance
in many aspects.

Tables 12 and 13 and Figures 10 and 11 demonstrate the frequency response of the GB
power system when the Fuzzy PIDF is optimized by different optimization algorithms im-
plemented for LFC. It is observed that a significant improvement is achieved in comparison
with classical controllers.
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Table 11. Optimal gains of Fuzzy PIDF with different algorithms for GB power system.

Proposed Optimization Algorithms/Controller Parameters

Controller Parameters BA TLBO PSO

K1 3.41 2.99 3.88
K2 40 40 29.72

Fuzzy PIDF KP 29.91 40 26.60
ISE KI 18.59 39.99 17.82

KD 20.93 14.998 14.59
KC 40 40 40

K1 20.37 3.955 7.1590
K2 38.12 14.997 24.2973

Fuzzy PIDF KP 19.25 39.996 18.83
ITAE KI 38.14 40 7.68

KD 4.29 14.995 3.889
KC 40 40 40

Table 12. Frequency response performance with Fuzzy PIDF controllers designed via ISE.

Controller Ush in Hz Osh in Hz Ts in s Error ISE × 10−10

BA-Fuzzy PIDF −0.0028 2.37 × 10−4 11.7941 0 6.71
PSO-Fuzzy PIDF −0.0045 2.8 × 10−4 11.7689 0 15.2

TLBO-Fuzzy PIDF −0.0048 1.75 × 10−4 8.8523 0 6.88

Table 13. Frequency response performance with Fuzzy PIDF controllers designed via ITAE.

Controller Ush in Hz Osh in Hz Ts in s Error ITAE

BA-Fuzzy PIDF −0.0057 2.15 × 10−4 8.3776 0 0.000391
PSO-Fuzzy PIDF −0.00793 3.7 × 10−4 13.6303 0 0.001065

TLBO-Fuzzy PIDF −0.0043 4.9 × 10−4 10.9389 0 0.000495
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Moreover, BA has proved to be a powerful technique to tune the Fuzzy PIDF as the
results obtained from the proposed controller tuned by BA prove that the performance
of the system experiences a clear improvement in terms of undershoot and settling time.
Regarding the error and overshoot, almost similar results are obtained based on all algo-
rithms.

5.3. Robustness Analysis
5.3.1. Robustness Analysis against System Uncertainty

Parameters within the system, including the damping coefficient D, speed regulator
R, system inertia coefficient Heq and turbine governor time constant Tg, are subject to
constant fluctuation, which can lead to a significant degradation in the performance of
close-loop systems. There has been comparatively less focus in research on this issue
within load frequency control; for example, the increase in the total system inertia will
slow down the system response, while the frequency deviation decreases if the damping
ratio increases, and if the governor time constant increases, the frequency deviation will
increase. The impact of the variation in each parameter on the frequency response of the
GB power system is provided in Appendix B. Therefore, investigations are carried out in
order to study the consequences of parametric uncertainties in the system. For this, each
parameter in the system is altered by±50% from its nominal value. Two different scenarios
of parameters’ uncertainty, Tg, D, R and Heq (listed in Table 14 and shown in Figure 12),
are considered for the simplified GB power system model examination. In this sub-section,
only controllers tuned by the proposed BA are examined. The optimal gains obtained
during the normal condition will not be re-tuned when the model is subjected to variation
in system parameters.
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Table 14. The variation range of the parameters in the two scenarios.

Scenarios Parameters Nominal Value Variation Range New Value

Scenario1

Tg 0.2 +50% 0.3
Heq 4.44 +50% 6.66
D 1 −50% 0.5
R −0.09 −50% 0.045

Scenario2

Tg 0.2 −50% 0.1
Heq 4.44 −50% 2.22
D 1 +50% 1.5
R −0.09 +50% 0.135
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Figure 12. Comparison of the dynamic response of GB power model with parameter uncertainties of
scenarios 1 and 2 with no secondary control loop.

Furthermore, as shown in Figure 12, and since, in the second scenario, the frequency
response of the system is worse than the nominal case, the second scenario only is investi-
gated, which also represents a possible decline in the total system inertia of the GB power
system due to the increasing use of renewable energy resources.

