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Abstract: Integrating data analytics, optimisation and dynamic control to support energy services
has seen significant interest in recent years. Larger appliances used in an industry context are
now provided with Internet of Things (IoT)-based interfaces that can be remotely monitored, with
some also provided with actuation interfaces. The combined use of IoT and edge computing
enables connectivity between energy systems and infrastructure, providing the means to implement
both energy efficiency/optimisation and cost reduction strategies. We investigate the economic
implications of harnessing IoT and edge/cloud technologies to support energy management for
HVAC (Heating, Ventilation and Air Conditioning) systems in buildings. In particular, we evaluate
the cost savings for building operations through energy optimisation. We use a real use case for
energy optimisation as identified in the EU “Sporte2” project (focusing on the energy optimisation of
sports facilities) and explore several scenarios in relation to costs and energy optimisation.

Keywords: cost; edge computing; energy efficiency; HVAC; buildings

1. Introduction

Human influence has warmed the climate at a rate that is unprecedented for at least
the last 2000 years driven by emissions from human activities. The latter includes the
impact of buildings, as our built environment is responsible for nearly half of energy
consumption and carbon emissions. This is reflected in the continuous increase of energy
costs in buildings due to changing lifestyles, including associated services and comfort
levels. This cost increase has a direct correlation with building user behaviours including
the amount of time people spend in buildings.

With these underlying factors, the process of reducing building costs by adopting
energy efficiency strategies represents a priority for regulation bodies (at both the regional
and international levels) [1]. Several energy optimisation strategies have been proposed
and validated as efficacious for tackling energy management; however, the actual adoption
and implementation has been delayed due to social, cultural and political factors that
are identified across communities. Such strategies usually involve changes in building
operations through the use of control systems, thus, resulting in significant cost savings for
building operations [2–4].

With the adoption of the “Smart Technology Readiness Level” in the European Union,
the instrumentation of buildings with smart devices is necessary in order to promote
sustainable practices while engaging with the ongoing strategies to mitigate the effects
of climate change. In the UK, the cost of domestic energy usage accounts for 20–25% of
total energy costs. Furthermore, the Department for Energy and Climate Changes aims to
reduce UK energy consumption (with associated reduction in greenhouse gas emissions) by
80% until 2050—focusing on influencing a change in householder perception of sustainable
energy practices [5,6].

Understanding how tariffs (costs) associated with energy use and efficiency can impact
energy demand is an important consideration. The following characterise this impact: (i)
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Price perspective: increased energy efficiency leads to reduced costs of use for consumers,
generally leading to greater consumption; (ii) Macroeconomic perspective: increased produc-
tivity identified by energy-oriented sectors investing in energy efficiency can reallocate
resources in the economy, favouring energy sectors over others. From this perspective,
there is an acute need to promote energy use education to help users understand the
importance of best practices around energy management and develop a “smarter” energy
society [7,8].

We use a scenario-based approach to investigate the costs associated with HVAC
energy optimisation using cloud environments. Energy optimisation analysis is undertaken
using the EnergyPlus software, and we investigate how costs vary when employing specific
EnergyPlus optimisation techniques. The results presented in this paper are part of the EU
FP7 “Sporte2” project. The reminder of this paper is structured as follows: in Section 1,
we provide an overview of energy cost optimisation, followed by related work covering
economic models in Section 2. In Section 3, we present a use-case description identifying
the key concepts related to cost and energy. We then present our proposed model, followed
by an evaluation of the costs based on the computing infrastructure used and costs with
energy optimisations in Section 5. We present our conclusions and lessons learned from
this work in Section 9.

2. Related Work

The European Commission’s focus on cost reduction and energy optimisation is the
result of extensive studies in the field of an energy efficiency gap [9] and forms the driving
agenda of the current European Green Deal that advocates the transition to a “circular”
economy [10]. Such a gap reflects a lack of consistency in energy targets identified at the
design phase and the operation phase where the actual energy consumption overcomes
the expected targets.

Interest in energy efficiency has led scientists to evaluate key aspects in cost reduction.
This is an intensively debated topic amongst economists, engineers and other scientists,
e.g., Jaffe and Stavins [11], who suggested that energy efficiency has been neglected in a
wide range of situations [12]. Gillingham et al. [12] stated that the two main areas necessi-
tating energy efficiency improvements and cost reductions are transport and buildings.

