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Abstract

The complexity of schizophrenia raises a formidable challenge. Its diverse genetic architec-

ture, influence from environmental factors from the prenatal period through to adolescence,

and the absence of a laboratory-based diagnostic test complicate efforts to "carve nature at

its joints". Twinned with attempts to disentangle schizophrenia’s origins are those aiming

to predict it.

Prediction is essential to precision psychiatry and attempts to improve patient outcomes.

Genetic prediction only became feasible relatively recently, following the discovery of robust

risk loci in association studies. Polygenic risk scoring (PRS) is a popular method which

relies on univariable tests of association and typically assumes additivity within and between

loci, but explains only a small fraction of liability to schizophrenia. Machine learning (ML)

methods have evolved out of the artificial intelligence and statistics communities which learn

predictive patterns from labelled data. They are an enticing option in genetics, as they allow

for multivariable predictive modelling, complex predictor relationships including interactions

and can learn from datasets where the number of predictors exceeds observations. However,

their predictive performance in schizophrenia is largely unknown.

The ability of penalised logistic regression, support vector machines, random forests (RFs),

gradient boosting machines (GBMs) and neural networks to predict schizophrenia from

genetic data was investigated. A review systematically assessed predictive performance and

methodology in machine learning on psychiatric disorders, finding poor reporting, widespread

inadequate modelling approaches and high risk of bias. Simulations assessed performance

in the presence of additive or interaction effects. Flexible ML approaches including RFs and

GBMs performed best under interactions, but worse than PRS and sparse linear models for

additive effects. Evaluation in real data assessed modelling procedures including calibration

and deconfounding. Prediction was maximised when combining genetic and non-genetic

factors; no evidence was found to support choosing machine learning approaches over logistic

regression or PRS.
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4.13 Evaluating discrimination for additive simulations under alternative values

for narrow-sense heritability (a) and prevalence (b). AUC shows an approxi-

mately linear relationship with both, where simulations are fixed to n = 1000,

p = 200 and m = 0:5 to be comparable with previous p < n simulations. . . 128

4.14 Discrimination for independent simulations with odds ratios set to constant

values or drawn from an estimated PDF from GWS SNPs in Pardiñas et al.,

2018. For all simulations p = 200, n = 1000 and m = 0:5. . . . . . . . . . 129

4.15 Discrimination of classifiers for simulations of 2-SNP interaction effects at

p = 2, n = 2000,MAF ∈ {0:1; 0:2; 0:3; 0:4; 0:5} and „ ∈ {0:1; 0:2; 0:3; 0:4; 0:5}.
Interaction models which can be mostly separated by a linear decision bound-

ary (multiplicative and threshold) show similar performance between classi-

fiers. XOR and interference models show differences between linear and

non-linear models, particularly for high MAF and „. A „ of 0.1 corresponds

to an odds ratio of 1.1 when the interaction between genotypes is given by

¸(1 + „) and baseline odds ratio ¸ is set to 1; multiplicative models give

higher odds ratios of 1.21 and 1.46 for genotype interactions of ¸(1 + „)2

and ¸(1 +„)4 respectively when „ = 0:1. Figure 4.8 describes model param-
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4.16 Decision boundaries for all classifiers under 2-SNP interaction models when

„ = 0.5 and MAF = 0.5. Boundaries are displayed by contour plots. Green
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4.17 Decision boundaries for all classifiers under 2-SNP interaction models when

„ = 0.5 and MAF = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.18 Decision boundaries for all classifiers under 2-SNP interaction models when

„ = 0.1 and MAF = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.19 Decision boundaries for logistic regression (LR) and RBF SVM trained on
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XOR and multiplicative show the effect of a drop in MAF at both loci. LR
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4.23 Decrease in discrimination for classifiers trained on 2-SNP interactions models

with an increasing number of unassociated SNPs. Simulations set n = 2000,

„ = 0:5 andMAF = 0:5 with no LD. Unassociated SNPs are drawn randomly

from the binomial distribution with two trials and chance of success equal

to MAF, which is taken uniformly between 0.05 and 0.5. Y axis limits differ

between subplots to allow for trends to be clear for all models. . . . . . . . 138

