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ABSTRACT

The focus of this thesis is the use of numerical simulations of black hole spacetimes in grav-

itational wave astronomy. The history of the field over the past century is briefly sketched,

tracing the journey from general relativity through to the production of full 3D simula-

tions of the inspiral and merger of a black hole binary. This is followed by an exploration

of the current state of the art of numerical black hole binary simulations as used by the

LIGO-Virgo-KAGRA Collaboration, first with the presentation of a catalogue of such

simulations, then through an investigation into the consistency of simulations produced

by three prominent numerical relativity codes. Significant disagreement is observed in

their gravitational wave phases which may prove problematic for future ground-based

gravitational wave astronomy. Finally the practical obstacles inherent to the simulation

of high mass ratio binaries, of particular relevance to upcoming space-based gravitational

wave detectors, is discussed and a novel solution proposed with tests on a preliminary

implementation of this conducted for static and boosted black holes, and for the head-on

collision of two black holes. A reduction in resolution of three orders of magnitude is

achieved in these exploratory simulations, equivalent to a speed increase of 60,000% in

the static black hole case. While this demonstrates its potential for further development,

significant questions remain over how accurately the true solution is recovered or whether

it is only the phenomenology that is approximated.
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The study of gravitational waves dates back to the beginnings of general relativity.

That ripples in the spacetime manifold propagate as a wave is a straightforward conse-

quence of the theory, and was accordingly one of the earliest experimental predictions

proposed by Einstein in 1916 [1], but for many years opinion shifted back and forth over

whether this represented an invariant physical phenomenon or was simply an artifact

of the coordinate system used [2]. One thing however was agreed upon: that if physical,

these gravitational waves would be far too weak to significantly impact their environment

and would therefore remain beyond direct empirical verification. This proved overly pes-

simistic. The first detection of gravitational waves was announced one hundred years

later [3], and as the direct observation of the dynamic geometry of spacetime this event

defined the birth of an entirely new branch of astronomy. Throughout history every dis-

covery of a new lens through which to view the universe has resulted in, at the very least,

a wealth of scientific discoveries, if not outright paradigm shifts: observations with op-

tical telescopes lead to the overthrow of the geocentric model in the 17th century, radio

astronomy lead to the discovery of cosmic microwave background radiation and hence

confirmation of the big bang hypothesis in the 20th century [4], and most recently in

the 21st century observations of solar neutrinos provided the first tangible evidence of

physics beyond the standard model [5]. Gravitational waves serve as an entirely new

medium with which to observe, one that is by its nature clean, not impeded by dust or

stars or galaxies owing to the weak coupling between gravity and matter. In this regard

electromagnetic astronomy is fundamentally limited in its scope, only able to look back

as far as the moment photons decoupled from matter and the universe became optically

transparent approximately 300,000 years after the big bang. The weak coupling to matter

opens a window in this surface of last scattering through to the early universe. Similarly,

xix



xx

being purely geometric there is no need to rely on matter to act as the intermediary be-

tween gravitational phenomena and observation—black holes can be observed in vacuo,

providing a direct means to probe gravity in the strong-field environment surrounding

black holes and test the extent of general relativity’s validity. In this way the observation

of gravitational waves can be seen as representing both the final piece of the puzzle to

round out the first hundred years of Einsteinian gravitation, and equally the opening of

the door to, potentially, hints of some more fundamental underlying mechanism.

Any accelerating mass that lacks axisymmetry will radiate gravitational waves. Even

something as prosaic as stirring a cup of tea will produce them, though it took the decay-

ing orbit and merger of two black holes to generate a signal of sufficient strength to be

detected in 2015. Such transient signals from the coalescence of two compact objects are

currently the only source of gravitational waves we are able to detect, and despite their

origin in such extreme environments their influence on Earth is limited to the expansion

and contraction of space by roughly one thousandth the diameter of a proton [6]. This

therefore requires the construction of exceedingly precise detection apparatus, appara-

tus that only in recent decades has become technologically and computationally feasible.

At the time of writing there are five interferometric gravitational wave detectors in op-

eration: GEO600, LIGO Hanford, LIGO Livingston, Virgo, and KAGRA, of which

LIGO and Virgo have in the six years since the first detection published 50 observed

gravitational wave events over three observing runs. The fourth such run is expected to

add a further 80 to this tally [7] in the next two years, and looking further ahead com-

ing years will see the addition of a sixth detector, LIGO India, to the global network.

Plans are already underway for the next generation of gravitational wave observatories,

with Einstein Telescope due to come online in the mid-2030s offering unprecedented

sensitivity to signals—preliminary estimates suggest on the order of at least 1000 events

per year, possibly millions [8]. Together with the proposed LIGO Voyager (2028) and

Cosmic Explorer (2035) observatories there will be no shortage of signals, allowing the

field of gravitational wave astronomy to mature into a truly statistical science. Working

in parallel will be the space-based observatories—DECIGO (2027), Taiji (2033), LISA

(2034), TianQin (c. 2030s)—sensitive to much lower-frequency signals and so able to

observe black hole binaries for thousands of orbits [9], as well as novel sources such as

mergers involving supermassive black holes.
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Taken as a whole then gravitational wave astronomy is set to be an increasingly fruit-

ful tool with which to study the universe, with the coming decades offering an abundance

of invaluable data. The focus of this thesis spans past, present, and future applications of

general relativity to the evolution of dynamic black hole spacetimes for the purposes of

gravitational wave astronomy. It is split into three distinct parts that can be considered

broadly chronological in this manner.

PART I serves as an introduction to the field of numerical relativity as it has developed

from general relativity, and its application to gravitational wave astronomy. The journey

from general relativity through the production of black hole simulations to the use of

these simulations in the search and analysis of real astrophysical signals is presented, be-

ginning in CHAPTER 1 with an overview of how the Einstein field equations can be formu-

lated in such a way as to permit solution through numerical methods. CHAPTER 2 outlines

the representation of black hole spacetimes within this formalism, how they are evolved

forwards in time, and how the gravitational radiation content of the spacetime is captured.

The practical application of these simulated spacetimes is addressed in CHAPTER 3 along

with their place within the wider context of black hole binary signal modelling, and their

use in the production of tangible astronomical results. This summary of the field is mod-

elled primarily on the treatment presented in Alcubierre’s Introduction to 3+1 Numerical

Relativity [10].

PART II presents an analysis of the numerical relativity simulations currently in use

within gravitational wave astronomy. CHAPTER 4 describes an upcoming catalogue of

black hole binary simulations intended for use in the construction of precessing gravi-

tational wave models, spearheaded by Edward Fauchon-Jones but representing the com-

bined effort of the waveforms subgroup at Cardiff ’s Gravity Exploration Institute. The

contributions of the author to this project include the production of eight of the simula-

tions within the catalogue, together with a chapter in the upcoming paper introducing

the numerical relativity code used in their production. An analysis of waveform accuracy

is presented here for the sake of completeness, adapted from the corresponding chapter

written by Eleanor Hamilton for the paper. This chapter is followed by an exploration of

the consistency of simulations produced by different numerical relativity codes in CHAP-

TER 5, a collaborative project that uses simulations produced by the author in addition to

Jim Healy of RIT and a team from the SXS collaboration consisting of Katerina Chatzi-



xxii

ioannou, Harald Pfeiffer, and Geoffrey Lovelace. Analysis and results are the work of

the author.

Finally PART III introduces a novel approach to these numerical relativity simulations

that hopes to adapt the field to suit the upcoming era of space-based gravitational wave de-

tectors. It addresses the current inability to produce practical binary simulations in which

one component is significantly more massive than the other, a greatly-anticipated source

of signals in these future detectors, and proposes a novel solution. The technique is intro-

duced and preliminary tests are performed on the Schwarzschild spacetime in CHAPTER

6, while CHAPTER 7 provides the extension to the boosted case and first attempts at the

head-on collision of a binary of mass ratio 1:100. All are found to be stable, though

there remains significant work to be done to determine whether these tests have truly

recovered an accurate, correct solution to the Einstein field equations or are simply repro-

ducing the correct features. These chapters are solely the work of the author based on

an idea by Mark Hannam, with thanks to Jonathan Thompson and Bernard Schutz for

valuable discussions.
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been possible without the help and guidance of my supervisor, Mark, whom I would like

to thank for putting up with me these past four years and for creating such a relaxed and

enjoyable work environment, and for just generally being a great laugh. I would also like

to express my gratitude to the rest of my friends at the Gravity Exploration Institute—
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Numerical Relativity

—————— 1 ——————

With five gravitational wave detectors currently in operation, preparations underway for

the next generation, and a brace of space-based observatories on the way gravitational

wave astronomy is on a solid footing for the next few decades. But simply building the

equipment, as impressive a technical achievement as that is, isn’t the end of the story.

There is still a significant amount of work necessary to pull out a gravitational wave sig-

nal from the data they collect; unlike optical telescopes, where it’s simply a matter of

looking towards a distant object and watching it shining away in the darkness of space,

for these detectors the situation is much more analogous to listening for a single word in a

crowded room. In practice the continuous noise-dominated data stream output by these

detectors is compared against estimations of what a gravitational wave signal would look

like to pick out any signals that may be contained within it and to deduce the properties

of the astrophysical system that generated it. These estimates come from models that

approximate the morphology of the waveform given some set of source properties, ap-

proximations that are themselves derived from the general relativity by solving the field

equations representing a spacetime containing two black holes evolving forwards in time.

This solution necessarily contains the gravitational wave content of the spacetime.

This first part of the thesis traces back through this journey from general relativity to

complete modelled gravitational wave signals ready for use in the field, exploring each of

the steps above in detail, where each successive section can be considered an application

of the former. The use of general relativity to solve initial value problems is introduced,

followed by the application of this to black hole spacetimes, and the implementation of

these results in a particular computational framework able to extract the gravitational

3
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radiation. Their role in the construction of waveform models is then discussed, before

finally outlining how these models are in turn used for observational astronomy. Our

starting point is the essential result at the heart of general relativity: the relation of the

geometry of spacetime 𝐺𝜇𝜈 to its matter-energy content 𝑇𝜇𝜈 through the Einstein field

equations1,

𝐺𝜇𝜈 = 8𝜋𝑇𝜇𝜈 . 1⋅1

The trouble is that this is very hard to solve. It represents a system of ten coupled

nonlinear partial differential equations, so an exact solution for anything but the simplest

physical scenarios is unattainable. The Schwarzschild solution for example represents

the spacetime surrounding an isolated, stationary mass, both spherically symmetric and

time-independent. The extension to a rotating mass, the Kerr solution, came only after

48 years of development in the field, and still benefits from simplifications offered by

axisymmetry and stationarity. There is little hope for exact solutions for more complex,

dynamic systems in astrophysically relevant scenarios with no inherent symmetry.

If the equations cannot be solved analytically then the hope is to solve them numer-

ically. Numerical analysis of differential equations allows approximate solutions to be

found even when it is impossible to find an exact one. This is the motivation behind

the field of numerical relativity (NR), and amongst its many successes this approach has

enabled the evolution of a pair of rotating black holes as they orbit each other, lose energy

through the emission of gravitational waves, slowly spiral inwards and eventually merge,

leaving a single remnant black hole. While the early stages of the black holes’ inspiral can

be modelled approximately using Newtonian gravity with additional higher-order correc-

tion terms, the later stages necessarily occur in the strong-field, high-velocity regime and

as such require a fully relativistic treatment. The inherent complexity of such a system

puts it well beyond the reach of analytical general relativity and can only be tackled with

the numerical techniques developed over the past 50 years. A great deal of work is nec-

essary to get the Einstein field equations in a form amenable to numerical analysis, and

it is with a brief tour of this that we begin.

1Where throughout Greek is used to denote the spacetime indices of a tensor while Latin indicates
spatial, and we use the (− + ++) metric signature.
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1.1. The 3+1 Formalism

Early attempts by Hahn in 1963 [11] expanded out the Einstein field equations in some

suitable coordinate system and directly evolved the full spacetime metric, representing

the binary Schwarzschild spacetime as a single multiply-connectedmanifold with the hori-

zon of each black hole corresponding to the mouths at either end of a wormhole. This was

evolved for 50 time steps “on an IBM 7090 electronic computer” using a finite-difference

scheme, and showed signs of gravitational attraction between the mouths and collapse

of the throat. Many numerical approaches have been taken since then, and among them

the most common one, and that used in the simulations discussed in this thesis, is to ex-

plicitly introduce an artificial separation between space and time, providing the intuitive

interpretation of a system evolving forwards in time. Specifically the aim is to recast the

Einstein field equations in the form of an initial value problem, where given the initial

state of a system we have a set of equations that can be solved to give its state at some

future time.

While there exists a variety of formalisms with which to construct this separation,

we will focus here on the 3+1 formalism, where the spacetime is decomposed into a set

of non-interacting, three-dimensional spacelike hypersurfaces, or slices2. Conceptually

this can be pictured as the decomposition of a movie into its stack of component frames,

each one capturing a single moment that, considered together, form an evolving picture.

Indeed such a decomposition is called a foliation of the spacetime, formally defined for a

given manifold𝑀 as a set of three-dimensional submanifolds 𝛴𝑡 such that some smooth

scalar field 𝑡 defined on 𝑀 has non-zero gradient everywhere. Any globally hyperbolic

spacetime—that is, one with a Cauchy surface, an achronal set of points causally con-

nected to the entire spacetime—can be foliated in this fashion, sufficient for the scenarios

under consideration in this thesis.

Our aim is to reformulate the Einstein field equations in this 3 + 1 decomposition.

The key feature of these equations is the curvature of the spacetime manifold, encoded

by the four-dimensional Riemann tensor𝑅𝛼𝛽𝜇𝜈 . Following our foliation of the spacetime

we must now define both the intrinsic curvature of the spatial slice,
3𝑅𝛼𝛽𝜇𝜈 , and in addi-

tion the extrinsic curvature that arises from the way the slices are embedded in the bulk,

𝐾𝜇𝜈 . Intrinsic curvature is simply the on-slice Riemann tensor, but extrinsic curvature

2cf. the 1+3 ‘threading’ formalism in which it is foliated by timelike curves [12]



6 NUMER I CAL R E L AT I V I T Y

is determined by parallel transporting the normal to the slices 𝑛𝜇 across that slice, or

equivalently taking the Lie derivative of the on-slice metric 𝛾ij along the normal to the

slice (see [10]),

𝐾𝜇𝜈 = −
1
2
ℒ𝑛⃗𝛾𝜇𝜈 , 1⋅2

and can therefore be conceptualised as the change in the spatial metric as normal ob-

servers move forwards in time. The decomposition of the full Riemann tensor into its

projection on to a spatial slice and the extrinsic curvature is given by the Gauss-Codazzi

equations [10],

𝒫 𝛿
𝛼 𝒫 𝜅

𝛽 𝒫 𝜆
𝜇 𝒫 𝜎

𝜈 𝑅𝛿𝜅𝜆𝜎 =
3𝑅𝛼𝛽𝜇𝜈 + 𝐾𝛼𝜇𝐾𝛽𝜈 − 𝐾𝛼𝜈𝐾𝛽𝜇 , 1⋅3

where the slice-projection operator is defined as 𝒫 𝜇𝜈 ≡ (𝑔𝜇𝜈 + 𝑛𝜇𝑛𝜈 ). We can contract

this to give

𝒫 𝛼𝜇𝒫 𝛽𝜈𝑅𝛼𝛽𝜇𝜈 =
3𝑅 + 𝐾 2 − 𝐾𝜇𝜈𝐾𝜇𝜈 , 1⋅4

but if we simply compute the left-hand side from scratch we find that

𝒫 𝛼𝜇𝒫 𝛽𝜈𝑅𝛼𝛽𝜇𝜈 = 𝑅 + 2𝑛𝜇𝑛𝜈𝑅𝜇𝜈 . 1⋅5

Together then we have that

3𝑅 + 𝐾 2 − 𝐾𝜇𝜈𝐾𝜇𝜈 = 𝑅 + 2𝑛𝜇𝑛𝜈𝑅𝜇𝜈 ,
= 2𝑛𝜇𝑛𝜈𝐺𝜇𝜈 ,
= 16𝜋𝑛𝜇𝑛𝜈 𝑇𝜇𝜈 ,
= 16𝜋𝜌 ,

1⋅6

where we have used the standard Einstein tensor𝐺𝜇𝜈 and defined 𝜌 as the energy density

as measured by normal observers. Note the lack of any time dependence in 1⋅6: this

equation tells us nothing about how the system evolves but is rather a condition that

must at all times be satisfied. It is known as the Hamiltonian constraint.
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Now if we take the projection of the curvature on the slice again, but this time con-

tract it with the normal vector, we arrive at the Codazzi-Mainardi equations [10]

𝒫 𝛿
𝛼 𝒫 𝜅

𝛽 𝒫 𝜆
𝜇 𝑛𝜈𝑅𝛿𝜅𝜆𝜈 = 𝒫 𝜖

𝛽∇𝜖𝐾𝛼𝜇 − 𝒫 𝜏𝛼∇𝜏𝐾𝛽𝜇 ,
= 𝐷𝛽𝐾𝛼𝜇 − 𝐷𝛼𝐾𝛽𝜇 ,

1⋅7

where ∇ is the full four-dimensional spacetime covariant derivative while 𝐷 is the three-

dimensional version on the slice, 𝐷𝛽 ≡ 𝒫 𝜖
𝛽∇𝜖 . Under contraction this gives

𝒫 𝛼𝜇𝑛𝜈𝑅𝜇𝜈 = 𝐷 𝛼𝐾 − 𝐷𝜇𝐾𝛼𝜇 ,
= 𝐷𝜇 (𝛾 𝛼𝜇𝐾 − 𝐾𝛼𝜇) .

1⋅8

We can then substitute 𝑅𝜇𝜈 using the Einstein field equations once again to find

𝐷𝜇 (𝐾𝛼𝜇 − 𝛾 𝛼𝜇) = −𝒫 𝛼𝜇𝑛𝜈 (𝐺𝜇𝜈 +
1
2
𝑅𝑔𝜇𝜈 ) ,

= −𝒫 𝛼𝜇𝑛𝜈𝐺𝜇𝜈 ,
= −8𝜋𝒫 𝛼𝜇𝑛𝜈 𝑇𝜇𝜈 ,
≡ 8𝜋𝑗 𝛼 .

1⋅9

where 𝑗 𝛼 is the momentum density as measured by normal observers. This is the momen-

tum constraint. If we restrict our focus to the spatial parts of these constraint equations

we find that on each slice we must satisfy

3𝑅 + 𝐾 2 − 𝐾ij𝐾ij = 16𝜋𝜌 ,
𝐷𝑗 (𝐾 ij − 𝛾 ij𝐾) = 8𝜋𝑗 𝑖 .

1⋅10

But these represent just four of the ten Einstein field equations. The rest encode the

evolution of the gravitational field, and are contained within two evolution equations we

are yet to obtain: one for the spatial metric, and one for the extrinsic curvature.

To obtain the first of these we take a step back and consider two adjacent slices 𝛴𝑡
and 𝛴t+dt covered by the coordinate lines 𝑥𝑖 , as shown in FIG 1.1, and with coordinate time

𝑡𝜇 = (
1
0
0
0
) . 1⋅11
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For an observer moving along the normal to the slices the lapse in coordinate time is

trivially 𝑡𝜇𝑑𝑡 , while the lapse in proper time between 𝛴𝑡 and 𝛴t+dt is given by

𝑑𝜏 = 𝛼(𝑡 , 𝑥𝑖 )𝑑𝑡 , 1⋅12

and their shift in position relative to the coordinate grid is given by

𝑑𝑥𝑖 = −𝛽 𝑖 (𝑡 , 𝑥𝑖 )𝑑𝑡 . 1⋅13

These two functions 𝛼 and 𝛽 𝑖 are accordingly known as the lapse and the shift vector, and

the four-dimensional line element written in terms of them is

𝑑𝑠2 = −𝛼2𝑑𝑡 2 + 𝛾ij(𝑑𝑥𝑖 + 𝛽 𝑖𝑑𝑡)(𝑑𝑥𝑗 + 𝛽𝑗𝑑𝑡) . 1⋅14

From FIG 1.1 we have then through simple vector addition that

𝑡𝜇𝑑𝑡 = 𝛼𝑛𝜇𝑑𝑡 + 𝛽 𝑖𝑑𝑡 , 1⋅15

which can be rearranged to give

𝑛𝜇 = 𝑡𝜇
𝛼 − 𝛽 𝑖

𝛼 . 1⋅16

This, together with 1⋅11, gives us the components of the normal to the slices

𝑛𝜇 = (𝑛
0

𝑛𝑖
) = (

1
𝛼
−𝛽𝑖

𝛼
) . 1⋅17

The key here is that the specific way in which you foliate your spacetime is entirely

unconstrained: 𝛼 and 𝛽 𝑖 are freely chosen gauge functions, encoding the inherent gauge

freedom of general relativity.

With all this introduced, if we now return to 1⋅2 notice that we are free to change

the vector along which we take the Lie derivative: for some scalar 𝑠 , the Lie derivative

of some tensor 𝑋𝜇𝜈 with respect to the vector ⃗𝑉 is

ℒ𝑠 ⃗V𝑋𝜇𝜈 = 𝑠ℒ ⃗V𝑋𝜇𝜈 . 1⋅18
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Σt

Σt+dt

α nμ
 dt{
xi

xixi-βidt

tμ dt

FIGURE 1.1 Two consecutive three-dimensional slices. The red line is normal to the slices while the
blue is a line of constant spatial coordinate. The time step between the slices is quantified by the lapse
function 𝛼 while the spatial coordinate drift is given by the shift vector 𝛽 𝑖 .

Taking the lapse as just such a scalar, 1⋅2 becomes

𝐾𝜇𝜈 = −
1
2𝛼ℒ𝛼𝑛⃗𝛾𝜇𝜈 , 1⋅19

and given 1⋅16 we can substitute ℒ𝛼𝑛⃗ = ℒ ⃗𝑡 − ℒ ⃗𝛽 to rewrite this as

ℒ ⃗𝑡 𝛾𝜇𝜈 = −2𝛼𝐾𝜇𝜈 + ℒ ⃗𝛽𝛾𝜇𝜈 . 1⋅20

The particular coordinate system we are employing here, specifically 1⋅11, means

we have simply ℒ𝑡 = 𝜕𝑡 . As before, taking only the spatial part of this to focus on the

behaviour on the slice and correspondingly replacing the Lie derivatives with the on-slice

spatial covariant derivatives 𝐷 𝑖 , we arrive at

𝜕𝑡 𝛾ij = −2𝛼𝐾ij + 𝐷𝑖𝛽𝑗 + 𝐷𝑗𝛽𝑖 , 1⋅21
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an evolution equation for the spatial metric. All we need now to complete our reformula-

tion of the Einstein equations as an initial value problem is the corresponding one for the

extrinsic curvature. We previously explored𝒫 𝛿
𝛼 𝒫 𝜅

𝛽 𝒫 𝜆
𝜇 𝒫 𝜎

𝜈 𝑅𝛿𝜅𝜆𝜎 and𝒫 𝛿
𝛼 𝒫 𝜅

𝛽 𝒫 𝜆
𝜇 𝑛𝜈𝑅𝛿𝜅𝜆𝜈

(1⋅3 and 1⋅7), and to obtain this we consider now 𝒫 𝛿
𝜇 𝒫 𝜅

𝜈 𝑛𝜆𝑛𝜎𝑅𝛿𝜆𝜅𝜎 , which turns out to

be [13]

𝒫 𝛿
𝜇 𝒫 𝜅

𝜈 𝑛𝜆𝑛𝜎𝑅𝛿𝜆𝜅𝜎 = ℒ𝑛⃗𝐾𝜇𝜈 + 𝐾𝜇𝜆𝐾𝜆
𝜈 +

1
𝛼𝐷𝜇𝐷𝜈𝛼 ,

= (ℒ𝑡 − ℒ ⃗𝛽)𝐾𝜇𝜆 + 𝐾𝜇𝜆𝐾𝜆
𝜈 +

1
𝛼𝐷𝜇𝐷𝜈𝛼 .

1⋅22

We can also expand a couple of the projection operators in 1⋅3 to give

𝒫 𝛿
𝜇 𝒫 𝜅

𝜈 𝑛𝜆𝑛𝜎 (𝑅𝛿𝜆𝜅𝜎 + 𝑅𝛿𝜅) =
3𝑅𝜇𝜈 + 𝐾𝐾𝜇𝜈 − 𝐾𝜇𝜆𝐾𝜆

𝜈 , 1⋅23

and together we can use these to construct

(ℒ𝑡 − ℒ ⃗𝛽)𝐾𝜇𝜈 = −𝐷𝜇𝐷𝜈𝛼 + 𝛼 (
3𝑅𝜇𝜈 + 𝐾𝐾𝜇𝜈 − 2𝐾𝜇𝜆𝐾𝜆

𝜈 ) + 𝛼 (−𝒫 𝛿
𝜇 𝒫 𝜅

𝜈 𝑅𝛿𝜅) ,

= ″ + 𝛼 (−𝒫 𝛿
𝜇 𝒫 𝜅

𝜈 (8𝜋𝑇𝜇𝜈 −
1
2
𝛾𝜇𝜈 𝑇 )) ,

= ″ + 4𝜋𝛼 (𝒫 𝛿
𝜇 𝒫 𝜅

𝜈 𝛾𝜇𝜈 𝑇 − 2𝒫 𝛿
𝜇 𝒫 𝜅

𝜈 𝑇𝜇𝜈 ) ,

= ″ + 4𝜋𝛼 (𝛾𝜇𝜈 (𝑆 − 𝜌) − 2𝑆𝜇𝜈 ) ,
1⋅24

where we have used the definition of the energy density given in 1⋅6 and introduced

𝑆𝜇𝜈 ≡ 𝒫 𝛼
𝜇 𝒫

𝛽
𝜈 𝑇𝛼𝛽 , the spatial stress as measured by normal observers. The on-slice

contribution to this is

𝜕𝑡𝐾ij = − ℒ ⃗𝛽𝐾ij − 𝐷𝑖𝐷𝑗𝛼

+ 𝛼 ( 3𝑅ij + 𝐾𝐾ij − 2𝐾ik𝐾𝑘
𝑗 ) + 4𝜋𝛼 (𝛾ij(𝑆 − 𝜌) − 2𝑆ij) ,

=𝛽𝑘𝜕𝑘𝐾ij + 𝐾ki𝜕𝑗𝛽𝑘 + 𝐾kj𝜕𝑖𝛽𝑘 − 𝐷𝑖𝐷𝑗𝛼

+ 𝛼 ( 3𝑅ij + 𝐾𝐾ij − 2𝐾ik𝐾𝑘
𝑗 ) + 4𝜋𝛼 (𝛾ij(𝑆 − 𝜌) − 2𝑆ij) ,

1⋅25
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Together 1⋅21 and 1⋅25 make up the Arnowitt-Deser-Misner (ADM) equations. These are

by no means unique—after all, you can freely add multiples of the constraints to them

without affecting the solution (because by definition they will vanish for any valid solu-

tion to the Einstein equations) and so build up different evolution equations. A similar

freedom exists in the choice of conformal scaling and tensor splittings, and the introduc-

tion of auxiliary variables. One such alternative that takes advantage of this freedom

and has proved extremely successful in the numerical relativity community is that first

presented by Nakamura, Oohara and Kojima [14], refined by Shibata and Nakamura [15]

and popularised by Baumgarte and Shapiro [16], known as the BSSN formulation. This

enjoys a long-term stability that ADM lacks, and as a result has become a common choice

for the evolution of black hole spacetimes.

1.2. The BSSN Formalism

The derivation presented here follows that given in chapters 2 and 3 of [10]. The BSSN

formulation is based primarily upon a conformal rescaling of the ADM equations. We

take the conformal transformation of the on-slice metric

𝛾ij = 𝜓 −4𝛾ij , 1⋅26

and further introduce the conformal connection on the slice defined by

𝛤 𝑖 = 𝛾 jk𝛤 𝑖jk . 1⋅27

The only requirement placed on the conformal factor 𝜓 is that it be chosen such that 𝛾
= det 𝛾ij = 1, which means 1⋅27 becomes

𝛤 𝑖 = −𝜕𝑗 𝛾 ij . 1⋅28

A further distinction of the BSSN formulation from the ADM is the decomposition of

the extrinsic curvature into its trace 𝐾 and its traceless part 𝐴ij,

𝐾ij = 𝐴ij +
1
3
𝛾ij𝐾 , 1⋅29
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which itself is conformally transformed into

𝐴ij = 𝜓 −4𝐴ij . 1⋅30

With all this reordering and introduction of new variables, rather than just the two evo-

lution equations for 𝐾ij and 𝛾ij we now need evolution equations for 𝐾 , 𝐴ij, 𝛾ij, 𝛤 𝑖 , and
𝜓 . The first of these come directly from the ADM equations 1⋅21 and 1⋅25:

𝜕𝑡𝐾 = −𝐷𝑖𝐷 𝑖𝛼 + 𝛼 (𝐴ij𝐴ij + 1
3
𝐾 2) + 4𝜋𝛼(𝜌 + 𝑆) , 1⋅31

𝜕𝑡𝐴ij = 𝜓 −4 (−𝐷𝑖𝐷𝑗𝛼 + 𝛼𝑅ij + 4𝜋𝛼 (𝛾ij(𝑆 − 𝜌) − 2𝑆ij))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
traceless

+𝛼 (𝐾𝐴ij − 2𝐴ik𝐴𝑘
𝑗 ) , 1⋅32

𝜕𝑡 𝛾ij = −2𝛼𝐴ij , 1⋅33

and from 1⋅21 we can find the evolution equation for 𝛾 ≡ det 𝛾ij

𝜕𝑡 𝛾 = 𝛾 (−2𝛼𝐾 + 2𝐷𝑖𝛽𝑗 ) ,
= −2𝛾 𝛼𝐾 + 2𝛾 𝜕𝑖𝛽 𝑖 + 𝛽 𝑖𝜕𝑖𝛾 ,

1⋅34

which given the requirement that 𝛾 = 1 (i.e. 𝜓 = 𝛾 −12) gives us that

𝜕𝑡𝜓 = −𝜓
6
(𝛼𝐾 − 𝜕𝑖𝛽 𝑖 ) + 𝛽 𝑖𝜕𝑖𝜓 ,

= − 1
6
𝛼𝐾𝜓 .

1⋅35

That just leaves us yet to find the evolution equation for 𝛤 𝑖 . From its definition in 1⋅28,
together with the 𝛾ij evolution equation in 1⋅20, we have that

𝜕𝑡𝛤 𝑖 = 𝜕𝑡 (−𝜕𝑗 𝛾 ij) ,
= −𝜕𝑗 (𝜕𝑡 𝛾 ij) ,
= −𝜕𝑗 (ℒ𝑡 𝛾 ij) ,
= −𝜕𝑗 (ℒ ⃗𝛽𝛾

ij + 2𝛼𝐾 ij) ,
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= −𝜕𝑗 (ℒ ⃗𝛽𝛾
ij + 2𝛼𝐴ij) ,

= −𝜕𝑗 (ℒ ⃗𝛽𝛾
ij) − 2 (𝛼𝜕𝑗𝐴ij + 𝐴ij𝜕𝑗𝛼) ,

= 𝛾 jk𝜕𝑗 𝜕𝑘𝛽 𝑖 +
1
3
𝛾 ij𝜕𝑗 𝜕𝑘𝛽𝑘 − 2 (𝛼𝜕𝑗𝐴ij + 𝐴ij𝜕𝑗𝛼) ,

1⋅36

but unfortunately this lacks stability due to the divergence of the traceless extrinsic cur-

vature. The solution lies in replacing this using the momentum constraint 1⋅10, which in

terms of our BSSN variables is

𝜕𝑗𝐴ij = −𝛤 𝑖jk𝐴jk − 6
𝜓 𝐴

ij𝜕𝑗𝜓 + 2
3
𝛾 ij𝜕𝑗𝐾 + 8𝜋𝑗 𝑖 , 1⋅37

leaving us with

𝜕𝑡𝛤 𝑖 = 𝛾 jk𝜕𝑗 𝜕𝑘𝛽 𝑖 +
1
3
𝛾 ij𝜕𝑗 𝜕𝑘𝛽𝑘 − 2𝛾 ij𝜕𝑗𝛼

+ 2𝛼 (𝛤 𝑖jk𝐴jk + 6
𝜓 𝐴

ij𝜕𝑗𝜓 − 2
3
𝛾 ij𝜕𝑗𝐾 − 8𝜋𝑗 𝑖) ,

1⋅38

which completes the set of five BSSN evolution equations.

