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1  | INTRODUC TION

Cities are important phenomena in our society. Currently more than half of the world’s population live in urban 
areas, with this percentage projected to grow to two- thirds by 2050 (Ritchie, 2018). Furthermore, there is a strong 
positive correlation between a country’s degree of urbanization and gross domestic product (GDP) per capita 
(Henderson, 2003). A major activity in any city is the transportation of people and goods. The efficiency of this 
activity is strongly influenced by the quality of the underlying street network. As such, modelling the quality 
of a city’s street network represents an important research problem where the outputs from such models are 
commonly used to inform city planning (Labi, Faiz, Saeed, Alabi, & Woldemariam, 2019). In practice the quality of 
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a given street network is difficult to formally define, let alone measure. However, one important feature of any 
high- quality street network is a high level of connectivity. Tal and Handy (2012) define street network connectiv-
ity as a measure of the quantity of the connections in the network and in turn the directness and multiplicity of 
routes within the network. It has been demonstrated both theoretically and empirically that street networks with 
a greater degree of connectivity exhibit greater transportation efficiency (Knight & Marshall, 2015).

Existing models of street network connectivity are mainly based on summary statistics of simple geometrical 
or topological features of the network, for example the mean number of intersections per square mile/kilometre. 
In this work we propose a novel model of street network connectivity where connectivity is modelled in terms of 
connected components and cycles in the network. These features in turn model the existence and multiplicity of 
connections between locations, respectively. To illustrate this, consider the simple network shown in Figure 1a. 
which contains two locations a and b. The two locations form two distinct connected components and therefore 
the connectivity between the locations is poor. If a single edge is added between the locations to form a single 
connected component, as illustrated in Figure 1b, the connectivity between the locations is greater than that in 
the previous figure. If a second edge is added between the locations to form a cycle, as illustrated in Figure 1c, 
the connectivity is again greater. Finally, if a third edge is added between the locations to form another cycle, as 
illustrated in Figure 1d, the connectivity is again greater. Therefore, if all edges provide equal connectivity, the 
connectivity of a network can be modelled in terms of the number of connected components and cycles in the 
network.

However, in the context of a street network all edges do not provide equal connectivity. Instead, the strength 
of connectivity provided by an edge is a function of its semantics or type, which varies. For example, an edge 
corresponding to a motorway provides greater connectivity than an edge corresponding to a secondary street. 
Therefore, when modelling connectivity in terms of connected components and cycles, it is necessary to consider 
the types of streets which compose these features. To achieve this goal the model proposed in this work uses a 
method from the field of applied topology called “persistent homology” (Edelsbrunner & Harer, 2010). The output 
from this model is a pair of density functions which model the relative frequency and strength of connected com-
ponents and cycles in the street network. These two density functions are easily interpreted and provide novel 
insights into the connectivity properties of the street network in question.

The layout of this article is as follows. Section 2 reviews related works on modelling street network connec-
tivity and applied topology. Section 3 describes the proposed model of street network connectivity. Section 4 
demonstrates the usefulness of this model with respect to interpreting and providing insight into the connectivity 
properties of a given street network, recommending ways to improve this connectivity, and identifying street 
networks with similar and dissimilar connectivity properties. This analysis is performed with respect to sets of UK 

F I G U R E  1   (a) A network containing two locations a and b. (b) One, (c) two and (d) three connections are 
added between a and b

(a) (b) (c) (d)
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and US city street networks. Finally, Section 5 draws conclusions from this work and discusses possible directions 
for future research.

2  | REL ATED WORKS

In this section we review related works on modelling the connectivity of city street networks. We focus exclu-
sively on the problem of modelling intra- city connectivity, as opposed to inter- city connectivity. A review of works 
in the latter category can be found in Mansury and Shin (2015). In this section we also briefly mention some re-
lated works on applied topology.

Connectivity is a well- studied concept in graph theory (Gross, Yellen, & Zhang, 2013). Since street networks are 
naturally modelled as graphs, graph- theoretic measures of connectivity can easily be applied to street networks. 
Two commonly used such measures are vertex and edge connectivity, which respectively equal the minimum 
number of vertices and edges whose removal disconnects the graph. Other graph- theoretic measures include 
alpha (�), which equals the number of cycles in the graph divided by the maximum possible number of cycles; beta 
(�), which equals the number of edges divided by the number of vertices; and gamma (�), which equals the number 
of edges divided by the maximum possible number of edges (Weber, 2016). Despite the fact that these measures 
are commonly applied to street networks (Sahitya & Prasad, 2020), they are limited by the fact that they do not 
consider the geometrical or spatial nature of street networks. Consequently, many measures of connectivity have 
been proposed specifically for street networks.

Dill (2004) defined the following set of street network connectivity measures drawn from multiple fields: max-
imum city block length; maximum city block size; city block density, which equals the mean number of city blocks 
per square mile/kilometre; street intersection density, which equals the mean number of intersections per square 
mile/kilometre; street density, which equals the mean total length of street segments per square mile/kilometre; 
connected node ratio, which equals the number of street intersections divided by the number of intersections plus 
culs- de- sac; link node ratio, which equals the number of street segments divided by the number of intersections 
and culs- de- sac; grid pattern, which is a binary indicator of whether the street network exhibits a grid pattern 
commonly associated with high connectivity; route directness, which equals the mean network distance divided 
by straight- line distance; and effective walking area, which equals the mean percentage of land parcels within a 
specified network distance of a given location.