4.24 Examination of different neural network architectures on the decision bound-

ary for M78 XOR models. The left-hand column gives the contour plots

for the decision boundaries using either ReLU or tanh activation functions,

and the small or large architectures given in section 4.2.3.2. The right-hand

column shows the loss function, which should converge during the 15 epochs. 140

5.1 Deconfounding procedures. A common approach is to use a linear regression

to remove the linear effects of confounding. Often this is done on data

before cross-validation (a). However, it is preferred to keep the step within

cross-validation to avoid inadvertently using information from the test folds
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for train and test folds for each predictor in a train-test pair within cross-

validation, leading to two sets of coefficients for each predictor (b). The

alternative, which is used here as it sticks more closely to cross-validation

principles, is to create a single regression model for each predictor in the

training fold, and use the same coefficients for the test fold, for each train-

test fold pair within cross-validation (c). . . . . . . . . . . . . . . . . . . . 152

5.2 Workflow for UK Biobank participants before nested case-control and miss-

ingness filters. Number of participants removed reflects only that stage in

the protocol; a larger number of participants may meet the criteria in the

total sample. Individuals on clozapine were removed to reduce the likeli-

hood of sample overlap with the CLOZUK dataset, used to produce the

0.05-threshold ePRS; overlapping controls may still be present. . . . . . . . 160

5.3 Discrimination for models across all datasets. 7 machine learning methods

were compared to logistic regression. Models were trained with different

types of genetic predictors, including or excluding demographic variables.

Poor prediction is observed for neural networks for 0.05 ePRS, as models

failed to converge within the specified number of epochs for some folds of

cross-validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
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5.4 Comparison of modelling approaches. The outer-fold AUCs for each mod-

elling approach were subtracted from the corresponding AUCs for logistic

regression, to show the distributions of differences from logistic regression

across all models (a). Models capable of linear (logistic regression, ridge,

LASSO, linear SVM) and non-linear (RBF SVM, random forest, XGBoost,

neural networks) mappings were binned together to show the overall differ-

ence between techniques (b). The median value is given by the blue bar and

annotated on each strip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.5 Permutation importance scores for LASSO and RBF SVM. Very similar values

of relative importance are seen for both methods. Models were trained on

the combined set of demographic and 0.05 ePRS predictors. Strip plots are

annotated with the median value for each predictor across outer folds from

nested cross-validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.6 Calibration for all models in the nested case-control sample. Predicted prob-

abilities have been adjusted through Platt scaling in cross-validation. Vali-

dation plots are shown for all models, displaying calibration via loess curves

and discrimination through kernel density estimation. All models appear well-
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which display a slight sigmoidal shape. Validation plots are shown for the

overall best linear and non-linear models in the combined demographic and

0.05 ePRS dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.7 Validation plots by genotyping array. Calibration in categorical groups can

reveal where a subgroup is not adequately handled by a model. Plots demon-

strate that probabilities are not systematically over or underestimated for

either array. Wider confidence intervals are present for the BiLEVE array,

which has fewer observations. Validation plots are shown for the overall best

linear and non-linear models in the combined demographic and 0.05 ePRS

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.8 Calibration of models in the entire UK Biobank cohort. Predictions from

cross-validation were combined with predictions in remaining unsubsampled

controls in the cohort, generated through a refit on the nested case-control

sample. Probabilities are consistently over-estimated due to the differing

prevalences in the nested sample and the total cohort. Adjustment for the

sampling fraction improves calibration but is difficult to assess due to vari-

ability. Validation plots are shown for the overall best linear and non-linear

models in the combined demographic and 0.05 ePRS dataset. Due to in-

memory limits of the loess algorithm in the scikit-misc package, a subsample

of 30,000 participants is shown; regenerating validation plots with different

random subsamples shows curves are representative (Figure C.13). . . . . . 170
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5.9 Prediction of risk scores using cognitive tests and widely-available demo-

