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When investigating connectivity and microstructure of white matter pathways of the brain using diffusion trac- 

tography bundle segmentation, it is important to understand potential confounds and sources of variation in the 

process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described 

(in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect 

bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how 

these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we 

investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan 

repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and 

(6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark 

multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume 

overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find 

that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of 

tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion 

scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds var- 

ied both across pathways and across segmentation workflows, with some bundle segmentation workflows more 

(or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the 

same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. 

Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other 

studied confound, with low-to-moderate overlap of the same intended pathway when segmented using differ- 

ent methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds 

variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these 

confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across 

sites, and when attempting to understand the successes and limitations of different methodologies in the design 

and development of new tractography or bundle segmentation methods. 
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. Introduction 

Diffusion-weighted magnetic resonance imaging (dMRI) has proven

aluable to characterize tissue microstructure in health and disease

 Alexander et al., 2019 ; Jones et al., 2018 ; Novikov et al., 2018 ).

oreover, the use of dMRI fiber tractography to virtually dissect
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ber pathways ( Jeurissen et al., 2019 ) is increasingly used to lo-

alize microstructure measurements to specific white matter bundles

 Raffelt et al., 2017 ; Chamberland et al., 2019 ; Yeatman et al., 2012 ),

nd to study the connections and shapes of pathways ( Jeurissen et al.,

019 ; Maffei et al., 2019 ; Forkel et al., 2014 ; Hau et al., 2017 ; Hau et al.,

016 ; Sarubbo et al., 2019 ; Sarubbo et al., 2013 ; Neubert et al., 2015 ;

eubert et al., 2014 ; Mars et al., 2012 ). Despite promises of noninva-

ive measurements of white matter features, variability may exist in

easurements due to inherent variability within scanners and across
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Fig. 1. Microstructure varies across scanners and across acquisitions. An FA 

map is shown, derived from the same subject, on two scanners (Siemens 

Prisma, left; Siemens Connectom, right) and two acquisitions (standard ac- 

quisition, top; state-of-the-art acquisition, bottom). See Methods for scanner 

and acquisition details. 
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canners, differences in acquisition protocol parameters, and differences

ue to processing pipelines, amongst others. These sources of variance

hallenge the quantitative nature of derived measures of microstructure

nd connectivity, and hinder the ability to interpret different findings

r combine different datasets. 

These effects have been intensively studied for tissue microstructure

eatures, specifically diffusion tensor imaging (DTI) ( Pierpaoli et al.,

996 ) indices of fractional anisotropy (FA) and mean diffusivity

MD). Numerous studies have characterized intra-scanner and inter-

canner DTI variability ( AK Prohl et al., 2019 ; Mirzaalian et al., 2016 ;

A Magnotta et al., 2012 ; Landman et al., 2011 ; Teipel et al., 2011 ;

ollmar et al., 2010 ; Farrell et al., 2007 ; Landman et al., 2007 ;

eiervang et al., 2006 ; Pfefferbaum et al., 2003 ; Jones, 2003 ; Lori et al.,

002 ), differences due to acquisition parameters ( Farrell et al., 2007 ;

andman et al., 2007 ; Jones, 2003 ; Jones et al., 2020 ; Papinutto et al.,

013 ; Jones, 2004 ; Jones and Basser, 2004 ) including image resolu-

ion, number of diffusion images, and diffusion sensitization (i.e. the

-value), and differences due to processing and algorithmic choices

 Jones et al., 2007 ; Chang et al., 2005 ). These have paved the way to-

ards recommendations and guidelines for reliable and reproducible

TI ( Jones et al., 2013 ; Jones, 2010 ; Jones and Cercignani, 2010 ;

K Jones et al., 1999 ); however, a standardized universal dMRI proto-

ol does not exist, and differences are expected across sites and stud-
2 
es ( Fig. 1 ) ( L Ning et al., 2020 ; CM Tax et al., 2019 ). Yet, there

s significant interest in combining data from different sites to in-

rease statistical power and benefit from multi-center recruitment abil-

ties ( Mirzaalian et al., 2016 ; L Ning et al., 2020 ; Zhong et al., 2020 ;

etin Karayumak et al., 2019 ; KM Huynh et al., 2019 ; Vishwesh Nath

t al., 2018 ; Yu et al., 2018 ; Mirzaalian et al., 2018 ; Fortin et al., 2017 ),

nd it is clear that these differences need to be accounted for, or re-

oved, prior to data aggregation or joint statistical analysis. 

Notwithstanding the increased awareness and improved characteri-

ation of dMRI microstructural measures, very little work has been per-

ormed to characterize and understand reproducibility of tractography-

erived features across scanners, across protocols, and across differ-

nt tractography bundle segmentation algorithms ( Pestilli et al., 2014 ;

ath et al., 2019 ). Variability in tractography estimates of fiber path-

ays will further increase variability in connectivity analyses and im-

act microstructural characterization, e.g. when tractography is used to

efine ROIs or to perform along-tract profiling. While few studies do

xist, they are often limited to a single pathway ( Chamberland et al.,

018 ; F Rheault et al., 2020 ), a single dissection protocol ( Vazquez et al.,

020 ; Guevara et al., 2017 ), or a single source of potential variation

 Schilling et al., 2020 ), such as test-retest or population-based repro-

ucibility ( Guevara et al., 2017 ; F Zhang et al., 2019 ; Guevara et al.,

012 ). Additionally, they do not investigate where in the brain or along
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he pathway that this variability occurs, and are often limited to charac-

erizing only microstructural features of these pathways (i.e., the FA or

D along or within the pathway) ( Heiervang et al., 2006 ; Wakana et al.,

007 ). Thus, we currently do not which sources of variation impact trac-

ography bundle segmentation the most, which features of the bundle

re most affected, where variability occurs, nor how these questions are

ependent upon the workflow used to dissect fiber bundles. Thus, for the

rst time, we combine, assess, and rank all previously studied sources

f potential variation in the same study, with a focus on tractography

ather than just DTI measures. 

Here, we investigate and compare the reproducibility of tractogra-

hy across six confounds, or sources of variation: intrinsic variability

cross scan repeats, differences across scanners, across vendors, across

ifferent acquisition spatial resolution and acquisition angular resolu-

ion, and across different diffusion sensitizations (b-values). We em-

loy and examine four fully-automated and commonly utilized bundle

econstruction workflows on two cross-scanner cross-protocol bench-

ark datasets. We first investigate how these confounds affect not only

he overlap and location of pathways, but also evaluate variability in

opological measures of the bundle including length, area, shape, and

olume features. We ask which pathways, which bundle segmentation

orkflow, and which features are most reproducible? And what source

f variation is most significant for each method? Second, we visualize

here in the brain, and where within a pathway, tractography is most vari-

ble (and most robust) and investigate if sources of variation effect this

n different ways. Third, we quantify and visualize differences in tractog-

aphy that result when using different bundle segmentation workflows.

inally, we analyze traditional DTI measures and quantify differences

ue to these sources of variation as well as the added variance intro-

uced by the tractography process over and above that inherent across

canners and across acquisition protocols. 

. Methods 

.1. Datasets 

Here we utilize two open-sourced multi-subject, multi-scanner, and

ulti-protocol benchmark databases: the MASiVar ( Cai et al., 2020 ) and

USHAC datasets ( L Ning et al., 2020 ; CM Tax et al., 2019 ). We note

hat other multi-site databases exist (see Discussion), although they are

ften limited to investigating differences across subjects and scanners,

hereas the two chosen datasets together allow investigation of repeats,

canners, vendors, and acquisition protocols (resolution, direction, b-

alues). 