Figures 13 and 14 show the frequency response of the GB power system under para-
metric uncertainties when different controllers tuned by BA are employed as the LFC
system. From Figures 13 and 14, it is noted that Fuzzy PIDF controllers provide high
stability while classical controllers show less robustness against system uncertainty, with
the worst drop in frequency recorded at −0.178 Hz when PID is applied for scenario 2. The
frequency responses of the system with different BA-tuned controllers based on ISE and
ITAE, respectively, are listed in Tables 15 and 16.
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Table 15. Frequency response performances with different BA-tuned controllers designed via ISE for
scenario 2.

Controller Ush in Hz Osh in Hz Ts in s Error ISE

BA-Fuzzy PIDF −0.0042 2.68 × 10−4 12.61 0 6.77 × 10−10

BA-FOPID −0.141 0 9.40 −2.75 × 10−3 0.0454
BA-PID −0.126 0 22.09 0 0.1643



Designs 2021, 5, 50 17 of 28

Table 16. Frequency response performance with different BA-tuned controllers designed via ITAE
for scenario 2.

Controller Ush in Hz Osh in Hz Ts in s Error ITAE

BA-Fuzzy PIDF −0.006 2.68 × 10−4 8.22 0 0.0004
BA-FOPID −0.143 0.020 15.16 0 0.0454

BA-PID −0.178 0 20.75 −4 × 10−3 0.1643

5.3.2. Different Load Disturbances

To further investigate the robustness of Fuzzy PIDF, FOPID and PID tuned by BA, a
loss of 1.8 GW (very large nuclear generator) in the generation unit representing around
0.053 pu is considered in this sub-section. The frequency response of the GB power system
with the new load disturbance is shown in Figure 15 and the frequency response perfor-
mances are tabulated in Table 17. Furthermore, in order to further examine the robustness
of the proposed techniques, parameter uncertainties from scenario 2 are considered when
a power generation of 0.053pu is lost and the frequency response of the system in this case
is given in Figure 16; the frequency response performances are depicted in Table 18, from
which it is obvious that the proposed controller “Fuzzy PIDF” tuned by BA is robust and
performs satisfactorily even when a larger generator is lost with parameter uncertainties.
Note that only controllers tuned by BA based on minimizing the ITAE objective function
are considered in this part.
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the nominal scenario with 0.053 pu load disturbance.

Table 17. Frequency response performance with BA tuned different controllers designed via ITAE
for scenario 2.

Controller Ush in Hz Osh in Hz Ts in s Error ITAE

BA-Fuzzy PIDF −0.0083 2.8 × 10−4 8.22 0 0.00056
BA-FOPID −0.171 0.0603 13.04 −3 × 10−4 0.0779

BA-PID −0.246 5 × 10−3 14.42 0 0.203
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Figure 16. Comparison of three controllers tuned by BA based on ITAE for LFC of the GB system in
scenario 2 with 0.053 pu load disturbance.

Table 18. Frequency response performances with BA-tuned controllers designed via minimizing
ITAE in scenario 2 with 0.053 pu load disturbance.

Controller Ush in Hz Osh in Hz Ts in s Error ITAE

BA-Fuzzy PIDF −0.0098 2.7 × 10−4 8.021 0 0.00058
BA-FOPID −0.191 0.028 15.16 −3.1 × 10−4 0.06096

BA-PID −0.239 0 20.75 −5.5 × 10−4 0.22020

6. Load Frequency Control for Dual-Area Power System

This study is extended to a multi-area interconnected power system as demonstrated
in Figure 17. This model is extensively investigated in the literature to study the dynamic
behavior of different control concepts for LFC in power systems [36,37]. It consists of
two unequal thermal interconnected areas; the parameters of this model are tabulated in
Appendix C. Based on the function of the LFC loop in multi-area power systems, the main
tasks of LFC are providing the required power from the generation units to meet the load
variation and maintaining the interchanged power among interconnected control areas via
tie-lines at pre-rated values. The specified objectives of LFC that contribute to improving
the overall power system stability are to guarantee zero steady-state errors in frequency
fluctuations of different control areas along with the tie-line power fluctuations. It is also
responsible for reducing the overshoot and undershoot of the oscillation within a specified
time; this depends on the size of the disturbance and the capacity of the power system.
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The term defined as Area Control Error (ACE) in each area is the input of the controller
located in that area. In this model, the ACEs are represented in Equations (5) and (6).