graphic information in UK Biobank controls. Height is included as a neg-

ative control for genetic liability to schizophrenia and a positive control for

models including demographic factors, as average height differs by sex, which

is included as a predictor in demographic and combined datasets. LASSO

and RBF SVM models are shown for genetic (0.05 ePRS), demographic or

combined models. Values are the test-fold R2 between calibrated machine

learning risk scores and predictions from a beta regression of cognitive or

demographic factors regressed against model predictions, averaged across a

5-fold cross-validation. Values may be negative or positive, with small neg-

ative values expected for the test-set when true R2 = 0. Colour mapping

differs for height, as it shows much higher average R2, but is consistent

for other subplots. Cognitive and demographic outcomes are detailed in

appendix C.1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.10 Prediction of risk scores using neurological and psychiatric outcomes in UK

Biobank controls. LASSO and RBF SVM models are shown for genetic
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R2 between calibrated machine learning risk scores and predictions from a

beta regression of cognitive or demographic factors regressed against model

predictions, averaged across a 5-fold cross-validation. Values may be negative

or positive, with small negative values expected for the test-set when true

R2 = 0. Psychiatric and neurological outcomes are detailed in appendix C.1.2.172

5.11 Assessment of deconfounding in unsubsampled controls. Model predictions

were evaluated using genetic (0.05 ePRS), demographic or combined pre-

dictors for how well they could be predicted using principal components,

genotyping array, or a combination of the two. LASSO (a, d) and RBF SVM

(b, e) models were evaluated. The ability of genetic confounders to predict
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(c, f). Standard error bars are shown for all points. Mean values across

cross-validation and standard errors are annoted. SZ: schizophrenia., LR:

logistic regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
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5.13 Discrimination across sampling fractions in nested case-control design. Head-

ings indicate which genetic or demographic predictors were used, with combined-

absent denoting demographic predictors only. Controls were sampled at 1,

2, 5 or 10 times the amount as cases, corresponding to sampling fractions of

approximately 0.002, 0.004, 0.01 and 0.02 in controls. Discrimination was

evaluated for logistic regression across all datasets. Mean AUC across folds

remains reasonably stable with increasing sampling fraction for all datasets. 175
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Chapter 1

Introduction

1.1 Introduction

Schizophrenia is "the archetypal form of madness" (Frith and Johnstone, 2003) and referred

to as the "heartland" of psychiatry (Goodwin and Geddes, 2007). Despite its prominence

in the field, the research focus this has engendered and the commonly-held observation that

so-called "madness" runs in families, it was just over a century since the term schizophrenia

was first coined that common genetic variation was reliably associated with the disorder

(Purcell et al., 2009). Family, twin and adoption studies laid the groundwork for later

linkage, candidate gene and genome-wide association studies which firmly established the

polygenic nature of schizophrenia. This has been supported by studies of rare variation,

confirming the role of common polymorphisms, rare variants, insertions, deletions or large

structural changes in an intricate genetic landscape (Legge et al., 2021). These relatively

recent successes join well-established epidemiological evidence of environmental risk factors

(Stilo and Murray, 2019). In an era of precision medicine, it is perhaps unsurprising that

prediction has been suggested over association as a means of achieving precision psychiatry

(Bzdok, Varoquaux, and Steyerberg, 2020), and that supervised machine learning has been

highlighted as a group of flexible statistical methods which are adept at pattern matching

and may potentially hasten its arrival (Manchia et al., 2020).