.1.1. MUSHAC dataset 

The MUSHAC database will allow investigation of cross-scanner,

ross-protocol, and cross b-value effects ( L Ning et al., 2020 ; CM Tax

t al., 2019 ). This database was part of the 2018 and 2019 MICCAI

armonization challenge. Here, we utilize the data acquired from 10

ealthy subjects used as training data in the challenge, and described

n ( L Ning et al., 2020 ; CM Tax et al., 2019 ). Each subject has 4 unique

atasets. This work focuses on the data acquired on two scanners with

ifferent gradient strengths: a) 3T Siemens Prisma (80 mT/m), and b) 3T

iemens Connectom (300 mT/m). Two types of protocols were acquired

rom each scanner: 1) a ‘standard’ protocol with acquisition parameters

atched to a typical clinical protocol; and 2) a more advanced or ‘state-

f-the-art’ protocol where the superior hardware and software specifi-

ations were utilized to increase the number of acquisitions and spatial

esolution per unit time. The ‘standard’ protocol from both scanners is

atched as closely as possible, with an isotropic resolution of 2.4 mm,

E = 89 ms and TR = 7.2 s, and 30 diffusion-weighted directions acquired

t two b-values: b = 1200, 3000 s/mm2 (scan time ∼7.5 min). On the

ther hand, the Prisma ‘state-of-the-art’ data has a higher isotropic res-

lution of 1.5 mm, TE = 80 ms, TR = 7.1 s and 60 directions at the same

-values ( ∼14.5 min). While the Connectom ‘state-of-the-art’ data has
3 
he highest resolution of 1.2 mm with TE = 68 ms, TR = 5.4 s and 60 di-

ections (~11 min). All data was corrected for distortions, motion, eddy

urrents ( Andersson et al., 2003 ), and gradient nonlinearity distortions

 Glasser et al., 2013 ). For each subject, the Prisma standard-acquisition

ataset was used as a reference space and all additional datasets were

ffinely registered to this space using the corresponding FA maps with

SL Flirt with appropriate b-vector rotation. 

.1.2. MASiVar dataset 

The MASiVar database will allow investigation of scan-rescan and

ross-scanner effects. Here we used a subset of Cohort II of this database

escribed in ( Cai et al., 2020 ), which consisted of 5 healthy subjects

ith 6 unique “datasets ”. Each subject was scanned on four scan-

ers: a) 3T Philips Achieva (80 mT/m) and b) a different 3T Philips

chieva (60mT/m) at the same site, c) a 3T General Electric Discov-

ry MR750 Scanner at a different site, and d) a 3T Siemens Skyra

canner at a different site. These acquisitions were matched as closely

s possible and are similar to that of the standard-protocol described

bove: with an isotropic resolution of 2.5 mm, TE = 55 ms and TR = 6.2 s

7.0 s for scanner-b), and 32 diffusion-weighted directions acquired at

 = 1000s/mm2 (scan time ∼3.5 min). Additionally, the subjects were

canned twice on the first scanner, and also had an acquisition that con-

isted of a 96-direction b = 1000 dataset, both of which were also utilized

n the current study. We note that one subject did not have a repeat scan

n the first scanner (a) and one subject did not have a scan on the GE

canner (b). 

All data were corrected for distortions, motion, and eddy currents

 Andersson et al., 2003 ; Cai et al., 2021 ). For each subject, the first

ession on scanner-a was used as a reference space and all additional

atasets were affinely registered to this space using the corresponding

A maps with FSL Flirt ( Jenkinson et al., 2012 ) with appropriate b-

ector rotation. 

.2. Sources of variation 

We investigate several possible sources of variation in the bundle

egmentation process. 

RESCAN: the effects of repeating a scan on the same scanner (i.e.

can-rescan) in a different session, but with a matched acquisition. This

ffect is quantified using the repeated acquisitions from the MASiVar

atabase. 

SCAN1: inter-scanner (cross-scanner) effects, with a matched acqui-

ition and of the same vendor. SCAN1 is quantified using the matched

cquisitions from the MASiVar database acquired on different Philips

canners (both Philips Achieva). 

SCAN2: inter-scanner (cross-scanner) effects, with a matched acqui-

ition and of the same vendor. SCAN2 is quantified using the matched

tandard acquisitions from the MUSHAC acquired on different Siemens

canners (Siemens Connectom and Siemens Prisma). 

VEN1: inter-vendor (cross-vendor) effects, with a matched acquisi-

ion. VEN1 is quantified using the matched acquisitions from the MASi-

ar database, but acquired on scanners from different vendors (Philips

chieva and General Electric Discovery). 

VEN2: inter-vendor (cross-vendor) effects, with a matched acquisi-

ion. VEN2 is quantified using the matched acquisitions from the MASi-

ar database, but acquired on scanners from different vendors (Philips

chieva and Siemens Skyra). 

RES1: effects of spatial resolution, with matched scanner, diffusion

irections, and b-value. RES1 is quantified by using the MUSHAC acqui-

itions from the Prisma standard-acquisition and from the Prisma state-

f-the-art acquisition but with only 30 uniformly distributed directions

tilized (to match the standard-acquisition). This represents differences

etween a 2.4 mm isotropic and 1.5 mm isotropic acquisition. 

RES2: effects of spatial resolution, with matched scanner, diffusion

irections, and b-value. RES2 is quantified by using the MUSHAC acqui-

itions from the Connectom standard-acquisition and from the Connec-
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Fig. 2. Tractography varies across scanners, acquisitions, b-values, and 

bundle segmentation methods. On the same subject, the arcuate fasci- 

culus is shown for each of the 4 bundle segmentation methods, for two 

scanners and two acquisitions. Note that the pathway is visualized as 

streamlines for TractSeg, ATK, and Reco but a probability density map 

for Xtract. Arrows highlight visible examples of differences in stream- 

lines across scanners (solid arrows), across acquisition (dotted arrows), 

and across b-values (dashed arrows). 
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om state-of-the-art acquisition but with only 30 uniformly distributed

irections utilized (to match the standard-acquisition). This represents

ifferences between a 2.4 mm isotropic and 1.2 mm isotropic acquisi-

ion. 

DIR1: effects of number of diffusion-weighted directions, with

atched scanner, resolution, and b-value. DIR1 is quantified using the

ASIvar acquisitions from the first scanner at 32 directions and the ac-

uisition on the same scanner at 96 directions. 

DIR2: effects of number of diffusion-weighted directions, with

atched scanner, resolution, and b-value. DIR2 is quantified using the

USHAC acquisitions from the state-of-the art Prisma acquisition with

nly 30 uniformly distributed directions utilized and the full state-of-the

rt acquisition which consists of 60 directions. 

BVAL: effects of changing the b-value, on the MUSHAC Prisma scan-

er with the ‘standard’ protocol, from b = 1200 to b = 3000, within the

ame acquisition. 

We note that we also investigated a second effect of b-value (within

he state-of-the art Prisma protocol, with no statistically significant

ifferences, and for figure simplicity only show the above-mentioned

-value analysis). Previous version of this manuscript (and preprint)

ncluded an ACQ1 and ACQ2 (from state-of-the-art to standard-

cquisition) that were isolated into both effects of directions (DIR1 and

IR2) and resolution (RES1 and RES2). 

A final source of variation investigated is that caused by the use of

ifferent bundle reconstruction workflows. Because all workflows seg-

ent different numbers of, and sets of, fiber pathways (see below), for

his analysis, we investigated only those fiber pathways which are com-

on to all algorithms. In this case, we identified 7 (bilateral) pathways

hich are segmented by all automated methods. 

i  

4 
.3. Tractography bundle dissection 

We utilized four common, well-validated, and fully-automated

ber bundle reconstruction workflows, all implemented using standard

nd/or recommended settings. It is important to highlight that each

orkflow included differences in local fiber-direction estimation, fiber

ractography, and bundle segmentation algorithms, and our attempt was

o implement the entire workflow as would be done in a typical scien-

ific study (see Discussion on limitations of confounds due to differences

n bundle segmentation process). While there are dozens of bundle seg-

entation algorithms, we have chosen these to be representative of com-

on approaches, utilizing regions of interest, atlases, machine learning,

emplates, etc. (see Discussion and Limitations). 

.3.1. TractSeg 

TractSeg is based on convolutional neural networks and per-

orms bundle-specific tractography based on a field of estimated

ber orientations ( Wasserthal et al., 2019 ; J Wasserthal et al., 2018 ;

 Wasserthal et al., 2018 ). We implemented the dockerized version at

https://github.com/MIC-DKFZ/TractSeg), which generates fiber orien-

ations using constrained spherical deconvolution with the MRtrix3 soft-

are ( Tournier et al., 2019 ). We note that different reconstruction meth-

ds could have been chosen to generate fiber orientations. This method

issects 72 bundles. 