Shogren and Taylor [13] demonstrated that behavioural economics in the context
of environmental policy does not allow a wholesale rejection of rational choice theory.
Their research findings show deviated behaviours in energy consumption and confirm that a
continuing analysis of economic circumstances, institutional designs and social contexts
is required. Further studies by Neij et al. [14] investigated the foundations for the micro-
motivation of household decisions for observing energy efficient behaviour. These studies
demonstrated that developing energy efficiency products and assets that are more accessi-
ble to householders in terms of prices, brand/designs and performance can significantly
contribute to reducing the risks of non-adoption of such decisions.

Another group of economists [15] developed a number of hypotheses to determine the
trigger factors for this apparent gap—which include hidden costs with energy efficiency,
including search costs as well as reductions in other product attributes. Both Metcalf [16]
and Sanstad et al. [15] explained how the uncertainty of future energy savings can lead
a rational investor to require a rate-of-return that is lower than the market discount rate.
This happens because energy efficiency investments often tend to serve as a hedge against
other risks.

Considering the actual state-of-the-art in the field of ICTs applied to the built environ-
ment, two main actors are positioned at the extremes of construction value chain. At one
extreme, there is the BIM (Building Information Modeling) technology, which represents
the performance under standard conditions including all the information of the building
and its components [17].

At the opposite extreme, there is the Building Management System (BMS), which
actuates controls under real conditions [18]. However, there is a missing ring to connect the
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two extremes of the building efficiency chain. Most of the building controls and systems
are provided with data sheets reporting their performance in standard conditions [19].
While incorrect installation, interaction with multiple systems, over-complexity, inaccu-
rate bedding-in and calibration, real operation related to the occupants behaviours and
inexperienced management are the principal reasons for the performance decrease.

In this study, we aim to develop and address the following research questions:

• RQ1: How can edge and cloud computing facilitate implementation of sustainable
energy strategies for sports facilities?

• RQ2: What cost implications are identified when undertaking energy optimisation in
sport facilities?

• RQ3: What lessons and best practices should be adopted for supporting transition
towards “smarter net-zero” sports facilities ?

Our approach aligns with these related studies by acknowledging this gap, and we
address an instance of this by referring to large scale buildings, such as sport facilities,
and demonstrate how cost and energy use can be balanced by undertaking energy optimi-
sation. On the other hand, our work differs from these existing approaches in two ways:
(i) the costs associated with energy optimisation and (ii) the costs associated with the use
of computing infrastructure to manage data to support energy efficiency. Our analysis of
literature has indicated that these two aspects are often ignored.

3. Approach

We investigate how energy usage optimisation can be conducted by building facility
managers using edge and cloud environments. Existing approaches aggregate data from
buildings via sensors and other control devices to better understand building use and iden-
tify optimisation scenarios that can lead to cost reduction for energy use [20–22]. However,
undertaking energy optimisation with specialist infrastructures, such as edge and cloud
computing has not been explored.

A key barrier to adoption is the cost that a facilities manager needs to pay for using
cloud services [23], and these costs are often difficult to fully quantify (if the building use
varies over time). Quantifying the benefit and value of this investment remains unclear
and is seen by facilities managers as a cost that cannot be fully justified. We propose a
flexible computational framework with edge and cloud environments hosting simulation-
based optimisation workflows utilising EnergyPlus [24] that allow for the exploration of
“what-if” scenarios in relation to a set of input and output parameters.

EnergyPlus has been used in a wide range of energy scenarios related to simulations
of building energy efficiency that include sequential runs coupling lighting/daylighting,
HVAC, water hearing and the on-site generation of energy. EnergyPlus will use two inputs
to measure the heating and cooling loads required to manage HVAC control set points:
(i) the Input Data File (IDF) includes a set of energy related input parameters and (ii) the
Weather Data File (EPW) includes parameters for the exterior climate of a building. The
simulation also considers aspects related to the building configuration, shape, orientation,
technological and materials.