The US Green Building Council proposed a street intersection density measure which is related to that de-
fined by Dill (2004) but uses some heuristics when counting the number of intersections (Stangl & Guinn, 2011). 
Specifically, intersections leading to isolated areas and intersections in these areas are not counted. Stangl and 
Guinn (2011) subsequently highlighted some limitations with this measure and instead proposed a measure similar 
to the route directness proposed by Dill (2004). Stangl (2012, 2019) later extended this measure by integrating a 
number of heuristics to make the measure more robust.

Peponis, Bafna, and Zhang (2008) proposed two measures of street network connectivity called “metric reach” 
and “directional distance”. Metric reach equals the mean network length reachable from a given location in the 
network. Directional distance equals the mean number of direction changes required to navigate between two 
locations in the network. In a related work, Ellis et al. (2016) evaluated a number of street connectivity measures. 
This included a novel measure called “directional reach” which equals the metric reach proposed by Peponis et al. 
(2008) with the addition of a constraint on the number of possible direction changes. Directional reach is related 
to the concept of visual connectivity whereby locations which require fewer turns to navigate between are con-
sidered more connected (Hajrasouliha & Yin, 2015).

Knight and Marshall (2015) evaluated three measures of street network connectivity called “intersection den-
sity”, “street density” and “connectivity index”. The first two measures are equal to those of the same name 
proposed by Dill (2004). The connectivity index equals the number of street segments divided by the number of 
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intersections. The authors found all three measures to be correlated with irrelevant features of area and geome-
try, and therefore not to be reliable measures of connectivity.

Stangl (2015) examined a number of the city- block- based connectivity measures defined by Dill (2004). The 
author identified some limitations of these measures and proposed an alternative block- based connectivity mea-
sure. The measure in question is called “block section” and equals the mean maximum straight- line distance be-
tween any two points on the boundary of an area enclosed by streets.

In this article we propose a novel model of street network connectivity based on persistent homology. Feng 
and Porter (2020) previously used persistent homology to model street networks. However, their model does not 
model connectivity but instead models the shape of the areas enclosed by streets. There exist a number of pre-
vious works which also considered the application of methods from the field of applied topology to geographical 
data. Ahmed, Fasy, and Wenk (2014) proposed a model for determining local differences between street networks 
using persistent homology. This model is used to recognize changes in street networks over time and to assess 
the quality of map construction algorithms. Dey, Wang, and Wang (2017) proposed a model for inferring a street 
network from GPS data using discrete Morse theory. Corcoran and Jones (2016, 2017, 2018) proposed models of 
spatial temporal phenomena based on persistent homology. Corcoran (2019) proposed a method for performing 
generalization of geographical data using persistent homology.

3  | MODEL OF STREET NET WORK CONNEC TIVIT Y

As described in the introduction to this article, we propose a novel model of street network connectivity where 
connectivity is modelled in terms of the relative strength and frequency of connected components and cycles. 
This is achieved by applying a method from the field of applied topology called “persistent homology” to the street 
network in question.

To motivate the use of this method, consider the street network in Figure 2 corresponding to the city of 
Manchester, UK, which forms a running example in this section. Figure 3 displays subsets of this network contain-
ing only those streets with type equal to motorway, trunk, primary, secondary, tertiary and unclassified. These are 
the six most significant street types in our model ranked from most to least significant. These individual networks 
have distinct topological features and in turn different levels of connectivity. For example, the motorway network 
in Figure 3a consists of one larger and two smaller connected components where the larger connected compo-
nent contains a single cycle. This combination of few connected components and a cycle indicates a relatively 
high level of connectivity. The trunk network in Figure 3b contains three connected components where the larger 
connected component contains many cycles, indicating a relatively high level of connectivity. On the other hand, 
the secondary network in Figure 3d contains many connected components with few cycles, indicating a relatively 
low level of connectivity.

The above connectivity analysis of each street type in isolation gives a potentially misleading local perspective 
of the overall street network connectivity. For example, although the secondary network has a relatively low level 
of connectivity when considered in isolation, when considered in the context of other street types to which it is 
connected, it may have a relatively high level of connectivity. That is, the many connected components in this net-
work may be strongly connected by streets of different types. Therefore, it is necessary to perform a more global 
connectivity analysis which considers all street types jointly. A naive solution would be to compute a simple union 
of all street types and perform a connectivity analysis of the resulting network. However, this approach fails to 
model street type, which is an important feature of connectivity. For example, despite the fact that the motorway 
network contains only a single cycle, this single cycle can potentially provide greater connectivity than the large 
number of cycles in the trunk network. In this work we propose a novel model of street network connectivity 
which uses persistent homology to overcome this challenge and jointly consider all street types in an appropriate 
manner.
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The proposed model contains the following four computational steps. In the first step, a graph- based repre-
sentation of the input street network is constructed. In the second step, a representation of this graph called a “fil-
tration” is constructed where this representation encodes street type information. In the third step, the persistent 
homology of this filtration is computed which returns a pair of mathematical objects called “persistence diagrams”. 
The first persistence diagram models the number and strength of connected components, while the second per-
sistence diagram models the number and strength of cycles. In the final step, these persistence diagrams are 
transformed into a corresponding pair of density functions which can be easily interpreted. This contrasts with 
existing models of street network connectivity, reviewed in Section 2, which output a single value indicating the 
level of connectivity. The density functions output from the proposed model provide greater information and in 
turn insight into the connectivity of the street network in question.

In the following four subsections we describe each of the above four computational steps in more detail. Note 
that the descriptions in these subsections do not venture too deeply into the corresponding underlying mathe-
matics. This presentation is intended to make the content accessible to non- mathematicians and more specifically 

F I G U R E  2   The street network for the city of Manchester, UK, where streets are represented by black lines
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those without a working knowledge of algebraic topology. We advise a reader seeking a more in- depth description 
to consult the corresponding references in each subsection or the textbooks by Edelsbrunner and Harer (2010) 
and Ghrist (2014).