1.2 Schizophrenia

1.2.1 Overview

Schizophrenia is a complex and highly heritable psychiatric disorder that can be caused by

genetics, environmental factors or a combination. It makes an out-sized contribution to the

global burden of disease at around 21 million individuals in 2016, and 13.4 million years of life

lived with disability (Charlson et al., 2018). The overall societal cost of schizophrenia was

estimated at £6.7 billion in 2004-2005 alone (Mangalore and Knapp, 2007). Life expectancy

reduces by 10-20 years in individuals with schizophrenia (Owen, Sawa, and Mortensen, 2016),

with elevated risk of all-cause mortality assessed by standardised mortality ratio (SMR)

at 2.5 (2.2-2.4 95% CI), reaching 2.4 and 3 in females and males respectively (Chesney,
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Goodwin, and Fazel, 2014). Individuals with schizophrenia are particularly at increased risk

for suicide, with an SMR of 12.9 (0.7-174 95% CI) (Chesney, Goodwin, and Fazel, 2014);

accident, cardiovascular disease, cancer, infection, substance use and chronic obstructive

pulmonary disease also contribute to elevated mortality (Olfson et al., 2015). Individuals

with schizophrenia account for 10% of the homeless population (Ayano, Tesfaw, and Shumet,

2019) and have rates of 80-90% unemployment (Marwaha and Johnson, 2004). Though

some cases remit and do not re-occur, around 87% of individuals have been estimated to

have a chronic illness course (Jääskeläinen et al., 2013). Overall, the impact on the individual

and society is severe.

1.2.2 Symptoms

Symptoms are of paramount importance in schizophrenia as they provide both a description

of the disorder and the basis for its diagnosis. Schizophrenia is characterised by positive,

negative and cognitive symptoms (Owen, Sawa, and Mortensen, 2016). Positive symptoms

refers to the addition of characteristics which are not normally present, namely psychosis

(delusions and hallucinations), while negative symptoms include aspects normally present

in the population but which are absent in the individual. These include apathy, anhedonia,

alogia, asociality, anergia, avolition and flattened affect. Cognitive symptoms, also known

as disorganised symptoms or thought disorder, describe disorganisation of speech and be-

haviour, as well as reduced performance in cognitive tests (Burton, 2016).

1.2.2.1 Positive symptoms

A delusion is a fixed belief which is maintained despite evidence against it, and which is not

explained by religion or culture. Hallucinations describe perceptions without corresponding

stimuli which have not been consciously manipulated (Burton, 2016). Though symptoms

of psychosis may be found outside schizophrenia, such as in response to amphetamines,

infection or central nervous system (CNS) pathology, psychosis in schizophrenia typically

includes fully-formed auditory hallucinations, with delusions and hallucinations often framed

around a loss of control. Of particular relevance in schizophrenia are first rank symptoms

(FRS), proposed by Kurt Schneider in 1959, with the aim of identifying aspects of psychosis

which are pathognomic of schizophrenia (Schneider, 1959). Despite widespread uptake and

a large impact on diagnostic criteria, these have been shown not to be uniquely descriptive of

schizophrenia (Peralta and Cuesta, 1999); diminished aspects of psychosis such as paranoia

and auditory hallucinations occur in over 5% of healthy individuals (Van Os et al., 2009).

FRS still provide an informative summary of the more florid psychotic symptoms found in

schizophrenia.

First rank symptoms are divided into four main areas: auditory hallucinations, delusions of

thought control, other delusions of control, and delusional perception. Auditory hallucina-

tions may be in the form of the third person, where multiple voices converse about the

patient, a running commentary on the individual’s movements and thoughts, or thought
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echo, also known as gedankenlautwerden or écho de la pensée. Delusions of thought con-

trol centre around the belief that the individual’s thoughts are being manipulated through

insertion into their head by another, withdrawal from their head by a third party, or that

their thoughts are being broadcast, overheard or accessed by others. Other delusions of

control describe passivity phenomena, whereby an individual believes their volition, affect or

impulses are being controlled by another, or delusions of somatic passivity where the body

of the person is under control. Finally, delusional perception is the delusional interpreta-

tion of normal phenomena. Positive symptoms are often prominent in attempts to classify

schizophrenia (Burton, 2016).