An energy simulation is carried out over a time interval to produce results and
actionable insights with time limited benefits, that can be implemented as set points using
actuation-based interfaces within a building. Such completion time impacts both facility
managers and cloud infrastructure providers in terms of costs whereby a longer completion
time can determine additional costs associated with using the computing infrastructure
and limited interventions potential within a building (see Figure 1).
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Figure 1. Building site and cloud infrastructure for optimisation.

Energy optimisation can be implemented in large infrastructures, such as a sports
facilities and stadiums with multiple indoor parameters that need to be optimised. Such
infrastructure involves complex energy optimization interventions, which must also take
account of how people use such facilities, and consider their subsequent impact on facility
operations.

Therefore, energy optimisation needs to be executed at different intervals of time in
order to capture building use, in terms of the operation changes from user requirements.
Executing energy interventions in a timely manner is essential to improve the costs of
energy consumption and support a more informed decision making in building opera-
tion [25,26]. Equally important in the context of building optimisation is an adequate
computing infrastructure to support data analysis for control and actuation based on
sensors readings, capturing the dynamics in building operation.

Edge and cloud infrastructure offer flexibility and elasticity for hosting such energy
optimisation workflows. When an optimization request is submitted for execution, a cost-
based approach must be employed to determine computational resources required to
achieve an actuation outcome within a pre-defined time interval (if this interval cannot be
met, this is equivalent to the outcome becoming useless) [27,28].

EnergyPlus optimisation in this context involves two parameters that have a direct
impact on cost: (i) Complexity of the IDF building model (e.g., a domestic building vs. a sports
stadium) impacts the average simulation time and the associated cost; (ii) Period to simulate
(which has an impact on the overall simulation time and cost). The relationship between
the cost of the computational infrastructure and simulation period is, however, not straight-
forward, as cloud providers often use pre-defined periods (1 h of usage) to calculate costs.
Simulations that run for 5 , 30 and 55 mins will incur the same computational cost when
deployed on a public cloud. This is changing recently with availability of “serverless“ and
function-based computational approaches.

The energy consumption in buildings has increased continuously in the last 20 years
with HVAC systems accounting for approximately 40% of the total building energy con-
sumption. Implementing specialised optimisation strategies for energy consumption in
buildings becomes critical as people tend to spend more time indoors—an aspect also ob-
served during the pandemic. Simulation-based optimisation strategies were demonstrated
to be efficient when dealing with complex buildings where changes of indoor and outdoor
ecosystems are frequent. Such optimisation involves multiple time and environmental
variables that need to be analysed in order to determine the actuation set points.

Recently, building assets are deploying a range of IoT devices, including data streams
sent to a cloud for storage, and thus it is possible to deploy such optimisation tasks on either
cloud or edge systems. We, therefore, propose a method for hosting energy optimisation
workflows on edge/cloud layers that can be directly accessible via an HVAC system. This
involves the execution of several optimisation tasks at the edge (in proximity to an HVAC
system) to reduce the optimisation and execution time.
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4. Methodology

For developing the research questions, we adopt a holistic methodological approach
starting from the requirements elicitation to understand the complexity of the pilot project
followed by a model development phase for supporting what-if analysis. The optimisation
phase uses the simulation model configured with pilot input parameters and objectives,
such as energy efficiency, comfort and carbon emissions.

The proposed methodology involves the following stages (Figure 2):

• Stage 1: Performing energy audit of the pilot.
• Stage 2: Calibrating energy simulation model.
• Stage 3: Undertaking simulation-based optimisation.

Stage 1:

Performing energy

audit of pilot

Edge resources

Validate drawings

User constraints

Facility analysis

Stage 2:

Calibrating energy 

simulation model

HVAC

Geometry

Weather

Activities

Stage 3:

Simulation based

optimisation

Energy efficiency

HVAC analytics

Comfort analysis

Figure 2. HVAC analysis methodology.

Stage 1: Energy audit This stage involves an energy audit of the pilot to understand and
map (a) the energy systems in place and ways in which these are operated, (b) energy
consuming equipment across the station and their operating schedule, (c) existing sensing
and control infrastructure as well as their control systems and (d) user requirements (pilot
users) and their associated behaviours.
Stage 2: Energy model calibration Based on the specifications in stage 1, this stage involves
the development of an energy simulation model with associated recommendations for
energy improvements based on the initial modelling. A calibration will be applied to factor
in all fabric and mechanical systems and equipment information based on information and
assumptions gathered from the auditing exercise.
Stage 3: Simulation-based optimisation The optimisation phase utilises standard GA
optimisation algorithms to find the optimal values and setpoints for a population of
candidate solutions. The input of the GA optimisation is obtained from multiple simulation
instances where parameters values are customised to suit the constraints obtained from the
auditing phase.