With these in hand together with our constraint equations we now have everything

needed to start evolving a system. All that remains is to provide some initial state and

then solve the evolution equations for each future time. The particular way in which

this initial state is chosen is the focus of the next section, where we see how to solve the

constraint equations for a variety of black hole spacetimes.

1.3. Initial Data Construction

Having discovered two constraints that must be satisfied at all times by our spacetime it

is clear that we can’t specify the initial geometry arbitrarily, and must instead solve the

constraint equations to provide the appropriate 𝛾ij, 𝐾ij for a given physical scenario. This

is certainly not trivial given they form a system of four coupled elliptic partial differential

equations, but a number of techniques [17–19] have been developed to tackle this prob-

lem. We focus here on the York-Lichnerowicz conformal (transverse) decomposition [20, 21].
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We begin by taking the Hamiltonian and momentum constraints 1⋅10 and casting

them in BSSN form,

8𝐷 2𝜓 −
3

𝑅̃𝜓 + 𝜓 5 (𝐴ij𝐴ij − 2
3
𝐾 2) + 16𝜋𝜓 5𝜌 = 0 , 1⋅39

𝐷𝑗𝐴ij − 2
3
𝐷 𝑖𝐾 − 8𝜋𝑗 𝑖 = 0 , 1⋅40

which has transformed the Hamiltonian constraint into an elliptic equation in 𝜓 . If we

solve this for 𝜓 we will be able to reconstruct the physical on-slice metric 𝛾ij from some

conformal 𝛾ij. As for the momentum constraint, we have the three unknowns 𝐴ij, 𝐾 , 𝑗 𝑖

and so require three equations that can be solved to obtain them.

At this point we change slightly our conformal transformation in order to simplify

the final expressions we derive. The covariant derivative of a symmetric traceless tensor,

for example our traceless extrinsic curvature 𝐴ij, obeys [10]

𝐷𝑗𝐴ij = 1
𝜓 𝑛𝐷𝑗 (𝜓 𝑛𝐴ij) + (10 − 𝑛)𝐴ik𝜕𝑘 ln 𝜓 , 1⋅41

so by using the conformal factor 𝜓 10 rather than 𝜓 4 as we have used up to this point we

can eliminate the second term. A further property of symmetric traceless tensors is that

they can be decomposed into their transverse and longitudinal parts:

𝐴ij = 𝐴ij
∗⏟

transverse
+ (L𝑊 )ij⏟

longitudinal

, 1⋅42

with the longitudinal part the conformal Killing form of the vector 𝑊⃗ , generated by the

operator

(L𝑊 )ij ≡ 𝐷 𝑖𝑊 𝑗 + 𝐷 𝑗𝑊 𝑖 − 2
3
𝛾 ij𝐷𝑘𝑊 𝑘 . 1⋅43

This gives the momentum constraint in the form of a set of three coupled equation for

the vector 𝑊 𝑖 :

𝐷𝑗 (L𝑊 )ij − 2
3
𝜓 6𝐷 𝑖𝐾 − 8𝜋𝜓 10𝑗 𝑖 = 0 . 1⋅44

With our refashioned constraint equations we can now compute 𝜓 and 𝑊 𝑖 (and hence

𝛾ij and 𝐾 ij) given some 𝛾ij, 𝐾 , and 𝐴ij
∗.
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The trouble is that while it’s straightforward to construct a symmetric traceless tensor

like 𝐴ij it’s much more difficult to ensure it is transverse, satisfying 𝐷𝑖𝐴ij
∗. To tackle this

we introduce two auxiliary quantities, some symmetric traceless tensor𝑀 ij and a vector

𝑌 𝑖 . As before, 𝑀 ij can be decomposed as

𝑀 ij = 𝑀 ij
∗ − (L 𝑌 )ij , 1⋅45

and as 𝑀 ij
∗ is by definition transverse it must follow that

𝐷𝑗 (L 𝑌 )ij = 𝐷𝑗𝑀 ij , 1⋅46

which, given 𝑀 ij, can be solved for 𝑌 𝑖 and in turn give us 𝑀 ij
∗ .

If we then take this to be the transverse extrinsic curvature that we’re trying to find

(i.e. 𝑀 ij
∗ = 𝐴ij

∗), we then have from 1⋅42

𝐴ij = 𝐴ij
∗ + (L𝑊 )ij ,

= 𝑀 ij
∗ + (L𝑊 )ij ,

= (𝑀 ij − (L 𝑌 )ij) + (L𝑊 )ij ,
= 𝑀 ij + (− (L 𝑌 )ij + (L𝑊 )ij) ,
= 𝑀 ij + (L 𝑉 )ij ,

1⋅47

where 𝑉 𝑖 ≡ 𝑊 𝑖 − 𝑌 𝑖 .
Finally then, rather than being given initial data in the form of 𝐴ij

∗ we are instead

given 𝐴ij, 𝑀 ij, and 𝑉 𝑖 . Correspondingly the momentum constraint is written

𝐷𝑗 (L 𝑉 )ij + 𝐷𝑗𝑀 ij − 2
3
𝜓 6𝐷 𝑖𝐾 − 8𝜋𝜓 10𝑗 𝑖 = 0 . 1⋅48

The constraint equations are then solved for 𝜓 and 𝑉 𝑖 , with free data specified in 𝛾ij,𝑀 ij,

𝐾 , 𝜌 , and 𝑗 𝑖 , and finally the physical quantities can be reconstructed as

𝛾ij = 𝜓 4𝛾ij , 1⋅49

𝐾 ij = 𝜓 −10 (𝑀 ij + 𝐷𝑗 (L 𝑉 )ij) + 1
3
𝛾 ij𝐾 . 1⋅50
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These variables have no obvious interpretation, but if one adopts the conformal thin-

sandwich decomposition in which the conformal metric is specified on two neighbouring

slices then they can be related to the shift and conformal metric as [10]

𝑉 𝑖 = 𝛽 𝑖 , 1⋅51

𝑀 ij = − 1
2𝛼𝜕𝑡 𝛾

ij . 1⋅52

At this stage we have all that we need to begin evolving a given spacetime. We have

a rigorous way to define a physically valid initial state of the spacetime, along with a

set of partial differential equations that, when solved, return its future state. All of this

is phrased in terms of quantities that have a relatively straightforward physical interpre-

tation, dependent only on the slice geometry (𝐾 and 𝛾 ) and the coordinate structure

(𝛼, 𝛽, 𝜓 ). In the next chapter we apply these general results to the specific case of black

hole spacetimes, translating some key results of general relativity into the framework we

have introduced here.



Simulating Black Hole Spacetimes

—————— 2 ——————

So far we have explored the recasting of general relativity in a form suitable for numerical

analysis in a general sense, discussing the methods used and deriving key results in a

fairly scenario-agnostic manner aside from the requirement of global hyperbolicity for

the foliation of our spacetime. We turn now to the primary focus of this thesis and

indeed the primary application of numerical relativity in the context of gravitational wave

astronomy: black hole binaries. This in fact allows us to simplify the picture significantly,

particularly in the illustrative, if somewhat contrived, example of two momentarily-static

Schwarzschild black holes. We begin with just one of these and end up at multiple Kerr

black hole initial data, before moving on to a discussion of some of the more practical

aspects involved in their evolution such as the extraction of the dynamics. We conclude

with a brief introduction to one particular implementation of all that has been discussed

in these first two chapters: the BAM code.

2.1. Schwarzschild Initial Data

For a static (𝐾ij = 0) conformally flat (
3

𝑅̃ = 0) vacuum (𝜌 = 0) spacetime upon which

we impose that 𝐾 = 0 (the maximal slicing condition), the Hamiltonian constraint 1⋅39
reduces to simply

𝐷 2𝜓 = 0 . 2⋅1

Imposing the natural boundary condition that the spacetime is asymptotically flat (𝜓 |∞ =
1), this is trivially solved by simply 𝜓 = 1, which would return the on-slice metric 𝛾ij =

17
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( 1 0 0
0 1 0
0 0 1

): flat space. The simplest nontrivial solution would be, for the radial coordinate 𝑟 ,

𝜓 = 1 + 𝑘
𝑟 , 2⋅2

giving the spatial metric

𝛾ij = (
(1 + 𝑘

𝑟 )
4

0 0

0 (1 + 𝑘
𝑟 )

4 𝑟 2 0

0 0 (1 + 𝑘
𝑟 )

4 𝑟 2 sin2𝜃
) , 2⋅3

which is the spatial part of the Schwarzschildmetric in isotropic coordinates with 𝑀
2 → 𝑘.

The temporal part of the metric in these coordinates is given by the lapse

𝛼 = 1 − 𝑀
2𝑟

1 + 𝑀
2𝑟
. 2⋅4

Thus we have complete initial data for a single Schwarzschild black hole. But of course

in 2⋅1 we can take advantage of the linearity of Laplace’s equation and form new solutions

by adding together other solutions. For two black holes then we can simply take

𝜓 = 1 + 𝑘1

|𝑟 − 𝑟1|
+ 𝑘2

|𝑟 − 𝑟2|
,

= 1 + 𝑀1

2|𝑟 − 𝑟1|
+ 𝑀2

2|𝑟 − 𝑟2|
.

2⋅5

The general form of this for𝑁 black holes is known as the Brill-Lindquist initial data [22,

23]. Note that the singular points 𝑟𝑖 represent spatial infinity in different asymptotically

flat regions, so the spacetime considered as a whole is a multiply-connected manifold

consisting of 𝑁 separate universes joined by wormholes to the ‘prime’ universe. The

points 𝑟𝑖 themselves are however not part of the manifold, as can be seen from the sketch

in FIG 2.1, so we consider the solution to be given inℝ3 punctured by𝑁 points. This rather

exotic topology may seem somewhat troubling at first, but it is all contained within the

horizon and so cannot influence the rest of the spacetime.
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FIGURE 2.1 Schematic illustrating the nontrivial topology of the Brill-Lindquist initial data. The
two black holes in the upper region are represented by wormholes connecting to the two lower additional
asymptotically flat regions. In this way the horizon corresponds to the throat of the wormhole while the
singularity corresponds to spatial infinity in the secondary universe.

2.2. Kerr Initial Data

The preceding discussion of the Schwarzschild black hole benefitted from the drastic sim-

plifications that come with temporal symmetry, but it is rather unphysical—astrophysical

black holes will both be moving and are generically expected to be spinning, so we need

to construct initial data that are asymmetric in time and include these features. We be-

gin with some of the same simplifications we used before, namely that we work with a

maximally-sliced conformally flat vacuum. Our free parameter 𝑀 ij we set to zero, and

so the momentum constraint 1⋅48 reduces to

𝐷𝑗 (L 𝑉 )ij = 0 . 2⋅6

One solution1 to this that produces an extrinsic curvature for a boosted Kerr black hole

is given by [10]

𝑉 𝑖 = − 1
4𝑟 (7𝑃

𝑖 + 𝑛𝑖𝑛𝑗𝑃 𝑗 ) + 1
𝑟 2 𝜖

ijk𝑛𝑗𝑆𝑘 , 2⋅7

1See [24] for a more complete list of solutions.
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for some constant vectors 𝑃 𝑖 and 𝑆 𝑖 , and where we now use 𝑛𝑖 to signify the outward

unit radial vector rather than the unit normal to the slice. We now have our 𝑉 𝑖 and so,

following 1⋅47, can construct 𝐴ij as

𝐴ij = 3
2𝑟 2 (𝑛𝑖𝑃𝑗 + 𝑛𝑗𝑃𝑖 + 𝑛𝑘𝑃

𝑘 (𝑛𝑖𝑛𝑗 − 𝛿ij)) −
3
𝑟 3 (𝜖ijk𝑛𝑗 + 𝜖jlk𝑛𝑖) 𝑛

𝑙𝑆 𝑘 , 2⋅8

and through 1⋅49 can reconstruct the physical extrinsic curvature by simply multiplying

by 𝜓 −2. This is the Bowen-York extrinsic curvature. If we substitute this into the ADM

momenta integrals derived in [13],

𝑃 𝑖
ADM =

1
8𝜋 lim𝑟 →∞∮(𝐾 𝑖

𝑙 − 𝛿 𝑖𝑙𝐾)𝑛𝑙𝑑𝑆 , 2⋅9

𝐽 𝑖ADM =
1

16𝜋 lim𝑟 →∞∮𝜖 ijk𝑥𝑗𝐾kl𝑛𝑙𝑑𝑆 , 2⋅10

we find that the vectors ⃗𝑃 and ⃗𝑆 are in fact the linear and angular momenta of our

spacetime. And once again, just as with the Brill-Lindquist data, we can exploit the

linearity of the momentum constraints to add freely multiple black hole solutions.

But we don’t yet have a complete set of initial data for boosted spinning black holes.

The Hamiltonian constraint still needs to be solved for 𝜓 , which as a result of the non-

vanishing extrinsic curvature can no longer be solved analytically. We do however still

know the boundary conditions that are to be imposed on the solution—asymptotic flat-

ness of the conformal factor at the outer boundary—which we assume once again satisfies

behaviour of the form

𝜓 = 1 + 𝑘
𝑟 . 2⋅11

But the inner boundary requires a more subtle treatment. In the Brill-Lindquist data

representing the Schwarzschild black hole we had a solution that is singular at 𝑟 = 𝑟𝑖 .
By retaining the form of 2⋅11 here we retain the interpretation of the singularities as

infinities in separate asymptotically flat regions and so generalise Brill-Lindquist initial

data in what is known as puncture initial data. For multiple punctures we simply add

terms of the form 2⋅8 for each black hole. Now in the Schwarzschild case we solved the

momentum constraint by taking advantage of the time-independence, setting 𝜕𝑡𝐾 = 0

and vanishing lapse at the horizon. That option is no longer open to us, so without an

inner boundary condition we will have to integrate right through to the other universe
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and handle the singularities in 𝜓 . This is done by separating out the singular piece,

assumed to be of Brill-Lindquist form, from the rest of the solution 𝑢:

𝜓 = 𝜓BL + 𝑢 . 2⋅12

Previously we saw how, for time-independent 𝜓BL, the 𝐷 2𝜓 term in the Hamiltonian

constraint vanishes for a punctured manifold. We apply this to reduce the Hamiltonian

constraint down to

𝐷 2𝑢 = − 1
8𝜓 7

BL
𝐴ij𝐴ij (1 + 𝑢

𝜓BL
)
−7

, 2⋅13

and are left solving this in place of the Hamiltonian constraint in terms of 𝜓 . Again, we

start by considering boundary conditions and, again, asymptotic flatness means

𝑢 = 1 + 𝑘
𝑟 , 2⋅14

but this time we have no need to worry about the inner boundary condition at the punc-

ture as the divergent part now vanishes as you approach it. To see why, consider the

Hamiltonian constraint 2⋅13. As we approach the puncture, 𝜓BL diverges as | ⃗𝑟 − ⃗𝑟𝑖 |−1, but

the 𝐴ij𝐴ij component diverges as | ⃗𝑟 − ⃗𝑟𝑖 |−6 (due to the 1
𝑟 3 in 2⋅8), and so

lim𝑟 →∞ −
1

8𝜓 7
BL
𝐴ij𝐴ij = | ⃗𝑟 − ⃗𝑟𝑖 |7

| ⃗𝑟 − ⃗𝑟𝑖 |6
,

= | ⃗𝑟 − ⃗𝑟𝑖 | .
2⋅15

The Hamiltonian constraint then becomes 𝐷 2𝑢 = 0. The existence, uniqueness, and

regularity of solutions to this are discussed by Brandt and Brügmann in [25]. At this

point we have in hand our complete set of initial data for a boosted spinning black hole.

All that’s left is to move this forwards in time using the evolution equations.

2.3. Evolution

Although it may be possible to move the punctures, the general sense in the commu-

nity at the time was that this could not work, and early work relied on fixed punctures.

The trouble, it was thought, with our solution in the previous section in 2⋅12 is that we
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treat the conformal factor as two pieces, the regular time-dependent 𝑢 and the singular

time-independent 𝜓BL. By relying on this time-independence in 𝜓BL we are anchoring the

puncture in place: by definition this piece is not changing with respect to time so we are

limited to evolving static punctures. This is clearly insufficient if we want to simulate

two inspiralling black holes. It should be noted that contrary to this some successful evo-

lution schemes were proposed: notably [26] which applies the “Gamma-freezing” shift

condition first introduced for excision evolutions in [27, 28] to punctures to permit mo-

tion of the horizon while keeping the inner asymptotic end of the puncture anchored,

and [29] which makes use of dynamically adjusted co-moving coordinates to evolve two

punctures for one orbital cycle.

Two methods were introduced to mitigate this issue, both of which involve abandon-

ing the problematic splitting of the conformal factor. First, if we ensure that the domain

is discretised such that at the start of the evolution the puncture lies between two grid

points (see §2.5) then there is really no singularity in the computational domain and so

the issue is avoided. The only concern would be in the calculation of derivatives across

the region containing the would-be singularity due to how rapidly they change close to

the puncture, and the accurate calculation of very large derivatives close to the puncture.

We therefore define a new conformal factor here,

𝜙 = ln 𝜓 . 2⋅16

The issue still remains of course—we will still be taking derivatives across a singularity—

but a logarithmic divergence grows far slower than a reciprocal one. Nevertheless this

does still produce large numerical errors, but these errors have been seen to be entirely

contained within the interior of the black hole and so do not go on to destabilise the

evolution [10].

The second option is to remove the singularity entirely through a simple redefinition

of the conformal factor that forces it to vanish at the puncture,

𝜒 = 𝜓 −4 . 2⋅17

With the singular behaviour now absorbed into the vanishing 𝜒 at the puncture we have

a completely regular conformal factor that can be evolved in its entirety. The puncture

is free to move.
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These initial data and evolution schemes have been, and continue to be, successfully

used to simulate black hole spacetimes [30–32], though typically with a different slicing

than that we’ve been using up to this point. We started this chapter with the introduction

of the maximal slicing gauge condition, but in practice this involves solving an elliptic

equation at each time step which is remarkably expensive. Instead, it is common to use

the 1+log slicing, given by [26, 33],

(𝜕𝑡 − 𝛽 𝑖𝜕𝑖 ) 𝛼 = −2𝛼𝐾 , 2⋅18

which shares the singularity-avoidance behaviour of maximal slicing without the compu-

tational expense. One intriguing feature of this slicing however is the behaviour of the

isotropic coordinates as you approach the puncture. Rather than covering the interior of

the black hole they double-cover the exterior, and so as we’ve seen our Bowen-York initial

data for 𝑁 black holes (FIG 2.1) represents 𝑁 + 1 asymptotically flat regions connected

by 𝑁 wormholes—the singularity at 𝑟 = 0 is then just a coordinate singularity rather

than a curvature singularity. Upon evolution of the single black hole data it has been

found [34] that while the geometry of the spacetime remains static as one would hope,

gauge-dependent quantities are not; hence the coordinate system is dynamic. This dy-

namism persists only briefly before settling down to a new time-independent form, with

a singularity that goes as 1
√𝑟 rather than 1

𝑟 . It is worth emphasising that this structure

is the stationary solution of the Schwarzschild spacetime in the 1+log gauge. Intuitively

this can be pictured as the additional universes at the end of each wormhole detaching and

the throat then asymptoting to a finite-area surface, or finite-radius cylinder in the em-

bedding diagram representation of FIG 2.2. Note that this behaviour, like the wormhole

behaviour before it, is not a feature of the interior topology but purely one of the coor-

dinate system—the singularity at 𝑟 = 0 remains just a coordinate singularity as we still

have a punctured domain terminating at 𝑟 = 0 to excise the curvature singularity. The

observation of this coordinate behaviour has motivated the construction of initial data

that skips over this transitionary period and begins directly with the relaxed gauge [34],

labelled trumpet initial data for its form in FIG 2.2. There are no longer extraneous unphys-

ical regions within each event horizon, and more importantly if the appropriate initial

shift can be found there is hope that the evolution data would correspond to physical quan-
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FIGURE 2.2 LEFT: Interior coordinate topology of a ‘wormhole’ type puncture, represented as an
embedding diagram of a spatial slice (inclination 𝜋

2 ) of the Kruskal-Szekeres maximal extension of the
Schwarzschild solution. Two asymptotically flat external regions are connected by a throat of radius 2M,
the event horizon [34]. RIGHT: Interior coordinate topology of a ‘trumpet’ type puncture, represented as an
embedding diagram of a spatial slice (inclination 𝜋

2 ) of the maximal extension of the Schwarzschild solution.
The external region is asymptotically flat while internally it approaches a cylinder of radius 3𝑀

2 [34].

tities, with minimal gauge evolution. It is hoped that this may in turn work to minimise

the gauge motion of the puncture that occurs in the initial stages of each simulation [34].

All of this though, whether wormholes or trumpets, is built upon the assumption of

conformal flatness. Bowen-York data is conformally flat, and reduces to the Schwarzschild

spacetime—itself conformally flat in isotropic coordinates—in the static non-spinning

case. It would be hoped, then, that in the static spinning case the Bowen-York data would

reduce to the Kerr spacetime in some coordinate system, but it has been shown [35] that

there exist no conformally flat slicings of the Kerr spacetime so this cannot be the case.

This presents us with a problem: the Kerr solution is the only axisymmetric stationary

black hole solution [36], so if the Bowen-York black hole we’ve derived, which is axisym-

metric, doesn’t reduce to Kerr the only resolution is that it must not be stationary. Indeed

it turns out that what we have produced is a solution corresponding to Kerr plus some

unphysical gravitational radiation, that we label junk radiation2. Thankfully it is suffi-

cient to simply let this pass through the system; it doesn’t destabilise the evolution and

after its passage has no further impact on the data, though this does mean that the first

∼ 200𝑀 of data must be disregarded. While there is hope that the use of trumpet initial

data may help to limit the resulting initial uncertainties in gravitational radiation [34],

the conflict between conformally flat data and the Kerr spacetime remains the dominant

source. Similarly, even though the boundary conditions in the BSSN formulation are

2The same is true of the boosted non-spinning case—the Bowen-York solution reduces to a boosted
Schwarzschild black hole plus some spurious gravitational wave content
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well-posed there still exist constraint violations that propagate inwards from the outer

boundary of the domain as a wave [13]. In practice this is often ‘solved’ by pushing the

boundary of the domain so far out as to be causally disconnected from the system being

evolved in the centre.

In spite of these fundamental issues, our black hole spacetime can now be evolved

through any one of a number of standard numerical methods for solving partial differ-

ential equations. But we still need an intuitive way to know what’s going on in the

simulation—we need to extract the dynamics of the black hole from the evolution of the

spacetime as whole.

2.4. Data Extraction

Attributing mass and momentum to a black hole is nontrivial. Energy-momentum is an

inherently non-local property of the spacetime [37]: for example, one option would be

to calculate the ADM quantities we’ve already introduced in 2⋅9, but these are calculated

at spatial infinity and refer the mass and angular momentum of the entire spacetime

rather than the black hole itself. This wouldn’t be a problem for an isolated, stationary

Schwarzschild black hole but in the binary configurations we’re interested in the space-

time will contain two black holes plus gravitational radiation. How much of the total

mass and angular momentum ‘belongs’ to each of these components?

Typically [38–40] a black hole is defined by its event horizon, so we may be better

served determining the dynamics of that. We can for example derive a measure of a black

hole’s mass the irreducible mass purely from the area 𝐴 of its horizon,

𝑀irr = √
𝐴

16𝜋 , 2⋅19

with the equivalent for cases with spin approximated by the Christodoulou mass,

𝑀 = √𝑀 2
irr +

𝑆 2

4𝑀 2
irr

. 2⋅20

Unfortunately this isn’t particularly practical for numerical simulations as the event hori-

zon is defined as the chronological future of all points bounding those regions in the
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spacetime not contained in the causal past of future null infinity3, and so can be com-

puted only after completing the simulation. We can however work with the apparent

horizon, defined locally as the outermost closed two-dimensional surface on each slice

whose outgoing null geodesics 𝐿⃗ orthogonal to the surface have zero expansion 𝐻 ev-

erywhere. This surface lies within (or in the stationary case, coincides with) the event

horizon [41]. If we let the 2D metric induced upon the surface by that of the slice be

ℎ𝜇𝜈 , the apparent horizon is then defined as the surface satisfying

𝐻 = − 1
2
ℎ𝜇𝜈ℒ ⃗Lℎ𝜇𝜈 = 0 . 2⋅21

With a locally-defined horizon now available to us we can compute the corresponding

mass from its area as above, and the angular momentum can be extracted following the

procedure outlined in [42]. Recovering the dynamics of the black hole represents only

half of the task we face though—ultimately we are interested here in the application to

gravitational wave astronomy, so we now turn to the extraction of the wave content of

our simulated spacetime.

The gravitational wave signal is extracted at a finite radius from the binary in the form

of the Weyl scalar 𝛹4, which we first need to reformulate in terms of our BSSN variables

introduced in the last chapter. For completeness, and to make clear the conventions used,

we recall the definition of the Weyl scalar,

𝛹4 = −𝑅𝛼𝛽𝛾 𝛿𝑘𝛼𝑚̄𝛽𝑘𝛾 𝑚̄𝛿 , 2⋅22

which is simply the projection of the full Riemann tensor 𝑅𝛼𝛽𝛾 𝛿 on to a coordinate basis

formed of the null tetrad 𝑙 , 𝑘, 𝑚, 𝑚̄, where

−𝑙 ⋅ 𝑘 = 𝑚 ⋅ 𝑚̄ = 1 . 2⋅23

Following the Gram-Schmidt orthonormalisation procedure outlined in [43], we form

the spatial triad

3Formally, the future event horizon in the manifold 𝑀 is the boundary of the region ℬ =
𝑀\ [𝑀 ∩ 𝒥 −(ℐ+)], where 𝒥 −(𝑥) = {𝑦 ∈ 𝑀|𝑦 ≺ 𝑥} denotes the causal past of points 𝑥 in 𝑀 and
ℐ+(𝑥) = {𝑦 ∈ 𝑀|𝑦 ≪ 𝑥} denotes the chronological future of points 𝑥 in 𝑀 .
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𝑢𝑖 = [−𝑦, 𝑥, 0] , 2⋅24

𝑣 𝑖 = [𝑥, 𝑦 , 𝑧] , 2⋅25

𝑤 𝑖 = 𝑔 𝑖𝑎𝜖abc𝑢𝑎𝑣 𝑏 , 2⋅26

with the orthonormal tetrad vectors given by

𝑘0 = 1
√2𝛼

𝑘𝑖 = 1
√2

(𝑛𝑖 − 𝑣 𝑖 ) , 2⋅27

𝑙0 = 1
√2𝛼

𝑙 𝑖 = 1
√2

(𝑛𝑖 + 𝑣 𝑖 ) , 2⋅28

𝑚0 = 0 𝑚𝑖 = 1
√2

(𝑢𝑖 + 𝑖𝑤 𝑖 ) . 2⋅29

Plugging these into 2⋅22 gives

𝛹4 = −
1
4
(𝑅abcd𝑣𝑎𝑣 𝑐 − 2𝑛𝑎𝑅abcd𝑣 𝑐 + 𝑛𝑎𝑛𝑐𝑅abcd)
(𝑢𝑏 − 𝑖𝑤 𝑏 ) (𝑢𝑑 − 𝑖𝑤𝑑) ,

2⋅30

which when projected on to the slice becomes

𝛹4 = −
1
4
(𝒫 𝑝

𝑎 𝒫 𝑞
𝑏 𝒫

𝑟
𝑐 𝒫 𝑠

𝑑𝑅pqrs𝑣𝑎𝑣 𝑐 − 2𝒫 𝑝
𝑎 𝒫 𝑞

𝑏 𝒫
𝑠
𝑑𝑛𝑠𝑅pqrs𝑣𝑎 + 𝒫

𝑞
𝑏 𝒫

𝑠
𝑑𝑛𝑝𝑛𝑟𝑅pqrs)

(𝑢𝑏 − 𝑖𝑤 𝑏 ) (𝑢𝑑 − 𝑖𝑤𝑑) .
2⋅31

Finally through the Gauss-Codazzi (1⋅3) and Codazzi-Mainardi (1⋅7) equations, together

with 1⋅22, we can express the Weyl scalar purely in terms of our ADM variables:

𝛹4 = −
1
4
[( 3𝑅abcd + 𝐾ac𝐾bd − 𝐾ad𝐾bc) 𝑣𝑎𝑣 𝑐 − 2 (𝐷𝑏𝐾ad − 𝐷𝑎𝐾bd) 𝑣𝑎

+ (𝜕0𝐾bc − 𝛽𝑎𝜕𝑎𝐾bc + 𝐾ab𝜕𝑐𝛽𝑎 + 𝐾bc𝐾 𝑐
𝑑 +

1
𝛼𝐷𝑏𝐷𝑑𝛼)] (𝑢𝑏 − 𝑖𝑤 𝑏 ) (𝑢𝑑 − 𝑖𝑤𝑑) .

2⋅32
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As 𝛹4 is of spin weight -2 we can project it on to the spin-weighted spherical harmonics

as

𝛹4(𝑡 , 𝜃 , 𝜙) =
∞
∑
𝓁=2

𝓁
∑
𝑚=𝓁

𝛹4,𝓁𝑚(𝑡) −2𝑌𝓁𝑚(𝜃 , 𝜙) , 2⋅33

and evaluate it at some finite radius by integrating over a sphere, which also smooths

out noise in the numerical data.

This completes the journey from general relativity, through the numerical evolution

of black hole spacetimes, to the extraction of the associated gravitational radiation. We

have set up a theoretical framework that, when implemented, possesses all the features

necessary for the production of accurate simulated gravitational waves from black hole

binaries that are entirely consistent with analytical general relativity. It seems fitting

then to conclude this chapter with an outline of one such implementation: BAM.

2.5. BAM

First developed by Brügmann in 1997 [44], the Bifunctional Adaptive Mesh code, or

BAM , has seen active use over the past twenty years as numerical relativity has progressed

from fractions of orbits of Schwarzschild to full inspiral-merger-ringdown simulations

of precessing Kerr punctures, and as the study of gravitational waves has transformed

from a abstract theoretical endeavour to an observational science. Simulations gener-

ated by BAM were instrumental in this transformation, used in the search and analysis of

GW150914 along with those produced by other codes such as SpEC, LazEv, Maya, LEAN,

Llama, and others. These codes differ in a variety of ways further explored in CHAPTER 5,

but aside from SpEC all apply the puncture framework laid out in the preceding sections

to evolve a variety of spacetimes, sharing many features with BAM.