F I G U R E  3   Subsets of the Manchester street network in Figure 2 containing only those streets with type 
equal to: (a) motorway; (b) trunk; (c) primary; (d) secondary; (e) tertiary; and (f) unclassified

(a) (b)

(c) (d)

(e) (f)
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3.1 | Graph construction

In this step a graph- based representation of the input street network is constructed. Towards this goal, the cor-
responding street network data are obtained from OpenStreetMap (OSM), which is a crowdsourcing project for 
geographical data (Boeing, 2017). The set of street types in OSM ordered from most to least significant are motor-
way, motorway_link, trunk, trunk_link, primary, primary_link, secondary, secondary_link, tertiary, tertiary_link, unclas-
sified and residential. This ordering is specified by OSM on the OSM wiki which also contains a short description 
of each street type (https://wiki.opens treet map.org/wiki/Key:highway). A street type containing link in its title 
refers to a type of street which has a short length and connects two streets. For the purposes of this work, all 
streets of such a type are assigned their corresponding parent type. For example, a street of type motorway_link 
is assigned the type motorway. Given this, we define the set T to be the set of OSM street types less those which 
contain link in their title.

Given OSM data corresponding to the input street network, we represent the street network as an edge la-
belled undirected graph G = (V , E, L: E → T), where V is the set of vertices corresponding to road intersections and 
dead- ends, E is the set of edges corresponding to street segments connecting these vertices, and L is a mapping 
from edges to the street type of the corresponding road segment (Corcoran & Mooney, 2013). The graph repre-
sentation corresponding to the Manchester street network is shown in Figure 2 where street segments and hence 
graph edges are represented by black lines. Figure 3 displays subgraphs of this street network containing only 
those edges with type equal to motorway, trunk, primary, secondary, tertiary and unclassified.

3.2 | Filtration construction

Given a graph representation G = (V , E, L: E → T) of the input street network, in this step we construct a filtration 
of G which is a representation that encodes street type information.

A filtration of G is a sequence of n + 1 graphs G0,G1,…,Gn which satisfy:

where ⊆ is the subgraph relation. Towards constructing a filtration of graph G, we first define a filter function f : E → ℝ 
as follows:

This function maps each edge in G to a real value where edges corresponding to more significant street types are 
mapped to smaller values.

Let  denote the set of subsets of E, and � denote the set of subgraphs of G. Let S:  →  denote the map from 
a subset of E to the corresponding edge induced subgraph –  that is, a graph containing only that subset of edges 

(1)∅=G0⊆G1⊆ ⋯ ⊆Gn=G

(2)f(e)=

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1.0 L(e)=motorway

2.0 L(e)= trunk

3.0 L(e)=primary

4.0 L(e)= secondary

5.0 L(e)= tertiary

6.0 L(e)=unclassified

7.0 L(e)= residential

https://wiki.openstreetmap.org/wiki/Key:highway
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plus all adjacent vertices. For example, the subgraphs S({e: e ∈ E, L(e) = motorway}) and S({e: e ∈ E, L(e) = trunk}) 
corresponding to the Manchester street network are shown in Figure 3.

Let C:ℝ → � be the map defined by:

which returns sub- level sets of G which are subgraphs of G. For example, the subgraphs C(1), C(2), C(3), C(4), C(5) and 
C(6) corresponding to the Manchester street network are shown in Figure 4. Given the map C, we define a filtration 
of G to be the sequence of n + 1 graphs G0,G1,…,Gn where Gi = C(i). The first five graphs in this filtration for the 
Manchester street network are the null graph followed by the subgraphs shown in Figure 4.

The above filtration definition has the property that edges corresponding to more significant street types 
appear earlier and persist for longer in the sequence of graphs. For example, edges corresponding to motorways 
appear in G1 and persist for n graphs of the sequence. On the other hand, edges corresponding to primary appear 
in G3 and persist for n − 2 graphs of the sequence.

3.3 | Persistent homology computation

As stated in the motivation at the beginning of this section, we wish to model street network connectivity in 
terms of connected components and cycles while considering that more significant streets provide a greater level 
of connectivity. We achieve this by computing the persistent homology of the filtration described in the previous 
subsection. Broadly speaking, this computation will model the existence and strength of connected components 
and cycles in the network. More specifically, persistent homology computes a pair of mathematical objects called 
“persistence diagrams”. A persistence diagram is a multiset of pairs of points in the extended real line (ℝ ∪ ∞) 
which satisfy the condition that p < q for each element (p, q) (Edelsbrunner & Harer, 2010). One of the persistence 
diagrams models the existence of connected components in the filtration. Specifically, an element (p, q) in this per-
sistence diagram indicates that a connected component appeared and subsequently disappeared at the graphs Gp 
and Gq respectively in the filtration. The other persistence diagram models the existence of cycles in the filtration. 
Specifically, an element (p, q) in this persistence diagram indicates that a cycle appeared and subsequently disap-
peared at the graphs Gp and Gq respectively in the filtration. If a connected component disappears it is because it 
has merged with another connected component. As explained below, in this study cycles always persist to the end 
of the entire filtration; if a cycle merges with another cycle it will result in a further cycle in addition to itself. Note 
that, for a given element (p, q) in a persistence diagram, the value q − p is known as the persistence of the element 
in question. The persistence can be regarded as the lifetime of the respective connected component or cycle 
which first appears at duration or “time” point p and disappears at time point q. In the literature on persistence 
diagrams p and q are also referred to as points of birth and death of the respective connected component or cycle.