.3.2. Automatic fiber tractography (ATK) 

ATK was performed in DSI Studio software using batch automated

ber tracking ( Yeh, 2020 ). Data were reconstructed using general-

zed q-sampling imaging ( Yeh et al., 2010 ) with a diffusion sampling
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Fig. 3. Reproducibility is dependent on all investigated effects, and varies by pathway and by dissection method. Effects of scan-rescan (RESCAN; blue), scanners 

(SCAN1, SCAN2; red), vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), diffusion directions (DIR1, DIR2; green) and b-value (BVAL; light purple) 

on dice overlap coefficient for individual bundles. Results are shown for 14 fiber bundles that are common to each tractography workflow. Please see Appendix for 

bundle abbreviations. 
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ength ratio of 1.25. 20 white matter pathways were automatically re-

onstructed using seeding regions defined in the HCP842 tractogra-

hy atlas ( Yeh et al., 2018 ), randomly generated tracking parameters

f anisotropy threshold, angular threshold, step size, and subsequent

egmentation and pruning. The Dockerized source code is available at

ttp://dsi-studio.labsolver.org. 

.3.3. Recobundles (RECO) 

Recobundles ( Garyfallidis et al., 2018 ) segments streamlines based

n their shape-similarity to a dictionary of expertly delineated

odel bundles ( Yeh et al., 2018 ). Recobundles was run using DIPY

 Garyfallidis et al., 2014 ) software (https://dipy.org) after performing

hole-brain tractography using spherical deconvolution and DIPY Lo-

alTracking algorithm. The bundle-dictionary contains 80 bundles, but

nly 44 were selected to be included in this study after consulting with

he algorithm developers based on internal quality assurance (for exam-

le, removing cranial nerves which are often not used in brain imaging).

f note, Recobundles is a method to automatically extract and recognize

undles of streamlines using prior bundle models, and the implementa-

ion we chose uses the DIPY bundle dictionary ( Yeh et al., 2018 ) for

xtraction, although others can be used, as well as alternative shape-

imilarity filtering criteria. 
5 
.3.4. Xtract 

Xtract (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT) is a recent

utomated method for probabilistic tractography based on carefully se-

ected inclusion, exclusion, and seed regions, defined in a standard space

 Warrington et al., 2020 ). Xtract used the ball-and-stick model of diffu-

ion from FSL’s bedpostx algorithm ( Jenkinson et al., 2012 ), in combi-

ation with a probabilistic tractography algorithm probtrackx, to recon-

truct 42 white matter pathways. In contrast to the preceding methods,

hich result in streamlines, this method results in visitation count maps

or each pathway. 

A list of all segmentations generated from each method and corre-

ponding acronyms is given in the appendix. The 7 pathways identified

o be common to all tractography bundle segmentation techniques in-

ludes: arcuate fasciculus (AF), corticospinal tract (CST), inferior fronto-

ccipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), middle

ongitudinal fasciculus (MdLF), optic radiations (OR), and uncinate fas-

iculus (UF), all of which are bilateral including left (_L) and right (_R)

emisphere pathways. 

A thorough quality control was performed for all subjects, and

or all pathways. This included first visualization and verification of

dequate alignment of all FA maps (to ensure appropriate quantifi-

ation of overlap measures). Second, all pathways, for a subjects,
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Fig. 4. Reproducibility is dependent upon all investigated effects, and each bundle segmentation methods is affected differently. Effects of scan-rescan (RESCAN; 

blue), scanners (SCAN1, SCAN2; red), vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), diffusion directions (DIR1, DIR2; green) and b-value 

(BVAL; light purple) on dice overlap coefficient for all fiber bundles dissected using each technique. For each, a Wilcoxon signed rank test is performed to investigate 

differences in effects. Statistically significant results ( p < .05/45/4 comparisons) are shown as a solid line, and those not reaching statistical significance are shown as 

dashed line. Tractseg (top-left), ATK (top-right), Reco (bottom-left), and Xtract (bottom-right). 
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ere visualized in mosaic form using tools from the SCILPY tool-

ox (https://github.com/scilus/scilpy), and pathways were visually as-

essed and removed from analysis if deemed in the incorrect location

r shape. Finally, individual bundles were removed from analysis if the

umber of segmented streamlines was less than 3 standard deviations

way from the mean number (for each pathway), or if the total number

f streamlines was below 200 (indicating failure of tractography), and

ubjects were removed from analysis (for a given algorithm) if > 20% of

athways failed QC. 

.4. Feature extraction 

A number of features were extracted from each bundle segmented.

irst, for simple comparisons of the volume occupied by each pathway,

ll bundles (from all methods) were binarized and resampled at 1 mm

sotropic resolution. For methods generating streamlines (Tractseg, ATK,

nd RECO) this is equivalent to binarizing based on a streamline den-

ity of 1. Because Xtract output is in the form of a normalized prob-
6 
bility distribution, where a threshold of 2.5E-4 was chosen based on

 Warrington et al., 2020 ). The binarized segmentation was used for mea-

ures of Dice overlap (described below). 

Second, several descriptors of the shape and geome-

ry of the bundles were extracted. Shape analysis was per-

ormed using DSI Studio, and made available as matlab code

https://github.com/dmitrishastin/tractography_shapes/), based 

n ( Yeh, 2020 ), to derive length, area, volume, and shape metrics of a

undle. Briefly, length features include mean length, span, diameter,

nd average radius of end regions. Area features include total surface

rea and the total area of end regions. Volume features include total

olume, trunk volume, and branch volume. Shape features include

athway curl, elongation, and irregularity. 

Finally, microstructure measures of FA and MD (calculated using it-

ratively reweighted linear least squares estimator) within pathways

ere extracted. In all cases, a simple measure of the average value

ithin the binary volume was performed, although we note that these

easures can also be weighted by certainty or streamline density. To
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Fig. 5. Locations of agreement and disagreement across effects. Maps are 

computed by overlaying (for each source of variation), maps of where there 

is overlap (i.e. agreement) and non-overlap (disagreement), averaged across all 

subjects. For each effect, the percent agreement indicates areas where a pathway 

is consistently located and is shown using a “hot ” colormap, while the percent 

disagreement indicates areas without consistent overlap and is shown using a 

“cold ” colormap. Results are shown for a highly reproducible pathway (AF_L dis- 

sected using TractSeg) and for a less reproducible pathway (SLF2 dissected using 

XTRACT). Note that even though disagreement is abundant, it does not consis- 

tently occur (i.e.,% disagreement remains low; black and dark blue) suggesting 

no systematic bias due to effects, and disagreements are largely attributed to the 

stochastic nature of the tractography and dissection process. 
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solate the added variation due to tractography from that of the exist-

ng sources of variation, these measures were extracted in two ways.

irst, using the binary regions defined in the reference scan-space only

i.e., the Prisma standard-acquisition and first session on scanner-a for

USHAC and MASiVar datasets respectively) were used as the same

egion-of-interest across all effects, in order to isolate each source of

ariation while keeping ROIs constant. Second, the binary region de-

ned by tractography for each specific dataset was used to extract the

verage FA (or MD), which includes both variation due to the effect

nder investigation and the variation due to tractography differences. 

.5. Reproducibility evaluation 

Reproducibility was evaluated using several metrics, and across each

ource of variation. First, the Dice overlap was calculated for each pair of
7 
undles as an overall measure of similarity of volumes. The Dice overlap

s calculated as two times the intersection divided by the sum of the vol-

mes of each dataset. Results were displayed across all fiber pathways

or a given source of variation, and differences between effects were

alculated using the nonparametric paired (i.e. same subject, different

ffect) Wilcoxon signed rank tests. 

Differences in scalar shape features are calculated as the mean abso-

ute percentage error (MAPE), sometimes referred to as the mean abso-

ute percentage deviation. For two different scans, this measure is calcu-

ated as the difference divided by the mean, and can be converted to a

ercentage error by multiplication by 100. This measure was calculated

ver all subjects, and results were displayed across all fiber pathways

or a given source of variation. Differences between effects were again

alculated using the nonparametric paired (i.e. same subject, different

ffect) Wilcoxon signed rank tests. 

For visual comparisons only, all subjects were nonlinearly registered

o MNI space, using the 1 mm isotropic FA template and the correspond-

ng FA maps with FSL FLIRT + FNIRT. Streamlines were directly warped

o this space for visualization of agreement/disagreement across the co-

ort. Note that quantification of shape features was performed in native

pace prior to warping. 

For all statistical analysis, thresholds were corrected for multiple

omparisons. For example, when investigating differences in effects of

ICE/MAPE, etc., we tested differences between 10 effects, resulting in

5 tests performed for each analysis. 