Leaving aside any physical interpretation, all we have at this stage is a set of partial

differential equations that we wish to solve numerically. The approach taken by BAM is

known as the method of lines, whereby the continuous spatial derivatives in our evolution

equations are approximated algebraically through fourth-order finite differences to leave a

dependence on time only. In this manner a partial differential equation is turned into a set

of ordinary differential equations, solved through fourth-order Runge-Kutta integration.

Within BAM the computational domain is discretised as a grid of 𝑁 points at which

the equations are solved, separated by 𝑑. With any such discretisation scheme there is in-
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evitably sometruncation error coming from the approximation of continuous derivatives

with finite differences, an error that vanishes in the limit that 𝑑 → 0 (or equivalently

resolution → ∞). This will be of tolerable magnitude given some sufficiently fine spac-

ing, a spacing that is determined by the length scale of the simulated system; for example

in our black hole spacetimes it will be characterised by the short-wavelength features of

our BSSN variables close to the puncture. Consequently a great deal of computational

resources are wasted on the asymptotically flat space far from the puncture, which could

be resolved perfectly well with much more widely spaced grid points. Ideally then we

would use a changing grid spacing adapted to the changing length scale of the system:

high resolution where there’s fine features, low resolution where there’s coarse features.

This technique is known as adaptive mesh refinement and has been used to model every-

thing from water flow around fishing nets [45] to the formation of galaxies [46].

The implementation of this within BAM consists of a series of nested Cartesian grids

(or boxes) made up of 𝑁𝑙 grid points of successively finer spacing, nested in the sense

that the grid at each refinement level 𝑙 is entirely covered by that of level 𝑙 − 1. BAM uses

the Berger-Oliger refinement scheme, in which the grid spacing 𝑑 on each refinement

level follows the scaling

𝑑𝑙 =
𝑑0

2𝑙
{𝑙 ∈ ℤ, 𝑙 ≥ 0} , 2⋅34

as does the duration between successive time steps. On the finest level the grids are

centred on the black holes, one patch covering each, moving with the black hole. The

extent of these grids is given by

𝐷𝑙 = ±
𝑑0

2𝑙+1
(1 +𝑁𝑙 ) , 2⋅35

and as we move down the levels the grids grow in extent until a level is reached where

the two would overlap (FIG 2.3). At this point they are instead replaced by a single fixed

grid of minimal extent necessary to contain the two original grids, with the grid on the

coarsest level covering the entire domain. Data is communicated between these levels

of differing resolution through sixth-order polynomial interpolation. Strictly speaking

this is not full adaptive mesh refinement, in the sense of using some accuracy criteria to

dynamically adjust the size and shape of the refinement regions. In this treatment the
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FIGURE 2.3 Embedding diagram schematic of the grid structure used in BAM, shown here for an equal-
mass binary. The adaptive mesh refinement procedure ensures that finely spaced grids are used close to the
puncture while far more coarsely spaced grids are used far away. Here the grid spacings and extent scale
by a factor of two between each level.

boxes are moved to track the motion of the punctures and, since the black hole size and

geometry changes little over the course of the evolution, this is found to be sufficient.

General numerics aside, in terms of specific numerical relativity choices BAM employs

the BSSN formalism. For the production of simulations used for gravitational wave

astronomy as in CHAPTER 4 black holes are evolved using the 𝜒 -variant of the moving

puncture scheme described in §2.3, starting off with Bowen-York wormhole initial data

and an initially vanishing “pre-collapsed” lapse of the form 𝛼 = 𝜓 −2
0 and shift vector

𝛽 𝑖 = 0. This is modified for later exploratory work presented in PART III, in which the

𝜙-variant is used to evolve both wormhole and trumpet initial data as the need arises. In

both cases the 1+log slicing is used, with the shift fixed by the 𝛤 -driver condition,

𝜕 2
𝑡 𝛽 𝑖 =

3
4
𝜕𝑡𝛤 𝑖 − 𝜂𝜕𝑡𝛽 𝑖 . 2⋅36

where the 𝜂 term is simply an ad hoc addition that damps strong oscillations in the shift.

In all simulations produced for this thesis we set 𝜂 = 0 following the observation in [34]

that doing so minimises the coordinate drift between the use of wormhole- or trumpet-

form 1+log data. 2⋅36 describes a common technique to solve an otherwise computation-
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ally expensive shift condition (cf. the Gamma-freezing condition 𝜕𝑡𝛤 𝑖 = 0 introduced

in [28]) by setting up 𝛽 𝑖 as an initial value problem.

It is the shift vector that provides our first glimpse into the dynamic behaviour of the

puncture in these simulations as 1⋅35 implies that where 𝜓 → ∞ (that is, at the puncture)

the velocity 𝜕𝑡 ⃗𝑥 = − ⃗𝛽 [47], though recall that BAM’s staggered grid configuration means

that we will have to interpolate on to the puncture to extract this speed. Using this, and

by first estimating that at the current time step the puncture is located in the same place

as at the previous, BAM is able to iteratively improve its estimate of the puncture’s location

𝑥current by considering

𝑥current = 𝑥previous + 𝑣𝑑𝑡 ,

= 𝑥previous +
−𝛽current(𝑥current) − 𝛽previous(𝑥previous)

2
𝑑𝑡 .

2⋅37

This goes through three iterations to arrive at a final estimate of the current location.

The rest of the puncture dynamics data is extracted from the apparent horizon following

the procedure outlined in §2.4, which is itself located using the fast flow algorithm (intro-

duced in [48]) to find the surface that satisfies 2⋅21. This involves placing a spherical ‘trial

surface’ of points 𝑥𝑖 well outside the expected location of the horizon, then iteratively

drawing each point inwards by a distance proportional to 𝐻(𝑥𝑖 ). In this way the trial

surface will continue to contract until 𝐻 = 0 is satisfied at all points (to within a given

tolerance), like a vacuum-packed fish.

The gravitational waveform is extracted as the projection of 𝛹4 interpolated on to

a sphere of finite radius (the extraction radius), as outlined in §2.4. The interpolation

is performed using fifth-order polynomials and the integration over this sphere is ap-

proximated using fourth-order Runge-Kutta. But whereas our adaptive mesh refinement

scheme is perfectly suited to the dynamics of the black hole, it poses something of a prob-

lem for the radiation. The wavelength of the gravitational wave signal stays constant with

distance and so requires constant radial resolution, but we also need increasing accuracy

to distinguish it from the background as the amplitude falls off as 1
𝑟 . The solution in

BAM is to use two different values for the number of points for the boxes at each level:

one for tracking the punctures and one for wave extraction.
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—————— 3 ——————

The previous chapter has taken us from the setting up of the initial state of a Schwarzschild

black hole all the way through to the extraction of a simulated gravitational wave signal

in BAM. The aim of all this is, as far as the scope of this thesis is concerned, to use these

simulated waveforms in the search for and analysis of real signals from real black hole

binaries picked up by gravitational wave detectors. With the groundwork now laid out

and the ability to simulate generic black hole spacetimes, the next step is to populate the

space of possible parameters of a black hole binary with representative numerical wave-

forms. Unfortunately with eight independent parameters (𝑚1, 𝑚2, 𝑆1, 𝑆2) a satisfactory

sampling would require on the order of millions of simulations. Even utilising parallel

processing on high-performance computing clusters each of these takes weeks to run for

sufficient duration, so this is clearly not feasible. Instead, a number of models have been

developed that, for a given set of parameters of a binary, return a rapid approximation

to the true waveform, an approximation that is sufficiently accurate to successfully iden-

tify signals in the detector data and estimate source parameters for the signal-to-noise

ratios expected in current gravitational wave detectors. There are a number of different

approaches to this that we outline in this chapter, all of which typically model the decom-

position of the signal into spherical harmonics as outlined in 2⋅33. In practice however it

is not the Weyl scalar but the strain, defined [10]

ℎ(𝑡) = lim𝑟 →∞∫
𝑡

0
∫

𝑡 ′

0
𝛹4(𝑡″)𝑑𝑡″𝑑𝑡 ′ , 3⋅1

33
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that’s modelled as it is this quantity that the interferometers measure. The coefficients

ℎ𝓁𝑚 are formally the multipole moments of ℎ, but are far more commonly referred to

in the literature as modes, and it is the amplitude 𝐴 and phase 𝜙 of these modes that are

modelled, where

ℎ𝓁𝑚(𝑡) = 𝐴𝓁𝑚(𝑡)𝑒−𝑖𝜙𝓁𝑚(𝑡 ) . 3⋅2

The signal is then expressed as

ℎ(𝑡 , 𝜃 , 𝜙) =
∞
∑
𝓁=2

𝓁
∑
𝑚=−𝓁

ℎ𝓁𝑚(𝑡) −2𝑌𝓁𝑚(𝜃 , 𝜙) . 3⋅3

In an equal-mass binary whose component black holes are non-spinning, or have their

spins (anti)aligned with the orbital plane, the (𝓁 = 2, |𝑚| = 2) modes dominate the

spectrum and as such it is only more recently that the higher 𝓁 = |𝑚| modes and the

subdominant 𝓁 ≠ |𝑚| modes have been modelled.

3.1. The Post-Newtonian Formalism

The earliest efforts towards modelling gravitational wave emission from a compact bi-

nary were simple perturbative expansions in the low-velocity weak-stress limit: the Post-

Newtonian (PN) expansion. This technique dates back to the birth of general relativity

itself having first seen use in the work of de Sitter, Lorentz, and Droste in the mid-1910s

computing the equations of motion for an𝑁 -body system [49,50]. The derivation of the

radiation-reaction terms in the expansion came later, and with orbital phase proportional

to gravitational wave phase [51] this produced the first model for the phase of the wave-

form. These results have been pushed to higher and higher orders in the expansion over

the past century, and different approaches to the expansion have been explored over the

years (see [52] for a thorough summary and comparison). Of course, the closer we move

towards merger in the evolution of the binary the further we depart from the low-velocity

weak-stress approximation, and the more inaccurate our PN results become.
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3.2. Black Hole Perturbation Theory

At the other end of the scale we know that the final state of an inspiralling will be a

single isolated remnant black hole whose gravitational wave output can be modelled triv-

ially: there won’t be any. But this state doesn’t occur instantaneously upon merger. The

merger of the two black holes can be defined as the moment that a common apparent

horizon forms around them. This common horizon will be highly distorted, far from the

neat spherical symmetry or axisymmetry of an isolated black hole horizon, but as it is

now simply a single perturbed black hole it can be tackled with standard perturbation the-

ory techniques. Comprehensive reviews of black hole perturbation theory are available

in [53, 54], but for the purposes of this brief outline it will suffice to say that for a small

perturbation a Kerr black hole will relax back to its stationary state, radiating away the

perturbation in the form of gravitational waves. This process is known as ringdown, high-

lighting the analogous behaviour of a struck bell. The equivalent of a bell’s characteristic

overtones, the quasinormal modes, can be calculated within black hole perturbation theory

and supply the final stages of a waveform model.

3.3. The Effective One-Body Formalism

The first complete models, of inspiral through merger and into ringdown, used the ef-

fective one-body (EOB) formalism. To model the inspiral, the PN expressions for the

dynamics of two masses are resummed to represent the dynamics of a test particle on a

deformed Kerr background, as are the radiation-reaction expressions and the gravitational

wave strain. This is then stitched together with results from black hole perturbation the-

ory for the post-merger portion of the waveform using a simple step function. As may be

expected these models perform poorly around merger, where neither formalism is valid:

PN theory is based upon the assumption of a weak gravitational field, black hole pertur-

bation theory assumes small perturbations, but merger is both in the strong field and

involves a highly deformed black hole. For this reason later models in the EOB family

have included a number of free parameters that can be tuned to adjust the merger portion

of the waveform based on numerical waveforms. Recent achievements in the EOB family

include the incorporation of precession effects and higher modes. For a good summary

see [55].
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3.4. Phenomenological Modelling

Both the PN and EOB class of models are based on an understanding of the underlying

physics of the inspiralling system: they approximate the dynamics and from that pull

out the behaviour of the waveform. The phenomenological (or more commonly just phe-

nom) models, as their name suggests, cut out the middle man and directly approximate

the waveform itself, initially with a functional form inspired by PN and perturbation

theory results though more recently hybridised from numerical simulations and PN ap-

proximants. Although these ingredients themselves rely on an accurate understanding

of the physics involved, the key point is that this is completely divorced from the result-

ing model. A defining feature of phenomenological models is the use of closed-form

analytic expressions; they are therefore significantly cheaper computationally than EOB

models, but are historically much more dependent on numerical waveforms—and there-

fore much more dependent on them being accurate. In recent years however phenom

and EOB models alike have been tuned using numerical waveforms and so are both in

some sense phenomenological.

The first phenomenological model used a piecewise construction of PN approximants

for the inspiral and a set of non-spinning numerical simulations of mass ratio 1 ≤ 𝑞 ≤ 4

binaries for merger-ringdown, with some matching function in between constructed so

as to minimise the integrated phase and frequency difference between the two. Nested

fits were then made to the amplitude and phase data of these hybrid waveforms, first

fitting a piecewise ansatz to the waveforms, then making polynomial fits to those fitting

coefficients to form the final model. This is an approach that has remained unchanged

even as the models have grown to include increasingly complex physics.

If for example the total spin angular momentum of the binary is not (anti)aligned

with its orbital angular momentum, the orbital plane will steadily precess around the total

angular momentum. As gravitational radiation is beamed predominantly along the direc-

tion of the orbital angular momentum [51] this precession of the binary leads to modula-

tions in the gravitational wave amplitude received by a static observer. Specifically, the

(2, ±2) modes no longer dominate the spectrum with power shunted into the previously

subdominant harmonics. In order to capture this behaviour precessing phenomenologi-

cal models define some frame in which these precession effects are minimised by noting

that an observer located directly above the orbital plane will experience the maximal ra-
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FIGURE 3.1 Any rotation in 3D space can be represented by three angles, labelled here 𝛼, 𝛽, 𝛾 . The
set of green axes represent the initial orientation, and the blue represent their latest orientation at each step.

diated power from the binary. If this observer were to remain in a frame fixed in this

position with respect to the binary, tracking the precession dynamics, they will observe

significantly less modulation of the (2, ±2) mode and the signal will resemble that from

a non-precessing binary. In the literature this frame is called variously the coprecessing

frame, the quadrupole-aligned frame, or is said to be aligned to the optimal emission di-

rection [56–58]. The coprecessing frame can be located by finding at every moment that

frame in which power in the (2, ±2) mode is maximised. It is useful therefore to define

the rotation that will take us into this coprecessing frame. We define this using the Eu-

ler angle notation (for its equivalent using the quaternion notation, see [59]), where by

Euler’s rotation theorem any rotation in three-dimensional space can be described using

just three angles. In fact only two Euler angles are necessary to rotate a binary into the

coprecessing frame, with the third acting as simply a final phase shift, a rotation of the

black holes around their orbits. The precise definition of these rotations is a matter of

convention, both in the labelling of the angles and in the axes used, but in this work we

define them as follows (illustrated in FIG 3.1):

1. A rotation of 𝛼 about the initial 𝑧-axis,
2. A rotation of 𝛽 about the newly-formed 𝑦-axis,
3. A rotation of 𝛾 about the newly-formed 𝑧-axis.
These precession angles allow us to effectively remove the precession effects from a

precessing signal, but more importantly for waveform modelling can be used to ‘twist up’

a non-precessing waveform to generate its precessing counterparts. This was precisely

the insight that lead to the development of the first precessing waveform model in the

frequency domain, PhenomP in 2014 [60], which has since been refined through the

tuning of its precession angle ansätze to a set of 80 numerical waveforms [61].
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Unequal component masses also serve to amplify the subdominant modes as odd 𝓁
modes are no longer suppressed when 𝑞 > 1 [62], so in progressing to higher mass ratios

it is increasingly important that our waveform models include more than just the (2, ±2)
mode. In 2018 London et al. presented the first higher-mode model of gravitational

waves, PhenomHM [63]. This was achieved in a qualitatively similar manner to PhenomP
only rather than turning a non-precessing waveform into a precessing one, it turns the

(2, ±2) mode into the higher modes through simple piecewise linear mappings,

𝐴𝓁𝑚(𝑓 ) → |𝛽𝓁𝑚(𝑓 )|𝐴22(𝑓22) ,

𝜙𝓁𝑚(𝑓 ) →
𝜙22(𝑓22)
𝑓 ′22(𝑓 )

+ 𝛥𝓁𝑚 .
3⋅4

involving the phase and frequency of the (2, 2)mode, 𝜙22 and 𝑓22. The mappings 𝛽𝓁𝑚(𝑓 )
and 𝛥𝓁𝑚 are determined by black hole perturbation theory during the ringdown portion

of the waveform, and during inspiral by two facets of PN theory: first that the frequency

of each mode (𝓁,𝑚) is approximately 𝑚 times the orbital frequency, and second that

phase remains approximately stationary. These two regimes are joined by linear interpo-

lation.

3.5. Gravitational Self-Force

Separate to the above approaches, which are used in the comparable-mass (𝑞 ≲ 10)

regime, are perturbative calculations for extreme mass ratio (𝑞 ≳ 105) inspirals in which

the smaller component black hole is modelled as a point mass on the background of

the larger. Perturbing this background black hole spacetime to first-order in the mass-

ratio takes into account physical effects which arise from the self-interactions between

a mass and its own gravitational field—the gravitational self-force, which is the dominant

cause of inspiral in the binary. This is calculated by evaluating derivatives of the metric

perturbation at the location of the particle, which is singular and so requires regularisation

of the perturbation to remove the singularity.

Such first-order calculations are sufficient for the tracking of the smaller component

over a few gravitational wave cycles, but the neglected higher-order terms accumulate as

time goes on and introduce dephasing errors. Second-order perturbation theory however

is far more complex than first-order for non-linear field theories, and extensive efforts
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are currently underway to extend self-force calculations in hopes of achieving sufficient

phase accuracy for LISA observations. A thorough introduction to self-force as it relates

to waveform modelling can be found in [64].

A further issue that will need to be addressed in this regard is the issue of resonances,

where (for certain configurations) the inspiral passes through points where the quotient

of two characteristic orbital frequencies becomes rational and produces a ‘jump’ in phase

that can’t be captured by current self-force calculations [65]. The use of a waveform

model without such discontinuities in the analysis of a signal that features them will lead

to a non-negligible bias in the science output of these space-based observatories [66].

Accurate waveforms will be essential for them just as they have been for the current

generation of ground-based observatories, needed both in searches for gravitational wave

signals and for the inference of their source, and it is the application of these models to

such things that we address in the next section.

3.6. Searches

However you have arrived at your model for the gravitational waveform, whichever for-

malism has been used in its construction, with one in hand we are in a position to gen-

erate a bank of template waveforms that cover the vast parameter space in a way that

would have been entirely unfeasible with computationally expensive numerical simula-

tions. This template bank can then be compared against the data stream from a given

gravitational wave detector to see if it contains any signals of a morphology suggestive of

it having been generated by an inspiralling binary. It is this procedure we now address,

outlining how we perform and quantify such a comparison with data dominated by noise,

and how we can apply our template bank to extract probable parameters of the source

binary.

The output of each detector is a continuous stream of noise potentially peppered

with gravitational wave signals hidden amongst that noise. These signals, if they are

sufficiently loud, are picked out by a matched filter search which finds, for some data 𝐷 ,

the function 𝐹 that maximises the inner product 𝐶 between them:

𝐶(𝜏 ) = ∫
∞

−∞
𝐹 (𝑡 + 𝜏 )𝐷(𝑡)𝑑𝑡 , 3⋅5
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for the cross-correlation variable 𝜏 . Taking the Fourier transformation we find that in

the frequency domain this becomes

𝐶(𝜏 ) = 2Re ∫
∞

0
𝐹 ∗(𝑓 )𝐷(𝑓 )𝑒−2𝜋𝑖𝑓 𝜏𝑑𝑓 . 3⋅6

This is more convenient than working in the time domain because it allows the noise in

the data to be characterised by its power spectral density 𝑆𝑑𝑛 alone, if we assume it to be

stationary and Gaussian. For a signal ℎ buried in this noise the optimal filter—that which

maximises the signal-to-noise ratio—would by definition be that same signal divided by

the noise,

𝐹opt(𝑓 ) =
ℎ̃(𝑓 )
𝑆𝑑𝑛 (𝑓 )

, 3⋅7

but of course it is impossible to know the shape of the signal before it arrives—the general

form is known well enough but as we’ve seen it depends heavily on the mass ratio, spin

configuration, and inclination. To find the optimal filter we therefore take our bank

of model waveforms and run each of them through 3⋅6 to see which gives the highest

correlation. Replacing ℎ with the general model 𝐺 , representing any waveform within

the template bank, the optimal filter is given by

𝐹opt(𝑓 ) =
𝐺(𝑓 )
𝑆𝑑𝑛 (𝑓 )

, 3⋅8

which substituted into 3⋅6 gives

𝐶(𝜏 ) = 2Re ∫
∞

0

𝐺 ∗(𝑓 )
𝑆𝑑𝑛 (𝑓 )

𝐷(𝑓 )𝑒−2𝜋𝑖𝑓 𝜏𝑑𝑓 . 3⋅9

We can simplify this by defining the noise-weighted inner product between two waveforms

𝐴 and 𝐵 ,

⟨𝐴|𝐵⟩ = 2Re ∫
∞

0

𝐴∗(𝑓 )𝐵(𝑓 )
𝑆𝑑𝑛 (𝑓 )

𝑑𝑓 , 3⋅10

so that the correlation can now be written as

𝐶(𝜏 ) = ⟨𝐺𝑒−2𝜋𝑖𝑓 𝜏 |𝐷 ⟩ . 3⋅11
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This can be simplified by using merger time as our cross-correlation variable 𝜏 , which

we are free to set as 𝑡merge = 0 to leave

𝐶(𝜏 ) = ⟨𝐺|𝐷⟩ . 3⋅12

This noise-weighted inner product provides a rigorous way to quantify the agreement

between different waveforms. We first normalise the waveforms and shift their parame-

ters 𝑝 such that they are optimally aligned with respect to one another, and so define the

match between two waveforms as

M (ℎ, 𝐺) ≡ max𝑝
⟨ℎ(𝜙, 𝑡 )|𝐺⟩
⟨ℎ|ℎ⟩ ⟨𝐺|𝐺⟩ , 3⋅13

where 0 represents complete disagreement and 1 complete identity between ℎ and 𝐺 . It

is also common in the literature to work in terms of the mismatch, given by simply 1−M .

The set of parameters 𝑝 over which to optimise is dependent on context: in CHAPTER 5

when comparing two precessing numerical waveforms to one another we choose phase,

time, and polarisation. For the (2, 2) mode of a non-precessing binary however we can

exploit the degeneracy between phase and polarisation (see [67]) to use a simple phase

shift as a proxy for varying polarisation. In the precessing case the subdominant modes,

each of which have their own associated phases, can no longer be neglected and so the

degeneracy is broken, which is why the precessing matches need to be optimised over

polarisation explicitly. In addition to this by definition a precessing binary is one with

a time-varying inclination, which we have seen in §3.4 modulates the observed power in

each mode, so this relative inclination between the two signals is one further parameter

over which to optimise. In CHAPTER 5 this is instead used as an independent variable

when computing matches. If, rather than comparing two known waveforms, we have

some detector data containing an astrophysical signal then this optimisation is equivalent

tomeasuring each of the parameters—we are finding the parameter values that best match

the signal. This is the process of parameter estimation, which we briefly summarise below

for completeness.
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3.7. Parameter Estimation

Having identified a candidate signal in the detector data we would like to put it to work.

Just like traditional electromagnetic astronomy, by analysing a signal we hope to extract

information about the astrophysical object that generated it. We’ve seen that the wave-

form is highly dependent on the parameters of the binary from which it originated, so it

should in turn be possible to infer those parameters from the detected waveform. This is

the motivation behind parameter estimation (PE) efforts in the gravitational wave com-

munity. PE is fundamentally an exercise in Bayesian inference, which at its heart has

that the probability of event 𝐴 given that event 𝐵 has occurred is proportional to the

probability of 𝐵 given 𝐴 multiplied by the probability of 𝐴:

𝑃 (𝐴|𝐵) ∝ 𝑃 (𝐵|𝐴)𝑃 (𝐴) . 3⋅14

For example, you pick up a coin from the street. Either this is a fair coin (that is, it has

a heads side and a tails side) or it is unfair (it has two heads sides). 3⋅14 tells us that

the probability that it is fair, given you flipped it and got a heads, is proportional to the

probability of getting a heads if it really had been fair multiplied by how likely you would

have thought it yesterday that a coin you find on the street is fair. You now have more

information, so the next time you flip the coin you are able to update how likely you think

it is that a coin you find on the street is fair. Each time you flip the coin provides more

information that can serve to update your prior assumption about how likely that is—if

you flipped it 500 times and it came up heads every time, you might well start to think

that finding an unfair coin on the street is more likely than you previously imagined.

PE is the generalisation of this to a far larger parameter space with far more possible

states. Rather than the two options ‘fair’ or ‘unfair’ for the coin in our example above we

are faced with determining the which of the millions of possible parameter combinations

contained within our template bank is the likely state of a detected signal. It is in essence,

for a signal 𝑠 with parameters 𝑝 and signal model ℎ, the calculation of the quantity

𝑃 (𝑝|𝑠, ℎ) ∝ 𝑃 (𝑠|𝑝, ℎ) 𝑃 (𝑝|ℎ) . 3⋅15

These three probability distributions are known as the posterior, likelihood, and prior. The

posterior is the probability that the signal 𝑠 has the parameters 𝑝 given you’ve detected
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this signal 𝑠 and you have the model ℎ for signals, the likelihood is the probability of

detecting the signal 𝑠 if it really did have parameters 𝑝 according to your model ℎ, and

the prior is how likely your model ℎ says you are to get those parameters 𝑝 before taking

into account that you’ve received the signal 𝑠 .
In practice the priors are informed by models of the likely black hole population

of the universe derived from studies of star formation, models of active galactic nuclei,

electromagnetic observations of black holes, and a host of other areas including most

recently previous gravitational wave observations. In all but the most trivial scenarios the

posterior cannot be written down analytically, so typically within the LVK the posterior is

computed through nested sampling or the Markov Chain Monte Carlo method (see [68]

for summaries of these and other sampling algorithms).

This completes the journey from abstract geometry to tangible, practical tools that

can be applied to real data to probe astrophysical phenomena. The Einstein field equa-

tions have been turned into a tractable computational problem, with black holes as a

key result of general relativity represented accordingly; we’ve explored one particular im-

plementation of this framework, BAM; and have motivated the production of numerical

simulations of black hole binaries. It is with these simulations that we begin the next

part of this thesis.
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The BAM Catalogue
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We have explored in PART I a little of the machinery behind the successful solution of the

Einstein equations for a black hole binary, and discussed the role that these simulations

play within the field of gravitational wave astronomy. We have seen how the gravitational

waveforms they produce have been used in the development of waveform models that

were an integral part of the historic first detection of gravitational waves and continue to

be applied to every detection to date.

Both the EOB and phenomenological models rely on numerical waveforms for ac-

curacy around merger: for example, at the time of the first gravitational wave detec-

tions SEOBNRv2 was calibrated to 30 aligned-spin and 8 non-spinning simulations up to

𝑞 = 8 [69], while PhenomD was tuned using 19 simulations that uniformly cover the
1
𝑞 aligned spin parameter space [70]. Both of these have been used extensively during

the first and second observing runs of the LIGO detector and there are now increas-

ingly accurate precessing, higher-mode models in both the SEOBNR and Phenom fami-

lies [60, 63, 71–74], and also now surrogate models constructed entirely from NR wave-

forms [75–78]. Numerical waveforms are thus a vital step in the ‘production line’ of

scientific output in gravitational wave astronomy.

A number of groups have in recent years released catalogues of simulated waveforms

for just this purpose. The largest of these consists of, at the time of writing, 2028 wave-

forms produced by the SXS collaboration using the SpEC code [79], followed by 777

from RIT using LazEv [31], and 452 from Georgia Tech using Maya [32]. These cata-

logues are summarised in TABLE 4.1. Given the computational expense the high mass ratio

regime is understandably under-explored compared to the equal-mass regime—naïvely

47
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one may assume that this doesn’t represent any particular cause for concern seeing as

current detections almost all lie well within the approximately equal-mass regime [80].

However for the vast majority of these, despite having most support at equal mass, pa-

rameter estimation results produce 90% credible intervals extending as high as 𝑞 = 8.

And with 50 published detections to date including a 𝑞 = 9 event [81], and a further

80 [7] expected in the fourth observing run the prospect of detecting high mass ratio

event grows ever more likely, with a great need for simulations in this region.

Catalogue Number 𝑞 𝜒1 𝜒2
Cardiff 80 1–8 0.000–0.000 0.200–0.800
SXS 2028 1–16 0.000–0.998 0.000–0.496
RIT 777 1–15 0.000–0.951 0.000–0.953
GT 452 1–15 0.000–0.809 0.000–0.809

TABLE 4.1 Parameter space coverage offered by four catalogues used in the production of waveform
models, where 𝜒𝑖 ≡ 𝑆𝑖/𝑀 2

𝑖 defines the dimensionless spin magnitude.

More broadly, rather than any systematic sampling of the parameter space simula-

tions have been produced organically as the field and the capabilities of the codes grows.

This has left us with a highly non-uniform coverage of the parameter space and it is in

an attempt to address this, as well as the dearth of simulations in the high mass ratio

high spin regime, that the Gravity Exploration Institute at Cardiff University will soon

publish its first public catalogue of simulations. With 80 single-spin black hole binary

configurations it is a somewhat more modest affair than the other catalogues currently

available, but importantly it represents a systematic effort to cover a subset of the param-

eter space that includes high mass ratios and high spins. The results presented in this

chapter are a summary of those due to appear in an upcoming paper [82].

High mass ratio simulations pose a significant challenge for all current numerical

relativity codes, so producing the large number of simulations at 𝑞 = 8, of a length suit-

able for accurate waveform modelling, was a nontrivial task. Addressing this challenge at

significantly higher mass ratios is the motivation behind PART III of this thesis. Here we

iterate over four mass ratios 𝑞 = {1, 2, 4, 8}, four spin magnitudes 𝜒2 = {0.2, 0.4, 0.6, 0.8},
and five orientations of the spin with respect to the Newtonian orbital angular momen-

tum 𝜃 = {30∘, 60∘, 90∘, 120∘, 150∘}.
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This is the product of the continued effort of a number of people over the past four

years, of whom the author is just one among many, with the motivation of providing the

numerical waveforms necessary for the development and calibration of precessing wave-

form models. In this chapter we briefly revisit some of the material covered in §2.5 regard-

ing the setup of BAM simulations, expanding upon those points of particular relevance to

the simulations featured in this catalogue, before providing an overview of catalogue and

finally discussing a number of accuracy considerations. The work presented herein is the

result of a collaboration between Edward Fauchon-Jones, Eleanor Hamilton, Mark Han-

nam, Charlie Hoy, Chinmay Kalaghatgi, Lionel London, Jonathan Thompson, Shrobana

Ghosh, Sebastian Khan, Panagiota Kolitsidou, Alex Vañó-Viñuales, and the author.