If two connected components merge, causing exactly one of them to disappear, the one which appeared 
latest in the filtration is the one which disappears. This is called the elder rule (Otter, Porter, Tillmann, Grindrod, 
& Harrington, 2017). If a connected component or cycle appears at graph Gp in the filtration but does not sub-
sequently disappear it is represented by an element (p,∞). In this work we replace all elements of the form (p,∞) 
with (p, u) where u is an upper bound. We use a value of 8 for this upper bound, which is a valid upper bound 
because G7 is the final element in the filtration. Note that performing such a replacement is a commonly used ap-
proach for dealing with the challenges a value of ∞ presents (Adams et al., 2017). Since the filtration in this work 
is constructed by only adding edges, any cycles which appear will not disappear. Therefore, the second value of all 
elements in the cycle persistence diagram will have a value equal to u.

The utility of these two persistence diagrams can be understood by considering that connected components 
and cycles which appear earlier and persist for longer are connected by more significant streets and in turn are 

(3)C(a)=S({e: e∈E, f(e)≤a})
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more strongly connected. We first consider the case of connected components. The smaller the number of con-
nected components which persist for longer, the better connected the corresponding street network is. To il-
lustrate this, consider again the filtration shown in Figure 4 for the Manchester street network. The network in 

F I G U R E  4   The subgraphs: (a) C(1); (b) C(2); (c) C(3); (d) C(4); (e) C(5); and (f) C(6) corresponding to the 
Manchester street network of Figure 2

(a) (b)

(c) (d)

(e) (f)
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Figure 4a contains three connected components. However these become connected to other components in the 
next graph of the filtration in Figure 4b and in turn these connections persist for a large fraction of the filtration, 
indicating a high level of connectivity between the connected components in question. In contrast, if components 
that appear early in filtration do not quickly become connected by other streets, this indicates a poorer level of 
connectivity, reflected by a larger number of components which persist for longer. We next consider the case of 
cycles. The greater the number of cycles which persist for longer, the better connected the corresponding street 
network is. To illustrate this, consider again the filtration shown in Figure 4 for the Manchester street network. 
A large number of cycles appear early in the filtration in Figure 4b and hence persist for a larger fraction of the 
filtration, as (unlike connected components) once they appear they cannot subsequently disappear. This indicates 
that these cycles provide a high level of connectivity. A large number of cycles also appear later in the filtration in 
Figure 4e and in turn persist for a small fraction of the filtration. This indicates that these particular cycles provide 
relatively less connectivity.

The persistence diagrams corresponding to connected components and cycles for the Manchester street net-
work are shown in Figure 5. Appearance and disappearance values are represented by the horizontal and vertical 
axes, respectively. Many of the elements in these persistence diagrams are equal and therefore for the purpose 
of visualization a small amount of Gaussian noise has been added to each element. These figures are a very stan-
dard way to visualize persistence diagrams apart from the addition of Gaussian noise. However the persistence 
diagrams in this work contain many elements, making them difficult to interpret. For example, the persistence 
diagrams in Figures 5a and b contain 258 and 9,899 elements respectively, most of which cannot be distinguished 
visually.

To overcome this difficulty we propose an alternative representation of persistence diagrams called “per-
sistence densities” which can be more easily interpreted. Let [1, 7] denote the closed integer interval between 
1 and 7 and let [0, 1] denote the closed real interval between 0 and 1. Given a persistence diagram D, the corre-
sponding persistence density is the map �: [1, 7] → [0, 1] defined by:

(4)�(i)=
|{(p, q): (p, q)∈D, q−p= i}|

|D|

F I G U R E  5   Persistence diagrams corresponding to: (a) connected components; and (b) cycles for the 
Manchester street network of Figure 2. Appearance and disappearance values are represented by the horizontal 
and vertical axes, respectively

(a) (b)



     |  11CORCORAN et Al.

where |D| denotes the number of elements in D (i.e. the number of connected components or cycles).
Figure 6 displays the connected component and cycle persistence densities for the Manchester street network 

represented using histograms. The x- axis in these histograms represents the interval between appearance and dis-
appearance (i.e., the period of persistence). The y- axis represents the corresponding density of these persistence 
values as defined by Equation (4). These histograms model the relative frequency of different persistence values 
and can be easily interpreted. For example, one can see in Figure 6a that for the street network in question, most 
connected components have a persistence value of 1.

The proposed persistence density representation is similar to the persistence image representation proposed 
by Adams et al. (2017). Broadly speaking, a persistence image is an image representation of a persistence diagram 
where pixel values equal a weighted sum of nearby elements. After much experimentation, the authors decided 
to use the proposed persistence density representation instead of the persistence image representation for the 
following reasons. Firstly, the authors found it difficult to visually differentiate between different persistence im-
ages because most contain peaks at the same set of locations where the heights of these peaks are in many cases 
not significantly different. On the other hand, since persistence densities are visualized using histograms it is much 
easier to visually differentiate between them. Secondly, the persistence image representation requires that a scale 
or smoothing parameter value be specified. It is not clear how best to select this parameter value. On the other 
hand, the persistent density representation does not require any parameter values to be specified.

To facilitate the application of data mining methods, it is useful to define a distance or metric between different 
street networks represented using the proposed model. There are a number of distance measures on the space of 
persistence diagrams such as the bottleneck and Wasserstein distances (Edelsbrunner & Harer, 2010). However, 
these distances are biased with respect to the number of elements with significant persistence in the correspond-
ing persistence diagrams. That is, any two persistence diagrams having significantly different numbers of elements 
with significant persistence will generally have a large corresponding distance. Since larger cities will have graph 
representations with a greater number of edges, their corresponding persistence diagrams will have a correspond-
ingly greater number of elements with significant persistence. This in turn results in a bias where cities with similar 
sized street networks are determined to be more similar. This is undesirable because we would prefer a distance 
measure which is a function of street network connectivity alone. To overcome this challenge we instead use the 
Wasserstein distance on the space of persistence densities (Peyré & Cuturi, 2019). Intuitively, this distance mea-
sures the cost of transforming one density function into another. Since the density function is normalized such that 
its codomain sums to 1.0, this provides a distance measure which is unbiased with respect to street network size.