. Results 

.1. Qualitative variation 

Fig. 1 shows FA maps of the same subject, but acquired on different

canners and with different protocols. In agreement with the literature

 L Ning et al., 2020 ; CM Tax et al., 2019 ), differences in magnitude, con-

rast, and signal-to-noise ratios are readily apparent, and dMRI measures

ualitatively vary due to scanner and acquisition effects. 

Fig. 2 shows tractography bundle segmentation results for an exam-

le pathway (the arcuate fasciculus; AF) on a single subject, for two

canners, two protocols, two b-values, and all four reconstruction meth-

ds. For a given bundle segmentation method, minor differences are

bserved in individual gyri and at regions of low streamline density.

owever, bundles are visually very similar across scanners and proto-

ols, with similar shapes, locations, curvatures, and connections. Most

otably, and as expected ( Schilling et al., 2020 ), the biggest differences

re observed when comparing the same pathway across different bundle

egmentation methods. 

.2. Quantitative variation due to rescan, scanner, vendor, resolution, 

irections, and b-value effects 

The effects of RESCAN, SCAN1, SCAN2, VEN1, VEN2, DIR1, DIR2,

nd BVAL on Dice overlap coefficient is shown in Fig. 3 for fourteen se-

ected pathways common to all bundle segmentation methods. Notably,

eproducibility is most dependent on the bundle dissection method, with

ractSeg consistently resulting in high reproducibility for all sources of

ariation. Within a method, most pathways show similar patterns of

eproducibility. For example, for TractSeg and Xtract all pathways in-

icate high RESCAN, DIR(1 and 2) and BVAL reproducibility, but are

ost sensitive to RES, with RES2 showing more variation than RES1.

dditionally, Dice overlap shows some variation across pathways, for

xample CST and UF generally have higher overlap than OR, IFO, and

F, although trends are different for different workflows. 

The results of the Dice overlap coefficient-analysis for each method is

hown in Fig. 4 , but condensed across all pathways within a given bun-

le segmentation method. Similar trends are observed as in Fig. 3 , with

ractSeg consistently indicating the highest Dice overlap, and all meth-

ds indicating moderate-to-good overall overlap for most pathways. In
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Fig. 6. Reproducibility of pathway shape features depends on pathway and bundle dissection method. Reproducibility is shown as a MAPE for each trac- 

tography segmentation method. For each method, the features are ordered (from top to bottom) from lowest to highest average MAPE, and pathways are similarly 

ordered (from left to right) from lowest to highest average MAPE. Note that the colormap is nonlinear to better highlight MAPE between 0 and 0.10. Many shape 

features are highly reproducible, and with differences across pathways and bundle dissection methods. Please see Appendix for bundle abbreviations. 
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eneral, the largest differences are observed when changing resolution,

ith changes due to RES2 resulting in larger differences than RES1. Fol-

owing this, differences across vendors (VEN1 more different than VEN2

omparisons) are greater than across scanners (for both SCAN1 and

CAN2), which are greater than the inherently stochastic nature of RES-

AN variability. Finally, differences caused by DIR (1 and 2) and BVAL

re on the level of, or even less than, those caused by RESCAN, with the

otable exception of ATK, which utilizes a reconstruction method and

ractography propagation inherently dependent on diffusion sensitiza-

ion. 

.3. Localization of variation 

Fig. 5 visualizes locations of tractography bundle segmentation

greement (or consistency), and where it disagrees (variability) as hot

nd cold colormaps, respectively. Agreement and disagreement are av-

raged across all subjects and shown for all sources of variation. For dis-

lay, we have chosen an example pathway that is highly reproducible

the AF from TractSeg) and one which displayed lower reproducibility

the SLFII from Xtract). For the highly reproducible pathway, all sources

f variation show very similar results. The agreement is very high

hroughout the entire pathway (hot colors), and percent-disagreement

emains fairly low (black and dark blue colors). This means that when

wo bundles disagree, the disagreement is largely randomly distributed,

ather than a consistent localized bias introduced by a certain source of

ariation – an effect which would show up as a consistent disagreement

i.e. a high percent-disagreement). Disagreement tends to occur at the

eriphery, or boundaries, of the pathway, in particular at the gray-white

atter junction, and within individual gyri. 
8 
For the less reproducible pathway, the agreement is moderate to high

n the dense core, or center, of the pathway in the deep white matter.

gain, disagreements are at the edges, and prominent at the white mat-

er and gray matter boundary. However, even though disagreement is

ore noticeable, the percent-disagreement remains low, indicating ran-

om disagreement as opposed to a consistent bias in the spatial location

f this pathway. In this case, sources of variation from SCAN2 and RES2

nd VEN1 are more noticeable as a larger source of variation, in agree-

ent with quantitative results. 

.4. Variation of shape features 

Fig. 6 shows the RESCAN reproducibility of shape features as mea-

ured by MAPE, for all features and all pathways, visualized in decreas-

ng reproducibility. In agreement with Dice, TractSeg has higher over-

ll reproducibility, with most features and most pathways below 10%

APE. Similarly, ATK and Reco are able to reproducibly characterize

ost features of most pathways with high consistency. In general, re-

roducibility of features follows similar order across all methods, with

eatures of Curl, Length, Span, and Diameter highly reproducible, and

hose of surface area, volume, and end area less so. Additionally, repro-

ucibility is highly dependent on pathway, with clear variation depend-

ng upon the bundle being analyzed. 

Fig. 7 summarizes the MAPE of different features across different

ources of variation. Again, Curl, Length, and Span are highly repro-

ucible across all effects, with MAPE always below 10%, and surface

rea and volume result in higher MAPE. Trends are the same as those

bserved for Dice overlap, with generally larger differences due to res-

lution and vendor acquisition effects (RES 1 and 2, VEN 1 and 2), fol-

owed by scanner effects (SCAN1 showing the largest variation). 



K.G. Schilling, C.M.W. Tax, F. Rheault et al. NeuroImage 242 (2021) 118451 

Fig. 7. Variability of shape features is influenced by scanner, vendor, acquisition, and b-value. Variability is shown as MAPE for each TractSeg, ATK, and Reco 

methods, for scan-rescan (RESCAN), scanners (SCAN1, SCAN2), vendor (VEN1, VEN2), resolution (RES1, RES2), diffusion directions (DIR1, DIR2) and b-value 

(BVAL). Values shown are averaged across all pathways within a bundle dissection method. Shape features are ordered (from top to bottom) from lowest to highest 

average MAPE. Many shape features are highly reproducible, and MAPE is influenced by all effects investigated. 

Fig. 8. Sources of variation may introduce bias in shape features. The mean percent variation (MPV), i.e., the signed MAPE, is shown for each bundle segmentation 

method, for all features, with the distribution across fiber pathways. A distribution not centered on 0 suggests systematic differences introduced by the given effect. 

For interpretation, RESCAN (repeat 2 – repeat 1), SCAN1 (Philips Achieva scanner 2 – Philips Achieva scanner 1), SCAN2 (Siemens Connectome standard acquisition 

– Siemens Prisma standard acquisition, VEN1 (GE Discovery - Philips Achieva), VEN2 (Siemens Skyra - Philips Achieva), RES1 (Prisma state-of-the-art 30 directions 

- Prisma standard acquisition), RES2 (Connectom state-of-the-art 30 directions - Connectom standard acquisition), DIR1 (Philips Achieva 96 directions – Philips 

Achieva 32 directions), DIR2 (Prisma state-of-the-art 60 directions - Prisma state-of-the-art 30 directions), BVAL (Prisma standard-acquisition b = 3000 - Prisma 

standard-acquisition b = 1000). 
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To look for systematic differences introduced in the quantification of

eatures, we calculate the mean percent variation (i.e., the signed value

f MAPE), across all sources of variation, for all features (across all bun-

les). Fig. 8 shows that most effects do not significantly bias bundle

hape measures. For example, nearly all features derived from Tract-
9 
eg are within a 10% variation and largely centered on 0. However,

ES2 and VEN2 do introduce a small, but consistent, bias, in measures

f surface area, end area, and volume (in this case, the higher resolution

esults in smaller values). Similarly, for ATK, a bias is observed in the

pposite direction for the same features for effects of acquisition reso-
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Fig. 9. Different workflows result in low-to-moderate Dice overlap of the same pathways. 

Dice overlap coefficients for individual bundles, when measuring agreement between different bundle dissection methods. Please see Appendix for bundle abbrevia- 

tions. 