4.1. Numerical Setup

All the simulations performed to produce the catalogue presented here were performed us-

ing BAM (see §2.5 for an in-depth introduction to the code). Black holes are evolved using

the 𝜒 -variant of the moving puncture scheme, represented with Bowen-York wormhole

initial data together with an initially vanishing “pre-collapsed” lapse of the form 𝛼 = 𝜓 −2
0

and shift vector 𝛽 𝑖 = 0. Gauge choices take the form of the 1+log slicing condition and

the 𝛤 -driver conditions.

Two restrictions are placed on the particular setup of the numerical grid structure for

the sake of accuracy, based purely on prior experience producing BAM simulations. First,

the width of the finest box around a black hole should be 1.2-1.5× the maximum diameter

of the (pre-merger) apparent horizon, which is known from a lower resolution version of

the simulation. Second, on the level that the gravitational wave signal is extracted there

should be at least ten grid points per wavelength of the (4, 4) mode. As the wavelength

decreases as you approach merger this requires foreknowledge of the smallest wavelength

that will be reached in the simulation, provided in the form of an estimate from the

ringdown frequencies 𝑓RD, approximated here by the PhenomD waveform model. The

grid spacing on the wave extraction level should then be 𝑑𝑙 = 1
20𝑓𝑅𝐷 . In cases where

it’s not possible to satisfy both of these requirements, box size and extraction-level grid

spacing are balanced to minimise the extent that either is violated.

The desired spin orientations of the black holes are achieved through the iterative

algorithm presented in [30]. Briefly, the orientation is provided initially at large sep-
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aration and the system is evolved via the EOB equations of motion up to the desired

reference orbital frequency 𝛺 at which the simulation will begin (the starting frequency).

Of course by doing this we end up with a slightly different spin configuration at the start

of the simulation than we were aiming for because the spin will have evolved in the in-

tervening time, so the difference between the actual and desired spin directions is noted

and the initial orientation is rotated by that amount. This is again evolved forwards to

the starting frequency using the EOB equations and again the discrepancy is checked

and the initial guess rotated. This is repeated until initial parameters are obtained that

produce the desired configuration at the starting frequency to a tolerance of 1% in 𝛺.

The initial parameters are then further manually iterated to lower the eccentricity

below a threshold set at 0.002 over the first 1000𝑀 of simulation time, motivated in

part by [83]. We estimate this following [84], fitting the puncture separation between

simulation time 200–700𝑀 using a quadratic function and taking the eccentricity to be

the maximum difference between the fit and the data in this range.1 Small perturbations

are introduced to the magnitude of the black holes’ linear momenta, typically for the

simulations in this catalogue on the order of 0.1–0.8%, until the eccentricity is below the

threshold. If this cannot be achieved through perturbation of the linear momenta alone,

the radial momenta are decreased by 25–75%. For the sake of speed these eccentricity-

reduction runs are performed at lower resolution than will be used in the final product,

typically with grid spacings 1.5× larger and wall-clock speeds three times faster. As a

result of this differing numerical accuracy the eccentricity of the final simulation may

well differ from that of the eccentricity-reduction run, in some cases rising above the

0.002 limit we have set. This has been seen in a number of the simulations within this

catalogue, but in each case the deviation is considered small enough to be acceptable. For

a summary of these eccentricities see TABLE 4.2.

4.2. Description of the Catalogue

The 80 simulations contained within the catalogue can be separated into 20 simulations

at each of four mass ratios 𝑞 = {1, 2, 4, 8}. Each subset of 20 can be further divided

into five simulations at each of the four spin magnitudes 𝜒2 = {0.2, 0.4, 0.6, 0.8}. All of

1The full method described in [84] requires the merger time, and is used to estimate the eccentricity of
the final simulation.
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these simulations are single-spin, with vanishing spin on the smaller black hole as the

contribution to the overall precession dynamics of spin-spin couplings is expected to be

subdominant [85]. These five simulations vary the orientation of the spin; specifically,

the angle between the spin vector on the larger black hole and the Newtonian orbital angu-

lar momentum takes on the values 𝜃 = arccos ( ̂𝐿⃗𝑁 ⋅ ̂ ⃗𝜒
2
) = {30∘, 60∘, 90∘, 120∘, 150∘} to

within a tolerance of 1∘, negligible for the signal strengths expected in current-generation

detectors.

The simulations are required to be of sufficient duration that they can be connected

to the PN waveform models of early inspiral while it retains its validity. Computational

expense aside, the main obstacle faced by longer-duration simulations is that numerical

error in the phase of the binary is cumulative, improved only through the use of finer

resolutions. We are then faced with determining some balance between a resolution fine

enough to keep this dephasing error within acceptable limits, yet coarse enough that

the computational expense doesn’t become prohibitive. Through previous experience

with 𝑞 = 18 simulations we settle upon a resolution that typically lies within the range

0.01𝑚𝑖–0.02𝑚𝑖 , where 𝑚𝑖 refers to the mass of either component black hole 𝑖 = 1, 2,
and a duration of approximately 2000𝑀 , equivalent to roughly 10 orbits. Initially it had

been planned that each of the simulations would begin at the same starting frequency,

𝑀𝛺 = 0.023, but spin-orbit coupling can, depending on the magnitude and orientation

of the spins on the black holes, hasten or indeed delay the onset of the merger phase.

For the simulations in our catalogue this is particularly pronounced in the higher mass

ratio configurations with spins inclined 30∘ to the orbital plane, which were seen to have

merger times over 3000𝑀 when starting at the prescribed starting frequency. The cu-

mulative phase error at such a duration would introduce unacceptable inaccuracies in

the resulting waveform, and the higher resolutions required to counteract it would fur-

ther lengthen the 3 month production timescale for this single simulation, so instead we

simply begin at a higher frequency.

The key features of these simulations are summarised in TABLE 4.2 and TABLE 4.3 with

further details available in [82], where the effective and precessing spin parameters are

defined respectively as

𝜒eff ≡
𝑚1

𝑀 ( ⃗𝜒1 ⋅ ̂𝐿⃗) +
𝑚2

𝑀 ( ⃗𝜒2 ⋅ ̂𝐿⃗) , 4⋅1
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𝜒p ≡
1

2𝑚2
2

max (3 + 4𝑞
4 + 3𝑞 ( ⃗𝜒1 − ( ⃗𝜒1 ⋅ ̂𝐿⃗) ̂𝐿⃗) , ⃗𝜒2 − ( ⃗𝜒2 ⋅ ̂𝐿⃗) ̂𝐿⃗) . 4⋅2

4.3. Accuracy Analysis

Four of the 80 simulations have been analysed by Eleanor Hamilton to estimate the

accuracy of the resulting waveforms. Such an estimate is essential given their intended

use as it provides an upper bound on the accuracy of any waveform model developed

using this data. The four simulations are those with the configurations

(𝑞, 𝜒2, 𝜃 ) =

⎧{

⎨{
⎩

(4, 0.4, 60∘)
(4, 0.8, 120∘)
(8, 0.4, 30∘)
(8, 0.4, 150∘)

. 4⋅3

Errors in the numerical waveforms used by the gravitational wave community are domi-

nated by resolution and wave extraction—specifically, the truncation error due to the use

of a finite grid spacing, and the error due to extraction of the gravitational wave at some

finite radius. It is in these two areas that focus is directed in this section, employing a

similar approach to quantify the error in each case. In particular we focus on the match,

the amplitude and the phase of the (2, 2) mode in the quadrupole-aligned frame, and

the two precession angles 𝛼 and 𝛽. The key tool employed to quantify these errors is

convergence testing.

Take two runs of the same simulations with different grid spacings 𝑑1 and 𝑑2 that

report the solutions 𝑢1(𝑡) and 𝑢2(𝑡). The dominant error term in any simulation goes as

𝑑𝑛 , which is to say the ‘true’ solution is given by

𝑢(𝑡) = 𝑢1(𝑡) + 𝑘(𝑡)𝑑𝑛1 + 𝒪 (𝑑𝑛+1
1 ) , 4⋅4

with some function 𝑘(𝑡). The error between our numerical solution and this true solution

is then

𝑢(𝑡) − 𝑢1(𝑡) = 𝑘(𝑡)𝑑𝑛1 + 𝒪 (𝑑𝑛+1
1 ) , 4⋅5
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𝑞 𝜒2 𝜃 ∘ 𝜒eff 𝜒𝑝 𝑒
(×10−3) 𝑀𝜔orb 𝑁orb

1 0.2 30.0 0.087 0.100 1.51 0.0225 9.62
60.0 0.050 0.173 1.53 0.0225 9.44
90.0 ————{ pending curation }————

120.0 ————{ pending curation }————
150.0 -0.087 0.100 1.50 0.0225 8.86

0.4 30.0 0.173 0.200 1.55 0.0225 10.00
60.0 0.100 0.346 2.32 0.0225 9.71
90.0 -0.000 0.400 4.03 0.0225 9.09

120.0 -0.100 0.346 2.97 0.0225 8.71
150.0 -0.173 0.200 2.36 0.0225 8.45

0.6 30.0 0.260 0.300 2.71 0.0225 7.36
60.0 0.150 0.520 1.26 0.0225 9.81
90.1 0.000 0.600 1.60 0.0225 9.10

120.0 ————{ pending curation }————
150.0 -0.260 0.300 1.66 0.0225 8.04

0.8 30.0 0.346 0.400 2.15 0.0225 10.95
60.0 0.200 0.693 2.04 0.0225 10.28
90.1 -0.000 0.800 2.07 0.0225 9.10

120.1 -0.200 0.692 1.73 0.0225 8.29
150.0 -0.347 0.399 1.15 0.0225 7.60

2 0.2 30.0 0.115 0.100 1.54 0.0225 10.59
60.0 0.067 0.173 1.29 0.0225 10.26
90.0 0.000 0.200 1.39 0.0225 9.85

120.0 -0.067 0.173 1.79 0.0225 9.41
150.0 -0.116 0.100 1.34 0.0225 9.12

0.4 30.0 0.231 0.200 1.40 0.0225 11.14
60.1 0.133 0.347 1.83 0.0225 10.78
90.1 -0.001 0.400 1.30 0.0225 9.92

120.1 -0.134 0.346 1.93 0.0225 8.95
150.1 -0.231 0.200 1.50 0.0225 8.50

0.6 30.1 0.346 0.301 1.42 0.0225 11.99
60.1 0.199 0.502 1.68 0.0225 10.85
90.1 -0.001 0.600 1.46 0.0225 10.23

120.1 -0.201 0.519 1.71 0.0225 8.48
150.1 -0.347 0.299 1.23 0.0225 8.36

0.8 30.1 0.461 0.401 2.76 0.0225 12.45
60.1 0.265 0.694 1.99 0.0225 11.43
90.2 -0.002 0.800 2.80 0.0225 10.09

120.2 -0.268 0.691 1.68 0.0225 8.31
150.1 -0.462 0.398 1.37 0.0225 7.23

TABLE 4.2 Initial parameters of the simulations presented in the catalogue. Eccentricity 𝑒 is calculated
over the region 200− 1000𝑀 using the method described below. Orbital frequency𝑀𝜔𝑜𝑟 𝑏 is calculated
from the dynamics after the passage of the junk radiation, with the number of orbits𝑁𝑜𝑟 𝑏 is defined between
the time at which 𝑀𝜔𝑜𝑟 𝑏 is calculated and peak in the (2, 2) mode of the Weyl scalar 𝛹4. Continued
in TABLE 4.3
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𝑞 𝜒2 𝜃 ∘ 𝜒eff 𝜒𝑝 𝑒
(×10−3) 𝑀𝜔orb 𝑁orb

4 0.2 30.0 ————{ pending curation }————
60.0 0.080 0.173 2.37 0.0242 11.09
90.1 0.000 0.200 1.35 0.0255 9.36

120.0 -0.080 0.173 1.22 0.0235 10.67
150.0 -0.139 0.100 1.00 0.0233 10.37

0.4 30.1 0.277 0.201 1.40 0.0252 11.96
60.2 0.159 0.347 1.24 0.0246 11.20
90.2 -0.001 0.400 1.44 0.0225 12.35

120.2 -0.161 0.346 1.44 0.0225 10.96
150.1 -0.277 0.199 2.03 0.0225 9.81

0.6 30.1 0.415 0.301 1.68 0.0258 12.46
60.2 0.238 0.521 1.39 0.0250 12.05
90.3 -0.002 0.600 1.89 0.0239 10.71

120.3 -0.242 0.518 1.03 0.0229 10.13
150.0 ————{ pending curation }————

0.8 30.2 0.553 0.402 1.35 0.0226 13.25
60.4 0.317 0.695 0.75 0.0254 12.12
90.4 -0.004 0.800 1.76 0.0225 12.33

120.4 -0.324 0.690 2.01 0.0225 9.99
150.2 -0.555 0.397 1.16 0.0225 8.15

8 0.2 30.0 0.154 0.100 1.30 0.0280 12.44
60.0 0.089 0.173 1.00 0.0276 12.15
90.0 0.000 0.200 0.89 0.0271 11.67

120.0 -0.089 0.173 0.70 0.0265 11.37
150.0 -0.154 0.100 1.59 0.0261 11.03

0.4 30.2 0.307 0.201 1.25 0.0291 13.21
60.3 0.176 0.347 2.11 0.0282 12.27
90.3 -0.002 0.400 1.08 0.0272 11.79

120.3 -0.179 0.345 1.34 0.0256 11.14
150.1 -0.308 0.199 1.49 0.0249 10.66

0.6 30.2 0.461 0.302 1.63 0.0302 14.29
60.0 ————{ pending curation }————
90.5 -0.004 0.600 2.08 0.0271 12.00

120.4 -0.270 0.518 1.15 0.0255 10.84
150.2 -0.463 0.298 0.82 0.0244 8.60

0.8 30.3 0.614 0.404 1.01 0.0315 15.87
60.5 0.350 0.697 1.36 0.0294 14.22
90.6 -0.008 0.800 2.14 0.0271 11.92

120.5 -0.361 0.689 2.75 0.0247 11.11
150.3 -0.618 0.397 0.92 0.0233 10.18

TABLE 4.3 Continuation of TABLE 4.2
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and the ratio of the root mean square norms of these errors in our two simulations in

the limit of infinite resolution (that is, a completely continuous grid, no longer discrete)

defines the convergence factor 𝑐(𝑡 ),

lim
𝑑→0

𝑐(𝑡 ) = ||𝑢(𝑡) − 𝑢1(𝑡)||
||𝑢(𝑡) − 𝑢2(𝑡)||

,

= ||𝑘(𝑡)𝑑𝑛1 + 𝒪(𝑑)1𝑛+1||
||𝑘(𝑡)𝑑𝑛2 + 𝒪(𝑑)1𝑛+1|| ,

= (𝑑1

𝑑2
)
𝑛
,

4⋅6

where 𝑛 is the order of the finite-difference scheme being used. But without access to that

true solution we cannot compute the errors. Instead, we make use of three resolutions

and examine the convergence behaviour of their relative differences,

lim
𝑑→0

𝑐(𝑡 ) = ||𝑢1(𝑡) − 𝑢2(𝑡)||
||𝑢2(𝑡) − 𝑢3(𝑡)||

,

= 𝑑𝑛1 − 𝑑𝑛2
𝑑𝑛2 − 𝑑𝑛3

.
4⋅7

In practice we can plot the relative errors together, apply an appropriate rescaling and

compare them by eye to estimate convergence. The infinite-resolution limit of an order

𝑛 approximation scheme leaves each of our approximate solutions proportional to the 𝑛th

order error function, so for 𝑛th order convergence

𝑢1(𝑡) − 𝑢2(𝑡) =
𝑑𝑛1 − 𝑑𝑛2
𝑑𝑛2 − 𝑑𝑛3

(𝑢2(𝑡) − 𝑢3(𝑡)) , 4⋅8

and the two plotted lines should lie on top of one another.

Accordingly the four simulations listed above are run at three resolutions, 𝑑low =
0.0125𝑀 , 𝑑med = 0.0104𝑀 , and 𝑑high = 0.00833𝑀 , and in all cases the gravitational radi-

ation is extracted at a selection of radii on the same refinement level: 𝑟ext = {50, 60, 70, 80,
90}𝑀 . Note that the labels low, medium, and high are only in reference to their grid spac-

ings relative to one another, not intended as a general statement on their accuracy in a

wider numerical relativity context.

[85] finds fourth order convergence with respect to resolution and first order con-

vergence with respect to the extraction radius. Using this an estimate is formed of the
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resulting truncation error in each case. To calculate this the waveforms are rotated into

the coprecessing frame (see §3.4), taking advantage of the freedom of choice in third Eu-

ler angle to align the phases at merger, and the amplitude, phase, and Euler angles 𝛼 and

𝛽 are extrapolated to an infinitely fine grid spacing using 4⋅6

𝑢𝑑→0(𝑡) = lim
𝑑→0

𝑐(𝑡 )𝑢2(𝑡) − 𝑢1(𝑡)
𝑐(𝑡 ) − 1

. 4⋅9

The percentage errors in amplitude, phase, and precession angles for the (8, 0.8, 150∘)
case are shown in TABLE 4.4 and are representative of those in all configurations: of the

order of a few percent in amplitude and phase, and around half a percent in precession an-

gles. Thus the precessing waveform models that rely on these waveforms for calibration

are limited to an accuracy of ±0.5%.

Source 𝛥𝜙 (%) 𝛥𝐴 (%) 𝛥𝛼 (%) 𝛥𝛽 (%)

𝑑 0.1 0.5 0.3 0.5
𝑟ext 1 8 0.03 0.5
Total 1 8 0.3 0.5

TABLE 4.4 A representative example of the percentage errors in amplitude, phase, and precession angles.
Shown here are the results for the (8, 0.8, 150∘) simulation.

Primarily though these errors in𝐴, 𝛼, 𝛽 are a result of the dephasing. Certainly these

are useful measures if we are comparing accuracy in simulations all generated by the same

code as the dephasing error will be of the same magnitude and so contribute an overall

shift, but beyond this they offer no particularly insightful commentary on accuracy in

the context of waveform modelling, detector calibration, or any wider gravitational wave

context. It is far more meaningful for the gravitational wave astronomy community to

quantify accuracy in terms of the match, and accordingly in [82] it is found that the

poorest match between a medium resolution waveform and an infinitely well resolved

one is 0.9994, while that between a waveform extracted at 𝑟ext = 90𝑀 and at 𝑟ext → ∞ is

0.9986.
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4.4. Discussion

We have presented here the first catalogue of black hole binary simulations generated

using BAM by the Gravity Exploration Institute at Cardiff. Of the 80 simulations in

the catalogue, four representative cases have been shown to demonstrate fourth-order

convergence in resolution and first-order convergence in extraction radius. The error in

precession angles has been found to be 𝒪 (0.1%), and the minimum match between a

waveform and its extrapolated forms exceeds 0.995. Any precessing model based on the

simulations presented in this catalogue will therefore be limited by these uncertainties,

assuming any other catalogues used possess no greater uncertainties.

There are a number of directions the next set of BAM simulations could take at Cardiff.

One option would be to simply fill inmore points within the subset of the parameter space

covered by this catalogue: we would then have mass ratios 𝑞 = {1, 2, 3, 4, 5, 6, 7, 8} per-

haps, and spins 𝜒2 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and so on. But with a variety

of waveform models already developed that span this range, and even a model specifically

tuned to the waveforms in this catalogue [61], all demonstrating a high degree of consis-

tency in their reported PE results irrespective of whether they include precession effects

or higher modes [86,87], this is deemed to be excessive. Alternatively we may choose to

extend this systematic coverage presented here, perhaps for example dedicating all our

computing resources to the production of a few carefully placed simulations at very high

mass ratios. But given the expense these would require2 and the limited gain they would

offer given current detectors’ poor sensitivity to low frequencies (and therefore high mass

ratios), this is dismissed. Instead an omission in the simulations here is addressed: the

lack of spin on the secondary black hole. This will allow us to quantify the impact of spin-

spin coupling on the morphology of the waveform. Although expected to be small, as

we approach the era of third-generation gravitational wave detectors there will be increas-

ing demand for waveform models that incorporate these subdominant effects in order to

exploit the high-precision observations they will allow for.

With the publication of the BAM catalogue, the wider gravitational wave astronomy

community now has access to simulated waveforms generated by four different numer-

ical relativity codes; codes that each employ a variety of different techniques in their

approach to evolving the black hole binary spacetime. The SpEC simulations in particu-

2See CHAPTER 6 for a more detailed discussion.
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lar employ a radically different numerical setup to that outlined in PART I and used by

BAM, LazEv, and Maya. Rather than evolving moving puncture initial data through finite

differencing methods, SpEC uses a numerical grid that extends no further than the appar-

ent horizon of its black holes to avoid the singularity and solves the evolution equations

with pseudospectral methods.

It is curious then that very few consistency checks between the results of these codes

have been performed, particularly in light of their fundamental role they play in gravita-

tional wave astronomy. To what degree can, say, the 𝑞 = 8, 𝑎 = 0.8, 𝜃 = 150∘ binary

we’ve evolved for the BAM catalogue be said to agree with the same configuration evolved

using another code? Do the waveforms they generate agree sufficiently for the purposes

of current and future gravitational wave astronomy? It is precisely this question that we

aim to address in the following chapter.



A Cross-code Consistency Analysis

—————— 5 ——————

The first direct detection of gravitational waves by the LIGO-Virgo Collaboration in

2015 represented an important validation of general relativity and the culmination of

decades of theoretical, experimental, and computational work. But six years on with

50 published detections the focus of the now LIGO-Virgo-KAGRA Collaboration has

shifted to gravitational wave science as astronomy: the extraction of precision astrophysical

results from these signals, particularly as we approach the third generation of detectors.

It is therefore increasingly important that the tools used in the analysis of detected signals

remain accurate in the face of the unprecedented signal power they will offer. Currently

a detected gravitational wave is compared to a bank of model waveforms to see which one

best resembles the signal, with these models informed by both analytic approximations

and simulations that numerically solve the Einstein field equations. But if waveform

models based upon numerical simulations are to be used in the analysis of the sources of

detected gravitational wave signals, it is crucial that the accuracy of these simulations is

thoroughly quantified and understood. Any biases in these simulations have the potential

to propagate out through the waveform models they inform into the science output of

the LVK, and with ever-increasing signal strengths anticipated in future detectors they

will have an increasingly significant impact on gravitational wave astronomy. Typically

the numerical waveforms used within the LVK are published together with some esti-

mate of their uncertainties, but in this chapter we aim to further contextualise these un-

certainties through the cross-validation of simulations generated by different numerical

relativity codes, each employing different numerical methods, initial data, gauge choices,

and indeed different formulations of the Einstein equations. This is by no means the

59
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first such study, but is the first to investigate precessing black hole binaries and indeed

the first to analyse spinning black holes in terms directly relevant to gravitational wave

astronomy rather than just numerical relativity. This topic was explored in [88] from

a purely numerical relativity perspective, followed later by the first investigation of the

bearing such comparisons may have on gravitational wave detections in [89], and more

recently a targeted comparison of numerical waveforms that mimic the GW150914 grav-

itational wave signal was conducted in [90]. This study advances these efforts to the

modern age of gravitational wave astronomy in which previously subdominant features

in the waveform play an increasingly significant role in accurate parameter estimation

efforts.

In the third observing run of the LVK network we have seen the first strong evidence

for mass ratios beyond unity and for the impact of higher harmonics in the signal, and the

first hints of non-aligned spins [91]. In this chapter we aim to quantify the differences

between precessing, unequal-mass simulations generated by three numerical relativity

codes, and to contextualise the significance of these differences for gravitational wave

astronomy. We explore the impact of differing gauge choices on precession dynamics, and

analyse how this in turn affects the gravitational wave output in terms of the minimum

signal-to-noise ratio (SNR) at which these differences would manifest with respect to

the LIGO detectors. We examine both the gravitational waveform generated by the

simulated binaries and the dynamics of the binaries themselves in our analysis, focusing

on the final 12 orbits before merger from approximately 2000𝑀 before merger to around

200𝑀 after, where𝑀 is the total mass of the binary in geometric units, which translates

to approximately 0.01(𝑀/𝑀⊙) seconds. The simulations used in this analysis have

been generated by the BAM, SpEC, and LazEv codes. BAM [44] and LazEv [47] are finite-

differencing adaptive mesh refinement codes employing the moving puncture scheme

in the BSSN formulation of Einstein’s equations, while SpEC [92] uses pseudospectral

methods to solve the generalised harmonic system for excision initial data.

This work builds on that of Hannam et al. [89] which made use of two of the codes

we also use here—BAM and SpEC—to study the consistency of non-spinning equal-mass

simulations. It was found that both the phase and amplitude disagreements are within

the uncertainty estimates, resulting in a match (in the (2,2) mode) for all codes above

0.999: indistinguishable at signal-to-noise ratios below ≈ 14. More recently Lovelace et

al. in [90] compared simulations of an aligned-spin near-equal-mass binary representing
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the probable source of GW150914 generated by the SpEC and LazEv codes. Matches

here are also seen to exceed 0.999 across the frequency range, with differences in the

gravitational wave phase found not to exceed 0.01 rad over the final six seconds before

merger.

However astrophysical black hole binaries are generically expected to be spinning,

with no reason to suppose a priori that those spins are aligned with the orbital plane. In

such cases the spin-orbit and spin-spin couplings lead to precession of the orbital plane,

in which the orbital angular momentum vector rotates about the total angular momentum

vector. Compared to non-precessing configurations this brings added complications to

efforts to numerically simulate these binaries as the rapidly changing phase near merger

translates to significant short-timescale rotation of the orbital plane that must be captured

accurately. Additional complications plague the behaviour of the resulting gravitational

waveform, covered in detail in [56, 63, 93]. Briefly, the action of subdominant modes

in the gravitational wave signal becomes significant as the observed power is shunted

into them from the dominant (2,2) mode—indeed, there are configurations where the

otherwise-subdominant harmonics dominate [63]. There has been to date no consistency

check of the extraction of these higher modes between numerical relativity codes, nor has

there been any exploration of the relative phasing between precessing waveforms or of

the dynamics of the orbital plane.

While certainly of interest to the numerical relativity community, up until now this

has been largely irrelevant to gravitational wave astronomy. During the first two observ-

ing runs of the LIGO-Virgo detector network there was no evidence of precession in

the detected signals [80]. The third observing run has resulted in the strongest hint yet

of precession [91] and the detection of the first binary where the measurement of the

mass ratio was clearly bounded away from 𝑞 = 1 [81, 87], while recent developments

in waveform modelling have, using precessing numerical simulations, produced models

that include the effects of precession [60, 94] that were used in the analysis of all O3

events. With the prospect of ever more detections of such binaries on the horizon it is

crucial that the consistency of the precessing NR simulations from which they are built

is quantified.

To illustrate this, TABLE 5.1 details the simulations used in the construction of some

of the models within the EOB and phenomenological families. We can see that EOB

models have for the most part been developed using, and calibrated against, excision simu-
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lations, while the IMRPhenom family include in their construction simulations produced

by moving-puncture codes. Now given that these codes differ significantly in numerical

methods, initial data, gauge choices, and evolution schemes one can imagine it possible

that inconsistencies in the code would propagate out through the numerical waveform

to the waveform models, and so out to parameter estimation efforts and the science out-

put of the LVK. It has been demonstrated in [89] that the BAM and SpEC codes, as they

existed a decade ago, are sufficiently consistent in the dominant (2,2) mode for the cur-

rent generation of ground-based detectors for non-spinning black holes with equal mass

components. This has been extended to spinning black holes in [90], focusing in detail

on one example of how simulation accuracy may affect the analysis of a detected signal.

But there has as yet been no investigation of their consistency in light of the more recent

proliferation of unequal mass, precessing simulations. To accurately represent the wave-

form in such cases there is now a need for much tighter consistency in the phase evolution

across different codes, and the accurate extraction of the subdominant modes—in short,

there are a great many more areas where differences between codes may show up than in

the equal-mass aligned-spin comparisons performed in the past.

Moving puncture

SpEC BAM Llama CCATIE

PhenomA [95] - 3 - 1
PhenomB [96] - 23 2 8
PhenomC [97] 1 23 2 16
PhenomD [70] 174 18 - -
PhenomP [60] 174 18 - -
PhenomHM [63] 174 18 - -

SEOBNRv2 [98] 38 - - -
SEOBNRv3 [71] 70 - - -
SEOBNRv4 [72] 140 1 - -
SEOBNRv4HM [73] 140 - - -
SEOBNRv4PHM [74] 1523 - - -

TABLE 5.1 Simulations used in the construction of various EOB and phenomenological models, not
including those used for verification purposes. PhenomP and PhenomHM are both based on PhenomD,
hence the identical numbers of simulations used.
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The chapter is organised as follows. We first outline in §5.1 some details of three dif-

ferent codes whose simulations are currently used in the development of waveform mod-

els used in searches and parameter estimation, focusing on numerical techniques, initial

data, evolution schemes, and gravitational wave extraction. §5.2 introduces the specific

physical scenario that will be compared across these codes as well as the preprocessing

that has been done to get them sufficiently aligned with one another, together with a brief

description of the various challenges involved in such an alignment, and in §5.3 and §5.4

we present the results of this comparison. This covers both the dynamical evolution of

the black holes and their associated gravitational waves, together with calculations of the

match between the waveforms in §5.5. Finally §5.6 is given over to discussion of these

results in the context of upcoming advances in gravitational wave astronomy.

5.1. Numerics

As we have outlined in CHAPTER 1, in order to evolve dynamical spacetimes numerical rel-

ativity aims to recast the Einstein field equations in the form of an initial value problem,

comprising a fully described initial state of the spacetime together with a set of partial dif-

ferential equations whose solutions represent the state at some future time. We compare

three numerical relativity codes—BAM, LazEv, and SpEC—that approach this problem in

a number of different ways, summarised in TABLE 5.2. The BAM simulations were run by

the author, the LazEv simulations by Jim Healy, and the SpEC simulations through the

combined efforts of Katerina Chatziioannou, Harald Pfeiffer, and Geoffrey Lovelace.

To ensure the analysis can freely be applied to any simulation that may be produced

for the LVK, and to standardise many of the convention choices involved in the presenta-

tion of the data, we choose to work exclusively with simulations that have been curated

according to the LVC NR Injection Infrastructure (NRII), a framework outlined in [99]

that standardises many of these choices and sets out the format in which all NR simula-

tion data is to be stored: a single HDF5 file containing time domain datasets of specific,

unambiguously defined quantities. For this study each simulation is provided following

the ‘Format 2’ requirements, containing phase and amplitude time series of each mode of

the gravitational wave strain ℎ𝓁𝑚 as well as time-domain dynamics data: the black holes’

positions, spins, orbital frequency and so on.
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Formulation Initial data Topology Gauge

BAM BSSN Bowen-York Wormhole 1+log
𝛤 -driver

LazEv BSSN Bowen-York Wormhole 1+log
𝛤 -driver

SpEC Generalised
harmonic

Conformal
thin-sandwich

Excised Damped
harmonic

Time-stepping Mesh Discretisation
scheme

Extraction
radius

BAM Runge-Kutta
(4th order)

Berger-Oliger
nested Cartesian

Finite
difference

50, 60, 70, 80,
90, 100, 110, 120

LazEv Runge-Kutta
(4th order)

Berger-Oliger
nested Cartesian

Finite
difference

∞

SpEC Adaptive Runge-Kutta
(4th/5th order)

Nested spherical-
cubic-spherical

Pseudo-
spectral

∞

TABLE 5.2 Summary of the three codes featured in this study, based partly on Table I of [90]. An
extraction radius given as ∞ indicates extrapolation to infinity.

