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Abstract

Online action recognition is an important task for human centered intelligent ser-
vices. However, it remains a highly challenging problem due to the high varieties and
uncertainties of spatial and temporal scales of human actions. In this paper, the fol-
lowing core ideas are proposed to deal with the online action recognition problem.
First, we combine spatial and temporal skeleton features to represent human actions,
which include not only geometrical features, but also multi-scale motion features,
such that both spatial and temporal information of the actions are covered. We use
an efficient 1D Convolutional Neural Network (CNN) to fuse spatial and temporal
features and train them for action recognition. Second, we propose a group sampling
method to combine the previous action frames and current action frames, which are
based on the hypothesis that the neighbouring frames are largely redundant, and
the sampling mechanism ensures that the long-term contextual information is also
considered. Third, the skeletons from multi-view cameras are fused in a distributed
manner, which can improve the human pose accuracy in the case of occlusions.
Finally, we propose a Restful style based client-server service architecture to deploy
the proposed online action recognition module on the remote server as a public ser-
vice, such that camera networks for online action recognition can benefit from this
architecture due to the limited onboard computational resources. We evaluated our
model on the datasets of JHMDB and UT-Kinect, which achieved highly promis-
ing accuracy levels of 80.1% and 96.9%, respectively. Our online experiments show
that our memory group sampling mechanism is far superior to the traditional sliding
window.
KEYWORDS:
online action recognition, kinetic skeleton feature, 1D CNN, camera network

1 INTRODUCTION

Online action recognition plays an important role in many applications, such as elderly care, medical rehabilitation, security
surveillance, and human-robot interaction and collaboration. There are many sensors can be used to capture human actions, e.g.,
RGB camera, RGBD camera, IMU (Inertial Measurement Unit), and 3D laser scanner. RGB cameras are the most common type
of sensor for analyzing human actions1 2 3, because of its many advantages, such as the characteristics of images that provide rich
and naturally interpretable information for humans and, on the other hand, its acceptable prices, compared to other costly sensors,
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such as IMU and laser scanners. However, 2D images are projected from the 3D world, such that human action recognition can
be affected by the view point. In contrast, recently RGBD cameras, e.g. Microsoft Kinect, Intel realsense, and Asus Xtion, are
becoming popular. They can directly output depth information of the environment for 3D human skeleton pose detection4 5 that
is invariant to the view direction. In addition, RGBD cameras’ advantages of low cost, real time 3D reconstruction capability
and easy-to-use features drive its popularity in the field of human pose estimation and action recognition.
In recent years, deep learning techniques6 7 8 9 10 are prevalent for target recognition tasks. The skeleton of a human is one of

the most commonly used models for representing human poses that can be captured using RGBD sensors. A human skeleton
include a number of spatially connected bone joints. Each joint has a coordinate in the RGB image or depth image, such that
the skeleton can be represented by a compact vector of values with a fixed length, which can save computational cost to analyze
human poses and actions. Currently, most of the human action recognition methods using skeleton data are offline processing,
which use recorded video clips of fixed lengths as input11. Some attempt to predict the start frame and end frame of an action in
the sequential images12 13. On the other hand, online action recognition is still an onging open problem, which is difficult to be
solved, since only previous frames of the current time are available and the start point of an action is unknown14 15. Furthermore,
the real time requirement of online action recognition is the other challenging issue, due to the expensive computational cost of
the recent deep learning algorithms.
In this paper, we focus on online action recognition using 3D skeleton sequences derived from RGBD sensors. The novelties

of our ideas are as follows:
(1) We introduce a group of kinetic skeleton features that can capture both of the spatial and temporal features of the human

action, which includes joint collection distance features, multi-scale motion features and geometrical features. We employ a fast,
small and efficient neural network to combine these kinetic skeleton features, which can return a competitive performance for
action recognition.
(2)We propose a group samplingmechanism to handle the uncertainty of the temporal scale of the actions, such that long-term

contextual information can be considered for action recognition.
(3) A distributed multi-view information fusion method is used for human pose fusion, such that each camera can have more

accurate skeleton data by fusing information from neighbour camera nodes.
(4) A Restful style client-server architecture for distributed action recognition of camera networks is proposed, such that

all camera nodes as clients can send their local kinetic skeleton features to the server which loads the proposed online action
recognition module in advance, and return the recognition results to the clients.
The rest parts of the paper are structured as follows. We first discuss related works in the field of action recognition using

skeleton data in Section 2, and then introduce our kinetic skeleton features, group sampling, 1D CNN neural network, distributed
information fusion and client-server architecture for online action recognition in Section 3. The demonstrated experiments on
the public datasets and our laboratory datasets can be found in Section 4. Finally, the paper is concluded in Section 5.