F I G U R E  6   (a) Connected component; and (b) cycle persistence densities for the Manchester street 
network. The vertical axis represents density values, while the horizontal axis represents the interval between 
appearance and disappearance (the persistence value)

(a) (b)
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4  | CIT Y CONNEC TIVIT Y ANALYSIS

This work proposes a novel model of street network connectivity. The usefulness of any model can only be de-
fined with respect to performing a given task. In this section we demonstrate the usefulness of the proposed 

TA B L E  1   The 66 UK cities considered plus the number of vertices (|V|) and edges (|E|) in the corresponding 
graph representations

City |V| |E| City |V| |E|

Aberdeen 9,348 11,870 Liverpool 31,743 39,405

Armagh 2,112 2,624 London 46,878 61,858

Bangor 3,301 3,937 Manchester 44,780 55,325

Bath 8,782 10,117 Newcastle 29,719 35,326

Belfast 18,286 21,884 Newport 10,610 12,523

Birmingham 37,797 46,776 Newry 3,623 4,270

Bradford 30,804 36,468 Norwich 12,902 14,875

Brighton 6,564 8,616 Nottingham 23,364 27,382

Bristol 23,236 27,922 Oxford 7,573 8,851

Cambridge 7,884 9,096 Perth 2,999 3,556

Canterbury 6,185 7,245 Peterborough 10,174 11,594

Cardiff 14,970 17,951 Plymouth 10,038 11,926

Carlisle 4,421 5,218 Portsmouth 13,631 16,309

Chelmsford 6,322 7,508 Preston 13,636 15,978

Chester 9,224 10,844 Ripon 2,081 2,509

Chichester 5,206 6,142 St Albans 12,919 15,513

Coventry 13,502 16,132 St Asaph 6,084 7,094

Derby 12,482 14,471 St Davids 335 410

Derry 5,200 5,983 Salford 40,974 50,474

Dundee 7,276 9,039 Salisbury 2,864 3,386

Durham 11,581 13,505 Sheffield 22,081 26,950

Edinburgh 15,055 18,505 Southampton 18,306 21,020

Ely 3,284 3,631 Stirling 5,563 6,593

Exeter 8,299 9,658 Stoke- on- Trent 16,465 19,700

Glasgow 30,266 38,512 Sunderland 18,727 22,716

Gloucester 10,529 12,083 Swansea 10,352 12,342

Hereford 3,637 4,246 Truro 3,193 3,808

Inverness 4,792 5,455 Wakefield 20,568 23,725

Hull 14,151 16,322 Wells 3,655 4,286

Lancaster 5,081 6,241 Westminster 46,938 61,863

Leeds 29,393 35,470 Winchester 5,792 6,640

Leicester 18,604 22,358 Wolverhampton 25,229 30,387

Lichfield 11,079 12,832 Worcester 7,810 9,049

Lincoln 7,995 9,251 York 7,724 8,780

Lisburn 11,002 13,111
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TA B L E  2   The 40 US Metropolitan Statistical Areas considered plus the number of vertices (|V|) and edges (|E|) 
in the corresponding graph representations

Metropolitan Statistical Area |V| |E|

New York– Newark– Jersey City, NY– NJ– PA 414,171 58,777

Los Angeles– Long Beach– Anaheim, CA 256,499 358,592

Chicago– Naperville– Elgin, IL– IN– WI 263,540 383,581

Philadelphia– Camden– Wilmington, PA– NJ– DE– MD 190,291 272,286

Miami– Fort Lauderdale– Pompano Beach, FL 163,900 242,164

Dallas– Fort Worth– Arlington, TX 303,428 430,668

Boston– Cambridge– Newton, MA– NH 167,664 231,761

Washington– Arlington– Alexandria, DC– VA– MD– WV 232,169 303,521

Detroit– Warren– Dearborn, MI 156,080 225,515

Houston– The Woodlands– Sugar Land, TX 263,633 368,016

Salt Lake City, UT 41,084 55,026

San Francisco– Oakland– Berkeley, CA 81,789 111,203

Cleveland– Elyria, OH 56,504 79,345

Pittsburgh, PA 118,614 158,033

Portland– Vancouver– Hillsboro, OR– WA 97,364 127,851

Virginia Beach– Norfolk– Newport News, VA– NC 58,522 77,547

Sacramento– Roseville– Folsom, CA 89,105 116,801

Kansas City, MO– KS 118,997 165,857

Columbus, OH 79,508 109,027

Austin– Round Rock– Georgetown, TX 85,495 11,5397

Hartford– East Hartford– Middletown, CT 41,484 56,222

El Paso, TX 35,911 52,111

Omaha– Council Bluffs, NE– IA 50,696 74,427

Albuquerque, NM 56,353 76,762

Grand Rapids– Kentwood, MI 42,099 56,527

Columbia, SC 51,325 66,669

Des Moines– West Des Moines, IA 31,969 46,063

Spokane– Spokane Valley, WA 26,906 37,749

Pensacola– Ferry Pass– Brent, FL 27,426 36,640

Jackson, MS 44,356 56,669

Shreveport– Bossier City, LA 26,585 35,514

Asheville, NC 39,766 46,531

Tallahassee, FL 21,230 27,989

Manchester– Nashua, NH 17,062 24,275

Portland– South Portland, ME 37,028 46,736

Norwich– New London, CT 11,621 15,340

Kennewick– Richland, WA 14,413 19,493

Greensboro– High Point, NC 38,629 49,717

Pueblo, CO 10,141 14,281

Tyler, TX 11,887 16,275
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F I G U R E  7   Street networks for the UK cities of: (a) Cardiff; and (b) Birmingham, where street segments are 
represented by black lines