Based on the above stages, we develop a two-fold cost analysis for identifying the cost
implications of running energy optimisation and the cost with edge and cloud infrastructure
necessary to host energy optimisation.

5. Cost Analysis and Specifications

We calculated the cost of energy optimisation as identified in the Sporte2 project.
We installed the edge HVAC optimization on different pilot computer resources and
measured the costs over a 42-day interval. We report scenarios from the EU SportE2
FP7 project. The HVAC analytics were applied on a sport facility pilot called FIDIA (
http://www.asfidia.it)—a public sports building facility located in Rome (Italy).

The pilot building has 9 cm of wooden exterior walls and 9 cm of wooden roof.
The floor is formed of concrete, and the windows are single glazing with a 5.7 W/m2K
thermal transmittance and a solar gain of 0.7. The pilot has a Gable roof with Hmin = 3 m
and Hmax = 6 m, with window surfaces of about 70 m2. Sensors and actuators are installed
throughout the sports facility for data capture, control, and optimization. The electricity,
coal, biomass, water, and thermal energy usage are all monitored through the building’s
metering system. Such data can be obtained and analysed using a computer interface.
Thermal and electrical energy sub-metering is located in different areas (gym/fitness and
swimming pool).

http://www.asfidia.it
http://www.asfidia.it
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For the GA optimisation, we used a standard GA model [29] where each individual in
the population has a fitness value as a measure of the proposed solution. To develop a new
generation of candidate solutions, the best solutions were chosen based on their fitness
ratings with all positive attributes dominating over several generations. The energy sce-
nario implemented as a EnergyPlus simulation model and utilised for the GA optimisation
process involves the following input and output parameters:
Input parameters: day, month, year, occupancy, indoor temperature, humidity, outdoor
temperature, air-flow rate, air temperature;
Output parameters: Energy consumption, Projected Mean Vote (PMV) comfort, and Carbon
emission; The Projected Mean Vote (PMV) comfort index (measuring average reaction
to a thermal sensation scale from a group of users of the building—such as hot, mild to
cool and cold) in these areas is one of the most commonly known metrics of thermal
comfort and is measured based on usage and occupancy of a specific part of the building.
In the gym, exercise rooms and the swimming pool area, occupancy was also tracked. All
these variables were monitored with sensing equipment, and setpoints obtained from the
optimisation process were implemented via a set of actuators.

6. Cost of Edge HVAC Infrastructure

The infrastructure is based on CometCloud [30], which is a decentralized coordina-
tion system based on an autonomous computing engine that supports a highly hetero-
geneous and dynamic cloud/HPC infrastructure, allowing public/private clouds and
autonomic cloudbursts (where multiple cloud resources are integrated to meet data pro-
cessing demand) to be combined with a view to comply with requirements of workloads
and demands.

The CometCloud site tuple-space contains a number of available workers and a master
that receives requests from CometCloud users. There are two possible execution methods:
(i) edge execution: tasks processed on the CometCloud platform hosted by a data center;
and (ii) cloud execution: tasks are processed on the CometCloud platform in the data centre.

To help task processing, different edge devices can be dynamically combined, e.g., we
can build one edge cluster consisting of five Raspberry Pi devices, or independently con-
sider each device for processing. Edge resources are limited in their processing capability
especially when the task completion is dependant on a deadline. Instead, a cluster of edge
devices can aggregated enough capability to execute an energy simulation task. A cost
comparison provides including storage, data transfer, and execution as a means to measure
the reliability of the infrastructure.