2 RELATED WORKS

Most of the current action recognition methods are offline, where the skeleton sequence data for processing are segmented for
each action in advance, such that we can easily label these data and train the learning methods. In addition, it is convenient to
use segmented data for numerical accuracy analysis. Furthermore, the computation cost of the algorithm is not considered a
key problem due to the offline processing requirement. H. Wang and L. wang16 proposed a new two-stream Recurrent Neural
Network (RNN) architecture to model temporal dynamics and spatial structures of skeletons for action recognition. In order to
improve the generalization ability of the model, they further developed a data expansion technology based on 3D transformation,
including rotation and scaling transformation. Finally, the recognition accuracy of the algorithm is verified on two public datasets.
Liu et al.17 proposed a Long short-termmemory (LSTM)model-based action recognitionmethod, which simultaneously extracts
the action-related information in the temporal and spacial domains. Wang et al.18 proposed the Joint Trajectory Maps (JTM),
which represents the spatial configuration and dynamics of joint trajectories as three texture images through color encoding.
Then, they use CNN for action recognition. The original skeleton data can be affected by the view direction, so more advanced
geometrical features can be extracted from original joints. For instance, Thien Huynh-The et al.19 proposed a novel skeleton-
to-image encoding technique to exploit pose features for a more robust action representation. Zhang et al.20 designed eight
geometric features to represent raw skeleton data, including joint-to-joint distances, joint-line distances, joint-to-plane distances,
etc. These hand-crafted features are used as the input of the LSTM network for action recognition. They finally proved that
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properly defining hand-crafted features for a basic model can be superior. Yasin et al.21 presented a novel method, which relies
on keyframes extracted from action sequences. The extracted keyframes provide information that is free from redundancy, but
carries the most relevant details about the action that exists in the motion.
Online action recognition refers to the capability of predicting the category of ongoing action based on the observed data up

to the present. This means that we need to predict the category of action before they are completely executed. There are fewer
works about online action recognition than offline algorithms. Most of current online algorithms deal with RGB videos. Jiang et
al.22 proposed a novel Dual 3D convolutional Network (D3DNet) with two complementary lightweight branches to learn spatio-
temporal models for video-based human action recognition. The method proposed by Geest et al.23 takes an RGB video stream
as input, and outputs the class of the action in real time. You et al.24 proposed Action4DNet to generate 4D volumes of the
environment, track each person in the volume and infer the actions of each subject, for situations with multiple people. One of
the challenging problems of online action recognition is the unknown starting point of each action of interest. A sliding window
with fixed scale proposed by Zanfir and Mihai25 is used to extract the frames for recognition. The sliding window is simple
and easy for use, but its limitation is the fixed scale of the sliding window, since the temporal length of the action is unknown
and different due to the variety of the action. In addition, the sliding window method can lose long-term context information,
such that it has very low accuracy for such situations. To solve these problems, we propose a group sampling mechanism that
balances the data that are far away from the present frame, and those that are relatively close.
Data fusion based on sensor network is an effective solution to viewpoint variation and occlusion problems in human action

recognition. Aggarwal et al.26 point out that multiple cameras can not only extend range of perception, but also solve problems
caused by occlusions by other targets. However, due to the limitations of network bandwidths, it is not feasible to transmit the
mass of video data between network nodes. Therefore, it is important to figure out what sensor information should be handled
locally at the sensor node and what information should be shared and merged with other nodes. Compared to centralized net-
works, distributed networks require less traffic and energy consumption, which aroused extensive interest in the study. B. Song
et al.27 propose using the Kalman consensus filter (KCF) to track multiple targets, and fuse the similarity scores of neighboring
cameras for action recognition using 2D images. As shown in28,29, the KCF cannot handle naive node and information redun-
dancy problems. Therefore, A.T. Kamal et al.28,30 introduce an information weighted consensus filter (IWCF)-based distributed
human tracking method, which solves the naivety and redundancy problem by giving less weight to the prior information, when
new information contribution is fused, since the redundancy information is present only in the prior information29. Furthermore,
Liu et al.31 improve the original IWCF by using Metropolis weighting during consensus, which shows improved convergence
rate. The nonlinear versions and square-root extensions of IWCF can be founded in32,33,30.

3 PROPOSED METHOD

In this section, we introduce our ideas to extract advanced features from original skeleton sequences for handling the problems
caused by the view changes, and discuss the idea of group sampling to extract the frames from previous frames for handling the
problem of unknown starting point of corresponding actions. Finally, a CNN is used for action recognition. The overall flowchart
of the proposed method can be seen in Fig. 1 .