Fig. 10. Locations of agreement and disagree- 

ment across bundle dissection methods. For 

each comparison, percent agreement indicates 

areas where methods agree in space and is 

shown using a “hot ” colormap, while percent 

disagreement indicates areas where disagree- 

ment occurs and is shown using a “cold ” col- 

ormap. Results are shown for two example 

pathways (AF_R and OR_L). Here, there are ar- 

eas of high% disagreement between methods, 

indicating a consistent and reproducible differ- 

ence between bundle dissection methods (high- 

lighted by yellow arrows). 
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ution. Additionally, b-value introduces a significant bias for ATK, with

he higher b-value scan resulting in larger quantitative values for these

eatures. Reco, in agreement with previous figures, has a much wider

ange of variation, and larger effects due to acquisition for features of

iameter, Surface Area, End Areas and Volume. Thus, different sources

f variation may bias quantitative extraction of shape features, and bias

hem differently for different bundle segmentation methods. 

.5. Variation across bundle segmentation methods 

Next, we compared the agreement of the same bundle, but across

ifferent bundle segmentation methods. Fig. 9 shows the Dice overlap

or 14 common bundles, comparing each method to every other. There

s a low-to-moderate agreement, with Dice overlap values between 0.1–

.5 for all pathways. In general, ATK was most similar to TractSeg and

eco for most bundles (with some exceptions), while Xtract was most
10 
issimilar to all others. The AF, ILF, and MDLF, were the most dissimilar

cross methods. 

Fig. 10 visualizes where agreement and disagreement occurs across

undle segmentation methods, with example-pathways AF and OR.

ere, while most of the core agrees across methods, there is also a con-

istent disagreement across methods, particularly in the thickness of the

undle and in the regions of the temporal lobe for the AF and connec-

ions in the occipital lobe for the OR. Thus, instead of random differences

ue to noise, differences across methods are reproducible disagreement,

ikely caused by fundamental differences in the segmentation technique

nd structure to be segmented. 

.6. Variation in diffusion MRI microstructure measures 

We next investigate reproducibility of microstructure measures due

o the aforementioned sources of variation, and tractography variation.
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Fig. 11. Variation of FA. Effects of scan-rescan (RESCAN; blue), scanners (SCAN1, SCAN2; red), vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), 

diffusion directions (DIR1, DIR2; green) and b-value (BVAL; light purple) on MAPE of the FA for all fiber bundles dissected using each technique. The left boxplots are 

indictive of the variability inherent due to each effect, whereas the darker-hued (right) boxplots indicate the added variability due to differences in tractograms. For 

each, a Wilcoxon signed rank test is performed to investigate whether tractography adds to (or removes) significant variance to this metric, and statistical significance 

is indicated by a solid black line. 
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ig. 11 shows the MAPE of FA for all four bundle segmentation meth-

ds. In all cases, the standard-color boxplots are variations due to the

ueried source of variation alone, whereas the darker-shaded boxplots

re due to the source of variation and the added variation of tractog-

aphy variation. Most notably, the MAPE due to RESCAN, SCAN, VEN,

IR, and BVAL alone are highly similar for all segmentation methods,

ith only minor differences due to the slightly different representations

f the pathways ( Fig. 9 ). These results are in line with the literature,

ith variation < 3% for SCAN rescan ( Farrell et al., 2007 ; Landman et al.,

007 ; Wakana et al., 2007 ), with 5–15% due to scanner and vendor ef-

ects ( L Ning et al., 2020 ; CM Tax et al., 2019 ), and as much as 10%

ue to differences in acquisition and diffusion sensitization ( Jones and

asser, 2004 ; L Ning et al., 2020 ; Tax et al., 2020 ). Notably, the added

ariation due to tractography does indeed increase differences in FA

as indicated by a solid horizontal line) in many cases, although the%

ncrease in variation is on average < 5%. 

Fig. 12 shows the MAPE of MD for different sources of variation.

ost noticeable, MD is highly different when calculated using two dif-

i  

11 
erent b-values, as expected ( Novikov et al., 2018 ; Landman et al., 2007 ;

ones, 2004 ; De Luca et al., 2021 ; DK Jones et al., 1999 ), followed by

ifferences due to vendors. Differences across RESCAN, SCAN, RES, and

IR are typically < 5%. Again, the use of tractography adds to this vari-

nce, although on 3% or less on average. 

. Discussion 

The primary focus of this work was to study variability of diffusion

ber tractography bundle segmentation, performing the same analysis

n different datasets on different scanners or with different acquisition

rotocols. For the databases investigated here, we have shown that the

rocess of tractography bundle segmentation shows significant varia-

ion across different acquisition resolution and across different vendors,

ith less, albeit significant, variation across scanners and across diffu-

ion sensitization. Variation is indeed expected when scanning the same

ubject twice, with all other experimental parameters constant, due to

maging noise and the stochastic nature of the tractography process,
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Fig. 12. Variation of MD. Effects of scan-rescan (RESCAN; blue), scanners (SCAN1, SCAN2; red), vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), 

diffusion directions (DIR1, DIR2; green) and b-value (BVAL; light purple) on MAPE of the MD for all fiber bundles dissected using each technique. The left boxplots 

are indictive of the variability inherent due to each effect, whereas the darker-hued (right) boxplots indicate the added variability due to differences in tractograms. 

For each, a Wilcoxon signed rank test is performed to investigate whether tractography adds to (or removes) significant variance to this metric, and statistical 

significance is indicated by a solid black line. 
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owever, these additional sources of variation add potential confounds

o tractography analysis that may bias measurements, limit aggregation

f datasets, and hinder direct interpretation and meta-analysis of dif-

erent results across studies. While the primary focus was on variation

ue to vendor and scanner effects, acquisition effects, and b-value ef-

ects, we also show the most bundle segmentation workflows are highly

eproducible when running the same analysis on data acquired in dif-

erent sessions, but with the same scanner and protocol. 

It is well-known that microstructural features at different sites and

ith different protocols are not immediately comparable, and in fact

ignificantly biased due to various effects. However, the process of trac-

ography is largely dependent upon fiber orientation estimates, rather

han features of the signal magnitude directly (i.e., MD/FA), and it is

ot immediately intuitive that differences in scanners, acquisitions, and

-values may lead to significantly different results. The results of this

ork suggest that, indeed, the results of tractography and across sites

dds variability that must be considered in the interpretation of both

icrostructural and shape features of these pathways. 
12 
.1. Do we need to harmonize tractography? 

“Harmonization ” can be considered any effort at reducing vari-

bility in quantitative metrics between different databases, scanners,

nd studies. We have known that the voxel-wise signal varies across

ites, scanners, and acquisitions (as evidenced by the multitude of ef-

orts in the literature to study effects on DTI-indices ( Alexander et al.,

019 ; Jones et al., 2018 ; Novikov et al., 2018 ; Jeurissen et al., 2019 ;

affelt et al., 2017 ; Chamberland et al., 2019 ; Yeatman et al., 2012 ;

affei et al., 2019 ; Forkel et al., 2014 ; Hau et al., 2017 ; Hau et al.,

016 ; Sarubbo et al., 2019 ; Sarubbo et al., 2013 ; Neubert et al., 2015 ;

eubert et al., 2014 )) and now confirm that the tractography process

tself does as well, and have quantified the extent that tractography con-

ributes to variability. The question becomes “do we need to harmonize

ractography? ”. The short answer is “yes ”, the long answer is: harmo-

izing likely entails both harmonizing the signal (e.g., FA, MD, RISH

easures), harmonizing orientation, reducing effects of resolution, and

ombining the strengths of different bundle segmentation approaches. 
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The field of diffusion MRI harmonization has grown in recent years,

ith significant efforts to make diffusion microstructural measures com-

arable across sites and scanners ( Mirzaalian et al., 2016 ; L Ning et al.,

020 ; Zhong et al., 2020 ; Cetin Karayumak et al., 2019 ; KM Huynh et al.,

019 ; Mirzaalian et al., 2018 ; Fortin et al., 2017 ). Yet, these endeavors

ave traditionally not considered variability of tractography, which is

ltimately influenced at both the local scale of individual voxels and

oxel-wise reconstruction as well as a global scale of connecting dis-

rete orientation estimates across the brain. 