Even before any discussion of details specific to numerical relativity and the various

choices available to us there, there is a much more basic level at which these codes dif-

fer, namely the manner in which they numerically solve the sets of differential equations

describing the evolution of the spacetime. The codes we work with here fall into two

broad camps. BAM and LazEv make use of finite-differencing (sixth and fourth order re-

spectively) as described in §2.5 in which continuous derivatives are replaced with discrete

differences and the evolution equations are represented by a system of linear equations,

while SpEC employs pseudospectral methods to solve the evolution equations. In con-

trast to finite-differencing this approach uses a linear combination of basis functions to

represent the solution to the evolution equations. The coefficients of the basis functions

are time-dependent, and are themselves solved as simply a system of ordinary differential

equations. In practical terms this approach offers significantly improved accuracy and ef-

ficiency displaying exponential convergence, with the downside of extreme sensitivity to

instability [100]. Time-stepping is performed by BAM and LazEv through fourth-order

Runge-Kutta integration with Berger-Oliger refinement of the discretisation scheme for

the finer levels, and in SpEC through a fifth-order Dormand-Prince integrator. In the



NUMER I C S 65

latter case the size of the time steps is chosen so as to constrain time-stepping errors to

within a given tolerance by an adaptive proportional-integral control system [79].

Already we see how simple choices even at this level have the potential to produce

markedly different results: one can imagine, for example, that the poorer convergence

properties of the finite-difference codes may lead to a far more inaccurate simulation by

the time we reach merger, or perhaps that some unnoticed instability could afflict the

more sensitive spectral code. Beyond this initial branch point are a number of further

forks in the road that each have the potential to lead to significantly different simulations.

For one thing, although all three codes make use of adaptive mesh refinement, the

coordinate structure of the numerical domain differs significantly. The finite-difference

codes both follow the structure outlined in §2.5, employing a series of nested Cartesian

grids of increasingly fine spacing and extent, one set of grids centred on each puncture,

where upon reaching a refinement level where the two black holes’ grids would overlap

they are replaced by a single grid that is of sufficient size to contain the two. SpEC features

a domain consisting similarly of nested grids, again with finer levels centred on each

black hole and coarser levels containing both, though with a rather more complicated

structure. Around each black hole is a set of concentric spherical shells, progressively

deforming into a cube with each additional layer. As we continue further outwards these

two cubes are themselves surrounded by cuboids in order to fill up a larger cube, which in

turn is surrounded by concentric layers this time steadily deforming into spherical shells

(see [101] for further details). In fact during the evolution a dual-frame method is used

in which the basis of the various evolved fields is constructed on a static asymptotically

Cartesian grid while the evolution equations are solved on a co-moving frame that tracks

the motion of the horizons.

Both BAM and LazEv evolve Bowen-York initial data. In contrast, SpEC employs con-

formal thin-sandwich initial data extending only as far as the horizon [79,101], with the

region interior to the apparent horizon entirely excised from the computational domain.

The conformal thin-sandwich data utilises a modification of the York-Lichnerowicz con-

formal decomposition to solve the constraint equations, whereby the conformal metric

on two surrounding slices is provided as free data along with the conformal metric on

a given slice, the trace of the extrinsic curvature, and the energy and momentum den-

sity [10]. Whereas Bowen-York initial data allows the spins of the black holes to be

specified directly, thin-sandwich data must be constructed with appropriate boundary



66 A C RO S S - C ODE CON S I S T ENCY ANALY S I S

conditions on the shift vector at the outer boundary and each apparent horizon such that

the desired configuration is produced [102–105].

For BAM and LazEv the desired spin orientations of the black holes are achieved

through the iterative algorithm presented in [106] and summarised in CHAPTER 4. Briefly,

the orientation is provided initially at large separation and the system is evolved via the

EOB equations of motion up to the desired reference orbital frequency at which the

simulation will begin. Of course by doing this we end up with a slightly different spin

configuration at the start of the simulation than we were aiming for because the spin will

have evolved in the intervening time, so the difference between the actual and desired

spin directions is noted and the initial orientation is rotated by that amount. This is

repeated until initial parameters are obtained that produce the desired configuration at

the starting frequency to a tolerance of 1%.

One aspect common to all three codes is the need for some eccentricity reduction

procedure on the initial data so as to generate a sufficiently quasi-circular binary. Again,

this has been discussed in further detail in CHAPTER 4 and is achieved by iteratively apply-

ing small adjustments to the initial parameters. The two moving-puncture codes follow

the procedure outlined in [84], fitting the puncture separation during early inspiral using

a quadratic function and defining the eccentricity as the maximum difference between

the fit and the data in this range.1 For BAM the fit is made over the range 200–700𝑀 ,

after which small perturbations are introduced to the magnitude of the black holes’ linear

momenta until the eccentricity is below 0.002 over the first 1000𝑀 of simulation time.

If this cannot be achieved through perturbation of the linear momenta alone, the radial

momenta are decreased.

In addition to these broader differences in approach to initial data construction in

general, the particular initial data used in the simulations produced for this study differ,

and are crafted in order to produce a particular orientation and spin configuration defined

in §5.2 some time into the simulation. This is in order to avoid the initial junk radiation

in each simulation, handled in the final curated data product by simply cropping the first

few hundred 𝑀 of the simulation time.

The differing impact of junk radiation across these codes is one potential source of

errors introduced by the radiative content of the simulation. Even if it were eliminated

1The full method described in [84] requires the merger time, and is used to estimate the eccentricity of
the final simulation.



S E TU P & AL I GNMENT 67

entirely there remain differences in the precise way in which the gravitational wave signal

is extracted from the simulation. In all three codes the radiation content of a simulation

is computed as described in §2.4 at a number of different radii with an associated error

resulting from this extraction at finite distance, rather than at spatial infinity where it

is defined, but beyond this all three codes differ. No further treatment of this error

is performed by BAM, while SpEC and LazEv on the other hand mitigate this issue by

proceeding to extrapolate an approximation of the waveform at infinity by first aligning

the waveform extracted at each radius in time, and treating the error as a polynomial in
1
𝑟 𝑛ext . For SpEC the extraction radii used in this extrapolation vary from one simulation

to another, but typically begin at 100𝑀 and extend to the outer boundary in 24 steps

uniform in 1
𝑟ext [79]. LazEv uses ten radii spaced between 75𝑀 and 190𝑀 in the same

way [31, 107].

5.2. Setup & Alignment

As the black holes orbit, the loss of energy through gravitational radiation both decreases

their separation, and circularises the orbit [108]. As the black holes orbit closer, their

angular velocity increases, which in turn increases the rate of energy loss, and the inspi-

ral proceeds ever faster to merger. The highly perturbed remnant rapidly relaxes to a

Kerr black hole through further gravitational wave emission, where the frequency and

exponential decay rate of the ringdown signal can be related through perturbation theory

to the mass and spin of the final black hole [109]. TABLE 5.3 lists the masses and spins of

the five simulations we consider here.

It is often useful to decompose the gravitational wave signal of such an inspiralling

binary into spherical harmonics, dominated by the (𝓁 = 2, 𝑚 = ±2) modes in the non-

precessing case. Taking the equal-mass non-spinning case as an example, the frequency

(and amplitude) of these modes increase during inspiral from 0.38(𝑀⊙/𝑀) kHz one

hundred orbits before merger to 1.95(𝑀⊙/𝑀) kHz in the final 5 orbits [89], before fi-

nally reaching their maxima around merger. After merger the amplitude of the signal

decays exponentially in a process known as ringdown, where the perturbed remnant tran-

sitions to a Kerr black hole. The LVK operates gravitational wave detectors sensitive in

the frequency band 10 Hz to 10 kHz [110] with the final six orbits (with merger) in-band

for binary masses around 50𝑀⊙. With this in mind we choose to investigate here simula-
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Simulation
𝑚1,𝑖

(±5 × 10−7)
𝜒1,𝑖

(±5 × 10−7)
𝑚2,𝑖

(±5 × 10−7)
𝜒2,𝑖

(±5 × 10−7)

BAM 0.749917 0.750266 0.250037 2.44×10−5

BAMHR 0.749791 0.750578 0.250044 1.27×10−5

LazEv 0.749718 0.750632 0.250004 0.17×10−5

SpEC 0.750153 0.749746 0.249973 9.21×10−5

SpECHR 0.749918 0.748581 0.250005 7.28×10−5

Simulation
𝑀𝑓

(±5 × 10−7)
𝜒𝑓

(±5 × 10−7)

BAM 0.968062 0.488133
BAMHR 0.968303 0.487038
LazEv 0.966913 0.486429
SpEC 0.968673 0.489844
SpECHR 0.968648 0.489426

TABLE 5.3 Initial and final masses and spins of the five simulations considered in this chapter.

tions of the final twelve orbits of a quasi-circular black hole binary. We focus on a single

configuration: a mass ratio 𝑞 = 3 binary in which only the larger black hole is spinning,

with dimensionless spin magnitude 𝜒1 = 0.75 entirely in the orbital plane, aligned about

an orbital frequency of 0.02/𝑀 . The binary completes approximately half a precession

cycle before merger.

Having introduced the coprecessing frame in §3.4, here we will need to be more metic-

ulous in our choice of terminology to distinguish between frames defined with respect to

the orbital dynamics and those defined with respect to the waveform, and so throughout

will refer to the frame in which the Newtonian orbital angular momentum vector remains

static as the ̂𝐿⃗𝑁 -aligned frame, and the frame which maximises at all times the amplitude

of the (2,2) mode as the quadrupole-aligned frame, or the LA and QA frames for brevity.

Now at first it would seem that these would be identical, but even upon their introduction

in [57] this had been shown not to be the case. At the time it was presumed, with support

from comparisons against PN estimates of 𝐿⃗, that this difference was a result of using

the Newtonian quantity and that the ‘full’ angular momentum would align with the QA

direction. But later developments [111, 112] have shown that the quadrupole-aligned

direction does not track the orbital plane direction but depends both on the particular

radiation frame used and whether it is calculated from the Weyl scalar 𝛹4, the Bondi

news 𝛹̇4, or the strain 𝛹̈4 [51]. In this work however we use the strain throughout, and
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since we are making the same choice for all simulations we have a consistent definition

of a quadrupole-aligned frame in which to make comparisons. We employ the precession

angles of §3.4, (𝛼, 𝛽, 𝛾 ), to define the rotation into either the LA or QA frame depending

on context.

In comparing the gravitational wave signal, the relative alignment of the system can

significantly affect the apparent accuracy of the amplitude and phase evolution, as can the

choice to parameterise these by time or by frequency [89]. If we were simply comparing

identical simulations run on the same code differing only in resolution either of these

would be a suitable choice and the alignment would be relatively trivial, but in comparing

between codes, with different initial data and gauge conditions and conventions, poor

alignment of waveforms can amplify or suppress true differences between the output

of these codes. Naïvely we may choose merger as the event about which to align our

simulations, presuming it to be well-defined and cleanly identifiable in the waveform as

the moment that the amplitude of the (2,2) mode in the QA frame is maximised. We

would then apply a time shift that sets this event at 𝑡 = 0 and proceed to examine, say,

the difference between the phases of our waveforms. Unfortunately merger time is not

well-defined in the waveform [113], and so any synchronisation of two waveforms based

on it—and the resulting differences observed—are highly sensitive to the definition used.

If we were considering only the gravitational wave signal, some suitably well-defined

reference point could be chosen and it would be possible to determine if the waveforms

agree within their uncertainty estimates; but we both lack such robust waveform error

estimates, and more fundamentally this might well show that the waveforms agree but

the dynamics could display clear differences. These would then appear in the waveform

data at higher accuracies so it is important to investigate the dynamics quantities as well.

In the past a successful solution to this has been to compute the additional time shift

that minimises the phase disagreement, but in this work we are looking to study these

disagreements rather than suppress them. In short, there is a great deal of freedom in

how we align the waveforms, and some alignments may act to reduce the magnitude of

any differences that may exist between them making them harder to identify, while others

will make these differences clearer. For this reason we aim to align the waveforms in the

most well-defined way available to us that will also highlight differences that may exist.

To circumvent these difficulties [89] chooses to work in the frequency domain, pa-

rameterising quantities by the frequency of the (2,2) mode of 𝛹4 rather than by time,
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thereby avoiding the problematic sensitivity to time shifts. Unfortunately this is not an

option in the current study as per the NRII we only have access to the gravitational wave

strain ℎ, not 𝛹4, with the two related by 3⋅1. This is more of a problem than it may at first

seem. There is in principle no reason we can’t parameterise by the strain frequency, but

in practice the double integration over the whole evolution required to generate ℎ from

𝛹4 amplifies any noise in 𝛹4; particularly problematic for higher modes as they require

greater resolution due to their higher frequencies. And given that we are working with

a binary designed to display particularly strong precession, where there is considerable

power in these modes, these amplified inaccuracies represent a significant problem. With

the strain phase already compromised in this fashion, taking its derivative to obtain the

frequency exacerbates the problem even further. One option here is to use the orbital fre-

quency in place of the gravitational wave frequency—that after all is significantly cleaner,

and as the phase of ℎ is related to orbital phase by

𝜙ℎ ≈ 2𝜙orb + 𝜋 , 5⋅1

the frequencies of the two are linked by a simple factor of two, providing us with what is

essentially a clean and relatively accurate fit through the noisy data. But the relation 5⋅1
is only an approximation, one which only holds during early inspiral and so would only

serve to introduce further error in our attempts to locate a precise event. There is the

additional, though lesser, problem that for moving puncture simulations the black holes

remain tracked even through merger and ringdown, and so an orbital frequency can be

computed; but of course for a code based on excision initial data this is not possible.

We would then be left only being able to compare the SpEC simulation during inspiral.

With all this in mind the quantities used in our comparisons remain parameterised by

time. While the issues discussed with this approach do indeed remain we anticipate

that they present a lesser risk than attempting to work with quantities parameterised by

frequency.

With the frequency domain unsuitable and merger deemed not suitably well-defined,

we must find some other event around which we can synchronise the simulations. To

this end we require that in each simulation at an orbital frequency 𝑀𝛺𝑑
ref = 0.022 the

spin of the large black hole must point directly at the smaller black hole, which should

lie on the negative and positive 𝑥-axes respectively with the orbital plane entirely in
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FIGURE 5.1 Schematic outline of the configuration at the reference orbital frequency 0.022 /𝑀 . The
blue tracks show the quasi-circular orbits of the black holes with the blue arrow as the normal to the orbital
plane. The red arrows indicate spin.

the 𝑥𝑦-plane (FIG 5.1). Through this we define a relatively robust reference event about

which the simulations can be aligned. This can of course never be perfectly immune

to the relativity of simultaneity inherent to general relativity; there will always exist

some coordinate system in which the two events—that is, hitting the right frequency

and hitting the right spin configuration—are not simultaneous, but it is hoped that this

event is such that the codes used here, all ultimately employing physically reasonable and

relatively intuitive coordinates, will agree to within numerical precision.

The first task then is to identify this reference event in the simulations and rotate

them accordingly. Identifying when this reference event occurs is not straightforward.

There is no single ‘simulation time’ from which to select one entry where the event occurs.

As we’ve seen in §5.2, the black hole dynamics data is calculated from their horizons while

the gravitational wave data is extracted at some finite distance from the system and so will

be delayed accordingly. The output of the simulations can then be split into two distinct

parts: dynamics data and waveform data. This is problematic because there exists no

trivial relation between the two—the dynamics and waveform time series, 𝑡𝑑 and 𝑡𝑤 , are
not synchronised, so locating a time in one that corresponds to a specific time in the other

is difficult. The solution may at first seem trivial: the difference between the two is just
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the light travel time from the binary to the extraction radius. This would certainly be

the case in flat spacetime, or would be sufficient in the weak-field limit, but around the

binary an unambiguous relation between 𝑡𝑑 and 𝑡𝑤 does not exist.

Identifying the reference event in the dynamics alone is fraught with subtleties that

need to be addressed. Conceptually it’s straightforward enough: we simply locate when

𝑀𝛺 = 0.022 in the orbital frequency data, which is one of the datasets required by the

NRII defined in [99] as

𝛺⃗(𝑡) = ̂𝑛⃗(𝑡 ) × 𝑑
̂𝑛⃗(𝑡 )
𝑑𝑡 , 5⋅2

where ̂𝑛⃗ is the unit separation vector between the black holes. But being quasicircular

these simulations have some small but non-zero eccentricity. Their orbits are slightly

elliptical and so the black holes will be moving faster at the semi-minor axis than at

the semi-major. This eccentricity therefore manifests itself as oscillations in the orbital

frequency about the ideal circular orbital frequency (FIG 5.2), which can be approximated

by the orbit-averaged orbital frequency.

Taking the BAM simulation as a representative example, if we try to identify when

a particular orbital frequency occurs we see that a choice to work with either the in-

stantaneous or the averaged quantity is—if we happen to land on a maximum in these

oscillations—equivalent to a difference in 𝛺 of as much as 10−4 /𝑀 . While this may

seem insignificant, it turns out that the configuration of our binary at the reference time

𝑡𝑑ref is extremely sensitive to these eccentricity-induced oscillations. To see why, from the

PN formalism we have that orbital frequency is given by [114]

𝛺(𝑡) = ( 5
256

(1 + 𝑞)2
𝑞 )

3
8

(𝑡merge − 𝑡)
− 3

8 , 5⋅3

and so in aligning two simulations in the manner described above, we are aiming to define

the time 𝑡𝑑ref such that 𝑀𝛺(𝑡 = 𝑡𝑑 ref) = 0.022, given by

𝑡𝑑ref = 𝑡merge −
5

256
(1 + 𝑞)2

𝑞 𝛺− 8
3 (𝑡𝑑ref) . 5⋅4

Repeating this for an eccentric orbit, where 𝛺 → 𝛺 + 𝛥𝛺, we find that the difference

in time between an eccentric and a non-eccentric binary hitting the reference frequency

goes as
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FIGURE 5.2 Illustrating the impact of even small eccentricities on the orbital frequency. The top panel
makes clear the oscillations induced by the eccentricity, with the instantaneous orbital frequency given by
the dashed line and the orbit-averaged frequency given by the solid line. The difference between these two
is taken in the bottom panel.
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𝛥𝑡𝑑ref = 5
256

(1 + 𝑞)2
𝑞 (𝛺− 8

3 − (𝛺 + 𝛥𝛺)− 8
3 ) , 5⋅5

≈ 5
256

(1 + 𝑞)2
𝑞 𝛺− 8

3 (1 − (1 − 8
3
𝛥𝛺
𝛺 + …)) , 5⋅6

≈ 5
96
(1 + 𝑞)2

𝑞 𝛺− 11
3 𝛥𝛺 , 5⋅7

where higher-order 𝛥𝛺 terms have been neglected. For our 𝑞 = 3 system under

consideration here, using the 𝛥𝛺 = 10−4 of the BAM simulation seen above, at 𝑀𝛺 =
0.022 this would produce a difference of 𝛥𝑡𝑑ref ≈ 33𝑀 . In order to determine the phase

difference accumulated during this interval we recall that frequency is simply the time

derivative of the phase, and so we can integrate 5⋅3 once more to obtain

𝜙orb(𝑡) = −
8
5
( 5
256

(1 + 𝑞)2
𝑞 )

3
8

(𝑡merge − 𝑡)
5
8 + 𝜙ref . 5⋅8

We are free to choose that 𝜙ref ≡ 𝜙orb(𝑡 = 𝑡𝑑ref) = 0, and so

𝜙orb(𝑡) = −
8
5
( 5
256

(1 + 𝑞)2
𝑞 )

3
8

(𝑡merge − 𝑡)
5
8 + 8

5
( 5
256

(1 + 𝑞)2
𝑞 )

3
8

(𝑡merge − 𝑡𝑑ref)
5
8

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜙ref

. 5⋅9

The accumulated phase difference over the interval 𝛥𝑡𝑑ref is then given by

𝛥𝜙orb = 𝜙orb (𝑡 + 𝛥𝑡𝑑ref) − 𝜙orb(𝑡) , 5⋅10

= −8
5
( 5
256

(1 + 𝑞)2
𝑞 )

3
8

((𝑡merge − 𝑡 − 𝛥𝑡𝑑ref)
5
8 + (𝑡merge − 𝑡)

5
8 ) , 5⋅11

≈ ( 5
256

(1 + 𝑞)2
𝑞 )

3
8

(𝑡merge − 𝑡)
− 3

8 𝛥𝑡𝑑ref , 5⋅12

∼ 𝛥𝑡𝑑ref , 5⋅13

neglecting higher-order 𝛥𝑡𝑑ref terms.

The spin vector will also have evolved over this interval—we see that for otherwise

identical simulations, aligning one according to our earlier requirements at 0.022 /𝑀
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in the instantaneous frequency and another at 0.022 /𝑀 in the orbit-averaged frequency

produces an angular separation of their spin vectors of 0.03 rad.

This is precisely the issue we are now confronted with. For the purposes of our

alignment we work with the orbit-averaged frequency in order to minimise the impact

of these eccentricity oscillations, but this choice, indeed either choice here, immediately

presents us with a problem: the SpEC simulation has been crafted so as to achieve the

correct spin orientation at 0.022 /𝑀 in the orbit-averaged frequency, while BAM and

LazEv instead have used the instantaneous frequency. Locating our reference frequency

in the orbit-averaged data therefore sets spin offset at 𝑡𝑑ref and we no longer have such

clean alignment of the simulations.

This orbit-averaged orbital frequency is determined for each of the simulations we

consider by a fit of the form of 5⋅3 over the range 𝑡 = {200, 1200}𝑀 . With this in hand

we apply a time shift to the dynamics data such that 𝑡𝑑ref = 0. Then, taking the data at

this time, we find and apply the rotation matrix that will put the normal to the orbital

plane along the 𝑧-axis. A second rotation then puts the black holes on the 𝑥-axis with the

smaller black hole on the positive axis, which is simply a two-dimensional rotation about

the 𝑧-axis of −𝜙orb(𝑡 = 0) to set the orbital phase of the binary to 0. Combining these

rotation matrices we now have a single rotation that orients the binary as we would like,

which we apply at all times to the original data.

At this stage we have the dynamics oriented such that when the orbital frequency

is 0.022 /𝑀 , the black holes lie on the 𝑥-axis with their orbital plane entirely in the

𝑥𝑦-plane. To find the corresponding reference time 𝑡𝑤ref in the waveform data we apply

a rotation to the waveform data that roughly corresponds to that which we have just ap-

plied to the dynamics and look for the moment when, based on the waveform data, this

orientation is achieved. The first step is to rotate the waveform into the QA frame—

which, recall, is approximately equivalent to putting the dynamics into the LA frame

earlier—achieved by finding the set of rotations that at each moment maximise the am-

plitude of the (2,2) mode. This is performed using the nrutils suite developed by

Lionel London. We then apply the second rotation that was applied to dynamics, that

corresponded to a final phase shift. But some care must be taken here: the orbital phase

𝜙orb and the phase of the gravitational wave strain 𝜙ℎ are not identical, but related by 5⋅1,
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so the second rotation is now a shift of

𝛥𝜙h = − (2𝜙orb(𝑡𝑑ref) + 𝜋) . 5⋅14

We know that the QA direction is not in general the same as the LA direction, and so it

almost certainly does not precisely correspond to the orbital plane being the 𝑥𝑦-plane, but
unlike the gauge-dependent black hole positions it is at least a well-defined direction. The

invariant nature of 𝛹4 means that using this method would perfectly align the waveforms

produced by each code with one another (assuming identical initial data and infinite

precision), whereas using the dynamics may not due to the different gauge choices in

each code. Given that the waveform data and dynamics data are now in approximately

equivalent frames, with the black holes set on the 𝑥-axis at the reference time, we can

narrow down our search for 𝑡𝑤ref to just those times when the waveform data shows the

black holes crossing the 𝑥-axis. As the orbital phase is 𝑛𝜋 , {𝑛 ∈ ℤ, 𝑛 ≥ 0} when the

black holes cross the 𝑥-axis2 we know from 5⋅1 that this translates to a gravitational wave

phase of (2𝑛 + 1)𝜋 , so we search for every instance that this occurs.

In fact we can narrow this further as we know that the small black hole must be on

the positive 𝑥-axis at the reference time. The other crossing of the 𝑥-axis, with the small

black hole at negative 𝑥 , will not do, and searching in the waveform phase for (2𝑛 + 1)𝜋
does not discriminate between these two scenarios. This means we’re really looking for

an orbital phase of 2𝑛𝜋 , and so a gravitational wave phase of (4𝑛 + 1)𝜋 . We then look

for all occurrences of this and build a list of potential times that could correspond to the

reference event in the dynamics. Which of these is the one we want? This is potentially

problematic: aside from the issues mentioned above regarding ambiguity in times, there

is also the fact that the waveform data is cropped to remove the initial ripple of junk

radiation at the start of the waveform. There is no way of telling, from the NRII data

alone, how much time has been cropped, or if there has been any padding of the waveform

at the start and end of the data. Thankfully though the NRII requires that the dynamics

and waveform data be approximately synchronous, a requirement that also takes care of

the time shift due to extracting the waveform far from the binary, so we can search for

the time in the list that is closest to the dynamics reference time. As each orbit, and so

2This is true only for BAM simulations—for SpEC and LazEv this phase occurs when the black holes
cross the 𝑦-axis instead, and as such appropriate modifications must be made throughout to account for this.
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each entry in our list of candidate times, is separated by approximately 300 𝑀 , even if

the simulation follows the NRII requirements only very roughly we are unlikely to have

settled upon the wrong time.

Now that we have 𝑡𝑤ref, we select the single rotation that was applied at that instant

and apply it to the original data at all times, just as we did for the dynamics. Finally, a

time shift is applied such that 𝑡𝑤ref = 0. Our dynamics data and waveform data are now

oriented identically and synchronised.

It is worth noting, however, that the relation 5⋅1 between orbital and strain phases

only holds during early inspiral and to leading order in the (2,2) mode only, so there is

the potential for some inaccuracy in 𝑡𝑤ref. We can investigate this by working the other

way round: identifying 𝑡𝑤ref first, finding the rotations at that point, then applying that to

the dynamics data and inferring the corresponding 𝑡𝑑ref. If we set 𝑡𝑤ref to the time found

in the dynamics-first approach we should recover the same 𝑡𝑑ref if 5⋅1 is sufficiently valid.

We find that it differs by ∼ 30𝑀 , corresponding to a phase difference of 0.03 rad in the

orbit, of a similar order to the phase uncertainties due to the effects of eccentricity on

the orbital frequency discussed above.

We now turn to the spin angular momentum to examine how well each simulation

has approximates the configuration we are aiming for. FIG 5.3 shows the track of the spin

vector across the sky throughout the entire evolution of the large black hole. Recall that

in setting up these simulations it was intended that the spin on the large black hole lie

directly along the separation of the two black holes at 𝑡 = 0, which would correspond

to the dashed lines in FIG 5.3 pointing towards 𝜋
2 rad—clearly not the case here. This

is a result of the previous discussion regarding the precision to which the configuration

of the binary is crafted given the ambiguity in orbital frequency introduced by non-zero

eccentricities. We can convince ourselves though that this initial difference, this initial

misalignment between the spins in these simulations, remains constant throughout the

inspiral rather than contributing some growing error if we abandon the alignment in

phase at 𝑡 = 0 we have so far favoured and instead rotate the frames such that the spins

agree at this moment. The results of this are also shown in FIG 5.3, and we find that the

spins remain aligned to a tolerance of 0.05 rad between codes, and to within 0.005 rad

between simulations run with the same code.

The synchronisation of the spins throughout the evolution of the binary is rather

remarkable. Between the BAM and SpEC runs we have different gauges, different topology,
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FIGURE 5.3 The tracks of the spin angular momentum in each simulation, with phases aligned at 𝑡𝑑ref
in the left-hand column and spins aligned at 𝑡𝑑ref in the right-hand column. The black sphere in the centre
represents the spinning black hole while the dashed lines show the value at 𝑡𝑑ref. TOP: 3D representation of
spin tracks on the sky. CENTRE: Top-down view of the same. BOTTOM: Angle between the spin vectors of
the large black holes in each code. The dashed lines indicate the post-merger period.
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different initial data, and yet the behaviour of the apparent horizons that encode the spin

information behave identically to a tolerance of ±0.05 rad between these simulations

throughout the entire evolution, if spins are aligned sufficiently well.

Having been suitably aligned the simulations used in this study are summarised in TA-

BLE 5.4, which provides a brief description of their state at 𝑡𝑑ref. Note that the quoted

uncertainty estimates relate to the particular waveform under consideration and are not

a generic statement on the code that ran the simulation. Higher resolution versions of

the BAM and SpEC simulations have also been run and are labelled ‘BAMHR’ and ‘SpECHR’.

These simulations provide an estimate of the truncation errors for the two codes, an

upper-bound to the agreement we can expect when we start to compare between them

with any differences in excess of that revealing more fundamental variations between

codes. Ideally the results of the inter-code comparisons would be of the same order as

the intra-code comparisons, differing only as a result of resolution.

Label Separation
(𝑀 )

Spin/separation
angle (rad)

𝑀𝑟ext 𝑒
(10−3) 𝑀𝛺

BAMHR 11.796 0.288 50 < 2 0.021970
BAM 11.796 0.225 50 < 2 0.021968
LazEv 11.735 1.024 ∞ < 4 0.021964
SpECHR 12.578 0.408 ∞ < 2 0.021991
SpEC 12.561 0.521 ∞ < 0.3 0.022054

TABLE 5.4 Summary of simulations at 𝑡𝑑ref. Two simulations are included from BAM and SpEC, one at
lower and higher resolutions. Separation is that between punctures for BAM and LazEv, while for SpEC it
is calculated between the centres of the excised regions. 𝑑min is the spatial resolution of the finest refinement
level. The use of “∞” indicates that the results were extrapolated to spatial infinity.

5.3. Comparison of the Waveform

In this section we begin by directly comparing the phase 𝜙h(𝑡) evolution of the 𝓁 = 2

modes of ℎ, which together with the amplitude 𝐴(𝑡) can be used to construct the strain,

ℎ𝓁𝑚(𝑡) = 𝐴(𝑡)𝑒−𝑖𝜙(𝑡). 5⋅15



80 A C RO S S - C ODE CON S I S T ENCY ANALY S I S

This has two advantages. First, the phase involves minimal post-processing as it is di-

rectly output by all of the codes, and so only has to be packaged up into the strain time

series required by the NRII. It is also independent of the detector used so we can be

certain that any differences that arise are purely a feature of the simulation.

FIG 5.4 shows the difference in the phase of the (2,2) mode between codes. Immedi-

ately it is clear that phase disagreements grow far quicker during merger, accumulating

more in the final 50𝑀 than over the entire evolution up to that point. While the two

BAM simulations at different resolutions remain well-synchronised throughout, as may be

expected, interestingly the two SpEC simulations differ a little more, particularly close to

merger. This is due to a difference in the way these higher resolution versions were set

up. The SpEC simulations differ in both their resolution and also in initial data, but use

identical initial parameters to generate the data in each case. Those initial parameters

are determined using the higher resolution run, which allows for more precise tracking of

the orbital phase and spin orientation, and so while the binary may have been aligned per-

fectly according to our requirements at the reference frequency in the higher resolution

run, with lower resolution it may be offset to some degree causing the difference we’re

seeing here. The same would be true of the two BAM simulations too, but in anticipation

of this discrepancy, the initial parameters were instead tuned to preserve the alignment

in both the high and low resolution runs. In short, the two BAM simulations have differ-

ent initial parameters but record approximately the same physical configuration at the

reference frequency, while the two SpEC simulations have identical initial parameters

but at the cost of a different configuration. Either way, the phasing between them does

not exceed 𝜋 radians throughout the entire inspiral. More informative is the dephasing

between simulations from different codes. We see that BAM and LazEv drift by just 𝜋
4

radians by 2100𝑀 and throughout the difference remains of a similar magnitude to the

two SpEC simulations, while BAM and SpEC pass this milestone over 500𝑀 earlier.