3.1 Advanced kinetic skeleton feature representation
To fully describe the actions of a human, we use not only the advanced spatial geometrical information of the human joints, but
also the temporal motion features.
The joint collection distances (JCD) features, which are location viewpoint invariant features, are first proposed in34. If each

human skeleton hasN joints with corresponding Cartesian coordinates gki = (x, y, z) for the ktℎ frame and the itℎ joint, the joint
collection distances can be calculated as follows:
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FIGURE 1 The overall flowchart of the proposed online human action recognition method using group sampling with advanced
geometry and motion skeleton features, where 1) a new group means the new skeleton sequences from the camera, 2) memory
group is used for storing history skeleton sequence, and 3) a working group is a skeleton sequence sampled from the new group
and memory group. Gi

N denotes the itℎ frame of the new group, Gj
M denotes the jtℎ frame of the memory group. The skeleton

features used in the paper include joint collection distances, geometric feature and global motion feature, where the red points
are detected joints, the yellow lines are the examples of extracted features, minus means the Euclidean distance between two
skeletons. A 1D CNN is used as the classifier for action recognition, which concatenates all features and output the recognition
result.

where ‖‖
‖

gki g
k
j
‖

‖

‖

represents the Euclidean distance between joint gki and joint gkj . Since F k is a symmetry matrix, we only use the
lower triangular matrix as JCD features.
In addition to the JCD features, we also explore the feature information from joint orientations, joint-line distances, line-line

angles, joint-plane distances, line-plane angles, plane-plane angles from original skeleton joints according the work presented
in20. To reduce the information redundancy, we select these lines and planes according to the following rules20:

• Lines: xg1g2 is a line connected by joint g1 and g2, which satisfy one of the following constraints: (1) g1 and g2 are directlyadjacent in the human structure. (2) One of g1 and g2 is the end joint (like head joint, left or right hand joint, left or right
foot joint), and the other is the joint separated by a joint in the human structure. (3) g1 and g2 are both end joints.

• Planes: Pg1g2g3 is a plane determined by a triangle formed by g1, g2 and g3. Only five planes that correspond to body, two
arms and two legs are considered.

According to these selected lines and planes, six types of geometric features are chosen as shown in Table 1 and Fig. 2 ,
where gg_o is the direction from joint g1 to g2, gx_d is the distance from joint g to line xg1g2 , xx_a is the angle between line
xg1g2 and xg3g4 , gP_d is the distance from joint g to plane Pg1g2g3 , xP_a is the angle between line xg1g2 and plane Pg3g4g5 normal
vector, PP_a is the angle between plane Pg1g2g3 normal vector and plane Pg4g5g6 normal vector. The calculation methods of
above features are shown in Table 1 , where unit is the unit vector, S△gg1g2 is the area of triangle△gg1g2, arccos is the inverse
trigonometrical function, ‖‖

‖

←→
g1g2

‖

‖

‖

is the Euclidean distance between joint g1 to g2, ⨀ represents dot product, and ⨂ denotes
cross product of two vectors. Here, we do not use repetitive features caused by symmetry of the human body.
The geometrical features only depict the spatial relations of the human skeleton joints, whereas the temporal information is

missing. However, temporal information is important for human action recognition to represent a skeleton sequence. Therefore,
we further employ the global motion features by differentiating the spatial positions Gk of human skeleton joints between the
ktℎ frame and the ktℎ + s frame, where s is the temporal scale, k refers to the frame, Gk represents the set of joint points of
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TABLE 1 Geometric feature calculation methods and feature description

Feature Symbol Calculation Methods Description

Joint Orientation gg_o gg_o(g1, g2)=
unit(

←→
g1g2)

Direction from joint g1 to g2

Joint Line
Distance gx_d gx_d(g, xg1g2) =

2S△gg1g2∕
‖

‖

‖

←→
g1g2

‖

‖

‖

Distance from joint g to line xg1g2

Line Line Angle xx_a xx_a(xg1g2 , xg3g4) =
arccos(gg_o(g1, g2)T

⨀

gg_o(g3, g4)
Angle between line xg1g2 and xg3g4

Joint Plane Dis-
tance gP_d gP _d(g, Pg1g2g3) =

(g − g1)
⨀

gg_o(g1, g2)
⨂

gg_o(g3, g4)

Distance from joint g to plane
Pg1g2g3

Line Plane Angle xP_a xP_a(xg1g2 , Pg3g4g5)
= arccos(gg_o(g1, g2))⨀
gg_o(g3, g4)⨂ gg_o(g3, g5)

Angle between line xg1g2 and plane
Pg3g4g5 normal vector

Plane Plane
Angle PP_a PP_a(Pg1g2g3 , Pg4g5g6)