Cost = exec.time ∗ costexcution + net.tran f er ∗ costtrans f er + storagetime ∗ coststorage (1)

where costexecution is the cost of using computational resources (e.g., CPU/GPU), costtrans f er
represents the amount of transferred data (and cost of transmission) and coststorage rep-
resents the cost of data storage over a particular time frame. The costs reported in the
experiments are based on Amazon EC2 small instances in US dollars($). In total, we explore
different scenarios in this work, as listed below:

Figure 3 identifies the costs for different sized jobs, deployed over varying types
of infrastructure (e.g., edge vs. cloud systems). In this experiment, we test different
optimisation workflows where each optimisation is composed of 16, 24 or 32 EnergyPlus
simulations. The highest operational cost occurs when using edge resources, primarily
due to the long execution time (requiring an edge resource to be used over a much longer
time frame compared to cloud resources), and the size of the transferred and stored data.
Conversely, the cost is the lowest when using CometCloud deployed at a data centre (due
to lower computational, storage and data transfer cost).
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Figure 3. Cost with edge HVAC and cloud.

7. Cost and Energy

To demonstrate the impact of costs with energy consumption, we analyse different
optimisation scenarios aimed at providing a more optimised building ecosystem in terms
of the energy consumption of comfort.

There are two components of FIDIA HVAC energy consumption: thermal energy and
electricity consumption, which can be expressed as: E = Et + Ee, where, Et and Ee represent
the consumption of thermal and electrical energy. E reflects the cumulative energy that the
building uses and PMV is the predicted mean value comfort used as a constraint.

In our evaluation we compare the energy cost incurred in the proposed optimisation
with cost resulting from traditional actuation carried out manually by building operators.
These manually applied operations include switching off the boiler, turning off/on ven-
tilation fans, managing the lights etc. The edge HVAC optimisation, on the other hand,
generates control actions that optimise the buildings ecosystem via actuation setpoints.

• Interval Cost—ci = ri ∗ pi, is a metric to show the cost impact involving ci represents
the interval cost, ri represents the energy consumption value and pi represents the
average price for energy ;

• Day Average Energy Cost –Average = 1
n

n

∑
i=1

(ri ∗ pi), where n represents the number

of intervals per day(i.e. how many optimisations per day).

7.1. Results

To demonstrate the edge HVAC optimisation, we provide two experiments where
energy optimisation is implemented for the building pilot. We provide a comparison
between Edge HVAC supported optimisation and traditional (manual) optimisation. Tradi-
tional optimisation refers to direct user manual interventions for actuating and controlling
HVAC units.

7.1.1. Experiment 1: Day Energy Consumption Costs: Edge HVAC Optimisation vs.
Manual Optimisation

The experiment reported in Figure 4 shows the cost of energy consumption for FIDIA
over a 24 h period. When using manual optimisation, the cost fluctuates between 0 and
0.7 Euros with a peak value of 2.3 Euros. For edge HVAC optimisation, the building
identifies a cost with the optimisation in the interval of [0–0.25] Euros. The experiment
demonstrates that edge HVAC optimisation supports a higher order of automation and a
lower overall cost as well as a value that is more consistent.
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Figure 4. Cost with Thermal Energy Consumption: Manual vs. Edge HVAC optimisation.

Two consumption schedules are illustrated in Figure 4: (i) day schedule with a spe-
cific consumption cost and (ii) night schedules. We provide, as a comparison, baseline
consumption with manual optimisation involving no intelligent decision making process.
Edge HVAC optimisation is based on deploying simulation-based optimisation workflow
with real-time sensor data over 15 min intervals. The edge HVAC optimisation can lead
to significant cost savings, as presented in the experiment, reducing the costs of energy
consumption by approximately 39%.

7.1.2. Experiment 2: Energy consumption costs: Edge HVAC Optimisation vs.
Manual optimisation

In this experiment, the energy consumption changes across the two considered sce-
narios: (i) Edge HVAC optimisation and (ii) traditional (manual) optimisation. The re-
sults reported in Figure 5 show edge HVAC optimisations that lead to cost savings. We
present the average cost of energy consumption per day over a 42-day monitored interval,
with manual optimisation achieving a cost of 0.61 Euros per day. The cost of edge HVAC
optimisation varies over the interval [0.01-0.55] Euros with an average of 0.09 Euros per
day. The set points obtained based on the edge HVAC optimisation leads to a reduction of
cost when implemented at every 15 min intervals, enabling the actuation system to respond
to any changes observed over this interval.

Figure 5. Thermal energy costs: Manual vs. Edge HVAC optimisation.