The large variance here between BAM and SpEC is rather surprising, particularly given

how well the BAM/LazEv phases agree. It is worth taking some time here to explore this.

The first explanation that comes to mind is that the alignment procedure used in this

study could be flawed. In the ideal case it relies purely on locating 𝑀𝛺 = 0.022 and

so should be relatively robust, but as we’ve seen eccentricity complicates this and leads

to misalignment of the binaries of approximately 𝛥𝑡 = 30𝑀 . This issue was most
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FIGURE 5.4 Accumulated differences in the phase of the (2,2) mode between BAM and each of the
other codes. A shift has been applied such that the phases agree at 𝑡𝑑ref ≡ 𝑡 = 0. The black line shows
a comparison of two BAM waveforms of different resolution while the grey shows a similar comparison
between high- and low-resolution SpEC waveforms. As these waveforms merge at different times with
phase varying rapidly after merger it would be misleading to take their differences when one is merging and
the other is still inspiralling. With this in mind we transition from solid to dashed lines to signify that at
least one of the simulations has merged.

pronounced in the LazEv simulation (FIG 5.9), which possesses the largest eccentricity

of the five, yet the BAM/LazEv phase difference is dwarfed by BAM/SpEC .

Another possible explanation is that this is a result of the finite radius at which the

BAM waveform is extracted, as opposed to the approximation to the waveform as it would

be extracted at infinity used by SpEC , described in §5.1. A comparison between them

would therefore be expected to reveal this finite-extraction error. This has been quanti-

fied for the BAM simulations by constructing the extrapolated waveform. As BAM outputs

waveform data extracted at a series of radii, the 𝓁 = 2 modes at each of these were aligned

about merger (defined as the time when the (2,2) amplitude reaches its maximum), re-

sampled, rotated into the quadrupole-aligned frame, and at each time a fit of the form

𝐴 + 𝐵
𝑟 was made to the phase according to the various radii. The limit of this fit as

𝑟 → ∞ is then taken, with the final extrapolated waveform consisting of the limit of

each of these fits at each time step. The difference between the BAM phase and this ex-

trapolated BAM phase is shown in FIG 5.5, where it’s clear that this error cannot account
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FIGURE 5.5 Phase difference between the (2,2) modes of the BAM simulation in the QA frame, extracted
at a radius of 50𝑀 and extrapolated out to ∞. The extrapolated waveform has been computed using
gravitational wave data extracted at 𝑟ext = {50, 60, 70, 80, 90, 100, 110, 120}𝑀 .

for the dephasing between BAM and SpEC. This is not entirely surprising as LazEv also

reports the extrapolated waveform—if the use of finite extraction radius were responsi-

ble, it would also be seen there. Interestingly the error is of a similar magnitude as the

BAM/LazEv dephasing, and so may well be the cause in that case.

Different scalings of the simulation time between codes would also produce a signif-

icant dephasing. All of these simulations are scaled by the total binary mass, so if two

codes differed in total mass the times and the distances in identical simulations would

differ. Of course this would all be entirely consistent within each code, and would report

a total mass scaled to 1 and component masses 0.25 and 0.75 accordingly, but when it

comes to comparing between codes such a difference in scaling would emerge. To illus-

trate this, we take two copies of the same phase data and introduce in one of them an

artificial rescaling of the times. We then perform the same kind of alignment that is used

in this study and see that these two phases do increasingly drift apart, just as BAM and

SpEC appear to (FIG 5.6). Ostensibly both BAM and SpEC compute the total mass of the
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binary using the Christodoulou mass [30, 79], with the irreducible mass of each black

hole defined by the area of its horizon. But it is worth noting that rather than calculating

the Christodoulou mass itself BAM computes the mass as the sum of the ADM masses

of the individual black holes and notes that this has been seen to agree within numerical

uncertainty with the Christodoulou mass.

Variations in the total mass could also originate from the different gauge choices

between the codes given that the masses of the black holes are calculated on the appar-

ent horizons (§2.4), which are highly gauge-dependent. The two BAM simulations are of

course identical in their choices of gauge, as are the two SpEC simulations, so if such a

scaling discrepancy exists there would be no contribution to the phasing in these cases.

And indeed we see quite good agreement in their phases. The LazEv simulation is partic-

ularly interesting because now we have a different code that nonetheless has a difference

in the relative phasing of the same order as the BAM/BAMHR and SpEC /SpECHR differ-

ences. But recall that BAM and LazEv share much of their underlying framework and

methodology, and in particular they both use the 1+log gauge, so if the choice of gauge

really was contributing it wouldn’t be evident in BAM/LazEv any more than it would

in BAM/BAMHR. That leaves us with BAM/SpEC, which certainly do have different gauges,

and indeed we see a much greater phase difference. It should then be possible to apply

some artificial rescaling of the times in our SpEC data that acts to improve the phasing

with respect BAM, and examine whether it is of a magnitude that could reasonably come

from a difference in gauge choices. In FIG 5.7 we reproduce the BAM/SpEC phase differ-

ence but artificially scale the SpEC times. We see that a rescaling of 1% can bring the

dephasing in line with that in the other comparisons, so clearly this level of difference

in mass definitions can reproduce the phase difference we’re seeing. Conversely if the

gauge differences are shown unequivocally to be the source of the dephasing, then the use

of these two waveforms to analyse the same detected gravitational wave would introduce

a 1% systematic uncertainty in the inferred masses of the progenitor system.

It might well be asked whether a similar issue plaguing the spins could contribute

as well. Given that the spins are also calculated on the horizon this could certainly be

the case, but considering the scale we’ve seen such differences would be, of around 1%,

together with the fact that the spins are almost entirely in the plane, any impact on the

phase would be negligible. That’s not to say the effect of the spin can be entirely neglected:

certainly in cases where it is aligned or anti-aligned with the orbital angular momentum
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FIGURE 5.6 In blue the BAM/SpEC (2,2) phase difference. In yellow that of the BAM simulation and
the identical data but with the times scaled by a total mass of𝑀 = 0.99 rather than𝑀 = 1.

merger occurs sooner and later respectively as a result of spin-orbit coupling [115]. But

the spins here are entirely within the plane at 𝑡𝑑ref and throughout the entire evolution

don’t evolve further than 0.03 rad out of the plane (see FIG 5.3). Clearly then it is the

phase evolution that dominates any variation between these codes. It is worth noting

that this is not an issue with wave extraction and the gravitational wave output but funda-

mentally with the evolution of the binary given that a similar degree of variance is seen in

both the orbital and (2,2) phases. From the preceding discussion of the (2,2) phase this

appears not to be a consequence of precession in and of itself, but rather some as-yet un-

diagnosed issue with the definition of mass used in the codes producing an inconsistent

overall scaling.

Given the significant dephasing that such a discrepancy produces it is perhaps sur-

prising that it hasn’t been noted previously. In [90] we see another example of the phase

difference between a moving puncture code and SpEC being calculated, found to remain

below 0.01 rad at all times. Any problematic definitions or gauge choices, if they exist,

would have been present in that study. The approach to aligning the two waveforms is

however significantly different between the two studies. In the present study we align

them during inspiral and apply a phase shift at that point, while in [90] they are aligned at
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FIGURE 5.7 The difference in (2,2) phase between BAM and SpEC . The dashed line shows the phase
difference in FIG 5.4, the solid blue has had times rescaled to simulate the effect of different overall scalings
of the system by total mass. In yellow is the phase difference if, rather than aligning about 𝑡𝑑ref, we align the
times at the moment of maximum emission in the (2,2) mode (merger) and apply a phase shift such that
𝛥𝜙(0) = 0, as has been done in [90]. The green line shows the phase difference if the SpEC times are
shifted by 30𝑀 .

merger (maximum amplitude in the (2,2) mode), with a phase shift applied at the start of

the waveform. Aligning at merger will necessarily lead to smaller accumulated phase dif-

ferences, and if we follow the same approach here we do indeed see the BAM/SpEC phase

difference drastically reduced to < 0.4 rad (FIG 5.7). But as noted in §5.2 an alignment of

this kind serves only to suppress differences between waveforms rather than reveal them.

To see if precession really is responsible for this phase difference or if it has manifested

in prior studies it would be valuable in future work to repeat the SpEC/LazEv compar-

ison of [90] but aligned at some point during early inspiral rather than at merger, or

equivalently repeat the analysis in this chapter with an aligned-spin binary.
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5.4. Comparison of the Precession Dynamics

So far we’ve seen how, alongside a contribution from poor extraction of the higher modes,

it is the precession dynamics that are primarily responsible for the poor match between

our BAM and SpEC simulations. These dynamics are most clearly encoded in the three

precession angles, introduced in §5.2. The evolution of the precession angles 𝛼, 𝛽 , 𝛾 in

each of our simulations are shown in FIG 5.8, from which we can see that, aside from a

shift of 2𝜋 in the LazEv simulation as a result of choice of convention, there is broad

overall agreement. We see in 𝛽 a variation of no greater than 0.1 rad throughout inspiral,

and in 𝛼 and 𝛾 a constant shift of no more than 0.5 rad which can be attributed to the

initial misalignment in spins.

Looking to the motion of the orbital planes, in FIG 5.9 we have plotted the direction of

the orbital angular momentum vector in each simulation both before and after the spins

are aligned at 𝑡𝑑ref. The orbital planes differ in orientation only by 0.02 rad even while

undergoing strong precession, so it is clear that the variation in precession dynamics

between the simulations is dominated by differences in the initial orientation of the spin.

We see in the orbital phase (FIG 5.10) the same disparity between BAM and SpEC that

plagues the gravitational wave phase. One potential source of misalignment in these

waveforms could be in the translation from the reference time found in the dynamics

data to the corresponding time in the waveform data. We found in §5.2 that a further

∼ 30𝑀 alignment uncertainty is introduced by this, but this would only affect the wave-

form data—if we examine the orbital phase we clearly see that the discrepancy persists,

even when the possibility of that particular misalignment is eliminated. We can in fact

address this concern more generally by considering the integrated phase difference in our

waveforms over some range of times, identifying the time shift 𝛥𝑡 that minimises the

quantity

∫
𝐵

𝐴
∣(𝜙BAM

orb (𝑡) − 𝜙BAM
orb (0)) − (𝜙

SpEC
orb (𝑡 + 𝛥𝑡) − 𝜙SpEC

orb (0 + 𝛥𝑡)∣ 𝑑𝑡 . 5⋅16

This time shift is computed over a selection of windows 𝑡 = {𝐴, 𝐵}, applied to the

SpEC waveform in each case, and the resulting phase difference with the BAM waveform

shown in FIG 5.11, along with the results for BAM/LazEv and BAM/BAMHR. From this we
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FIGURE 5.8 LEFT: The precession angles 𝛼, 𝛽 , 𝛾 , defined in §5.2. RIGHT: the difference in the
precession angles between each code.

see that there is no such time shift that will significantly reduce this difference, until of

course the magnitude of the shift is such that we approach aligning at merger, which we

are avoiding.

5.5. Matches

We also compute the match between our numerical waveforms, defined in §3.6. To

give some perspective, the match between a numerical simulation approximating the
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FIGURE 5.9 The tracks of the orbital angular momentum in each simulation, with phases aligned at
𝑡𝑑ref in the left-hand column and spins aligned at 𝑡𝑑ref in the right-hand column. The two black spheres in the
centre joined by a circle represent the black holes and their orbital plane at 𝑡𝑑ref. TOP: 3D representation of

precession tracks on the sky. The solid black line is the vector at 𝑡𝑑ref and is common across all five simulations
due to the alignment procedure described in §5.2. CENTRE: Top-down view of the same. BOTTOM: Angle
between the orbital angular momentum vectors in each code. As in FIG 5.3, the dashed lines once again
define post-merger period.
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FIGURE 5.10 Accumulated differences in the orbital phase between BAM and each of the other codes.
A shift has been applied such that the phases agree at 𝑡 = 0. The black line shows a comparison of
two BAM waveforms of different resolution while the grey shows a similar comparison between high- and
low-resolution SpEC waveforms. As before, dashed lines indicate at least one of the binaries has merged.

GW150914 event and the waveform model SEOBNRv2 is approximately 0.997 [90]. For

our purposes we compute the matches between the BAM waveform and that produced

by each of our other codes, and also include on these plots the match between the two

BAM simulations of different resolutions and the two SpEC waveforms. The precessing

matches here are given as a function of inclination of the orbital plane, optimised over

phase and polarisation3. These are performed for a starting frequency of 22 Hz with

total mass 223𝑀⊙ so that the signal starts within the LIGO sensitivity band and are

shown in FIG 5.12, with matches performed over all the 𝓁 = {2, 3, 4} modes. The detec-

tor noise power spectral density used in the match calculations is provided by [116]. We

see that, as may be expected, the matches between simulations produced by the same

code perform very well, with the SpEC matches in excess of 0.997 at all inclinations and

for BAM above 0.999. BAM/LazEv isn’t quite as good, but it does for the most part re-

main above 0.985. The BAM/SpEC match on the other hand displays some concerning

features and a particularly strong inclination dependence, at its best rising as high as the

BAM/BAMHR match when the binary is face-on (when the (2,2) mode dominates) and at its

3For an in-depth overview of precessing matches calculations, see Appendix B of [93]
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FIGURE 5.11 Phase differences between BAM/SpEC (top), BAM/LazEv (centre), and
BAM/BAMHR (bottom), after applying the time shift that minimises the quantity 5⋅16, the integrated phase
difference, over a selection of windowing regions.
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worst dropping below 0.9. The match averaged over inclination is approximately 0.96.

The banks of waveform templates used in LVK search pipelines are constructed such

that the minimum match between two neighbouring waveforms in the parameter space

is 0.97, corresponding to the 90% confidence region for a signal-to-noise ratio 𝜌 = 9 in

the LIGO detectors [117].

But what is the reason for such a low match? Given that previous studies [89] have

shown matches in excess of 0.999 between non-precessing waveforms of different NR

codes, there are two possibilities. Either the code isn’t handling the dynamics of the

precession accurately, or the effects of precession on the waveform aren’t being picked up

by the code sufficiently well. Now, in truth there will be some element of both occurring

but we can determine which is dominant by splitting our analysis up into two parts. We’ve

seen that the precessingmatch is poor between our waveforms, so to diagnose the problem

we split it into a non-precessing match plus a set of precession angles. It is worth at this

point taking a moment to examine how this helps us.

If the precession dynamics are at fault then the code will produce a perfectly valid

waveform but one that doesn’t correspond to the scenario we thought we were simu-

lating. Specifically, there will be more power in some modes than we would expect

and correspondingly less in others and so the match with a ‘correct’ waveform will be

poor—because they are from two different binaries. If this waveform is then rotated into

the quadrupole-aligned frame with the (2, ±2) modes dominating the spectrum and the

waveform made effectively non-precessing, the match should improve dramatically. By

rotating into the QA frame we remove the precession from the waveform and so remove

any consequence that could arise from inaccurate precession dynamics. The match will

now be between two waveforms generated by identical binaries, and the cause of the poor

precessing match lies in the precession dynamics.

In the second case, the binary precesses perfectly but the changes wrought on the

waveform as a result of this are not picked up sufficiently well. Poor extraction of the

higher modes will produce a waveform that doesn’t exactly correspond to the dynamics

of the binary. As we’ve seen in §5.2, a precessing binary displays mode-mixing, a shifting

of power from the dominant (2, ±2) mode into the other, usually subdominant, modes.

We can imagine that, say, the (3, 2) mode isn’t extracted accurately by one code and so

some power is lost from it, and would as a result produce a poor match against a ‘correct’
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FIGURE 5.12 The match between each of the waveforms, where in the right-hand panel they have
been rotated into the quadrupole-aligned frame. For a signal of 𝜌 = 9 the 90% confidence region in LIGO
corresponds to a match of 0.97, shown by the dashed black line.
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waveform. This time however if we rotate into the QA frame the match will remain poor,

as the lost power won’t be restored and the waveform will remain inaccurate.

The results of the matches between the quadrupole-aligned waveforms are shown in

the bottom panel of FIG 5.12, and between BAM and SpEC we do indeed see an improve-

ment, suggesting that there is a greater impact from precession dynamics than from the

extraction of higher modes. That’s not to say the modes have no impact: if we plot

the match between individual modes of the BAM and SpEC waveform (FIG 5.13) we see a

much more nuanced story starting to emerge. The matches between the 𝑚 = 0 modes

are consistently poor, only surpassed by the (4, ±4) modes. For a non-precessing binary

it is expected that the match between these higher modes would be relatively poor given

how little power they contain with numerical noise washing out much of the detail, but in

a precessing case we see each mode modulated in power throughout the evolution, each

with times when it is particularly strong and times when it is weak enough to be signifi-

cantly affected by noise. This would therefore be expected to impact each of the modes

equally. The issue then is one of frequency: as we move to higher𝑚 the frequency of the

signal increases, and so will require finer resolution in time to resolve each cycle to the

same accuracy as the (2,2) mode. These higher-𝑚 modes then will by definition always

be more coarsely resolved than the (2,2) mode and exhibit poorer matches. This is offset

somewhat in the 𝓁 = 2 matches by the reduced power content in the 𝑚 = ±1 modes

(see FIG 5.14), where noise contributes a greater proportion of the signal. The poor han-

dling of these modes certainly drags the overall match down then to some extent, even

if precession dynamics is the dominant cause. Interestingly though, between BAM and

LazEv we see the match get worse when we move to the quadrupole-aligned frame, sug-

gesting that here it is the higher modes that are the dominant source of discrepancy

between these particular simulations. Again turning to the mode-by-mode matches as

before (FIG 5.13) the 𝑚 = 0 modes are seen to perform even worse than their counter-

parts in the BAM/SpEC matches, and the𝑚 = ±1 matches are also now significantly lower.

FIG 5.14 shows the relative power contained in each of these modes, taking BAMHR in the

inertial frame as representative.

It is perhaps more intuitive to convert the matches into the SNR at which our wave-

forms would be distinguishable from one another in the current generation of gravita-

tional wave detectors. Suppose that two NR waveforms are being used to infer the

source parameters of a gravitational wave that has just been detected. If they are pre-
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FIGURE 5.13 Matches computed for each individual mode for BAM/SpEC (above) and
BAM/LazEv (below). The top row features the 𝓁 = 2 modes, the middle row the 𝓁 = 3 modes, and
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cisely identical they will return identical estimates of these parameters. If however they

differ, naturally they will report different results. But suppose the detected signal were

very weak. In that case the differences between the waveforms may be too small to be

seen: noise will drown out any fine differences between the two waveforms unless the

signal is sufficiently loud. In practice our numerical waveforms will never be perfectly

identical simply due to numerical noise so there will always be some finite SNR at which

they would be distinguishable. The question, though, is whether there are sources other

than numerical noise that produce differences, and whether these differences are of suf-

ficient magnitude to be noticeable in the data from our gravitational wave detectors. As

points of reference the typical detection threshold within the LIGO detector is an SNR

of 8 [118], the loudest black hole binary detected at time of writing had a network SNR

of 24 [3], and while in theory there is no particular upper limit, results from population

and event rate studies suggest that, for a random sample of 100 gravitational wave events,

there is a 50% probability that the loudest event is greater than 60 [119].

Baird et al. in [117] provide a straightforward conversion between match M and

this critical SNR 𝜌𝑐 above which two waveforms are distinguishable,

𝜌𝑐 = √
𝜒 2
𝑘(1 − 𝑝)

2(1 −M ) , 5⋅17

where 𝜒 2
𝑘(1−𝑝) is the chi-squared value with probability 1−𝑝 of obtaining that or greater

value.

This was calculated in [89] for the (2,2) mode of an equal-mass non-spinning binary,

finding 𝜌𝑐 ∼ 25 between BAM and SpEC . In FIG 5.15 we plot the critical SNR for the

waveforms considered in this study, calculated across all the 𝓁 = {2, 3, 4} modes at 90%

confidence for 𝑘 = 7 for the seven intrinsic parameters of the binary. For waveforms in

the inertial frame we see that while differences between waveforms generated by the same

code remain safely beyond the current loudest black hole binary signal at 𝜌𝑐 > 30, the

comparisons between different codes is consistently below 𝜌𝑐 = 25. BAM/SpEC performs

particularly poorly here, with all except face-on inclinations distinguishable at 𝜌 ∼ 10.
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FIGURE 5.15 LEFT: The distinguishability between each of the waveforms in LIGO (design sensitivity)
for the match computed over all 𝓁 = {2, 3, 4} modes. RIGHT: Distinguishability for the match in the (2,2)
mode only. In both panels the dashed black line shows the highest SNR binary black hole detection to date,
GW150914.

5.6. Discussion

Of primary importance moving forward is the investigation of this observed phase differ-

ence between the moving puncture and excision codes. A clear and relatively straightfor-

ward test would be repeating the SpEC/LazEv comparison in [90] without the alignment

at merger, with the waveforms aligned instead around 2000𝑀 before merger as has been

done in this study. This would allow us to define the configuration without the com-

plication of adjusting the spin configuration, and focus on achieving exactly the same

horizon quantities and eccentricity in the simulations. It would then be immediately

clear whether the phase differences seen here are merely the result of precession dynam-

ics or represent something more fundamental, such as the mass discrepancy discussed

above. If the same degree of difference in phases is seen the source will need to be iden-

tified. One possibility is the assumption in BAM that the ADM mass of a Kerr puncture

sufficiently approximates its Christodoulou mass, which it is claimed to achieve to within

numerical accuracy for non-precessing binaries but should be verified for the precessing

case. Another is that the issue lies with the gauge choices: damped harmonic for SpEC,

1+log 𝛤 -driver for BAM and LazEv. These do after all differ significantly—for example,

the 1+log slicing enjoys strong singularity avoidance as slices are unable to approach the

singularity, but with harmonic slicing they have been shown to approach it (albeit in

infinite coordinate time) [120].



98 A C RO S S - C ODE CON S I S T ENCY ANALY S I S

There also remains the discrepancy between higher modes in BAM and LazEv. That

these discrepancies persist even when rotated into the QA frame is suggestive of this

being an issue in the extraction of 𝛹4, and as such an in-depth study of the differences

between their extraction methods would be recommended.

The eccentricity-induced ambiguity in defining a reference frequency produces a non-

trivial misalignment of spins, leading to different precession dynamics. This however is

entirely an issue with the setting up of simulations for this study rather than something in-

herent to the codes themselves: given initial data constructed with vanishing eccentricity

the orbital planes would precess identically to within a tolerance of 0.03 rad. A case could

certainly be made therefore that, given how significant an impact such small uncertain-

ties in the frequency can have, there is need for stricter requirements on NR waveforms

than have currently been implemented. The first priority would be some amendment

to the NRII is recommended regarding the use of orbit-averaged versus instantaneous

orbital frequencies. Currently the orbital frequency dataset to be included in the final

data product is that defined by 5⋅2, but as we have seen this is subject to oscillation due to

the eccentricity. Rather than replace this with the orbit-averaged frequency, we would

recommend including both the orbit-averaged frequency and instantaneous as separate

datasets as both could well prove to be useful for eccentricity studies or the development

of eccentric waveform models. Similarly, tighter restrictions on acceptable eccentricities

would appear to be necessary given how even small eccentricities have been shown to

affect the spin configuration significantly.

Given the magnitude of the impact on phase that has been seen in this study, greater

transparency regarding the various conventions used in each simulation is strongly rec-

ommended. In the context of detections it is the relative phasing of the waveforms that

impacts the match between them, so a potential incompatibility in, say, choices of gauge

or definitions of eccentricity between codes risks significantly impacting the science out-

put of the collaboration.

As far as the future is concerned, as we approach the era of third generation detectors

such as Einstein Telescope andCosmic Explorer with their expected SNRs exceeding 100

[8] it is clear that, unless there are drastic improvements in the consistency of NR simu-

lations, waveforms produced by different codes will be readily distinguishable. Results

from parameter estimation will differ depending on which code’s waveforms are used.

Currently numerical waveforms are not directly used in parameter estimation, with a few
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numerical waveforms instead produced at various points in the parameter space which

are then used to inform the development of models that approximate the key features of

the waveforms. Ideally the entire parameter space would be populated by thousands of

numerical waveforms to be used directly in parameter estimation as they offer greatest

accuracy. As this is prohibitively expensive in terms of both time and computational

resources, these models are used instead. It has been shown here that even in the ideal

case, of purely numerical parameter estimation with no errors due to the approximations

made by the models, results would still differ depending on the choice to use either BAM,

SpEC, or LazEv.

The impact of multi-detector networks has been neglected in this work. This is an

area ripe for future study in the context of numerical waveform systematics given it can

contribute an effective amplification of a signal, as it may well increase the likelihood that

an event is detected of sufficient power to fall within the distinguishable region. Addition-

ally as current detectors are improved over their operational lifetime and their range is

steadily extended the volume of space open to us grows, with a corresponding increase in

the number of potential detectable events. Purely on probabilistic grounds the prospect

of an unusually loud signal becomes increasingly likely, together with the prospect of our

numerical waveforms returning conflicting parameter estimates as a result.
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Part Three





Stable Evolutions in Coarse Resolutions

—————— 6 ——————

As gravitational wave astronomy advances towards ever-higher sensitivities and as-yet

unexplored frequencies, the prospects for the detection of a signal originating from a

binary of high mass ratio become ever more hopeful. The waveform models and simu-

lations we have explored in PART I and PART II provide sufficient detection and analysis

tools for the current era of second-generation ground-based detectors—mass ratios up

to 𝑞 = 8 are receiving a lot of attention within the community, and it is likely that

waveform uncertainties will remain beyond the accuracy requirements for observations

with second-generation detectors. A number of potentially precessing signals have been

detected and analysed using these precessing models, but even then parameter estima-

tion results remain minimally affected by the use of either precessing or non-precessing

models. All published black hole binary signals at the time of writing have been approx-

imately equal-mass, save for GW190412 with posterior support for 𝑞 = 3 [87]1. With

a low-frequency limit in the LIGO detectors of 10 Hz (corresponding to the innermost

stable circular orbital frequency of a 𝑀 = 400𝑀⊙ binary) and an approximate lower

mass limit on black holes of 3𝑀 [121], the highest currently detectable mass ratio is

𝑞 ≈ 145. But the upcoming space-based gravitational wave detectors—Taiji, LISA, and

TianQin—unimpeded by seismic noise and noise from the mirror suspension systems

will be sensitive to far lower frequency gravitational wave signals. The LISA frequency

range for example is 0.0001–1 Hz, which will allow for detections of binaries of chirp

masses in the range 103–107𝑀⊙. As well as mergers of intermediate-mass or supermas-

1GW190814 has an estimated mass ratio of 𝑞 = 9, but is most likely the result of a neutron star-black
hole merger.
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sive black holes, this will permit the detection of extreme mass ratio inspirals (EMRIs) in

which a stellar-mass black hole merges with one of its supermassive counterparts. With

gravitational wave signals that lie within the LISA frequency band for the final few years

of inspiral [122] we have a way to directly probe the strong-field geometry close to a black

hole horizon, as well as access to the rich harmonic structure during ringdown that in the

comparable-mass regime is dominated by the (2, 2) mode, together providing a means

to test general relativity in extremis. As we’ve seen throughout this thesis, accurate wave-

form models are essential to gravitational wave astronomy. But to construct these we

need accurate predictions from theory as to the phenomenology of these waveforms; pre-

dictions that can only be generated by numerical relativity. And while current numerical

relativity codes are perfectly capable of simulating such high mass ratios, the timescales

even a single simulation would require to run for sufficient duration are entirely imprac-

tical. A dense sampling of the mass ratio and spin parameter space is therefore out of

reach, and so too then is an accurate waveform model.

To see why this should be the case we first note that the black hole solution is asymp-

totically Minkowskian, with the BSSN variables in our simulations taking on constant

values in the far-field limit. It is only close to the puncture that the spacetime—and corre-

spondingly the BSSN variables—changes significantly over short length scales. Clearly

then in order to accurately capture the solution on the numerical grid a finer resolution is

required in the region close to the puncture than would be needed further away, and it is

precisely this that motivated the use of mesh refinement in numerical relativity codes 30

years ago [123], that is, the use of a set of nested numerical grids of increasing resolution

and decreasing extent, with the finest grids centred on the puncture (see §2.5). This has

been used successfully in the production of black hole binary simulations ever since and

as we’ve seen has been invaluable in producing waveforms used in the search for and analy-

sis of astrophysical gravitational wave events in the LIGO, Virgo, and KAGRA detectors.

But even now these simulations are prohibitively expensive to run for more than a dozen

orbits before merger, to cover the parameter space systematically and satisfactorily, or

to simulate binaries of mass ratios greater than approximately 𝑞 = 20. The reason for

this is the scaling of these simulations by the total mass of the system, 𝑀 . Increasing

the mass ratio is therefore equivalent to reducing the size of one of the component black

holes, and as a result increasingly fine resolutions are required to accurately capture the

smaller component, without which the solution relaxes to flat space (or, more colloquially,
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“evaporates”). Not only must the spatial resolution increase, but the temporal resolution

too: typically a Runge-Kutta evolution with finest grid spacing 𝑑 requires time steps of

a size no greater than 𝑑
2 to evolve stably [127], so as finer and finer grid spacings are

required at higher mass ratios the number of time steps per orbit must correspondingly

increase linearly. The memory required by the simulation is also subject to scaling as

resolution is increased, and so for full 3D simulations the computational cost scales as

the cube of the mass ratio.

It is instructive to consider an example that demonstrates this explicitly. A general

rule-of-thumb is that 50 grid points covering the black hole is sufficient for accurate

numerical evolutions (see for example [128–130]). In isotropic coordinates the horizon

radius is ≈0.7𝑚, leaving us with a grid spacing of 𝑑 = 0.028𝑚 = 0.014𝑀 in the case

of an equal-mass binary which as we have just seen requires time steps of at least 𝛥𝑡 =
0.007𝑀 . The orbital period of the binary explored in CHAPTER 5 was approximately

300𝑀 . Taking this as a representative example we see that the ten orbits of inspiral

typical of the simulations used in gravitational astronomy equate to 430,000 time steps.

The equal-mass simulations produced in CHAPTER 4 completed ten orbits in one week on

256 cores. If we now consider a 𝑞 = 100 binary the above calculation leads to 2.16 × 107

time steps—a year of continuous evolution. And this would represent only the extreme

lower end of the EMRI regime; with LISA and other space-based gravitational wave

detectors we expect to see mergers of stellar mass black holes with supermassive black

holes—mass ratios of up to 109—with signals that would be in-band for thousands of

orbits before merger. Using the same kind of back-of-the-envelope calculations, evolving

a 𝑞 = 106 binary for 100 orbits would take 100,000 years.

There have nonetheless been successful efforts to simulate mass ratios higher than is

typical: BAM for example has been used to evolve a 𝑞 = 18 binary [70], and RIT have

performed 𝑞 = 100 binary evolutions using LazEv [124, 125]. But the BAM effort, de-

spite possessing a mass ratio that is near negligible on the EMRI scale, still required over

100,000 CPU hours per orbit. The earlier LazEv simulation ran for just two orbits—

insufficient for use in searches and parameter estimation, which require dozens of grav-

itational wave cycles [126]—was non-spinning, and still required a month of wall-clock

time per orbit at a cost of 250,000 CPU hours, even with a temporal resolution chosen to

minimise expense at the cost of significant mass loss in the black holes. The more recent

simulation required 18,480,000 CPU hours to complete 13 orbits. It may therefore be
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regarded as a valuable demonstration that there is no fundamental obstacle to these high

mass ratio simulations beside computational cost.