= arccos(gg_o(g1, g2))⨂
gg_o(g1, g3)⨀ gg_o(g3, g4)

⨂

gg_o(g3, g5)

Angle between plane Pg1g2g3 normal
vector and plane Pg4g5g6 normal vec-
tor

the human in the ktℎ frame. Here we use two scales for capturing the fast motion Y kfast and slow motion Y kslow respectively, i.e.,
s = 1, 2. The motion features are calculated as

Y kslow = G
k+1 − Gk, k ∈ {1, 2,⋯ , K − 1} (2)

Y kfast = G
k+2 − Gk, k ∈ {1, 2,⋯ , K − 2} (3)

3.2 Group sampling mechanism
For online action recognition, the unknown start and end time of an action is a challenging problem compared to offline action
recognition, which uses segmented action sequences. The sliding window method is the popular method for traditional online
action recognition25, which has a fixed window size and can lose long-term context information. We here propose a group
sampling mechanism to balance the information that include a window of varying time duration from the current frame. A fixed
number of frames are chosen as the input of the action classifier. The sampling function is defined as:

T = ⌊

j
N

⌋ − 1, j ≥ N (4)

W T =

{

Q0 if T = 0
{

0.5TQ0}⋃T
t=1

{

0.5T−t+1Qt} if T > 0 (5)
where j is the number of frames currently received, N is the number of sampling frames required for the action classifier
input, T is the number of corresponding sampling step, when the jtℎ frame is received, and it starts with 0, W T is a working
group including skeleton frames obtained in the Ttℎ sample for the current classification, Qt is a new queue group that storesN
consecutive frames of data before the sampling step t in the data stream, and 0.5means 50% sampling of the data. We assign 16
to N. In addition, we define the⋃T

t=1 operator as

{A}
⋃X

x=1
{B(x)} = {A}

⋃

{B(1)}
⋃

{B(2)}
⋃

⋯⋯
⋃

{B(X)} (6)
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(a) gg_o(g1, g2) (b) gx_d(g, x) (c) xx_a(x1, x2)

(d) gP_d(g, P ) (e) xP _a(x, P ) (f) PP_a(P1, P2)

FIGURE 2 Six advanced spatial geometric features used in this paper.

where x is a variable, X is a constant, A is a fixed set, and B(x) is a set relative to the variable x.
At the beginning of the skeleton sequence (T = 0), we use allN frames of data received in the current data stream:

W 0 = Q0 (7)
For the third sampling (T = 2), the sampling equation is shown as:

W 2 =
{

0.52Q0}
⋃

{

0.52Q1}
⋃

{

0.51Q2} (8)
whereW 2 consists of three parts, including 25% of Q0, 25% of Q1 and 50% of Q2. It shows that the latest frames have higher
probabilities to be chosen than older frames, whereas long-term contextual information is also considered. The specific steps of
the memory group sampling algorithm are shown in Algorithm 1.
To store these sampled frames, we use a memory group M , which will be replaced by the working group W after each

sampling step, such thatW T can also be espressed byM as

W T =

{

Q0 if T = 0
{

0.5Qt}⋃ {0.5M} if T > 0 (9)

The update of memory groupM ensures that the image frame at a closer time has a greater sampling density, which means
it has greater weight to be chosen as the input candidate of the classifier. The sampled frames are fed into the classifier at each
time step for real-time prediction. The recognition result at the current and previous moments are averaged to obtain the final
prediction result.
We summarize the memory group sampling method in Algorithm 1. The new queue group Q, memory groupM and work

groupW are initially empty. The new queue group receives and buffers joint data frames until it reaches N frames. The work
groupW is constructed by sampling 50% from Q and 50% fromM . We then feed the working group to the classifier to obtain
the action recognition result p. The average of the current result p and previous result pa is the output result.
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Algorithm 1 Online Action Recognition Based on Group Sampling Mechanism
Require: Live stream L of human skeleton, trained classifier C , the size of sampling groupN .
1: Initialize the empty new queue group Q to save the sampledN frames
2: Initialize the memory groupM and work groupW
3: Initialize output average recognition probability pa
4: while New frame available from L do
5: Add frame fi to queue Q
6: if i%N then
7: W = sample 50% Q and sample 50%M
8: FeedW to the classifier C to get recognition probability p
9: pa = average pa and p
10: M = W
11: empty queue Q
12: Output action recognition probability pa
13: end if
14: end while

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

2*CNN(3,2*filters)/2

SpatialDropout1D

2*CNN(3,2*filters)/2

SpatialDropout1D

2*CNN(3,2*filters)/2

SpatialDropout1D

2*CNN(3,2*filters)/2

SpatialDropout1D

2*CNN(3,8*filters)