(a) (b)

F I G U R E  8   Street networks for the US MSAs of: (a) Boston– Cambridge– Newton, MA– NH; and (b) Columbia, 
SC, where street segments are represented by black lines

(a) (b)
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model with respect to performing the tasks of interpreting and providing insight into the connectivity properties 
of a given street network, recommending ways to improve this connectivity, and identifying street networks with 
similar and dissimilar connectivity properties. We perform these tasks with respect to the set of UK city street 
networks and a subset of US city street networks.

F I G U R E  9   Connected component persistence densities for the street networks of: (a) Cardiff;  
(c) Manchester; and (e) Birmingham. Cycle persistence densities for the street networks of (b) Cardiff;  
(d) Manchester; and (f) Birmingham

(a) (b)

(c) (d)

(e) (f)
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The remainder of this section is structured as follows. In Section 4.1 we present details of the UK and US street 
networks considered and the process used to construct these networks. In Section 4.2 we demonstrate the use-
fulness of the proposed model with respect to performing the downstream tasks mentioned above.

4.1 | Street networks

The first set of street networks we considered is a set of street networks corresponding to all UK cities, of 
which there are 69. All UK cities have official boundaries (https://data.gov.uk/datas et/7879a b82- 2863- 401e- 
8a29- a56e2 64d21 82/major - towns - and- citie s- decem ber- 2015- bound aries). However, we found these bounda-
ries to be inconsistent with respect to what they contained. For example, some city boundaries contain the 
corresponding suburban street network, while others do not. This is a consequence of the fact that many city 
boundaries were defined before the street network in question fully developed and are a function of political 
influences. To overcome this challenge, for each UK city we selected a location in the city centre and extracted 
the street network within a 10 km bounding box centred at this location. We found this approach to consist-
ently return the desired street network.

The second set of street networks we considered is a set of street networks corresponding to a subset of US 
cities. In order to have a representative sample of cities we used the subset of cities proposed by Angel and Blei 
(2016). In this work the authors used a random stratified sampling procedure to select a subset of 40 cities from 
the set of all 242 USA cities that had populations of 100,000 or more in the year 2000. We defined the boundary 
of each city to be the boundary of the corresponding Metropolitan Statistical Area (MSA) in which it is contained 
(Arribas- Bel & Sanz- Gracia, 2014). MSAs are defined by the U.S. Office of Management and Budget as core areas 
containing a substantial population nucleus, together with adjacent communities having a high degree of economic 
and social integration with that core (https://www.census.gov/progr ams- surve ys/metro - micro/ about.html).

The street networks for both the UK and US cities were obtained from OpenStreetMap, which is a crowd-
sourcing project for geographical data, using the OSMnx software library (Boeing, 2017). Tables 1 and 2 display 
the names of the UK cities and US MSAs respectively plus the number of vertices and edges in the corresponding 
graph representations. Figures 2, 7a and b display the street networks for the UK cities of Manchester, Cardiff and 
Birmingham, respectively. Figure 8 displays the street networks for the US MSAs of Boston– Cambridge– Newton, 
MA– NH and Columbia, SC, respectively.

F I G U R E  1 0   The set of streets with type equal to motorway or trunk for the cities of: (a) Cardiff;  
(b) Manchester; and (c) Birmingham

(a) (b) (c)

https://data.gov.uk/dataset/7879ab82-2863-401e-8a29-a56e264d2182/major-towns-and-cities-december-2015-boundaries
https://data.gov.uk/dataset/7879ab82-2863-401e-8a29-a56e264d2182/major-towns-and-cities-december-2015-boundaries
https://www.census.gov/programs-surveys/metro-micro/about.html
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4.2 | Analysis

The analysis of the connected component and cycle persistence densities for a given street network provides 
insight into its connectivity properties. A connected component persistence density which is more skewed to the 

TA B L E  3   Intersection density for each UK city street network, where intersection density equals the mean 
number of street network intersections per square kilometre

City Intersection density City Intersection density

Aberdeen 68 Liverpool 223

Armagh 15 London 354

Bangor 22 Manchester 311

Bath 56 Newcastle 198

Belfast 124 Newport 71

Birmingham 263 Newry 24

Bradford 203 Norwich 82

Brighton 50 Nottingham 152

Bristol 157 Oxford 48

Cambridge 50 Perth 20

Canterbury 40 Peterborough 64

Cardiff 101 Plymouth 67

Carlisle 29 Portsmouth 91

Chelmsford 42 Preston 89

Chester 60 Ripon 14

Chichester 35 St Albans 89

Coventry 91 St Asaph 39

Derby 81 St Davids 3

Derry 34 Salford 286

Dundee 51 Salisbury 20

Durham 76 Sheffield 152

Edinburgh 104 Southampton 117

Ely 21 Stirling 36

Exeter 53 Stoke- on- Trent 112

Glasgow 219 Sunderland 129

Gloucester 65 Swansea 68

Hereford 23 Truro 21

Inverness 29 Wakefield 134

Hull 90 Wells 23

Lancaster 35 Westminster 354

Leeds 198 Winchester 36

Leicester 126 Wolverhampton 172

Lichfield 72 Worcester 51

Lincoln 50 York 48

Lisburn 73
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left indicates a greater level of connectivity. Specifically, such skewness indicates that most elements in the cor-
responding persistence diagram have smaller persistence. That is, most parts of the street network get connected 
earlier in the filtration where these connections correspond to more significant streets. On the other hand, a cycle 
persistence density which is more skewed to the right also indicates a greater level of connectivity. Specifically, 
such skewness indicates that most elements in the corresponding persistence diagram have larger persistence. 
That is, different parts of the street network get connected by multiple paths that create cycles (i.e. circuits), ear-
lier in the filtration where these paths correspond to more significant streets.