The issue then is entirely one of resolution, not some more fundamental inability or

lack of understanding. If a way were found to stably and accurately evolve a black hole in

extremely coarse resolutions the whole issue could be sidestepped. This chapter aims to

take the first steps towards this with the introduction of a novel approach to the numerical

evolution of black hole spacetimes, and begin a programme of work that it is hoped will

result, in time, with long-term evolutions of binaries of arbitrarily high mass ratio. We

have conducted, and here outline, proof-of-principle tests on a single Schwarzschild black

hole, a boosted non-spinning black hole, and finally the head-on collision of two non-

spinning black holes of mass ratio 100, and have demonstrated that the method is stable.

Stable, accurate evolutions of the Schwarzschild spacetime were achieved for a duration

of 30,000𝑀 ; a boosted Schwarzschild black hole with boost velocity 1% the speed of

light has been run until destabilisation at 3500𝑀 ; and promising initial results with

the 𝑞 = 100 head-on collision of two non-spinning black holes have been achieved, all

three cases with resolutions approximately three orders of magnitude more coarse than

previously possible.

6.1. A New Approach

Currently numerical evolutions of black hole binaries solve the Einstein equations at

every grid point at every time step. In this work we aim to reduce the computational load

by taking advantage of the fact that a great deal of analytic information is known regarding

the form of the solution near the black hole. For a given (non-spinning) binary, we

know that locally the spacetime around each black hole is described by the Schwarzschild

solution—of course as you move further out this is modified due to the presence of the

other black hole, but for a sufficiently high mass ratio it is hoped that these modifications

are characterised by a length scale large enough that they can be treated as a smooth,

slowly-varying background to the foreground small black hole, determined by the length

scale of the larger black hole. We can therefore, for some solution variable 𝑓 (𝑥𝑖 , 𝑡 ),
decompose into the local solution at the small black hole 𝑓0(𝑥) and the background due
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FIGURE 6.1 The conformal factor to the negative-4th power for data representing two initially station-
ary black holes of mass ratio 𝑞 = 100, located at 𝑥 = ±10𝑀 . The solid line shows the full solution
𝑓 (𝑥, 𝑡 ), and the dashed line is our background 𝑓𝐵 (𝑥, 𝑡 ). The left panel shows both functions for both
black holes, while the right-hand panel zooms in on the region close to the small black hole.

to the larger black hole 𝑓𝐵 (𝑥, 𝑡 ):

𝑓 (𝑥, 𝑡 ) = 𝑓𝐵 (𝑥, 𝑡 ) + 𝑓0(𝑥) . 6⋅1

FIG 6.1 illustrates this for the inverse fourth power of the Brill-Lindquist conformal

factor in a 𝑞 = 100 binary, with the black holes separated by 20𝑀 . The solid line shows

the full solution 𝑓 (𝑥, 𝑡 ) = 𝜓 −4
BL , and the dashed line is our background 𝑓𝐵 (𝑥, 𝑡 ). Note

that this is an illustrative example for the purposes of introducing the concept only—Brill-

Lindquist wormhole data will not be used, and if it were the form shown in FIG 6.1 would

not be retained beyond the initial time step. From the introduction of Brill-Lindquist

data in PART I we have the conformal factor for a multiple black hole spacetime given

by 2⋅5

𝜓 −4 = (1 + 𝑚1

2𝑟1
+ 𝑚2

2𝑟2
)
−4

, 6⋅2

where

𝑟𝑖 ≡ √(𝑥 − 𝑥𝑖 )2 + 𝑦2 + 𝑧2 . 6⋅3

This corresponds to the black line in FIG 6.1. The grey line is simply the conformal factor

of the large black hole alone,

𝜓 −4
2 = (1 + 𝑚2

2𝑟2
)
−4

, 6⋅4
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which lacks the divergent term due to the smaller black hole. Clearly a far coarser grid

spacing will suffice to resolve 𝑓𝐵 (𝑥, 𝑡 ) and its derivatives than that required by 𝑓 (𝑥, 𝑡 ),
and as 𝑓0(𝑥) is known analytically its derivatives can be calculated to arbitrary precision.

By treating these contributions separately the derivatives of the global solution variable

𝑓 (𝑥, 𝑡 ) can be computed with a far larger grid spacing, or in other words a far coarser

resolution, than is currently required. It should be possible then to take advantage of this

by replacing each of our evolution variables with their decomposed forms—the analytic

local solution plus some correction term—and numerically evolve only this correction.

Accordingly throughout these chapters we label these the analytic piece and the numer-

ical piece, which together make up the full variable. Our evolution variable 𝑓 is now

decomposed as:

𝑓 = 𝑓analytic + 𝑓numerical ,
≡ f + f .

6⋅5

where for the example shown in FIG 6.1 the analytic piece is the local solution at the small

black hole 𝑓0(𝑥, 𝑡 ) while the evolved numerical piece is the background 𝑓𝐵 (𝑥, 𝑡 ). The

somewhat idiosyncratic notation here has been chosen so as to express the distinction

between the three quantities (full, analytic, numerical) while preserving the notion that

they all refer to the same solution variable without further proliferation of sub- and

superscripts that risk being mistaken for tensorial indices. It is hoped that this choice

assists in a more intuitive reading, suggestive of the role of the analytic quantities as a

sketched outline to be filled in by the numerical piece.

Throughout this work our evolution variables are the lapse 𝛼, shift vector 𝛽 𝑖 , con-

formal factor 𝜙 = log 𝜓 , and the extrinsic curvature split into its trace 𝐾 and trace-free

part 𝐴ij. These are then decomposed as

𝛼 = α + α ,
𝐾 = K + K ,
𝜙 = φ + φ ,
𝛽 𝑖 = β𝑖 + β𝑖 ,
𝐴ij = Aij + Aij .

6⋅6
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In practice this approach involves a simple reformulation of the evolution equations in

which the derivatives become amix of these analytic and numerical pieces and their deriva-

tives. The arbitrary precision to which these analytic derivatives can be calculated is the

key feature of the new approach we outline here that allows for coarse-grid evolutions.

At the start of every time step we redefine each evolution variable 𝑓 → 𝑓 − f =
f. This redefinition means that the evolution subroutine must be adapted accordingly:

everywhere 𝑓 appears will now be referring to f, so must be replaced with 𝑓 + f to rebuild

to the full quantity for evolution. This will require the first and second derivatives of f.
Finally after the evolution step is complete we will need to return to the full variable, so

we again redefine every instance of 𝑓 (which we recall at this stage is currently referring

to f) as 𝑓 + f. And so we end the time step with the full 𝑓 intact. The only other change

that needs to be made is in the boundary conditions on the lapse, as it is the only one of

our quantities that does not vanish in the far field limit. As a result, after subtracting the

analytic piece the leftover numerical piece will vanish at the boundary, so the conditions

need to be changed accordingly.

In these preliminary tests we supply the analytic piece in the form of simple poly-

nomial fits to highly accurate spherically symmetric numerical data representing the

Schwarzschild solution in trumpet form (see §2.3) for each evolution variable. Produc-

ing such a fit has been achieved through the use of Padé approximants applied to high-

resolution static trumpet initial data, computed in [34] as part of efforts to incorporate

the trumpet topology into BAM simulations, and informed by knowledge of both the near-

puncture and asymptotic behaviour. This data is provided for 𝛼, 𝐾 , 𝜓 , and 𝛽𝑟 , for the

radial coordinate 𝑟 . Given the spherical symmetry of the system the radial shift vector

data is used to construct the fit β𝑟 , which is then transformed into the Cartesian form

required by BAM by simply

β𝑖 =
𝜕𝑟
𝜕𝑥𝑖

β𝑟 . 6⋅7

The only minor obstacle here comes in the extrinsic curvature. This is not included in

the high-resolution trumpet data, but can be constructed from data that is available to us

as [10]

𝐴kl = 𝜓 −4𝐾kl −
1
3
𝑔kl𝐾 . 6⋅8

The only missing ingredient then is the 𝑔kl, but working as we are with conformally flat

Schwarzschild coordinates these are trivially the flat space metric components. It is then
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straightforward to construct the 𝐴kl in spherical coordinates. Then, analogously to the

treatment of the shift, a fit is made to these known spherical 𝐴kl to which the appropriate

tensorial transformation is applied to get it in Cartesian form,

Aij =
𝜕𝑥𝑘
𝜕𝑥𝑖

𝜕𝑥𝑙
𝜕𝑥𝑗

Akl . 6⋅9

The fits that have been constructed in this manner are

α = 0.0100𝑟 0.545 + 0.9311𝑟 6 + 2.9584𝑟 5 + 3.9283𝑟 4 + 1.1093𝑟 3 − 0.0207𝑟 2
0.0146𝑟 −0.545 + 0.9311𝑟 6 + 3.8896𝑟 5 + 7.3514𝑟 4 + 6.7549𝑟 3 + 1.9378𝑟 2 ,

K = 1
2.3046𝑟 3.663 + 6.8388𝑟 2.276 + 1.5983𝑟 1.218 + 5.7667𝑟 1.074 + 3.3229 ,

φ =
4.7557
𝑟 2.016 +

4.5876
𝑟 2.016 +

4.5753
𝑟 2.016 +

4.5726
𝑟 2.016 +

4.5442
𝑟 2.016 +

18.3270
𝑟 0.964

8.3174
𝑟 1.942 +

18.6008
𝑟 1.637 + 13.0821

𝑟 1.018 + 15.8568
𝑟 0.8889 +

15.6526
𝑟 0.889 + 36.1443𝑟 0.038 + 1

10

,

β𝑟 =
1

2.465 + 0.476𝑟 2 + 1.755𝑟 + 1.784
𝑟

,

β𝜃 = 0 ,
β𝜙 = 0 ,

A𝑟 𝑟 = −
0.9

0.0560𝑟 3.329 + 0.6593𝑟 2.416 + 1.5582𝑟 1.133 + 1
,

A𝜃 𝜃 =
1

0.4788𝑟 1.001 + 3.0123𝑟 −0.937 + 1.5793𝑟 0.050 + 0.0001𝑟 2 + 2.2055𝑟 −2 ,

A𝜙𝜙 = A𝜃 𝜃 sin (𝜃 ) ,

6⋅10

and in FIG 6.2 we demonstrate how they compare to the high-resolution trumpet data.

While the numerical piece does still possess some sharp features close to the puncture,

these are of a magnitude small enough that the effect of their exclusion in the global

solution is deemed to be negligible.

One further modification can be made at this point for the sake of future-proofing.

Given that the ultimate goal of this effort is to apply these fits to the evolution of the

smaller component in a high mass ratio black hole binary, some consideration needs to be

given to the scaling of these fits with mass. For the most part this is straightforward: the

mass contributes an overall rescaling of the coordinate distance, so we simply modify 6⋅10
by making the change {𝑥, 𝑦 , 𝑧} → { 𝑥𝑚 ,

𝑦
𝑚 , 𝑧𝑚 }, taking care not to neglect the extra factor

of𝑚 this will contribute in the derivatives. A further factor of 1
𝑚 is needed in the extrinsic
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FIGURE 6.2 LEFT: Functional form of the trumpet solution in blue, with the analytic pieces of 6⋅10 in
yellow. RIGHT: Form of the numerical pieces in the case where grid spacing 𝑑 → 0, computed by taking the
difference between the analytic pieces given in 6⋅10 and the provided trumpet data. Continued in FIG 6.3.
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FIGURE 6.3 Continued from FIG 6.2. The polar and azimuthal shift, as well as A𝜙𝜙 , are not shown
as in this chapter we will be working with an entirely spherically-symmetric spacetime.
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curvature due to its nature as the Lie derivative of the metric along the normal to the

spatial slice (1⋅2), so we also make the substitution K → K
𝑚 , Aij →

Aij

𝑚 . A comparison

between these newly-modified analytic pieces and the output from two static trumpet

simulations of differing masses is shown in FIG 6.4 and FIG 6.5.

6.2. Static Schwarzschild

The natural starting point for the testing of this method is the single static Schwarzschild

black hole. This is known analytically in the 1+log trumpet case and so the numerical

piece should be, numerical noise aside, identically zero. And as the solution is time-

independent this numerical piece will be zero everywhere at all times. The purpose

in starting with such a trivial case is simply to ensure that the modifications that have

been made to the code work as expected and introduce no instabilities, allowing for early

diagnosis and correction of any issue that may arise in this framework that will go on to

be used in more complex scenarios in future. We have therefore 𝑓 ≈ f, and so f ≈ 0 with

only inaccuracies in the fit and numerical noise contributing. As such it should be possible,

with sufficiently good fits, to resolve the system with arbitrarily coarse resolution as there

are no features to be resolved numerically.

Using standard methods we find that the black hole will evaporate in grid spacings

𝑑 ≥ 4.7 × 10−2𝑀 . Upon evolving with this new method we find remarkable stability

in coarse resolutions— FIG 6.6 shows the lapse at various times throughout the evolution,

both using these modifications and using standard methods, for a static Schwarzschild

black hole in a grid spacing of 𝑑 = 32𝑀 . These were run on 32 cores, with a single

refinement level, time steps of duration 𝑑𝑡 = 6.3 × 10−2𝑀 , number of points 𝑁 =
44, and 𝜂 = 0 (see §2.5). An identical run with eleven refinement levels, and hence

finest resolution 𝑑 = 3.1 × 10−2𝑀 , is also shown for comparison. We see that use of

the modifications to BAM introduced in this chapter together with a large grid spacing

reproduces qualitatively the same behaviour as that found using unmodified BAM with

fine grid spacing, preventing the evaporation of the puncture. To verify the performance

of this we compare the results using standard methods, which we label ‘old BAM’, run at

sufficient resolution for stability (𝑑 = 4.7 × 10−2𝑀 ), and ‘new BAM’ run at 𝑑 = 24𝑀 .

The grid setup of these two runs is identical, save that the old BAM run has nine mesh

refinement levels while the new BAM run has just one. The difference between their
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FIGURE 6.4 Mass scaling of the BSSN variables in wormhole data at 𝑡 = 20𝑀 shown on the left,
with the difference between data and analytic piece shown on the right. In blue are the results with𝑀 = 1
while yellow is used for 𝑀 = 0.01. The dashed line indicates the analytic pieces of 6⋅10 with the mass-
scaling modifications and the solid line indicates the data output from a static wormhole simulation. Note
the kink in the lapse at 𝑥 = 6.8𝑀—this is the outwardly-propagating gauge error resulting from the use
of wormhole data. Continued in FIG 6.5.
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FIGURE 6.5 Continued from FIG 6.4.
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respective BSSN variables is shown in FIG 6.7, using the data on the first refinement

level in both cases.

These new methods demonstrate long-term stability (here defined as persisting, with-

out signs of collapse or other instability, over at least 1000𝑀 ) for grid spacings within

the range 2.5𝑀 ≲ 𝑑 ≲ 40𝑀 . Below approximately 2.5𝑀 the lapse steadily collapses

to zero from the puncture outward, presumably the result of insufficient accuracy in the

analytic pieces close to the puncture where gradients are steep and sensitivity to features

in the numerical piece is high, and as such it is hoped that with more sophisticated fitting

techniques the accuracy of the analytic pieces can be improved such that arbitrarily fine

resolutions can once again be used. As the grid spacing is increased above 𝑑 ≈ 20𝑀 it

becomes necessary to severely restrict the Courant factor to the extent that a 𝑑 = 96𝑀
run was found to only be stable with 𝛥𝑡 = 2−16𝑀 . So while coarser resolutions may

well be possible, the scaling of the required Courant factor makes them impractical, and

for this reason we choose to state the soft upper limit as 𝑑 = 40𝑀 , three orders of

magnitude larger than previously possible with BAM.

These modifications to BAM are however currently incompatible with Berger-Oliger

refinement of the time steps, and we are therefore limited to a uniform step duration.

Exploratory tests on this suggest the issue lies in the communication of data between

levels when they are not aligned with one another, presumably due to one level working

in terms of the full BSSN evolution variable while those above or below are still working

with the numerical piece. This is most likely a result of the way in which our modifica-

tions have been implemented: the analytic pieces are subtracted before evolution of the

variables and then added back in afterwards, an order of operations that conflicts with

Berger-Oliger time stepping where for each step at refinement level 𝑙 the level 𝑙 + 1

completes two steps.

These initial tests on this admittedly trivial case appear then to be encouraging. We

have successfully evolved a black hole using resolutions three orders of magnitude coarser

than previously possible, achieving similar levels of accuracy as traditional methods. It

has been shown to display long-term stability; as a test of this the Schwarzschild case was

evolved for a duration of 30,000𝑀 with 𝑑 = 24𝑀 , running at an average wall-clock

speed of 40,819.7𝑀 per hour on 32 cores. The same case run using old BAM with 𝑑 =
4.7× 10−2𝑀 runs at an average speed of 67.7𝑀 per hour, representing a 60,000% speed

increase. If this degree of improvement were to persist through to full Kerr inspirals, the
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FIGURE 6.6 Lapse at a selection of times throughout the first 200𝑀 of evolution of a static
Schwarzschild puncture at a resolution of 𝑑 = 24𝑀 , using these modifications (bottom panel) and us-
ing previous methods (centre panel), and for comparison the first 200𝑀 of a 𝑑 = 4.7× 10−2𝑀 ‘old BAM’
run (top panel). Opacity of the line represents progression in time.
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FIGURE 6.7 Difference between old and new BAM runs at three different times during evolution. New
BAM run with 𝑑 = 24𝑀 , old BAM run at 𝑑 = 4.7 × 10−2𝑀 but data shown here taken from the level
with 𝑑 = 24𝑀 .
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𝑞 = 8 simulations in CHAPTER 4 that took approximately three months to complete would

only take 3.5 hours. But a single static black hole is a long way from the ultimate goal

of fully-inspiralling high mass ratio Kerr binaries; there remain significant obstacles to

overcome before that will be feasible, chief among them the ability to evolvemoving black

holes across the domain. This in itself represents a set of not-insignificant challenges that

we introduce and begin tackling in the following chapter.





Extending to Dynamic Black Hole Spacetimes

—————— 7 ——————

With the success of the stationary case the next logical step is a single boosted Schwarzschild

black hole. Superficially this seems trivial—there’s still only one black hole, it’s still non-

spinning, there is no acceleration and motion is constrained to one dimension—but in

practice there are a number of subtleties both in the implementation within BAM and the

construction of the analytic pieces that could previously be neglected. In this chapter we

introduce and address each of these, performing the same kind of preliminary tests as

those done for the static case, before extending this method to the head-on collision of

two black holes of mass ratio 𝑞 = 100.

The aim in this chapter is not to produce highly accurate simulations on par with

those produced using standard methods, but rather to show that in principle the approach

introduced in the previous chapter can work, that it can produce stable simulations of dy-

namic spacetimes that approximate the correct phenomenology at a fraction of the com-

putational cost. This is demonstrated in tests on a boosted Schwarzschild trumpet with

a velocity 1% the speed of light, stable over 3500𝑀 of evolution, and for the head-on

collision of two black holes, both in resolutions comparable to those achieved in the static

case, 𝑑 = 𝒪 (10𝑀). The inability to evolve traditionally fine resolutions encountered

in the previous chapter remains, as does the incompatibility with Berger-Oliger time-

stepping, but the largest caveat to this is that this preliminary success depends entirely

on manually prescribing the puncture trajectories using a previously-run high resolution

version of the simulation. New BAM as it currently exists is unable to capture the location

of the puncture and as such is unsuitable for its intended purpose of making practical

those simulations which are currently impractical. Further, we find that the numerical

121
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pieces at the puncture in the current implementation of this method are not flat, simple

functions that can be resolved in coarse resolutions, but are sufficiently flat for stability

only. The importance of the results presented in this chapter lies rather in the demonstra-

tion that it is fundamentally possible to stably evolve dynamic black hole spacetimes in

extremely coarse resolutions given the puncture can be accurately tracked in some way. This

is a problem left for the most part to future work. Prescribing the trajectory allows us

to investigate the viability of our method—namely, that the black hole doesn’t evaporate,

that it moves as it should, that there are no disruptive perturbations—without first having

to develop a novel tracking routine that may prove entirely unneeded. We propose one

potential coarse puncture tracker that currently fails when applied to anything beyond a

static trumpet located at the origin and suggest avenues for further development of the

technique in the hope that it can be refined.

7.1. Boosted Schwarzschild

The first and simplest modification thatmust bemade to the framework outlined in CHAP-

TER 6 is to allow for the puncture to be located somewhere other than the origin. This

requires a simple redefinition of the radial coordinate 𝑟 in our analytic pieces taking into

account puncture location {𝑥1, 𝑦1, 𝑧1},

𝑟 = √𝑥2 + 𝑦2 + 𝑧2 → √(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2 , 7⋅1

though for all simulations considered in this chapter the punctures will be confined to

the 𝑥-axis, with 𝑦1 = 𝑧1 = 0. This however immediately introduces a problem. Where

does this location come from? Certainly the puncture is tracked and output by BAM; this

is straightforward in current moving-puncture codes as the velocity can be directly read

off as the value of the shift vector at the puncture, making computation of the position

at each time step trivial. This is discussed in further detail in §2.5. But the philosophy

behind this new approach is specifically to not resolve the spacetime near the puncture,

so we no longer have access to an accurate reading of the shift at the puncture. An

entirely new approach is required here, an example of which is introduced in §7.3. For

the moment though, while we are conducting preliminary tests of the method on simple

configurations, we settle for a straightforward ad hoc solution that allows us to focus on
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setting up the bulk of the new framework and ensuring that this new approach can be

successfully applied to moving punctures. Specifically, for each attempted new BAM run

we first simulate the system using old BAM with traditionally fine resolutions, achieved

by adding additional refinement levels with no further alterations, then make an analytic

fit to the puncture positions and velocities this outputs, x(𝑡) and v(𝑡).
One further factor that didn’t pose an issue in the static case is the fixed nature of

the grid points in BAM, as by necessity a boosted puncture will at times be closer to a grid

point and at times further away. This means that our analytic pieces must now be accurate

arbitrarily close to the puncture, as any significant deviations at any point along the fit

will be seen by a grid point. The fits outlined in 6⋅10 have already been optimised in this

regard, though further refinement appears to be needed given the observed instability

of new BAM simulations with small grid spacings. Passing directly over a grid point

potentially risks destabilising the evolution; although in the moving puncture scheme

the singularity doesn’t pose such a risk (see §2.3), we’re now manually inputting functions

that in some cases diverge at 𝑥 = 𝑥1. This will need to be handled in future, but BAM’s

staggered grid setup ensures that none of the cases considered in this chapter face this

issue as they are all constrained to the 𝑥-axis. This threads the centre of each cell, so

a puncture boosted along it moves through a tube clear of grid points. But for generic

motion and full inspirals this will need to be addressed, even if the coarseness of the grid

means that a direct interaction with a grid point is unlikely, perhaps through the use of

fits that are well-behaved at the puncture.

There is however one alteration that needs to be made to the fits presented in 6⋅10. A

boost along the 𝑥-direction, which we restrict our focus to in this chapter, will require the

special-relativistic scaling of the 𝑥-coordinate in our fits by the Lorentz factor, 𝑥 → 𝛾 𝑥
where

𝛾 = 1
√1 − 𝑣 2

, 7⋅2

and just as with the mass scaling in CHAPTER 6 the derivatives along the 𝑥-direction
contribute a further factor of 𝛾 . Including this is not just a matter of completeness—the

inspiralling black hole binary simulations used within the LVK regularly achieve linear

velocities of 0.2𝑐 [79], so 𝛾 can contribute considerably to the overall shape of the BSSN

variables.
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FIGURE 7.1 Difference between BSSN variables output by a static Schwarzschild simulation and a
boosted (𝑣 =0.01) black hole simulation. These snapshots are provided at 𝑡 =52.5𝑀 to allow time for
the gauge to relax and for junk radiation to dissipate. Only 𝛽𝑥 and 𝐴xx are shown here as the boost is
applied in the 𝑥-direction, preserving the symmetry in the 𝑦- and 𝑧-directions.

Aside from these relatively minor alterations we leave the majority of the fits from

the previous chapter, which were based on the static solution, unchanged despite the

boost, anticipating that the changes it introduces will be sufficiently slowly-varying and

of sufficiently small magnitude that the numerical pieces remain resolvable with large

grid spacings. If we examine the differences between the static and boosted cases we see

that this is justified in all cases save the shift: FIG 7.1 shows our evolution variables in the

static and boosted cases, along with the difference between them.

It is clear that a fit to the shift vector based solely upon the stationary data leaves

unacceptably sharp features in the numerical piece. There is also the suggestion of a

need for modification of the lapse, though at this preliminary stage this is neglected and

to future developments if necessary. A more thorough treatment of the changes in the
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FIGURE 7.2 LEFT: static analytic shift in blue, boost-modified analytic shift with 𝑣 = 0.1 in yellow,
and 𝛽𝑥 from a boosted (𝑣 =0.1) simulation run using old BAM. This velocity was chosen so as to more
clearly demonstrate the boost-induced features while still remaining astrophysically reasonable based on
linear velocities achieved during comparable-mass binary evolutions (see for example [79]). RIGHT: The
β𝑥 resulting from use of the static analytic shift (blue) and the boost-modified analytic shift (yellow).

shift due to the boost is needed, so we appropriate from [131] an expression for the shift

of a wormhole boosted with velocity 𝑣 along the 𝑥-direction,

𝛽boost =
1 − 𝛼2

𝜓 4 + 2𝛽2 + 𝛽
𝑣 − 𝛽𝑣

2𝛽 + 1
𝑣 − 𝛼2

𝜓 4 𝑣 + 𝛽2𝑣
, 7⋅3

and assume that trumpets, on which our analytic pieces are based, behave similarly. We

apply this to our fit from the static case to form our boosted β𝑥 , with the comparison

against the boosted data shown in FIG 7.2. This displays good agreement with the data

with the problematic features removed from the numerical piece.

If we now attempt a coarse-grained evolution we see that it is stable for approximately

3000𝑀 . FIG 7.4 shows the lapse at various times throughout the evolution, using old

and new BAM, for a boosted (𝑣 = 0.01) Schwarzschild trumpet in a grid spacing of 𝑑 =
24𝑀 . These were run on 32 cores, with five refinement levels, time steps of duration

𝑑𝑡 = 1.1 × 10−2𝑀 , number of points 𝑁 = 40, and 𝜂 = 0. An identical run with 15

refinement levels (𝑑 = 2.3× 10−2𝑀 ), is also shown for comparison. It is from this finely-

resolved old BAM run that we take the puncture locations and velocities at each time step

to construct the proxy tracker that is used in the coarse simulations. The fits to this data
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FIGURE 7.3 Form of the proxy tracker used to evolve the 𝑣 = 0.01 boosted trumpet. On the left is
shown the fit through the position data with its deviation from the data below, and on the right is the
corresponding fit to the velocity, given in 7⋅4 and 7⋅5 respectively.

that are used are as follows, and are shown in FIG 7.3.

x(𝑡) = − 0.1452 + 0.0205𝑡 1.356 − 0.0265𝑡 1.287 − 0.0186𝑡 1.285 − 0.0165𝑡 1.285

− 0.0159𝑡 1.285 − 0.0165𝑡 1.284 − 0.0027𝑡 1.279 + 0.0098𝑡 1.258 + 0.0098𝑡 1.258

+ 0.0219𝑡 1.247 + 0.0448𝑡 1.236 + 0.0052𝑡−2.177 ,
7⋅4

v(𝑡) = 0.3676𝑡 1.132 − 0.4756𝑡 1.105 − 0.3862𝑡 1.079 + 1.5017𝑡 0.992 − 0.0753𝑡 0.963

− 0.0885𝑡 0.958 − 0.2926𝑡 0.908 − 0.2947𝑡 0.907 − 0.3323𝑡 0.897 − 0.3321𝑡 0.896

− 0.2713𝑡 0.880 + 0.7122𝑡 0.806 − 0.0834 .
7⋅5

FIG 7.4 shows the lapse at various times throughout the evolution, using these modi-

fications to the methods described in §6.2, for a boosted (𝑣 = 0.01) Schwarzschild black

hole in grid spacing of 𝑑 = 24𝑀 . The puncture no longer evaporates and does move

across the grid as expected, though there are clear qualitative differences when compared
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FIGURE 7.4 Lapse at a selection of times throughout the first 200𝑀 of evolution of a boosted (v=0.01)
black hole at a resolution of 𝑑 = 24𝑀 , using these modifications (bottom panel) and using previous
methods (centre panel), and for comparison the first 1000𝑀 of a 𝑑 = 4.7 × 10−2𝑀 old BAM run (top
panel). Opacity of the line represents progression in time.
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to the finely-resolved old BAM run: as the puncture moves towards the nearest grid point

the lapse appears to deepen, which is not observed in the new BAM run. This is most

likely due to the presence of the finer levels in the old BAM simulation, which resolve

the steep gradients close to the puncture and communicate this data back to the coarser

levels resulting in coarse-level data informed by the behaviour of the finer levels. The

instability at fine resolutions that was observed in the static case persists here and as be-

fore, for verification we also compare a coarse new BAM run with old BAM run at sufficient

resolution for stability, 𝑑 = 4.7× 10−2𝑀 . The grid setups of these are identical save that

the old BAM run employs twelve refinement levels rather than the three used by the new

BAM run. The difference between their respective BSSN variables is shown in FIG 7.5,

using the 𝑙 = 3 data in both cases.

Having established that new technique is fundamentally successful in both the static

and boosted cases, there is nothing to suggest a priori that it can’t be applied to the more

complex inspiralling binary configurations. The ability to update the numerical pieces

at each time step and retain stability as this is done, together with the observation that

the introduction of a boost does not necessarily lead to short-wavelength features in the

numerical pieces, represents a significant development from the implementation of this

method in CHAPTER 6. Both of these aspects were potentially fundamental obstacles to

this approach; the static case is independent of time and known analytically in the 1+log

gauge, but it is in attempting to apply these methods to dynamic spacetimes that we can

test if it remains robust under perturbation. With the ability to evolve a moving puncture

we can take the first step towards the binary inspiral simulations we ultimately aim to

achieve.

7.2. Head-on Collision

In this section we use the boosted techniques we have constructed above to simulate the

head-on collision between two black holes, taking two static punctures and allowing them

to accelerate towards one another. This is of course not an astrophysically realistic config-

uration, but it represents the next logical step from the boosted case and, importantly, a

step towards the ultimate goal of a binary inspiral. An orbiting binary introduces a host

of complications that would only serve to muddy the water at this stage, obfuscating the

source of errors when they inevitably appear and slowing development. Tracking would
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FIGURE 7.5 Difference between old and new BAM runs of the 𝑣 = 0.01 boosted puncture at three
different times during evolution. New BAM run with 𝑑 = 24𝑀 , old BAM with 𝑑 = 4.7 × 10−2𝑀 but
data shown here from the level with 𝑑 = 24𝑀 .
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be a particular issue given we still rely on standard fine-resolution simulations to generate

the proxy tracker, which for binaries would require timescales impractical for exploratory

development work. The motion of the puncture would no longer be constrained to a tube

free of grid points as it was in the previous section, risking a direct encounter with a grid

point (though the probability of this will be reduced due to the extremely coarse grids we

hope to employ). We would also no longer be able to take advantage of any symmetries

in the system nor the initial stationarity of the punctures. The head-on collision removes

a great deal of these complications while still allowing us to test whether the presence of

a second puncture introduces disruptive instabilities, for example through the presence

of interaction terms in the solution that are not currently captured by our analytic pieces

which are based on the single static Schwarzschild trumpet. We present the results of

tests on the collision of a 𝑞 = 100 pair of black holes, found to demonstrate stability

through to merger in similarly coarse resolutions as the static and boosted tests, with no

disruption as they approach one another.