SpatialDropout1D

2*CNN(3,8*filters)

SpatialDropout1D

GAP 

↓

FC

↓

 FC

↓

 Softmax

Joint Collection 

Distances

Geometric 

Features

Slow Global 

Motion Feature

Fast Global 

Motion Feature

CNN(3,filters)

SpatialDropout1D

CNN(3,filters)

SpatialDropout1D

CNN(1,filters),/2

SpatialDropout1D

CNN(1,filters),/2

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1, 2*filters)

SpatialDropout1D

CNN(1,filters),/2

SpatialDropout1D

CNN(1,filters),/2

SpatialDropout1D

CNN(1,filters),/2

SpatialDropout1D

CNN(1,filters),/2

SpatialDropout1D

CNN(1,filters)

SpatialDropout1D

CNN(1,filters)

SpatialDropout1D

Concatenate

FIGURE 3 The network architecture of 1DCNN for action recognition, where "2*CNN(3, 2×filters), /2" indicates two 1DCNN
layers (kernel size = 3, channels = 2×filters) and a Maxpooling layer (strides = 2), SpatialDropout1D indicates one 1D space
dropout layer for suppressing overfitting, GAP represents Global Average Pooling, and FC stands for Fully Connected Layers.

3.3 1D CNN for online action recognition
Considering the fast speed and competitive recognition accuracy, we here use a 1D CNN to train action classifier for online
recognition. The 1D convolutional neural network can be used to learn temporal sequential data. Unlike the 2D convolutional
neural network, the convolutional kernel of 1D convolutional neural network convolves along one dimension, which is simpler
and faster. The network architecture is shown in Fig.3 .
In fact, the indices of human joints are not locally related. For example, the human head, left shoulder, and right shoulder

are physiologically connected, but their indices, which are defined by the datasets, are not continuous. In addition, the local
correlation of joints is different when the human performs different actions. Therefore, the part before "concatenate" of the neural
network is designed to automatically learn the correlation between joints, so as to better improve the accuracy of recognition.
Next, we splice the vectors obtained from the joint correlation learning to achieve multi-angle features fusion. Then we use a 1D
convolutional layer for temporal information modelling. Finally, the feature map is expanded into a one-dimensional vector, two
Fully Connected layers (FC) are used for classification, and the Softmax function is used in the output layer to get the probability
of actions.
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FIGURE 4 The client-server architecture using the Restful style for online action recognition using a camera network.

3.4 Skeleton fusion using a distributed RGBD camera network
We here consider the RGBD camera network with N nodes, which construct an undirected graph G = (C,E), where C =
{1, 2, 3,⋯ , N} denotes a vertex set and E ⊂ {{i, j}|i, j ⊂ C} means the edge set. The neighboring nodes of the i node can be
defined as i = {j ∈ C|i, j ∈ E}. Each sensor node can have a measurement of the target human joint, which will be used
to update the state of the estimator in the information weighted consensus filter (IWCF). The target human skeleton joints can
have a dynamic model as

x(t + 1) = Fx(t) +w (10)
where x(t) = (px(t), py(t), pz(t), vx(t), vy(t), vz(t))T is the state vector including the joint 3D position and velocity, F is the state
transition matrix and w ∼ N(0, Q) is the process Gaussian noise with zero mean and covariance Q. The measurement model
for each joint is

z(t) = Hx(t) + v (11)
where z is the measurement of the joint, H is the observation matrix having a Gaussian noise v ∼ N(0, R) with zero mean
and covariance R. The dynamic model can be used for prediction and measurement model can be used for state updating using
consensus as shown in Algorithm 2, where ui,k = HT

i,kR
−1
i,kzi,k and Ui,k = HT

i,kR
−1
i,kHi,k are information contributions of the

current measurement z.
The original IWCF algorithm in30, uses a deterministic value � = 0.65∕Δmax, which is not optimal for convergence as we

show in31. As an alternative way, the Metropolis weights have been proposed to be used with consensus algorithms, and have
been shown to be faster in terms of convergence rate than the maximum-degree weights35. The Metropolis weights at time step
k can be defined as

�i,j,k =

⎧

⎪

⎨

⎪

⎩

1
1+max{di,k,dj,k}

if j ∈i

1 −
∑

j∈i
�i,j,k if i = j

0 otℎerwise

(12)

where di,k and dj,k are the degrees of the node i and node j respectively.

3.5 The client-server architecture for distributed action recognition
The action recognition algorithms based on CNN require GPU computing power, which is not suitable for sensor networks with
limited computational resources. Therefore, we here propose a client-server architecture for online action recognition using a
distributed camera network as shown in Fig. 4 . The design of the client-server architecture follows the Restful style, due to its
high extension capabilities for massive parallel service asks. The API’s messaging protocol between the server and the client is
based on HTTP, and the data stream format is based on JSON.
On the client side, we capture real time image sequences from each camera, and use OpenPose36 for human joints detection.