It is unclear what “harmonizing ” tractography may entail. Clearly,

onsistent orientation estimates are key, but also streamline generation

lgorithms robust to voxel-sizes, and also segmentation algorithms that

re consistently able to identify streamlines belonging to a pathway-of-

nterest. With the vast array of options to reconstruct orientation, gen-

rate streamlines, and segment bundles, it may be impossible to harmo-

ize data in a way that is appropriate for all methods. Some effort has

een performed to harmonize fiber orientation estimation specifically

cross time or across scanners ( Vishwesh Nath et al., 2018 ; Chen et al.,

016 ; Moyer et al., 2020 ; KM Huynh et al., 2019 ). It may be possible

hat harmonizing the microstructural measures themselves may remove

ome possible confounds (i.e., if FA is used as a stopping criteria). Simi-

arly, it is possible that the application and process of tractography in a

tandard space (as performed for XTRACT), or at a standard resolution

ay remove confounds associated with image resolution. Alternatively,

arious multi-site methods used for scalar microstructure features, in-

tead of harmonizing bundles of streamlines directly, may be utilized to

armonize features extracted from bundles. Finally, even while there is

ignificant variation, large agreement occurs in the core of reconstructed

hite matter pathways, and weighting all derived measures and features

y tract density, or isolating the trunk of the bundle ( Yeatman et al.,

012 ), may remove sources of variation. 

Reassuringly, the automated methods considered are fairly robust

o these studied sources of variation. Visually, the pathways look re-

arkably similar across scanners, acquisition, and protocols ( Fig. 2 ),

or all methods. Quantitatively, methods such as TractSeg, which uti-

ize orientation estimates alone, in combination with machine learn-

ng techniques in order to map out tract orientation maps, endpoints,

nd binary segmentations are highly reproducible. Similarly, the other

ethods, while quantitatively having moderately larger variation, show

imilar shapes, locations, and connectivity across all effects. A final pos-

ible harmonization approach may be to combine the strengths of the

arious algorithms, rethinking the process of bundle segmentation to

ossibly utilize some combination of machine learning (TractSeg), and

 volume-based extraction prior to streamline generation, followed by

tlas-based (ATK, Xtract), or shape-based filtering (Reco) in order to

elineate bundles consistently across potential confounds. 

.2. Which confounds impact tractography the most? 

It is important to emphasize that we are purposefully not attempting

o “rank ” algorithms, or suggest that ones are better than others. Even

he methods with apparent lower reproducibility of features and shapes

re still moderately robust, and different implementations of these al-

orithms may have yielded different quantitative values. For example,

ifferent thresholding could have been applied to both density-based

Xtract) or streamline-based (all others) methods to increase specificity

or vice-versa, specificity), or different whole-brain tractography could

ave been applied prior to bundle dissection using Recobundles. How-

ver, regardless of implementation and choices of hyperparameters, we

xpect methods to show similar dependencies to the investigated sources

f variation. 

To our knowledge, this is the first time that multiple sources of vari-

tion of tractography have been investigated together. Reproducibility

cross raters, across algorithms, and across scanners have previously

een investigated. Our results allow comparison of the relative impact

f changes across sites or scanners, and suggest that, in general spa-
13 
ial resolution leads to the most dramatic differences in resulting trac-

ograms. Less tissue-based partial volume effects within the white mat-

er may facilitate delineation of white matter bundles ( F Rheault et al.,

020 ). Additionally, when quantifying volume overlap and shape fea-

ures, voxel-wise partial volume effects may cause a higher (or lower)

stimate due to the representation of the bundle as a binary volume at

he given spatial resolution. Finally, orientation-based partial volume

ffects are observed with different spatial resolution ( Jones et al., 2020 ;

chilling et al., 2017 ), leading to differences in accuracy of fiber ori-

ntation distributions, as well as fundamental differences in common

iffusion measures such as FA (which are often used in the tracking

rocess). 

The second biggest contributor to variability was vendor differences.

ifferences across scanners are known to introduce variability due to

actors of maximum gradient strength (and hence echo times and repeti-

ion times), field strengths, gradient nonlinearities, receive coil sensitiv-

ties, software version, and system calibration ( Mirzaalian et al., 2016 ).

ere, we show that differences in vendors are typically greater than that

ue to different scanners (yet same vendor) alone. Over and above scan-

er differences, vendors themselves may variations in algorithm choices,

lgorithms for acquisition, reconstruction, background noise reduction,

ulti-coil fusion ( Griswold et al., 2002 ; Pruessmann et al., 1999 ), and

ulse sequence implementation. Here, we have shown that in addition

o inconsistencies in DTI measures across vendors consistently shown

n previous studies ( AK Prohl et al., 2019 ; VA Magnotta et al., 2012 ;

in et al., 2018 ) there is also a large inconsistency in tractography vol-

mes and locations due to differences in vendors. 

Reassuringly, variation of b-value and number of diffusion directions

ed to relatively consistent tractography. While it is well-known that

ngular resolution affects the ability to reconstruct fiber orientations

 Jones et al., 2020 ; Schilling et al., 2018 ; Canales-Rodriguez et al., 2018 ;

ournier et al., 2013 ; Tournier et al., 2008 ; Prckovska et al., 2008 ), most

econstruction methods are robust with as few as 30 directions (or less).

imilarly, while reconstruction algorithms are dependent on diffusion

ensitization ( Schilling et al., 2018 ; Daducci et al., 2014 ), the b-value

id not significantly affect tractography results (although does affect

uantitative metrics association with DTI). 

It is also interesting that the relative magnitude of sources of varia-

ion depend on the bundle dissection method. While variability gener-

lly decreases from RESCAN, DIR, BVAL, SCAN, then VEN and RES, sev-

ral notable exceptions occur. ATK is highly sensitive to the b-value. This

s likely due to the fact that this automated tractography is reconstructed

sing Generalized Q-ball Imaging ( Yeh et al., 2010 ), and tracking thresh-

lds are determined by the normalized quantitative anisotropy, which is

nown to be highly dependent on b-value ( Yeh et al., 2013 ). In contrast,

TRACT is a probabilistic method based largely on fiber orientation (and

ts dispersion) alone (from the ball-and-stick model ( Sotiropoulos et al.,

012 )), and different b-values give highly similar results of orientation

although dispersion will vary). XTRACT is also most sensitive to dras-

ic change in resolution, likely caused by the probabilistic nature of the

ractography process and subsequent thresholding for segmentation. 

.3. Shape variation and location of variation 

This is to the best of our knowledge also the first time that repro-

ucibility of different shape features of tractography has been inves-

igated. While the variation across and within subjects has previously

een studied ( Yeh, 2020 ), it is important to understand cross-protocol

nd cross-scanner effects if these features are to be potential biomarkers

n health and disease. These shape measures show similar patterns of

ariability, largest across resolution, vendors, and scanners, and small-

st variation across repeats, directions, and b-values. More than varia-

ion, different resolutions and b-values can significantly bias measures,

or example consistently overestimating volume and surface areas at

ower resolutions where more partial volume effects are expected. De-
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h  
ending on tractography method, many features are remarkably robust,

ith MAPE below 5%, in line with that of microstructure features. 

We also investigated locations of differences and similarities by vi-

ualizing where there was consistent agreement and disagreement. Im-

ortantly, even with differences in acquisition and scanners, methods

re able to consistently reproduce the major shape and location of the

ntended pathway, with differences most frequently occurring at the pe-

iphery, or edges, of the pathway, and along the white matter and gray

atter interface. While features of shape and geometry may be biased

ue to sources of variation, these differences do not consistently occur

t any one location or place along the pathway. 

.4. Different workflows 

Over and above the typically studied sources of variation, we found

hat differences due to the choice of bundle segmentation workflows

re most pronounced. For any given pathway, overlap from one work-

ow to another was low-to-moderate. This is in part due to the inherent

ensitivity/specificity of different algorithms – for example Recobundles

ill look for clusters exhibiting a certain shape, while Tractseg is based

n deep-learned segmentation, and Xtract will be highly dependent on

he chosen threshold – but more importantly due to fundamental differ-

nces in how the pathway is dissected or defined ( Schilling et al., 2020 ;

andonnet et al., 2018 ). For example, the definition of a pathway by

ne method may be entirely different from another method, including

hoices in the presence or absence of connections to entire lobes or lob-

les, or differences in estimated spatial extent of pathways. While dif-

erences across methods were larger, they were importantly consistently

ifferent, meaning that comparing findings using different methods may

esult in differing conclusions on connectivity or microstructure. Differ-

nces between bundle segmentation workflows are also confounded by

ifferences in the entire process of tractography, including differences

n modeling, generation of streamlines (i.e., tractography), and bundle

egmentation or filtering. Thus, it is intuitive that major differences exist

hen implementing different standard workflows to study the brain. 