To illustrate the insights which this analysis can provide with respect to street network connectivity properties, 
consider the connected component and cycle persistence densities for the UK cities of Cardiff, Manchester and 
Birmingham shown in Figure 9. The connected component persistence densities for Manchester and Birmingham 
are more skewed to the left than that of Cardiff. Notably, Manchester and Birmingham both have significantly 
more connected components with a persistence value of 1. This indicates that Cardiff has a number of areas which 
are not connected by significant streets. Therefore, the connectivity of Cardiff could be improved by connecting 
these areas by such streets. The cycle persistence densities for Manchester and Birmingham are more skewed to 

F I G U R E  11   Dendrograms for the: (a) connected component; and (b) cycle persistence diagrams for the UK 
street networks. Pairwise distances were computed using the Wasserstein distance

(a) (b)
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the right than that of Cardiff, indicating higher levels of connectivity. Notably, both Manchester and Birmingham 
have significantly more cycles with persistence values of 6 and 7. This is a consequence of the fact that, unlike 
Cardiff, both Manchester and Birmingham are inland cities with significant roads surrounding them. This fact is 
illustrated in Figure 10 which displays the set of streets with type equal to motorway or trunk for the cities of 
Cardiff, Manchester and Birmingham. Motorway and trunk are the most significant street types, and we can see 
that Manchester and Birmingham each contain more cycles formed from these types than Cardiff.

To contrast the above analysis with that which can be achieved using traditional models of street net-
work connectivity, consider Table 3 which displays the intersection density for each UK city. The intersection 
density for a given street network equals the mean number of street network intersections per square kilo-
metre. This is a commonly used model of street network connectivity, where greater density is considered 
to indicate greater connectivity (Dill, 2004). The intersection densities for the cities of Cardiff, Manchester 
and Birmingham are 101, 311 and 263, respectively. The model therefore indicates that Manchester has the 
best connectivity while Cardiff has the worst. However, the model does not provide any insight into how to 
improve connectivity beyond increasing the number of intersections. For example, it does not indicate what 

F I G U R E  1 2   Dendrograms for the: (a) connected component; and (b) cycle persistence diagrams for the US 
street networks. Pairwise distances were computed using the Wasserstein distance

(a) (b)
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types of streets should be added to increase intersection density or between which areas these streets should 
be constructed.

For the UK and US street networks we computed the pairwise Wasserstein distances between the corre-
sponding sets of connected component and cycle persistence densities. Using these distances, we subsequently 
performed hierarchical single- linkage clustering of the UK and US street networks to obtain dendrogram repre-
sentations (Everitt et al., 2011). Figures 11 and 12 respectively display the dendrograms for the UK and US street 
networks with respect to connected component and cycle persistence densities. Examining these dendrograms 

F I G U R E  1 3   t- SNE representation of each UK street network as a point in ℝ2 with respect to: (a) connected 
component; and (b) cycle persistence densities. Pairwise distances were computed using the Wasserstein 
distance

(a) (b)

F I G U R E  14   t- SNE representation of each US street network as a point in ℝ2 with respect to: (a) connected 
component; and (b) cycle persistence densities. Pairwise distances were computed using the Wasserstein 
distance

(a) (b)
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allows us to systematically determine cities that have more or less similar connectivity properties. To further as-
sist in this analysis, for each set of pairwise distances we computed a corresponding representation of each city 
as a point in ℝ2 using the t- SNE manifold learning technique (van der Maaten & Hinton, 2008). Figures 13 and 14 
respectively display the t- SNE representations for the UK and US street networks with respect to connected 
component and cycle persistence densities.

To evaluate the stability of the above dendrograms and t- SNE representations with respect to the 
choice of Wasserstein distance, we recomputed these representations using the energy distance (Rizzo 
& Székely, 2016). Figures 15 and 16 respectively display the dendrogram and t- SNE representations in 
question for the UK street networks with respect to connected component and cycle persistence densi-
ties. Comparing the dendrograms and t- SNE representations computed using the Wasserstein and energy 
distances, we see that they are quite similar. For example, comparing dendrograms in Figures 11a and 15a, 
we see that in both cases the distance between the St Davids and Armagh street networks is determined 
to be relatively large.

F I G U R E  1 5   Dendrograms for: (a) connected component; and (b) cycle persistence diagrams for the UK street 
networks. Pairwise distances were computed using the energy distance

(a) (b)
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Examining the dendrograms and t- SNE manifolds, we can identify cities which have similar and dissimilar per-
sistence densities. For example, Birmingham and Liverpool have similar connected component persistence densi-
ties, as shown in Figure 17. Both these persistence densities are heavily skewed to the left and, as discussed above, 
this indicates a high level of connectivity. This can be attributed to the fact that both are major UK cities with a 
large number of significant connecting streets. The connected component persistence densities for Armagh and 
Brighton are shown in Figure 18. Both these cities have dissimilar connected component persistence densities 
to those of Birmingham and Liverpool. Specifically, they are more skewed to the right. This can be attributed to 
the fact that both are smaller less significant cities with a lower number of significant connecting streets. In fact, 
Armagh is an extremely small city, and this is reflected in the relative size of its graph representation shown in 
Table 1. This analysis indicates that the connectivity of Armagh and Brighton could be improved by adding more 
significant connecting streets.