Then, we estimate the 3D coordinates of the joints and fuse the joints from cameras of different perspective. Furthermore, we
encapsulate the data packets of skeleton sequences into the JSON format, send them to the server by the network, and wait for the
server response. When the server receives the skeleton sequences, it will calculate the advanced kinetic features of the skeleton
sequences and use the classifier deployed on it for action recognition.
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Algorithm 2 IWCF based skeleton fusion
• Initialization:

Total consensus iteration steps L, process noise Q and measurement noise R.
• For k = 1,⋯ ,∞:

1. Prediction for the next time step:
x̂i,k = Fkxi,k−1 (13)

Ŷi,k = (FkY −1i,k−1F
T
k +Qk)−1 (14)

ŷi,k = Ŷi,kx̂i,k (15)
2. Perform consensus:

v0i,k =
1
N
ŷi,k + ui,k (16)

V 0
i,k =

1
N
Ŷi,k + Ui,k (17)

for l = 1 to L do
(a) Send vl−1i,k and V l−1

i,k to all neighbors j ∈i
(b) Receive vl−1j,k and V l−1

j,k from all neighbors j ∈i
(c) Update consensus terms

vli,k = �i,j,k
∑

j∈i

vl−1j,k (18)

V l
i,k = �i,j,k

∑

j∈i

V l−1
j,k (19)

end for
3. Compute the posterior at k time step:

yi,k = NvLi,k (20)

Yi,k = NV L
i,k (21)

xi,k = Y −1i,k yi,k (22)

On the server side, it uses the flask network framework to deploy the trained classifier model as a Restful style application
program, and create an interface to provide human action classification service for the clients. The service program receives
client data and corresponding call requests. Received data will be pre-processed next, and the classifier model will be loaded into
the server memory for action prediction. The status of whether the prediction is successful or not will be recorded, encapsulating
the status and results into the JSON format that will be sent to the client.

4 EXPERIMENTS

To demonstrate the performance of the proposed method, we use two public skeleton-based datasets: the JHMDB dataset37
and UT-Kinect dataset38, and our laboratory dataset collected using a distributed RGBD camera network. The JHMDB dataset
contains video clips and skeleton sequences of single person actions, and we only use the skeleton sequences. The UT-Kinect
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(a) JHMDB Model Train/valid Accuracy (b) UT-Kinect Model Train/valid Accuracy

(c) JHMDB Model Train/valid Loss (d) UT-Kinect Model Train/valid Loss

FIGURE 5 The training performance of the proposed model. Subgraphs a and b show the training and validation accuracies
of the model on JHMDB and UT-Kinect datasets, respectively. Subgraphs c and d show the training and validation losses of the
model on JHMDB and UT-Kinect datasets, respectively.

dataset contains 200 sequences of 10 action classes with the 3D skeleton data from depth cameras. Every action is recorded
twice for each subject.
To train the neural network, we use a computer with a Nvidia TITAN X GPU. The recognition frame rate can reach 20fps,

which can meet the requirements of real-time applications. The Adam39 optimizer is used for learning. We set the initial learning
rate to 0.001. When the loss function value of the validation set does not decrease after more than 5 epochs of training, the
learning rate is reduced at a rate of 0.5 until it is reduced to 0.00001. A total of 100 epochs were trained. Fig. 5 shows the trend
of training and validation accuracies, training and validation losses.

4.1 JHMDB dataset
Our algorithm achieves a higher classification accuracy than ChainedNet, EHPI, PoTion and DDNet on the JHMDB dataset
as shown in Table 2 . Compared to our method, ChainedNet40 uses a 3D CNN classifier and directly inputs the original joint
sequences. However, it only achieves 56.8% with its recognition rate. EHPI41 encodes original joint coordinates as the color
information over a fixed period of time, such that the motion of joints can be seen from the color changes, and the color image is
fed into a CNN for classification. Similarly, the recognition accuracy is 65.5%with EHPI. PoTion42 extracts the joint heatmaps for
each frame and colorize them using a color that depends on the relative time in the video clip. For each joint, they aggregate them
across all frames, which constitutes coded images that are further stacked together as an action representation for classification.
PoTion achieves a 67.9% recognition rate. DDNet34 performs relatively better by achieving a recognition rate of 77.2%. DDNet
employs 1D CNN network for action classification using the JCD feature and global motion feature. It is slightly less accurate
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TABLE 2 Offline action recognition rate on JHMDB dataset. The table shows that our method has an accuracy of 2.9% higher
than the state-of-the-art method