.5. Microstructure variation 

Finally, we looked at how much the variation in tractography con-

ribute to the already existing cross-protocol and cross-scanner variation

n dMRI measures. For FA, difference across scanners are known to be

s much as 5–15% ( L Ning et al., 2020 ; CM Tax et al., 2019 ), and differ-

nces are expected due to different b-values, while scan-rescan repro-

ucibility is high ( < 5%). The variation in tractography segmentations

oes indeed statistically significantly increase this variation for most

ffects, although the increase is typically very small and < 5%. Simi-

ar results are observed for MD, although most changes are most pro-

ounced for MD across different scanners. Thus, while tractography has

he benefit of added specificity over simply propagating atlas-derived

egions to subject-space, it does potentially increase variability in these

easurements. Although methods such as tract-based spatial statistics

 Smith et al., 2006 ) have been developed to mitigate these effects, we

ose the added benefit of characterizing an index of interest along or

ithin the full trajectory of the pathway. 

.6. Future studies and limitations 

Future studies should investigate additional sources of variation.

anual dissection of fiber bundles gives the dissector the ability to in-

eractively manipulate pathways to their liking ( F Rheault et al., 2020 ),

nd it remains to be seen how this is influenced by scanner and site

iven the flexibility of this approach. Further, it is unknown whether

hese variabilities will matter in a clinical setting ( Vanderweyen et al.,

020 ; Mancini et al., 2019 ; Fekonja et al., 2019 ; Essayed et al., 2017 ),

lthough with the importance of determining pathway boundaries, we
14 
ypothesize that the partial volume effects due to acquisition resolu-

ion will possibly influence decision making. It is worth investigating

he potentially large array of automated bundle segmentation methods

hat exist, as some are likely more/less appropriate when comparing or

ombining datasets with different confounds. Additionally, as alterna-

ive segmentation methods, or even whole-brain connectome analysis

ipelines, are proposed, the use of open-source multi-site multi-subject

atasets ( Koller et al., 2021 ; Avesani et al., 2019 ; Jack et al., 2008 )

hould be encouraged to investigate the successes and limitations of

ew approaches. Many algorithms for reconstruction and tractography

re now able to utilize multiple diffusion shells, and the change in vari-

bility and precision of tractography using these techniques compared

o isolated diffusion weightings should be compared, but is outside the

cope of this work. As along-fiber quantification ( Chamberland et al.,

019 ; Yeatman et al., 2012 ) has proven valuable in the research set-

ing, it would be worthwhile to perform investigations which parallel

he current study in order to ask how and where along the bundle dif-

erences occur due to different effects. This has been previously inves-

igated, but is largely limited to scan-rescan analysis ( Yeatman et al.,

012 ; Koller et al., 2021 ; Chandio et al., 2020 ), while the tract-averaged

ndices are still commonly utilized in neuroimaging studies. 

A major limitation of the current study is the limited sample sizes

f both datasets due to challenges associated with scanning the same

ubjects on different scanners and with different protocols. However,

here are few multi-site multi-subject databases, and fewer still with

aried protocols on the same subjects, whereas here we are able to re-

ove effects across subjects by analyzing only the same subject with

ifferent protocols. It is expected that more datasets will become avail-

ble as big-data and multi-site collaborations become more important

o the neuroimaging community, and traveling subjects become com-

on place in order to harmonize across sites. Exemplar open-sourced

atasets include that of ( Tong et al., 2020 ) with N = 3 subjects at 20

ites with Prisma scanners and a multi-shell dataset (allowing analysis

f RESCAN, SCAN, BVAL, DIR), the traveling human phantom dataset

 VA Magnotta et al., 2012 ) with N = 5 subjects at 8 center (SCAN, VEN,

IR), or consortiums such as Pharmacog ( Galluzzi et al., 2016 ), ADNI

 Jack et al., 2008 ), HCP ( Glasser et al., 2013 ), or OASIS ( Marcus et al.,

007 ), all with large sample size and repeat scans, but typically lim-

ted to RESCAN analysis only or without matched subjects across scan-

ers/vendors/protocols. Because of this, for simplicity, we have chosen

wo datasets in this study which allow incorporation of all intended

ources of variation without compromising readability. While we have

ooked at a wider range of variability factors than previous studies, we

mphasize that these results are based only on two specific databases,

nd nalysis should be reproduced on other (and new) databases in future

ork to show generalizability. 

Finally, while the primary focus of our study was on variation due

o scanner-effects, acquisition-effects, and b-value-effects, our analysis

as limited to studying these effects on only four bundle segmentation

orkflows. We did not implement all existing automated bundle recon-

truction pipelines or workflows ( Yeatman et al., 2012 ; Vazquez et al.,

020 ; F Zhang et al., 2019 ; Guevara et al., 2012 ; Wakana et al., 2007 ;

asserthal et al., 2019 ; F Zhang et al., 2020 ; F Zhang et al., 2020 ;

 Zhang et al., 2019 ; O’Donnell and Westin, 2007 ; Wassermann et al.,

016 ; Ros et al., 2013 ; Zöllei et al., 2019 ; Schilling et al., 2021 ), how-

ver, our selection captures a variety of techniques used to reconstruc-

ion bundles, including differences in the use of atlases or regions-of-

nterest, those based on shape and/or orientation features, machine

earning techniques, and differences in the generation of streamlines – a

ide variety of vastly different approaches that we consider a strength

f this study. To create a tractable parameter space, we have chosen only

hese four representatives of the wide variety of possible approaches. 

Finally, we did not directly perform harmonization techniques in

his study. There are dozens of methods available to do this (see ( L Ning

t al., 2020 ; CM Tax et al., 2019 )), and understanding and characterizing

armonization results across several algorithms would take away from



K.G. Schilling, C.M.W. Tax, F. Rheault et al. NeuroImage 242 (2021) 118451 

t  

v  

a  

a

5

 

m  

d  

H  

e  

s  

z  

d  

t  

s  

m  

p  

v  

i

6

 

m  

(  

(  

d  

e  

D  

s  

X  

S  

(

A

 

r  

n  

V  

R  

s  

s

D

 

s  

M  

2  

i

 

j  

n

 

f  

2

 

d  

r

C

 

W

 

w

 

a  

s

A

 

a

 

F  

C  

t  

t  

C  

(  

F  

F  

F  

(  

o  

r  

g  

M  

c  

r  

r  

P  

S  

(  

c

 

T  

C  

(  

m  

(  

r  

(  

(  

p  

f  

f  

l  

M  

r  

P  

(  

p  

S  

d  

(  

g  

S  

S  

S  

S  
he main focus of this study – which is characterization and ranking of

ariability across confounds. Further, harmonization would only affect

 subset of results (i.e., those looking at FA/MD) as most harmonization

pproaches leave orientation untouched. 

. Conclusion 

When investigating connectivity and microstructure of the white

atter pathways of the brain using tractography, it is important to un-

erstand potential confounds and sources of variation in the process.

ere, we find that tractography bundle segmentation results are influ-

nced by the use of different vendors and scanners, and different acqui-

ition choices of resolution, diffusion directions, and diffusion sensiti-

ations, thus results may not be directly comparable when combining

ata or results across studies. Additionally, different bundle segmenta-

ion protocols have different successes/limitations when dealing with

ources of variation, and the use of different protocols for bundle seg-

entation may result in different representations of the same intended

athway. These confounds need to be considered when designing or de-

eloping new tractography or bundle dissection algorithms, and when

nterpreting or combining data across sites. 

. Code 

Multi-site, multi-scanner, multi-protocol, and

ulti-subject databases are available for MASIvar

https://openneuro.org/datasets/ds003416) and for MUSHAC

by request). Tractography pipelines are implemented as

escribed by each software package using default param-

ters for TractSeg (Release 2.3; https://github.com/MIC-

KFZ/TractSeg), ATK (Lct 17 2020 build; http://dsi-

tudio.labsolver.org), RECO (Dipy 1.2.0 ; https://dipy.org), and

TRACT (FSL 6.0.3; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT).

hape analysis is available in DSI Studio, as Matlab Code

https://github.com/dmitrishastin/tractography_shapes/). 
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ppendix 

The bundles resulting from each segmentation pipeline are given as

 list below, with acronyms used in the text. 