ACEarea 1 = ∆P12 + B1 ∆F1 (5)

ACEarea 2 = ∆P12 + B1 ∆F1 (6)

where ∆F1 and ∆F2 are the frequency deviation in areas 1 and 2, respectively, ∆P12 and
∆P21 are the power flow deviation in areas 1 and 2, and B1, B2 are frequency biases.

The proposed Fuzzy PID with the filtered derivative mode is applied in this section as
LFC in the dual-area interconnected power system. A step load disturbance of 0.2 pu is
applied in area 1 to investigate the dynamic performance of the system with the proposed
controller. The optimum values of the scaling factors of Fuzzy PID with Filtered derivative
(Fuzzy PIDF) optimized by BA, PSO and TLBO by minimizing the ITAE objective function
expressed in Equation (7) are depicted in Table 19.

Objective Function = ITAE =
∫ t

0
(|∆F1|+ |∆F2|+ |∆Ptie|) × t × dt (7)

Table 19. Frequency response performances with different controllers.

Controller
Controller Gains of Area 1 Controller Gains of Area 2

K1 K2 KP1 KI1 KD1 KF1 K3 K4 KP2 KI2 KP2 KF2

Fuzzy PIDF-BA 0.403 2 2 2 2 98.4841 0.2648 1.0081 0.9133 1.9730 1.9889 93.8922
Fuzzy PIDF-TLBO 0.035 1.9992 1.9986 1.99868 1.9995 99.0606 1.9602 0.03707 0.4435 1.3003 0.019 99.7446
Fuzzy PIDF-PSO 0.02 2 2 2 2 100 2 2 2 0.015 1.4035 11.21
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Due to the sudden subjection of the system to 0.2 pu disturbance in area 1, the
frequency and tie-line power flow within the system experience a range of deviation from
their nominal values. Frequency deviation in area 1 (∆F1), frequency deviation in area 2
(∆F2) and tie-line power flow deviation (∆Ptie) are illustrated in Figures 18–20, respectively.
Table 20 provides the characteristics of the dynamic performance of the testbed system-
based Fuzzy PIDF tuned by different algorithms, where undershoot (Ush), overshoot (Osh)
and settling time (Ts) of frequency in both areas and tie-line power along with the values
of the objective function are given.
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Table 20. Frequency response performances with different controllers.

Controller
Frequency in Area 1 Frequency in Area 2 Tie-Line Power Deviation

ITAE
Ush in Hz Osh in Hz Ts in s Ush in Hz Osh in Hz Ts in s Ush in pu Osh in pu Ts in s

Fuzzy PIDF-BA 0.0414 0.0041 6.9401 0.0038 0 19.2991 0.0010 0 19.360 0.0361
Fuzzy PIDF-TLBO 0.0868 0.0040 5.7544 0.0036 0 19.3273 0.00099 0 18.893 0.0304
Fuzzy PIDF-PSO 0.0890 0.0040 5.7175 0.0036 0 19.1020 0.0010 0 19.154 0.0330

From Figures 18–20 and Table 20, it is observed that the proposed Fuzzy PIDF con-
troller provides an excellent dynamic response in different aspects. Moreover, despite
the small difference in results obtained by applying the proposed controller based on the
suggested optimization techniques, it is obvious that the Fuzzy PIDF tuned by BA offers the
best response among the investigated techniques in terms of peak undershoot experienced
in the area 1, with only −0.04 Hz recorded after applying the sudden disturbance, while
the smallest drop in the frequency of area 2 was −0.0036 Hz based on the TLBO- and
PSO-tuned Fuzzy PIDF.