Methods Accuracy(%)
ChainedNet (ICCV17)40 56.8
EHPI (ITSC19)41 65.5
PoTion (CVPR18)42 67.9
Spatial-Temporal Attention (2018)43 73.5
iDT+FV+T-CNN(2020)44 74.4
DDNet(2019)34 77.2
Ours 80.1

FIGURE 6 The confusion matrix of offline action recognition on JHMDB dataset with an average recognition rate of 80.1%

than ours since our method explores more advanced geometrical features from the original skeleton data as shown in Fig. 2 .
This method also loses a considerable amount of spatial and temporal information. The methods we proposed use joint collection
distances and multi-scale motion information to guide the data-driven feature learning. It introduces rich spatial geometric
features to model the spatial information between joint in more detail. 1D CNN is used to better model the temporal information
of the action sequences. Thus, we achieve higher classification accuracy. The confusion matrix of the offline action recognition
rate on the JHMDB dataset is shown in Fig. 6 . The confusion matrix shows the action recognition rate of each class and also
shows their confusion rate with other classes at corresponding rows. The x-axis of confusion matrix is the prediction label, the
y-axis is the real label, and the diagonal value indicates the correct recognition rate of the corresponding category.

4.2 UT-Kinect dataset
For the UT-Kinect dataset, we use half of the samples for training and the other half for testing. Our methods achieve a com-
petitive performance compared to the state of the art methods as shown in Table 3 . The Skeleton Joint Features-based method
proposed by45 computes the frame difference and pairwise distance of skeleton joints positions to characterize the spatial infor-
mation of the joints in 3D space, and has achieved a 87.9% recognition accuracy. The Elastic Functional Coding based method
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TABLE 3 Offline action recognition rate on UT-Kinect dataset. The table shows that our method has an accuracy of 0.8% higher
than the state-of-the-art method

Methods Accuracy(%)
SkeletonJointFeatures(2013)45 87.9
ElasticFunctionalCoding (2015)46 94.9
GeoFeat(2017)20 95.9
GFT (2019)47 96.0
CNN With Attention Mechanism (2020)48 96.1
Ours 96.9

FIGURE 7 The confusion matrix of online action recognition using the sliding window method on UT-Kinect dataset with an
average recognition rate of 74.7%

proposed by46 achieves 94.9% in recognition accuracy. This method employs the TSRVF space that provides an elastic metric
between two trajectories on a manifold to learn the latent variable space of human actions, and proposes mfPCA for compact
and robust representation of features. GeoFeat20 uses advanced geometric features to model human action sequences, and uses a
three-layer LSTMnetwork to classify actions. It achieves a 95.9% recognition accuracy. GFT47 leverages skeletal temporal graph
structures to represent body joints, and the graph transform GFT is utilized to extract representations of human motion data.
GFT achieves 96% in recognition accuracy. Compared to these methods, we use advanced geometric features and multi-scale
motion features to capture spatial and temporal information of human action, and employ a 1D CNN for action classification.
We achieve a promising recognition accuracy of 96.9%.

4.3 Online action recognition
To demonstrate the effectiveness of the group sampling mechanism for online action recognition using skeleton sequences, we
compare the proposed method to the sliding window method. We first define online action recognition rate as the ratio of the
number of positive samples to the total number of samples. The size of the input samples for the online action classifiers is 16,
so the sliding window has a fixed size as shown in25. The results are shown in Table. 4 , which indicates that group sampling
achieves a higher mean accuracy. The confusion matrix of online action recognition using the sliding window method on UT-
Kinect dataset is shown in Fig. 7 , while the confusion matrix of online action recognition using the proposed group sampling
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FIGURE 8 The confusion matrix of online action recognition using the proposed group sampling method on UT-Kinect dataset
with an average recognition rate of 92%

TABLE 4 Online action recognition rate on UT-Kinect dataset. The table shows that the group sampling method achieves
higher mean accuracy than sliding window method.

Walk Sit down Stand up Pick up Carry Throw Push Pull Wave Clap hands Average
Group sampling 100% 100% 100% 100% 78% 70% 80% 90% 100% 100% 92%

Sliding window method 30% 30% 80% 100% 78% 70% 80% 90% 100% 90% 74.7%

method on UT-Kinect dataset is shown in Fig. 8 . The confusion matrix shows the action recognition rate of each class and
also shows their confusion rate with other classes at corresponding rows. The x-axis of the confusion matrix is the prediction
label, the y-axis is the real label, and the diagonal value indicates the correct recognition rate of the corresponding category.
For short action sequences, the sliding window method has similar performance with ours, such as pick up, carry, throw, push,
pull, wave. However, the sliding window can not handle long action sequences well, such as walk, sit down, stand up and clap
hands due to its fixed window size. For those actions including walk, sit down and stand up, which consist of different behavior
patterns in a long period of time, the sliding window method can only cover frames within a certain window size, which can
destroy the structure of the behavior pattern, e.g., more than half of the walk sequences are misclassified as the carry actions
in the confusion matrix. On the contrary, the group sampling mechanism can recognize the behavior patterns correctly for the
whole sequences, such that it achieves a higher accuracy.