1.2.2.2 Negative symptoms

Negative symptoms were central to Bleuler’s definition of "the schizophrenias"; he held that

aspects such as ambivalence and asociality take primacy over hallucinations and delusions

(Frith and Johnstone, 2003). Negative symptoms are more difficult to identify than psy-

chosis, as they are often misinterpreted as part of adolescence, other psychiatric disorders or

even side affects from antipsychotics (Burton, 2016). The extent to which positive or nega-

tive symptoms predominate differs between individuals, with negative symptoms apparently

absent in some (Owen, Sawa, and Mortensen, 2016). Though the course of schizophrenia

varies greatly, a typical experience is for more florid positive symptoms to occur in acute

phases early on in the course of the disorder, undergoing episodes of relapse and remis-

sion, followed by greater prominence for less obvious negative symptoms, which may persist

through a prolonged "chronic" phase, including remission, or for the rest of the individual’s

life.

1.2.2.3 Cognitive symptoms

In contrast to Bleuler, Kraeplin’s earlier definition of "dementia praecox" highlighted the

cognitive decline he observed in patients (Frith and Johnstone, 2003), and which has been

suggested as fundamental to schizophrenia (Elvevag and Goldberg, 2000; Kahn and Keefe,

2013). For simplicity here, reductions in intelligence quotient (IQ) and measures assessed in

cognitive batteries are combined under the umbrella of cognitive deficits. Epidemiological

evidence for cognitive impairment prior to onset in schizophrenia is available from the Israeli

draft board register, military records which provide a psychiatric assessment undertaken by all

individuals upon being drafted at 17 years old. Those with below-expected IQ were at higher

risk for later hospitalisation with schizophrenia (Reichenberg et al., 2005). Meta-analyses

of premorbid IQ have supported this (Khandaker et al., 2011; Dickson et al., 2012). Poor

premorbid school performance has also been associated with risk for schizophrenia (MacCabe

et al., 2008), while particularly good school performance has been associated with risk for

bipolar disorder (MacCabe et al., 2010) in studies of all individuals in a Swedish national

cohort.
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In addition to the period preceding illness, cognitive impairment is also associated with course

of the illness itself. Analysis of individuals from the Israeli draft board data demonstrate

worsening IQ scores as assessment approached the timing of the first episode of psychosis,

with the large difference in scores between affected and unaffected individuals observed in

those who had already experienced their first episode (Rabinowitz et al., 2000). Individuals

with schizophrenia are typically 1-1.5 standard deviations below the mean on standard cog-

nitive measures (Keefe and Fenton, 2007). The association of cognitive deficits with genetic

risk for schizophrenia has been demonstrated in carriers of copy number variants (CNVs) in

the UK Biobank, where cognitive measures are again shifted below the sample mean by up

to 1 standard deviation for participants with schizophrenia and up to 0.5 standard devia-

tions for unaffected carriers (Kendall et al., 2017). Analysis of common variation has also

shown negative genetic correlation of -0.2 between schizophrenia and intelligence (Anttila

et al., 2018), and cognitive deficits are present in unaffected relatives of probands (Sitskoorn

et al., 2004), indicating cognitive deficits may be partly explained by genetic liability to

schizophrenia.

Cognitive deficits in schizophrenia are broad (Heinrichs and Zakzanis, 1998), but are par-

ticularly pronounced for working memory, attention and executive function (Elvevag and

Goldberg, 2000). Affected individuals frequently perform poorly on tests of verbal fluency,

such as listing items beginning with a particular letter, which is interpreted as impairment in

execution function through inability to plan a search strategy (Elvevag and Goldberg, 2000).

Individuals may also show deficits in speech, such as difficulty in synthesising or expressing

thoughts to others. Poor performance in cognitive tests is associated with understanding

rather than motivation (Green et al., 1992; Hellman et al., 1998). It is present independent

of institutionalisation (Johnstone et al., 1981) and medication (Mohamed et al., 1999),

in addition to having been described before chlorpromazine, the first antipsychotic, was

introduced in the 1950s.