To examine the robustness of the Fuzzy PIDF controller employed for LFC in the
testbed dual-area power system, the parameters of the investigated system are simulta-
neously varied from their nominal values as shown in Table 21. The same disturbance of
0.2 pu is applied in area 1 and the optimum values of the Fuzzy PIDF parameters obtained
in the normal condition are used to verify the robustness of the proposed controller.

Table 21. The parameters of the testbed system under parametric uncertainties.

Parameters
Nominal Values Variation

Range
New Values

Area 1 Area 2 Area 1 Area 2

Tg 0.2 0.3 +50% 0.3 0.45
Tt 0.5 0.6 +50% 0.75 0.9
B 20.6 16.9 −50% 10.3 8.45
D 0.6 0.9 −50% 0.3 0.45
H 5 4 +50% 7.5 6
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Figures 21–23 illustrate the deviation in frequency in areas 1 and 2 and the tie-line
power fluctuation under parametric uncertainties of the dual-area power system with
the proposed Fuzzy PIDF tuned by BA, TLBO and PSO equipped in the system for LFC.
Undershoot (Ush), overshoot (Osh) and settling time (Ts) for ∆F1, ∆F2 and ∆Ptie of the
system under parametric uncertainties are expressed in Table 22.
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Table 22. Frequency response performances with different controllers.

Controller
Frequency in Area 1 Frequency in Area 2 Tie-Line Power Deviation

ITAE
Ush in Hz Osh in Hz Ts in s Ush in Hz Osh in Hz Ts in s Ush in pu Osh in pu Ts in s

Fuzzy PIDF-BA 0.1140 0.0131 5.9858 0.0203 0 9.3781 0.0026 0 10.453 0.03094
Fuzzy PIDF-TLBO 0.1458 0.0111 5.4378 0.0278 0.00183 14.818 0.0026 0.000065 9.3769 0.0511
Fuzzy PIDF-PSO 0.1465 0.0115 5.4468 0.0175 0 10.269 0.0024 0 10.421 0.02535

The simulation results obtained from robustness analysis given in Figures 21–23 and
Table 22 validate the robustness of the proposed Fuzzy PIDF-controlled LFC in the dual-
area power system towards a wide range of parametric uncertainties. Furthermore, it is
noticed that the TLBO-optimized Fuzzy PIDF is less robust against parametric uncertainties
as compared to BA and PSO tuned with the same controller.

7. Conclusions

In this paper, the Bees Algorithm is proposed for the first time in load frequency control
(LFC). This algorithm was successfully used to find the optimal parameters of PID, FOPID
and the proposed Fuzzy PID with filter for the derivative action (Fuzzy PIDF) in order to
solve the problem of LFC for the GB power system. A step load disturbance was applied to
study the frequency performance of the system, taking ISE and ITAE as objective functions
to design the above-mentioned controllers tuned by BA. The parameters of PID and FOPID
were first optimized, and the obtained results were compared with those from TLBO and
PSO; it was evident from the results that the BA-tuned FOPID designed by minimizing
ITAE offered the best performance among the investigated classical controllers. In terms of
applying the proposed Fuzzy PIDF, an obvious improvement in the performance of the
system was achieved, and the obtained results from this controller based on BA, TLBO
and PSO were somewhat similar, with the lowest drop in frequency equal to −0.0028 Hz
when BA was used. Furthermore, it was demonstrated that the Fuzzy PIDF tuned by BA is
robust against system uncertainties and different load disturbances. Finally, the research
was extended to examine the validation of the proposed Fuzzy PIDF as LFC system in a
dual-area interconnected power system; the obtained results emphasize that the Fuzzy
PIDF-based BA is an excellent and robust controller and can be successfully implemented
for LFC in different power systems.