4.4 Distributed action recognition
Data fusion based on camera networks is an effective solution to viewpoint variation and occlusion problems in human action
recognition. In general, a distributed camera network is more robust than a centralized camera network on sensor node failures,
and easier for size expansion of the network for covering large areas. Therefore, we build a distributed three-dimensional vision
sensor network in an indoor environment, which employs four Kinect sensors (C1, C2, C3 and C4) to cover the whole field of
view as shown in Fig. 9 . We use an NVIDIA Jetson TX2 board for local data processing of each Kinect. These four cameras
are calibrated in a coarse-to-fine manner, and connected with each other using a local area network. The NTP protocol is used
to synchronize the time of the four sensor computing nodes. We then use the OpenPose algorithm36 to estimate the coordinates
of two-dimensional human joints. The 3D coordinates of the joints can be derived from the depth images of the Kinect cameras.
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FIGURE 9 The spatial position of Kinects around the actor. We here use four Kinect V2 cameras with four Jetson TX2 compu-
tation nodes to construct the distributed sensor network, which covers a rectangular area for multiple view fusion. The topology
structure of our distributed camera network is a circle loop compared with the centralized network.

(a) Right-front RGBD camera. (b) Left-front RGBD camera.

(c) Left-back RGBD camera. (d) Right-back RGBD camera.

FIGURE 10 Distributed action recognition using a camera network of four RGBD cameras (Kinects). The actors stand in the
middle of the rectangle area, and perform a number of actions with different facing directions. The gray images are corresponding
depth images.

To fuse the 3D positions of joints from different views, we use a distributed information consensus filter proposed by49, such
that each sensor can fuse the information from all other views after a limited number of consensus iteration steps.
We collected nineteen actions by nine actors, namely bowling, reaching out, hand clap, waving, knocking, drawing a cross

(x), drawing circles, left kicking, right kicking, front kicking, sitting, standing, bending, bending arm, squat, tennis serving,
shooting, stepping and drawing triangle. The actors stand in the middle position as shown in Fig. 10 , and each action is repeated
three times by facing three different directions. As we can see in Table. 5 , our algorithm achieves competitive recognition rates
for most of the daily actions with an average processing rate of 20fps. The confusion matrix of the distributed online action
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TABLE 5 Distributed online action recognition rate on laboratory dataset using Our Method. The table shows competitive
recognition rate for most of the daily actions

Bowling Reach out Hand clap Waving Knocking
86.7% 100% 100% 86.7% 66.7%
Draw x Draw circles Left kicking Right kicking Front kicking
73.3% 53.3% 100% 100% 100%
Sit Stand Bend Bend arm Squat

100% 100% 93.3% 86.7% 100%
Tennis serve Shoot Step Drawing triangle Average

86.7% 80% 93.3% 93.3% 89.5%

FIGURE 11 The confusion matrix of distributed online action recognition using the proposed group sampling method on our
laboratory dataset

recognition using the proposed group sampling method on our laboratory dataset is shown in Fig. 11 . The confusion matrix
shows that each type of action achieves a high recognition rate.
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5 CONCLUSION

In order to solve the problem of online human action recognition, we propose a group sampling based 1D CNN action classi-
fier using both spatial and temporal kinetic skeleton features. The group sampling is superior to the traditional sliding window
method, since it can capture long term contextual information, while the nearby frames have higher sampling densities. In
addition, we combine the JCD feature, advanced geometrical feature and global motion feature to represent human action infor-
mation, such that the spatial and temporal information are considered. Furthermore, a simple and effective 1D CNN is used
for online classification of concatenated multiple skeleton features. Considering the high computation demands of CNN and
limited onboard computational resources of a distributed camera network, we propose a client-server architecture to deploy the
proposed action recognition module on the remote server, such that all camera nodes can request for action recognition services
simultaneously. Finally, we demonstrate our method on the JHMDB and UT-Kinect datasets and our laboratory datasets. The
results show that the proposed method outperform other methods with competitive performance.
In this work, we only focus on cases with one single person in the scene. However, in the real world, it would be a highly

demanding feature to be able to process multiple people that co-exist and interact in the same scene. In the future, we will focus
on action recognition with multiple people.
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