With the addition of a second compact object further along the 𝑥-axis an initially

static black hole will accelerate inwards, travelling along the axis until the two objects

merge. This is in many ways similar to the boosted case we’ve discussed, except that the

velocity is no longer constant and the background metric will now feature the presence

of the other black hole. This could pose a problem for our approach. Up until now we

have relied on the background metric being flat and featureless once the foreground black

hole is removed making it possible to successfully evolve in coarse resolutions. Even if

the second black hole is evolved with traditionally fine resolutions, the background it

induces around the primary black hole where we are applying our method could be too

finely-featured to be resolved with these coarse grid spacings. One solution would be to

increase the separation to such a degree that the background is sufficiently smooth. But

eventually as this is evolved the puncture will encounter the same sharp features we were

trying to avoid, so instead we increase the mass of the second black hole. The length

scale of the background metric is determined by the mass of the secondary black hole, so

by increasing the mass ratio we can effectively smooth the background experienced by

the primary black hole. At this exploratory stage of development we choose to work with

a 𝑞 = 100 binary with a separation between the components of 10𝑀 , primarily because

we still need to run this configuration with old BAM to generate the proxy tracker and

so are limited to cases that can run to completion using old BAM in practical timescales.
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This was run at a wall-clock speed of 0.6𝑀 per hour on 32 cores, with resolution around

the larger black hole of 4.6 × 10−2𝑀 = 4.7 × 10−2𝑚1 and around the smaller black hole

3.6 × 10−4𝑀 = 3.7 × 10−2𝑚2. The domain consists of 9 refinement levels around the

large black hole and 16 around the smaller. The fits to position and velocity that form

our proxy tracker are

x(𝑡) = 10 − 0.0032𝑡 2.206 + 0.0031𝑡 2.165
1.8102𝑡 0.176 + 6.1308𝑡−0.863 , 7⋅6

v(𝑡) = −0.1455𝑡 1.334 − 0.1365𝑡 1.333 + 0.67917𝑡 1.327 − 0.6572𝑡 1.277 + 0.1659𝑡 1.121 + 0.2054𝑡 1.073
0.0001𝑡 3.145 − 0.0002𝑡 2.872 − 0.0003𝑡 2.823 + 0.0001𝑡 2.707 + 18.6319𝑡−0.702 + 18.6319𝑡−0.702 .

7⋅7
When running with new BAM we do precisely the same but drop down to 9 levels around

both black holes—for the small black hole, where we will be applying the analytics, this

corresponds to an effective resolution of 4.7𝑚2 (cf. CHAPTER 6 where resolutions in the

range 1.5𝑀 ≲ 𝑑 ≲ 48𝑀 were successfully employed).

Unfortunately we are immediately presented with a problem. Our analytic pieces

are based on trumpets, but there exists at present no initial data for binary trumpets.

Until such a time as this is developed we must fall back on wormhole data instead, which

evolve to trumpet form after some initial relaxation time (§2.3). But this means we need

to wait for this transition to have completed before our low-resolution methods can be

applied, or else our analytic pieces won’t accurately represent the full solution and the

numerical piece will no longer be sufficiently flat and featureless. What is needed then

is the ability to evolve using old BAM while the puncture is settling down to trumpet

form—with traditional, fine resolutions and no analytic pieces, as these are currently

incompatible with each other—before dropping down to a much lower resolution and

switching on our modified evolution variables. Clearly this is not optimal and represents

a severe bottleneck in the generation of high mass ratio simulations, particularly once this

approach is pushed to EMRI-scale mass ratios, but for proof-of-principle tests it will be

sufficient. Once binary trumpet initial data is developed we will be in a position to swap

out the wormhole data we’re currently using and take advantage of a framework that has

already been developed and tested.

This shift to lower resolution is achieved by shedding refinement levels at a user-

specified time. We modify an existing function within BAM intended to be used for

the shedding of levels after merger, when the remnant black hole would be larger than
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the parent objects and so wouldn’t require such fine grid spacings to be resolved. At

some given time1 this function deallocates the memory used by the variables associated

with those levels below the user-specified new finest level, 𝑙 ′max < 𝑙max. Some care is

needed here however: with each finer level being advanced one time step successively, and

Berger-Oliger levels being advanced by a greater number of smaller time steps, shedding

levels arbitrarily can lead to the inconsistent communication of data between levels. It

is essential to wait for the next instant after the specified shedding time that all levels

are aligned, that the finest level and coarsest level are both at the same time step, before

levels are shed. There is also an extreme sensitivity to the order of events involved. We’ve

discussed how the new BAM modifications are currently incompatible with Berger-Oliger

time stepping, and how the analytic pieces used aren’t accurate enough to be used at

fine resolutions, so these modifications must switch on after the levels have been shed,

when we are now operating in coarse resolutions and on levels that employ uniform time

stepping. Equally the solution can’t be resolved at 𝑙 ′max without the modifications, so

there can be no evolution steps between the shedding of levels and the activation of the

analytics. This, together with the requirement that all the levels be aligned, means that

before the new BAM modifications can be switched on both the specified ‘merger’ time

must have been reached and the shedding must have taken place: 𝑙max = 𝑙 ′max.
In attempting to evolve this head-on 𝑞 = 100 collision we see that it is stable through

to merger. FIG 7.6 shows the lapse at various times throughout the evolution, using old

and new BAM, for a pair of initially-stationary wormholes of mass ratio 𝑞 = 100 separated

by 10𝑀 . These were run on 32 cores, with eight refinement levels covering the larger

puncture (𝑑 = 0.24𝑀 ) and sixteen over the smaller puncture (𝑑 = 9.4 × 10−4𝑀 =
9.4 × 10−2𝑚1). After a duration of 0.3𝑀 = 30𝑚1 we shed eight of the levels covering

the smaller puncture, taking the finest resolution to 𝑑 = 0.24𝑀 = 24.2𝑚1. Time steps

of duration 𝑑𝑡 = 4.7 × 10−4𝑀 , 𝑁 = 48 points, and 𝜂 = 0 were used. An identical old

BAM run without shedding is also shown for comparison. Remarkable agreement is seen

in the phenomenology of the simulation as the smaller black hole appears to accelerate,

approach the larger black hole, and merge without crashing and without the introduction

of instabilities. Again, puncture locations and velocities at each time step are taken from

the finely-resolved old BAM run to construct the proxy tracker below, shown in FIG 7.7,

1For binary simulations it is possible to instead specify the separation between the two punctures at
which shedding should occur.
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and the difference between the BSSN variables in each case is shown in FIG 7.8, using the

𝑙 = 8 data in both cases.

The numerical pieces that would result from subtracting our analytic pieces from the

output of a simulation of a head-on collision of two (𝑞 = 100) wormholes separated by

10𝑀 are shown in FIG 7.9 for a run with finest-level resolution of 𝑑 = 0.24𝑀 covering

the larger puncture and 𝑑 = 9.4 × 10−4𝑀 covering the smaller. The extrinsic curvature

looks to be particularly problematic, primarily due to its mass scaling—at low masses the

additional factor of 1
𝑚 we found to be required in CHAPTER 6 causes leads to a strong nar-

rowing of the characteristic width of the function and strong inflation of its magnitude,

so even a small misalignment in the position of the analytic piece and the ‘true’ position

of the puncture will disrupt the numerical piece. The numerical shift is initially poor

because in using wormhole data we have an initially vanishing shift2 that evolves into its

expected form, an issue circumvented through the use of level-shedding. All numerical

pieces remain relatively featureless beyond a region surrounding the puncture approxi-

mately 0.1𝑀 in diameter, but this is nonetheless outside the horizon of the small black

hole. This suggests that the apparently successful simulation of the head-on collision

using new BAM may in fact not represent the true solution accurately. Qualitatively it

behaves as expected, due in no small part to the prescribed puncture locations it relies on,

but also because despite the features in the numerical piece existing outside the horizon,

they exist entirely between two grid points in our 𝑑 = 0.2𝑀 simulation shown in FIG 7.8.

At the two nearest grid points to the puncture the numerical pieces will indeed be as flat

and slowly varying as hoped, and so the simulation can be evolved stably—the features

we see in the numerical piece cannot therefore be disruptive, but the question remains

as to whether they prevent sufficiently accurate evolutions and, as a result, prevent the

construction of an independent puncture tracker.

All three of the scenarios that have been tested with new BAM have displayed long-

term stability and approximately the same phenomenology as their equivalent old BAM runs.

This is encouraging—clearly the use of analytic knowledge of the BSSN variables and

their derivatives to reduce the resolution required by black hole simulations is not a funda-

mentally flawed endeavour. It may yet prove that analytic pieces cannot be constructed

for full binary inspirals that are of sufficient accuracy for gravitational wave astronomy,

2This is done for the sake of simplicity, but really any choice is equally valid here as the gauge conditions
act to push the shift to its preferred value.
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FIGURE 7.6 The lapse at a selection of times throughout the evolution of the head-on collision, which
merges at approximately 50𝑀 , with a resolution on the finest level of 0.12𝑀 . The bottom panel shows
the results when using new BAM while the centre panel shows the same configuration run using old BAM.
In both cases we begin with 8 levels on the larger black hole and 16 on the smaller before shedding 8 of the
levels around the smaller black hole at 𝑡 = 0.2𝑀 = 20.2𝑚1. For comparison a 𝑑 = 4.7 × 10−4𝑀 old
BAM run is shown in the top panel. Opacity of the line represents progression in time. The smaller black
hole evaporates immediately after this shedding of levels when running with old BAM but persists through
to merger when running with new BAM.
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FIGURE 7.7 Form of the proxy tracker used to evolve the head-on collision. On the left is shown the fit
through the position data with its deviation from the data below, and on the right is the corresponding fit
to the velocity, given in 7⋅6 and 7⋅7 respectively.



136 E X T END ING TO DYNAM I C B L A C K HOL E S PA C ET IME S

0 2 4 6 8 10 12

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

x, M

Difference between

old BAM (d=0.00046875M) and new BAM (d=0.046875M)

t=1M

α

K
ϕ

βx

Axx

0 2 4 6 8 10 12

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

x, M

Difference between

old BAM (d=0.00046875M) and new BAM (d=0.046875M)

t=20M

α

K
ϕ

βx

Axx

0 2 4 6 8 10 12

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

x, M

Difference between

old BAM (d=0.00046875M) and new BAM (d=0.046875M)

t=40M

α

K
ϕ

βx

Axx

FIGURE 7.8 Difference between old and new BAM runs at three different times during evolution for the
head-on collision. The new BAM run used a resolution on the finest level of 23.8𝑚1 and the old BAM run
used 9.3 × 10−2𝑚1, though the data shown here is that taken from the level with 𝑑 = 23.8𝑚1.
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FIGURE 7.9 Evolution of the numerical pieces that would result from a 𝑑 = 4.7 × 10−4𝑀 head-on
collision of a 𝑞 = 100 binary. Snapshots are provided at the indicated times. For clarity the positions of
the smaller puncture at each time have been shifted to their initial positions.
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or that no coarse puncture tracking routine can be developed, but crucially the concept

itself is sound. Certainly it is worthy of further development, and with tracking high on

the list of priorities we explore in the following section one proposed approach to this.

7.3. Tracking the Puncture

As a result of the extremely coarse grids we aim to use in the evolution of the puncture

we are no longer able to accurately track its location by simply reading off the velocity

from the shift vector. A new technique is required and in this section we present neg-

ative results using one potential candidate, together with a number of suggestions for

improvements that could be made. We find that while the static Schwarzschild puncture

can be trivially located to machine precision when it is placed at the origin, the boosted

puncture deviates from its expected trajectory before crashing.
At its heart is a similar philosophy to that we have been using to evolve the puncture:

using what is already known about the spacetime to inform the calculation, providing
an estimate that can then be refined. With these extremely coarse resolutions that this
approach relies upon the puncture is no longer covered by a mesh of grid points but sits
inside a cell of side 𝑑 described by the eight nearest grid points, as illustrated in FIG 7.10.
We only have access to information about the spacetime at the corners of this cell sur-
rounding the puncture, and from this alone we must determine precisely where the punc-
ture lies. Using our analytical knowledge of the surrounding local geometry, by reading
off the value of for example 𝜙 at a grid point we can infer how far away the puncture is.
All that is required is the function 𝑟 (𝜙), which we determine in just the same way as we
found φ by utilising the previously-generated high-resolution trumpet data. The fit we
use here is given by

𝑟 (𝜙) = 𝑚 (0.285𝜙
0.357 + 0.288𝜙0.355 + 0.283𝜙0.352 + 0.293𝜙0.352 + 0.286𝜙0.352 + 0.274𝜙0.350

1.424𝜙 1.657 + 1.422𝜙 1.652 + 1.424𝜙 1.646 + 1.427𝜙 1.644 + 1.427𝜙 1.638 + 1.429𝜙 1.621 ) ,
7⋅8

remembering to take into account mass scaling for future applications to unequal-mass

binaries. But this only tells us how far away the puncture is from the grid point in absolute

terms—we need to know where along the 𝑥-axis it lies. Using FIG 7.10 again for reference,

this corresponds to determining the length 𝑦 which can be achieved geometrically. From

the forward grid point in the top-left corner we first read off the value of 𝜙 directly and

plug it into 7⋅8 to find the distance 𝑟 (𝜙). Through a simple application of Pythagoras’
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theorem we use this together with the known grid spacing 𝑑 to determine the length 𝑥 ,
the distance from the grid point to the point at which the 𝑦𝑧-face of the cell that it is on

is threaded by the 𝑥-axis. Given BAM’s staggered grid setup this will be, at every time

step, in the very centre of the face, hence 𝑥 can be calculated simply from 𝑑. With this

we able to find, again through Pythagoras’ theorem, the distance 𝑦 between the puncture

and the face of the cell. The location of the puncture is given then by

𝑥1 = location of grid point + 𝑦 ,
= location of grid point + √𝑟 (𝜙)2 − 2𝑑2 .

7⋅9

This calculation is entirely geometric and so should only depend on being correctly imple-

mented within BAM, with the exception of the estimate of 𝑟 (𝜙). The estimated location

of the puncture is heavily dependent on the fit used here and therefore needs to be as accu-

rate as possible. This becomes more difficult with increased distance from the puncture

as the conformal factor’s gradient approaches zero, meaning that it becomes increasingly

difficult to distinguish one location from another; at large distances, a small variation in

the value of 𝜙 can correspond to a large change in the resulting 𝑟 . Ideally then we would

make use of whichever of our variables is characterised by the greatest length scale to

reduce this uncertainty as far as possible. To account for any bias that the fit to 𝑟 (𝜙)may

introduce, we perform the above calculation at each of the eight grid points surrounding

the puncture and take an average of their location estimates.

In FIG 7.11 are shown the results of this tracking algorithm for both a finely-resolved

simulation run with old BAM and a coarsely-resolved simulation run with new BAM, along

with results using the current puncture tracker for comparison. In the case of a static

Schwarzschild puncture located at the origin the new tracker performs well, identifying

the location accurately to machine precision. This is not surprising given the spherical

symmetry of the system and the spherically-symmetric distribution of points at which

the location is calculated, as taking the average will by definition return a location of zero.

More revealing is the same run with the puncture offset from the origin, here located

at 𝑥 = 30𝑀 . This no longer enjoys the same symmetry and indeed we see, first of all,

the current tracking algorithm failing in coarse resolutions to determine the puncture

location to the same precision as previously. But the new puncture tracker suffers from

more severe issues, crashing immediately both for the old and new versions of BAM. The
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FIGURE 7.10 Schematic of the proposed puncture-tracking mechanism for a simulation with finest grid
spacing 𝑑. The puncture sits at the origin, with the 𝑥-axis seen threading the grey 𝑥𝑦-plane in black. The
red dots represent the nearest grid points to the puncture, with the projection of the puncture’s location on
to the base of this cell given by the black oval. The red oval is similarly the projection of the grid point on
the 𝑥𝑦-plane. The method outlined in this section involves first computing the length of side 𝑥 of the green
triangle followed by side 𝑦 of the blue triangle using Pythagoras’ theorem.

boosted Schwarzschild case demonstrates more clearly that the current tracker is unable to

accurately locate the puncture in a coarse grid, but so too is the new tracker. In the coarse

grid using new BAM the simulation crashes after 45𝑀 , and even for a finely-resolved old

BAM run the trajectory soon departs from the correct values.

At the time step where the tracker fails for the offset static Schwarzschild runs we find

that the reading of the conformal factor at the nearest grid points returns an undefined

value. This is in a way encouraging; the reading is taken before any other calculations are

performed and should be relatively trivial, so it may well be that the algorithm introduced

here functions correctly if given accurate values of the conformal factor. The priority then

is to ensure these values are taken accurately. Potential problems anticipated beyond this

include the use of the conformal factor to estimate the distance—a more robust approach

may be to use the invariant quantity 𝐴ij𝐴ij instead. Additionally it could well be that

whichever quantity is used decays to flat space too close to the puncture. Given the

coarse grid spacings that are at the heart of this approach this would prevent the accurate

distinction of one location from another in the fit to 𝑟 (𝜙). The Brill-Lindquist conformal

factor for example, 𝜙BL = log (1 + 𝑚
2𝑟 ), only varies by𝒪 (10−4) between distances of 20𝑚

and 20.1𝑚. Is this too small a difference to extract a precise location? Can a fit to 𝑟 (𝜙)
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FIGURE 7.11 Puncture location as computed using the current tracker with old BAM at 𝑑 = 4.7 ×
10−2𝑀 (blue), the current tracker with new BAM at𝑑 = 12𝑀 (yellow), the new tracker with old BAM at
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at 𝑥 = 30𝑀 on the right, and the boosted (𝑣 = 0.01) Schwarzschild case in the bottom panel.
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be constructed that is of sufficient accuracy? The impact of this will need to be analysed

in the wider context of the overall error budget.

Once this procedure has been found to accurately track the offset puncture there is no

reason in principle it shouldn’t also work for the boosted case as long as the nearest grid

points can be identified consistently when their distance from the puncture is constantly

changing, and particularly as the puncture moves from one cell to another, assuming

the shape of the conformal factor is not altered excessively by the boost. Turning back

to FIG 7.1 this wouldn’t seem to be a risk, but is worth bearing in mind nonetheless. There

will however be further complications upon the introduction of a second black hole in

the domain. Its effect on the conformal factor measured at each grid point must now be

taken into account in the model of 𝑟 (𝜙), not just to prevent inaccuracies in the location

estimates but more importantly because the gradient leads to a negative radicand in 7⋅9,
causing the simulation to crash.

Clearly there is at present a need for further development. For the moment though

we will treat this as an issue that will at some future point be solved, and proceed with

further testing of the modifications using the proxy tracker described above. This at least

allows us to explore whether or not the fundamental approach to these high mass ratio

simulations is viable given the correct puncture positions.

7.4. Next Steps

Having successfully demonstrated the stable evolution of these proof-of-principle cases

in this chapter, leaving aside whether they are recovering the accurate solution or simply

the phenomenology, it is clear that the approach outlined here is worth pursuing. The

results presented here are of course only the preliminary stages of an extensive, and

hopefully fruitful, programme of work with the end goal of fully inspiralling black hole

binaries of arbitrarily high mass ratio, and as such there are a great many obstacles to

overcome, both known and unknown at this time.

First, a refinement of the current implementation of these modifications. The static

Schwarzschild case ran for 30,000𝑀 ; can this be extended, and if so, to what degree? Our

𝑣 = 0.01 boosted Schwarzschild simulation started to collapse after 3000𝑀 . Does this

collapse occur sooner for higher velocities, and is there some velocity beyond which the

current analytic pieces no longer accurately approximate shape of the BSSN evolution
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variables? In principle there is no reason why, with sufficiently accurate analytic pieces,

this method couldn’t be used to stably evolve traditionally fine resolutions as well as the

much coarse ones explored in this chapter, yet this hasn’t been achieved so far. There are

a number of outstanding issues and open questions to address here.

Perhaps the most pressing major issue yet to solve is the tracking of the motion of

the puncture, as has been discussed briefly above. One currently unsuccessful possibil-

ity has been outlined in §7.3 that with further work could be refined to the point that it

accurately captures the location at each time step. Should the development of a coarse

tracking algorithm prove to be intractable another option would be to place a grid point

on the puncture itself after having regularised the evolution equations, or to rewrite the

evolution equations locally (that is, in the puncture-approaching limit) to explicitly de-

rive an evolution equation for the puncture dynamics. After all, this must reduce to

Newtonian gravity at large binary separations and to PN corrections as this separation

is reduced, so it can be imagined this may return the fully general relativistic equation

of motion for the smaller puncture. These efforts will first depend on investigating how

crucial the ‘missing’ features seen in FIG 7.9 are for the accurate evolution of the space-

time: all that has been demonstrated here is the stable evolution of some initial data that

results in the correct phenomenology. We stress that this is by no means the recovery of

an accurate or indeed valid solution to the Einstein field equations, and that without the

manual provision of puncture trajectories by the user even this phenomenology would

not be recovered, but it is certainly an encouraging initial result that merits further inves-

tigation.

A number of relatively straightforward practical issues exist within the current imple-

mentation of this approach within the BAM code that will need to be addressed in future

developments. For example it is currently incompatible with Berger-Oliger refinement

of the time steps and is therefore limited to uniform. In all of the tests presented here

there is no problem with the use of uniform time stepping given their relative simplicity.

Berger-Oliger is a much more efficient choice when evolving simulations with a great

many refinement levels, but the static and boosted Schwarzschild cases here can be run

with just a single refinement level, and even the 𝑞 = 100 case needs no more than ten

levels. While this would certainly benefit from Berger-Oliger time steps uniform has

been sufficient for initial tests, though as we move to higher mass ratios it will become a

necessity.
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More generally, the most significant issue posed by our approach, now that it has

been shown in principle to work, is how heavily it relies upon knowledge of the local

solution at the smaller black hole. Ideally this local solution would represent a boosted

Kerr black hole; the example in FIG 6.1 used simply initial data for two momentarily

stationary wormholes. The corresponding data for two trumpets in the 1+log gauge is not

known in the far more general boosted spinning case, and without further developments

towards this it will most likely prove impossible to isolate the background in as clean a

fashion as in FIG 6.1.

There is also the nonlinearity of the Einstein equations to deal with. The Brill-

Lindquist solution, in which the contributions from individual black holes can be added

and subtracted freely, is a somewhat artificial construction seeing as it consists of momen-

tarily stationary black holes with no gravitational radiation. In general we do not enjoy

this freedom. But of course the conformal factor and extrinsic curvature are singular, and

so the contribution from the larger black hole vanishes at the smaller; it may be expected

then that given sufficiently accurate knowledge of the local black hole solution and the

interaction terms, and with carefully considered gauge choices, it should be possible to

construct some sufficiently detailed analytic piece that once more leaves the numerical

piece characterised by a length scale determined by the larger black hole.

Finally, it will be necessary to construct initial data for a binary in trumpet 1+log form.

For the initial test cases explored in this study it has been possible to use standard Bowen-

York wormhole data as it relaxes to the trumpet topology: we can begin the evolution

of the binary with standard methods before switching on the modifications described in

this chapter and shedding refinement levels once the black hole has safely settled down

to trumpet form. Clearly this isn’t ideal, as we are still faced with the impractically

high resolutions that restrict any potential speed-up during this initial period, which

will be increasingly problematic at higher and higher mass ratios (and consequently finer

and finer resolutions). If nothing else the size of the time steps is determined by the

spacing of the finest refinement level at the start of the simulation, so by beginning at

an extremely fine grid spacing we end up with unnecessarily fine time steps even after

shedding.

For current-generation gravitational wave observatories, with numerical simulations

of high mass ratio binaries it will be possible to sample previously inaccessible regions of

the parameter space, and from this construct the template banks of waveform models that
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are key to the search and parameter estimation in the LIGO-Virgo-KAGRA collaboration.

While such binaries may well be rare at present, with the dramatic increase in events

expected with third-generation detectors they could well become relatively commonplace

and so work needs to be done now in preparation.

Though this work has focused on the applications to high mass ratios there is in prin-

ciple no reason the methods described here cannot be applied to the comparable-mass

regime. The background metric will no longer take on such a large length scale compared

to the foreground black hole, but with sufficiently detailed construction of the analytic

pieces it should be possible to capture those fine features. The door is then opened to

rapid numerical simulations: not only would this allow far greater coverage of the param-

eter space (and so far more accurate waveform models), but it can be used to produce

long-term simulations that capture much more of the inspiral, starting at much lower

frequencies than is currently practical. Early inspiral is currently the domain of PN and

EOB methods, so it would be possible to quantify the accuracy of these approximations

and even use NR to tune their higher order terms. Inaccuracies in these approximations

are expected to be the dominant source of systematic error in third-generation measure-

ments as the majority of the signal power comes from the extremely long-duration in-

band inspiral. Of course simply using higher order PN terms would help here, but with

each successive order the calculation of these terms requires more and more work—which

could well become a limiting factor in the output of future detectors.

Current efforts to produce EMRI waveforms focus on perturbative self-force calcula-

tions. The frontier in this field is the extension of these calculations to second order for

generic orbits with sufficient accuracy for LISA observations, though the prospects of

achieving this in the near future remain unclear [132]. The new approach introduced in

this thesis opens an alternative route, one that will exploit analytic results for single black

holes, binaries, and tidal terms to isolate those aspects of the numerical calculations that

represent the puncture dynamics, the nonlinear interaction terms, and the gravitational

wave signal. If it were computationally competitive with self-force codes this approach

would enjoy the significant advantage of solving the full nonlinear Einstein equations

without approximations. One illustrative example of the issues plaguing such approxima-

tions are the resonances mentioned in §3.5. The discontinuity this produces in the phase

cannot be captured accurately by self-force efforts yet may be a generic feature of EMRIs,

so the fully general-relativistic evolution could be required either as an entirely separate
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approach to the problem or to inform self-force calculations. If EMRI waveforms can be

achieved, a programme of work analogous to that used for LIGO-Virgo-KAGRA can be

undertaken to sample the EMRI parameter space and develop waveform template banks

in preparation for space-based detectors such as LISA, Taiji, and TianQin.



Concluding Remarks

—————— 8 ——————

The field of gravitational wave astronomy is now firmly established. In the six years

since their first detection we have relied heavily on the advances made over the preceding

century in anticipation of this moment: numerical relativity, and computing power along

with it, had 60 years to mature to the point of simulating a full binary inspiral; post-

Newtonian techniques have been continually refined ever since de Sitter, Lorentz, and

Droste in the mid-1910s; waveform models and data analysis tools were all prepared

in advance before a single gravitational wave had been detected. With its arrival we

have been able to reap the fruits of all that labour, and finally the full force of those

hundred years of preparation can be brought to bear on real astrophysical signals in order

to observe the universe.

But we’re rapidly approaching the limits of these 20th century developments. The

2020s will see the completion of the fourth and fifth LVK observing runs and the intro-

duction of a sixth detector in the form of LIGO India, while the 2030s will bring both

the third generation of ground-based detectors as well as the first space-based detectors.

Our practical capabilities to handle the events they promise are severely challenged—the

sheer number of anticipated signals, particularly as they are likely to overlap with one

another, pose significant problems for current data analysis tools [133], and as we have

focused on in this thesis current modelling efforts are insufficient given the high SNRs

expected and their positions within more extreme regions of the parameter space.

The catalogue in CHAPTER 4 is one example of efforts towards future-proofing cur-

rent LVK analysis workflows, contributing simulations in these under-explored parts of

the parameter space to the public repository of numerical waveforms, with mass ratios

147
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up to 8 and spins reaching 0.8. Already these have been used to improve the accuracy

of existing waveform models in the precessing regime [61]. But fundamentally this accu-

racy is limited by that of the simulations from which these models are constructed, and

in CHAPTER 5 we have found this to be somewhat lacking. From a cross-code validation

study between the numerical relativity codes BAM, SpEC, and LazEv it has been shown

that there exist significant discrepancies between the phases of moving-puncture and ex-

cision codes, on the order of 𝜋 radians in the (2, 2)mode of the strain over ten orbits. We

have seen that this discrepancy will manifest itself in the analysis of astrophysical signals

even with current-generation detectors for sufficiently strong signals—SNR≈20 even in

optimistic cases where only the (2, 2) mode is considered, comparable to the strength

of the loudest black hole binary events already detected. But perhaps more concerning

is the implication for third-generation detectors. It is expected that events in Einstein

Telescope will regularly exceed SNRs of 100, and with thousands of events per year these

phase uncertainties pose a significant risk to parameter estimation efforts as things cur-

rently stand. Improvements in systematics and conventions are required, with a greater

need for communication between the research groups within the LVK that are generat-

ing numerical waveforms. The particular sources of error in the work presented here

come down to a lack of precision in the specification of orbital frequency, limits on or-

bital eccentricity that are far too generous, and most significantly potentially inconsistent

definitions of mass or choices of gauge.

We have also seen how, even more worryingly than these finer points of waveform

accuracy, we currently face the complete inability to accurately model the waveform gen-

erated by one of the most anticipated candidate sources in space-based detectors: extreme

mass ratio black hole binaries. Rather than some flaw in our theory or understanding of

the physics this is, frustratingly, nothing more than a matter of computing power and

in CHAPTER 6 we introduced a novel approach to tackling this problem. Preliminary tests

on a single stationary Schwarzschild black hole offer the first hints of its viability as a

solution, capable in its current form of accurately evolving black hole spacetimes in reso-

lutions almost three orders of magnitude lower than currently required by BAM, from a

grid spacing 𝑑 = 4.7 × 10−2𝑀 to 𝑑 = 40𝑀 . This represents a speed-up of 60,000%,

but more importantly if it can be extended to the full binary inspiral case would allow

the simulation of extreme mass ratios on a timescale comparable to current equal-mass

simulations. To this end we have presented in CHAPTER 7 the extension of these pre-
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liminary results to the boosted case and the first attempts at the head-on collision of a

𝑞 = 100 binary, with resolutions of 0.2𝑀 = 20.2𝑚1 demonstrated to be stable, but this

has relied upon manual prescription of the puncture trajectories and neglects significant

features of the full solution. Precisely how this impacts the accuracy of the resulting

simulations, or indeed the viability of the approach as a whole, remains to be seen. This

represents just the beginning of what will hopefully prove to be a fruitful programme of

work culminating in extreme mass ratio simulations of fully inspiralling Kerr black holes

in practical timescales. This will require a number of further developments though, most

pressingly a way to track the location of the black hole. Aside from this, the first major

hurdle to overcome would be the fashioning of far more accurate analytic pieces through

the construction of 1+log binary Kerr trumpet initial data. Ultimately the goal would be

to mirror the workflow established for ground-based detectors at equal-mass: build up a

repository of simulations at strategic points in the parameter space, use them to inform

the construction of waveform models, and apply these models to search and parameter

estimation efforts by space-based detectors. It is hoped that the motion of the smaller

black hole through the near-horizon geometry of the larger over the course of potentially

thousands of orbits in the detector bandwidth [9] will permit precision tests of general

relativity.
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