Designs 2021, 5, 50 24 of 28

Author Contributions: Conceptualization, M.S. and F.A.; methodology, M.S.; software, M.S., M.P.
and M.H.; validation, M.S., F.A. and M.P.; formal analysis, M.S. and F.A; investigation, M.S., F.A. and
M.P.; resources M.S., F.A., M.P. and M.H.; data curation, M.S., F.A., M.P. and M.H; writing—original
draft preparation, M.S.; writing—review and editing, M.S., F.A., M.P. and M.H.; visualization, M.S.;
supervision, F.A. and M.P.; project administration, M.S. and F.A.; funding acquisition, M.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This paper is part of the PhD research of the corresponding author, M. Shouran, who is
sponsored by the Ministry of Higher Education and Scientific Research in Libya.

Acknowledgments: The authors would like to thank Cardiff University/School of Engineering for
accepting to pay the APC towards publishing this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Electrical vehicle’s gain effect.

Designs 2021, 5, x FOR PEER REVIEW 23 of 27 
 

 
 

7. Conclusions 
In this paper, the Bees Algorithm is proposed for the first time in load frequency 

control (LFC). This algorithm was successfully used to find the optimal parameters of PID, 
FOPID and the proposed Fuzzy PID with filter for the derivative action (Fuzzy PIDF) in 
order to solve the problem of LFC for the GB power system. A step load disturbance was 
applied to study the frequency performance of the system, taking ISE and ITAE as objec-
tive functions to design the above-mentioned controllers tuned by BA. The parameters of 
PID and FOPID were first optimized, and the obtained results were compared with those 
from TLBO and PSO; it was evident from the results that the BA-tuned FOPID designed 
by minimizing ITAE offered the best performance among the investigated classical con-
trollers. In terms of applying the proposed Fuzzy PIDF, an obvious improvement in the 
performance of the system was achieved, and the obtained results from this controller 
based on BA, TLBO and PSO were somewhat similar, with the lowest drop in frequency 
equal to −0.0028 Hz when BA was used. Furthermore, it was demonstrated that the Fuzzy 
PIDF tuned by BA is robust against system uncertainties and different load disturbances. 
Finally, the research was extended to examine the validation of the proposed Fuzzy PIDF 
as LFC system in a dual-area interconnected power system; the obtained results empha-
size that the Fuzzy PIDF-based BA is an excellent and robust controller and can be suc-
cessfully implemented for LFC in different power systems. 

Author Contributions: Conceptualization, M.S. and F.A.; methodology, M.S.; software, M.S., M.P. 
and M.H.; validation, M.S., F.A. and M.P.; formal analysis, M.S. and F.A; investigation, M.S., F.A. 
and M.P.; resources M.S., F.A., M.P. and M.H.; data curation, M.S., F.A., M.P. and M.H; writing—
original draft preparation, M.S.; writing—review and editing, M.S., F.A., M.P. and M.H.; visualiza-
tion, M.S.; supervision, F.A. and M.P.; project administration, M.S. and F.A.; funding acquisition, 
M.S. All authors have read and agreed to the published version of the manuscript. 

Funding: This paper is part of the PhD research of the corresponding author, M. Shouran, who is 
sponsored by the Ministry of Higher Education and Scientific Research in Libya. 

Acknowledgement: The authors would like to thank Cardiff University / School of Engineering for 
accepting to pay the APC towards publishing this paper. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 
Electrical vehicle’s gain effect. 

 
Figure A1. The primary frequency response of GB power system with and without the feedback 
gain of electrical vehicles. 

Figure A1. The primary frequency response of GB power system with and without the feedback gain
of electrical vehicles.

Appendix B

The effect of parametric uncertainties on the frequency response of the GB power
system.
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Appendix C

The parameters of the system as used in [6,12] are as follows (T = 2, F = 60 Hz, SLP =
0.2 pu):

Area 1 : Tg = 0.2, Tt = 0.5, R = 0.050, B = 20.6, D = 0.6, H = 5.

Area 2 : Tg = 0.3, Tt = 0.6, R = 0.062, B = 16.9, D = 0.9, H = 4.
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where T is the synchronization constant, F is the system frequency, SLP is the step load
perturbation, Tg is the time constant of the governor (second), Tt is the time constant of the
turbine (second), R is the regulation constant (MW/Hz), B is the frequency bias constant
(Hz/MW), H is the inertia time constant (second), and D is the ratio of variation in load to
variation in frequency.
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