F I G U R E  1 6   t- SNE representation of each UK street network as a point in ℝ2 with respect to: (a) connected 
component; and (b) cycle persistence densities. Pairwise distances were computed using the energy distance

(a) (b)

F I G U R E  17   Connected component persistence densities for the street networks of: (a) Birmingham; and (b) 
Liverpool

(a) (b)
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In order to compare the connectivity of the UK and US street networks we computed the mean connected 
component and cycle persistence densities for the corresponding sets of street networks. These mean persistence 
densities are shown in Figure 19. The mean UK connected component persistence density is more skewed to the 

F I G U R E  1 8   Connected component persistence densities for the street networks of: (a) Armagh; and (b) 
Brighton

(a) (b)

F I G U R E  19   (a) Mean connected component; and (b) cycle persistence densities for the set of UK cities. (c) 
Mean connected component; and (d) cycle persistence densities for the set of US cities

(a)

(c) (d)

(b)
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left than that for the USA. Furthermore, the mean UK cycle persistence density is more skewed to the right than 
that of the USA. These two facts indicate that, on average the UK street networks have a greater level of connec-
tivity than the US street networks.

As discussed in Section 4.1, in many cases the boundary of a city is ambiguous and difficult to define. To 
determine if the proposed model of connectivity is sensitive to the choice of city boundary we computed the 
connected component and cycle persistence densities for the city of Manchester for three different boundaries. 
Specifically, we considered boundaries corresponding to the 3.333, 6.667 and 10 km bounding boxes centred at 
the city centre. Figure 20 displays the connected component and cycle persistence densities corresponding to 
each of these bounding boxes. We can see that the persistence densities corresponding to the 6.667 and 10 km 
bounding boxes are very similar. However, the persistence densities corresponding to the 3.333 km bounding 
box are quite distinct. This result demonstrates that when attempting to model the connectivity of a given city, 
the proposed model is sensitive to the choice of corresponding boundary and therefore care must be taken when 

F I G U R E  2 0   Manchester street network corresponding to: (a) a 3.333 km bounding box, with corresponding 
(b) connected component, and (c) cycle persistence densities; (d) a 6.667 km bounding box, with corresponding 
(e) connected component, and (f) cycle persistence densities; and (g) a 10 km bounding box, with corresponding 
(h) connected component, and (i) cycle persistence densities

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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defining this. Note that most models of street network connectivity also exhibit this sensitivity. For example, the 
intersection density values corresponding to the above bounding boxes are 494, 360 and 311, respectively. That 
is, as the bounding box increases the intersection density decreases. This is evident from viewing the Manchester 
city street network in Figure 2 where we see that the density of streets is greatest in the city centre.

We extended the above experiment to the set of all UK cities by computing the mean persistence densities for 
these cities for 3.333, 6.667 and 10 km bounding boxes. These persistence densities are shown in Figure 21. We 
see that as the bounding box size increases, the mean connected component persistence density becomes slightly 
more skewed to the left, indicating a greater level of connectivity. Furthermore, we see that as the bounding box 
size increases, the mean cycle persistence density becomes more skewed to the right, also indicating a greater 
level of connectivity. Both these results are expected because more significant street types and in turn connec-
tions generally exist outside the centre of a city. This analysis provides a form of validation for the proposed model 
of street network connectivity.

5  | CONCLUSIONS

In this article we propose a novel model of street network connectivity which is distinct from existing models in a 
number of ways. Firstly, in the proposed model connectivity is modelled in terms of the relative strength and fre-
quency of connected components and cycles in the network. In existing models connectivity is generally modelled 
in terms of summary statistics of simple geometrical or topological features of the network. Secondly, the pro-
posed model considers the type of different streets and different levels of connectivity they provide. The authors 
are unaware of any existing models of connectivity which consider such information. Finally, the proposed model 
does not represent connectivity using a single number. Instead connectivity is represented using a richer repre-
sentation, specifically a set of persistence densities, which can be used to gain novel insights into the connectivity 

F I G U R E  2 1   Mean connected component persistence density for the set of UK cities for: (a) 3.333; (b) 6.667; 
and (c) 10 km bounding boxes. Mean cycle persistence density for the set of UK cities for (d) 3.33; (e) 6.67; and 
(f) 10 km bounding boxes

(d) (e) (f)

(a) (b) (c)
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properties of different cities. Despite being a somewhat more complex representation, persistence densities can 
still be easily interpreted. This is particularly important given that the planning practice has traditionally relied on 
connectivity measures that can be intuitively understood and/or easily applied (Stangl & Guinn, 2011).

Despite the above achievements, the proposed model of connectivity has some limitations which provide 
opportunities for future research. Firstly, when attempting to model the connectivity of a given city, the pro-
posed model is sensitive to the choice of corresponding boundary. One potential solution to this issue would 
be not to pick a single boundary but to consider all possible boundaries using some form of multidimensional 
persistent homology (Carlsson, Singh, & Zomorodian, 2009). Another approach is to provide more consistent 
methods of defining region types with regard, for example, to their inclusion or otherwise of outlying suburban 
residential areas and measures of population density and of employment (Arribas- Bel & Sanz- Gracia, 2014). 
Secondly, the proposed model is solely a function of the corresponding street network. However, in reality 
connectivity is a function of many other factors including population size and spatial distribution (Mansury & 
Shin, 2015). For example, if a large percentage of the city population live in the suburbs but work in the city 
centre then the importance of connectivity between these two types of region must be weighted more highly.
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