8. Discussion: Edge-Based HVAC

Computer technologies have the ability to transform the construction sector by using
the growth of digitalized information and data to deliver a higher order of intelligence for
built assets. Many types of applications can be created based on data, allowing efficient
physical time-series data collection, processing and exploitation for various usages so as
to offer fine-tuned services to end users. Having access to massive sets of data promotes
the enhanced evaluation of services, assists in decision-making, allows optimized use of
resources and, to a certain extent, anticipates future needs.
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Current built environments are intensive real-time data generation systems, the moni-
toring and control require powerful analysis tools, and extensive digital information. This
complexity is further prevalent for zero and positive energy built environment.

Given the context for HVAC systems, we explain how smart buildings can make direct
use of Internet of Things (IoT) devices directly available in their proximity (e.g., within a
home or office environment). These IoT and Edge devices can be used to support both data
capture and initial analysis to determine usage trends. The management of buildings using
HVAC systems should take into consideration the following aspects :

• Devices that are available closer to user owned resources can be used to monitor
trends in how users utilize appliances.

• We can embed computational capability directly into consumer appliances—either
through the use of an add-on software, or through the use of a hub that sits within a
home—Google Nest, British Gas Hive.

• The implementation of Smartness Technology Readiness indicators in buildings re-
quires an optimal instrumentation in terms of edge devices( sensors, actuators and con-
trollers) necessary to support sustainable building practices and their associated costs.

In this paper, we investigated the optimisation of buildings using edge and cloud sys-
tems for conducting HVAC analytics. The optimisation of building systems identifies two
main cost components (i) cost with computing infrastructure required to host the overall
optimisation process for storage, transfer and execution of optimisation and simulation
tasks and (ii) cost with energy of the building involving various consumption units (HVAC)
that are identified in the building pilot.

Edge HVAC analytics represents an efficacious alternative to cloud optimisation,
as often an edge/IoT infrastructure is available within the building and deployed as part
of a construction phase. The contribution we provide leverages on edge capability to
support energy optimisation in buildings as a reliable alternative to traditional/manual
optimisation. The edge HVAC approach is also aligned with digital twinning strategies
recently adopted in the construction industry to achieve a higher order of digitalisation.

9. Conclusions

The construction industry presents a major opportunity to make substantial progress
in reducing energy demand, improving efficiency and reducing carbon emissions. Such
transformation involves strategic objectives, including to cut the “acceptable” level global
warming through a wide range of measures, including considerate built-environment
interventions.

Understanding how the use of HVAC systems can be optimised in an automated
manner represents a key challenge that can influence the adoption of sustainable practices
in buildings. In this paper, we presented a cost perspective on energy optimisation as
identified in EU FP7 “Sporte2” project, which is specifically focused on energy optimisation
in sports facilities. We considered: (i) the costs of using computing infrastructure and (ii)
cost reductions arising from energy optimisation. The proposed solution was informed
by primary sources of evidence derived from an in-depth energy audit and has clear
applicability for buildings types that require optimisation of the energy use and/or a more
seamlessly integration of renewable sources.

We demonstrated how an edge and cloud-hosted simulation can be efficiently used
to addressed the problem of high cost with energy consumption and to provide sustain-
able solutions for better energy practises. We showed how the cost of both thermal and
electrical energy varied over a monitored interval, and demonstrate the benefits of using
the automated energy management approach supported with edge HVAC capabilities.
Although the initial cost of computing infrastructure can impose barriers to adoption,
we demonstrated that energy optimisation can be undertaken with a cloud computing
infrastructure, making use of a pay-as-use model.

We also observed that building energy optimisation is being undertaken across a
cloud and edge environment which also consumes energy. Edge computing resources, due
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to their limited computational capacity, consume small amounts of energy (a Raspberry Pi
consumes approx. 10 W of power). However, where a cloud infrastructure and network
transmission is involved, power consumption can increase considerably.

Our work does not account for the aggregate power consumption “end-to-end”—
e.g., building energy saving offset by combining energy consumed through the cloud-
hosted simulation vs. energy saved based on results of the simulation. Due to variation in
resources at a cloud data centre and potentially other competing workload, an accurate
number for this would be difficult to estimate. Future work will explore ways in which
HVAC edge analysis can embed machine learning algorithms to reduce execution times
and costs.
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