Recobundles: 

Anterior Commisure (AC); Arcuate Fasciculus left (AF_L); Arcuate

asciculus left (AF_R); Cerebellum left (CB_L); Cerebellum right (CB_R);

ingulum left (C_L); Cingulum right (C_R); Corpus Callosum (CC); Cor-

icospinal Tract left (CST_L); Corticospinal Tract Right (CST_R); Cor-

icostriatal Pathway left (CS_L); Corticostriatal Pathway right (CS_R);

entral Tegmental Tract left (CT_L); Central Tegmental Tract right

CT_R); Extreme Capsule left (EMC_L); Extreme Capsule right (EMC_R);

ornix left (F_L); Fornix right (F_R); Frontal Aslant Tract left (FAT_L);

rontal Aslant Tract right (FAT_R); Fronto-pontine tract left (FPT_L);

ronto-pontine tract right (FPT_R); Inferior Cerebellar Peduncle left

ICP_L); Inferior Cerebellar Peduncle right (ICP_R); Inferior Fronto-

ccipital Fasciculus left (IFOF_L); Inferior Fronto-occipital Fasciculus

ight (IFOF_R); Inferior Longitudinal Fasciculus left (ILF_L); Inferior Lon-

itudinal Fasciculus right (ILF_R); Middle Cerebellar Peduncle (MCP);

iddle Longitudinal Fasciculus left (MdLF_L); Middle Longitudinal Fas-

iculus right (MdLF_R); Medial Lemniscus left (ML_L); Medial Lemniscus

ight (ML_R); Occipito Pontine Tract left (OPT_L); Occipito Pontine Tract

ight (OPT_R); Optic Radiation left (OR_L); Optic Radiation right (OR_R);

arieto Pontine Tract left (PPT_L); Parieto Pontine Tract right (PPT_R);

uperior Cerebellar Peduncle (SCP); Superior longitudinal fasciculus left

SLF_L); Superior longitudinal fasciculus right (SLF_R); Uncinate Fasci-

ulus left (UF_L); Uncinate Fasciculus right (UF_R); 

TractSeg: 

Arcuate fascicle left (AF_L); Arcuate fascicle right (AF_R); Anterior

halamic Radiation left (ATR_L); Thalamic Radiation right; (ATR_R);

ommissure Anterior (CA); Rostrum (CC_1; Genu (CC_2); Rostral body

Premotor) (CC_3); Anterior midbody (Primary Motor) (CC_4); Posterior

idbody (Primary Somatosensory) (CC_5); Isthmus (CC_6); Splenium

CC_7); Corpus Callosum – all (CC); Cingulum left (CG_L); Cingulum

ight (CG_R); Corticospinal tract left (CST_L); Corticospinal tract right

CST_R); Fronto-pontine tract left (FPT_L); Fronto-pontine tract right

FPT_R); Fornix left (FX_L); Fornix right (FX_R); Inferior cerebellar

eduncle left (ICP_L); Inferior cerebellar peduncle right (ICP_R); In-

erior occipito-frontal fascicle left (IFO_L); Inferior occipito-frontal

ascicle right (IFO_R); Inferior longitudinal fascicle left (ILF_L); Inferior

ongitudinal fascicle right (ILF_R); Middle cerebellar peduncle (MCP);

iddle longitudinal fascicle left (MLF_L); Middle longitudinal fascicle

ight (MLF_R); Optic radiation left (OR_L); Optic radiation right (OR_R);

arieto-occipital pontine left (POPT_L); Parieto-occipital pontine right

POPT_R); Superior cerebellar peduncle left (SCP_L); Superior cerebellar

eduncle right (SCP_R); Superior longitudinal fascicle III left SLF_III_L);

uperior longitudinal fascicle III right (SLF_III_R); Superior longitu-

inal fascicle II left (SLF_II_L); Superior longitudinal fascicle II right

SLF_II_R); Superior longitudinal fascicle I left (SLF_I_L); Superior lon-

itudinal fascicle I right (SLF_I_R); Striato-fronto-orbital left (ST_FO_L);

triato-fronto-orbital right (ST_FO_R); Striato-occipital left (ST_OCC_L);

triato-occipital right (ST_OCC_R); Striato-parietal left (ST_PAR_L);

triato-parietal right (ST_PAR_R); Striato-postcentral left (ST_POSTC_L);

triato-postcentral right (ST_POSTC_R); Striato-precentral left
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ST_PREC_L); Striato-precentral right (ST_PREC_R); Striato-prefrontal

eft (ST_PREF_L); Striato-prefrontal right (ST_PREF_R); Striato-

remotor left (ST_PREM_L); Striato-premotor right (ST_PREM_R);

halamo-occipital left (T_OCC_L); Thalamo-occipital right (T_OCC_R);

halamo-parietal left (T_PAR_L); Thalamo-parietal right (T_PAR_R);

halamo-postcentral left (T_POSTC_L); Thalamo-postcentral right

T_POSTC_R); Thalamo-precentral left (T_PREC_L); Thalamo-precentral

ight (T_PREC_R); Thalamo-prefrontal left (T_PREF_L); Thalamo-

refrontal right (T_PREF_R); Thalamo-premotor left (T_PREM_L);

halamo-premotor right (T_PREM_R); Uncinate fascicle left (UF_L);

ncinate fascicle right (UF_R). 

Xtract: 

Anterior Commissure (AC); Arcuate Fascile left (AF_L); Arcuate Fas-

ile right (AF_R); Acoustic Radiation left (AR_L); Acoustic Radiation

ight (AR_R); Anterior Thalamic Radiation left (ATR_L); Anterior Thala-

ic Radiation right (ATR_R); Cingulum Bundle Dorsal left (CBD_L); Cin-

ulum Bundle Dorsal right (CBD_R); Cingulum Bundle Parahippocam-

al left (CBP_L); Cingulum Bundle Parahippocampal right (CBP_R);

ingulum Bundle Temporal left (CBT_L); Cingulum Bundle Temporal

ight (CBT_R); Corticospinal Tract left (CST_L); Corticospinal Tract right

CST_R); Frontal Aslant left (FA_L); Frontal Aslant right (FA_R); For-

eps Major (FMA); Forceps Minor (FMI); Fornix left (FX_L); Fornix

ight (FX_R); Inferior Fronto-occipital Fasciculus left (IFO_L); Inferior

ronto-occipital Fasciculus right (IFO_R); Inferior Longitudinal Fascicu-

us left (ILF_L); Inferior Longitudinal Fasciculus right (ILF_R); Middle

erebellar Peduncle (MCP); Medio-Dorsal Longitudinal Fasciculus left

MDLF_L); Medio-Dorsal Longitudinal Fasciculus right (MDLF_R); Optic

adiation left (OR_L); Optic Radiation right (OR_R); Superior Longitudi-

al Fasciculus 1 left (SLF1_L); Superior Longitudinal Fasciculus 1 right

SLF1_R); Superior Longitudinal Fasciculus 2 left (SLF2_L); Superior Lon-

itudinal Fasciculus 2 right (SLF2_R); Superior Longitudinal Fasciculus

 left (SLF3_L); Superior Longitudinal Fasciculus 3 right (SLF3_R); Su-

erior Thalamic Radiation left (STR_L); Superior Thalamic Radiation

ight (STR_R); Uncinate Fasciculus left (UF_L); Uncinate Fasciculus right

UF_R); Vertical Occipital Fasciculus left (VOF_L); Vertical Occipital Fas-

iculus right (VOF_R). 

ATK: 

Arcuate_Fasciculus_L (AF_L); Arcuate Fasciculus R (AF_R); Cortico

pinal Tract L (CST_L); Cortico Spinal Tract R (CST_R); Cortico Stri-

tal Pathway L (CS_L); Cortico Striatal Pathway R (CS_R); Corticobulbar

ract L (CBT_L); Corticobulbar Tract R (CBT_R); Corticopontine Tract

 (CPT_L); Corticopontine Tract R (CPT_R); Corticothalamic Pathway

 (CTP_L); Corticothalamic Pathway R (CTP_R); Inferior Cerebellar Pe-

uncle L (ICP_L); Inferior Cerebellar Peduncle R (ICP_R); Inferior Fronto

ccipital Fasciculus L (IFOF_L); Inferior Fronto Occipital Fasciculus R

IFOF_R); Inferior Longitudinal Fasciculus L (ILF_L); Inferior Longitu-

inal Fasciculus R (ILF_R); Optic Radiation L (OR_L); Optic Radiation

 (OR_R); Middle Longitudinal Fasciculus L (MdLF_L); Middle Longi-
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