The emphasis on cognitive deficits in schizophrenia marks a separation from bipolar disor-

der; though genetic risk for both may explain a small fraction of the variance in creativity

(Power et al., 2015), bipolar disorder itself has been associated with creativity and genius

(Andreasen, 1987; Ludwig, 1992; Jamison, 1996), perhaps due to periods of euthymia and

partial normality present in bipolar disorder but absent in schizophrenia, and does not ap-

pear to be associated with premorbid cognitive decline (Reichenberg et al., 2002) or poor

premorbid school performance (MacCabe et al., 2010).

1.2.3 Epidemiology

Incidence and prevalence measure what proportion of a population have an outcome. Inci-

dence measures new cases in a set timeframe, while prevalence includes all cases that are

counted for a single timepoint (point prevalence) or a period of time (period prevalence)

(Rothman, 2012). Median incidence of schizophrenia is estimated at 15.2 (7.7-43.0, 10th-

90th percentile) per 100,000 (McGrath et al., 2008). Lifetime prevalence of schizophrenia
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is often labelled as around 1%. However, estimates of prevalence differ by how the disorder

is defined and whether point prevalence, period prevalence (typically 12 months), lifetime

prevalence (proportion of individuals experiencing an outcome up to time of assessment) or

lifetime morbid risk (proportion that may experience outcome at some point) are reported.

In addition, prevalence can be affected by changing diagnostic criteria over time, ascertain-

ment bias due to study design, cultural and healthcare differences between countries and

regions and sample size, and is likely to be higher in specific populations, such as those in

the homeless population or in hospitals (Simeone et al., 2015).

Estimates of the prevalence of schizophrenia have been the subject of several systematic

reviews (Saha et al., 2005; McGrath et al., 2008; Simeone et al., 2015). The most frequently

cited are those of McGrath et al., 2008, which estimates the median (10th percentile, 90th

percentile) for point prevalence, period prevalence, lifetime prevalence and lifetime morbid

risk for schizophrenia to be 0.46% (0.19% - 1%), 0.33% (0.13% - 0.82%), 0.40% (0.16%,

1.21%) and 0.72% (0.31% - 2.71%). All systematic reviews note large heterogeneity between

estimates in studies. The global burden of disease study estimates point prevalence as lower,

at 0.28% (0.24 – 0.31 95% CI), though the authors note the difficulty in comparison to Saha

et al., 2005, due to differences in inclusion criteria and methodology (Charlson et al., 2018).

(a) Females (b) Males

Figure 1.1: Age of onset in schizophrenia for females (A) and males (B). Ages are shown
for first signs of disturbance (dotted line), first symptom of psychosis (dashed line) and
point of admission (solid line). Mean age of onset is given for each line. Adapted from
Jones, 2013; data from Hafner et al., 1994.

Prevalence is generally similar between geographical populations (Charlson et al., 2018).

Though estimates of 12-month period prevalence and lifetime prevalence show some differ-

ences across countries (Simeone et al., 2015), particularly with latitude (Saha et al., 2006),

many of the factors listed above may contribute to these, with estimates for psychosis shown

to be affected by prevalence type, population studied, disorder definition and study quality

(Moreno-Küstner, Martin, and Pastor, 2018). Within countries, schizophrenia prevalence

estimates vary between urban and rural areas, as outlined in section 1.2.6.
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The preponderance of males in schizophrenia (Figure 1.1) was noted early on by Kraeplin

(Kraepelin, 1919). Two systematic reviews have reported higher incidence in males; both

estimated incidence risk ratio of men to women at around 1.4 (Aleman, Kahn, and Selten,

2003; McGrath et al., 2004). The first of these undertook a random effects meta-analysis,

finding that the mean male to female incidence ratio of 1.42 (1.30-1.56 95% CI) was similar

in studies showing the lowest risk of bias, at 1.39 (1.15-1.68), and individuals over 64

years old, at 1.32 (1.13-1.55). Incidence was lower in studies sampled before 1980 and not

significantly different from 1 in developing countries (Aleman, Kahn, and Selten, 2003).

The second found a similar median ratio of 1.40 (0.9–2.4, 10th-90th percentile) (McGrath

et al., 2004). In addition to incidence, sexes also diverge in regard to presentation, course

and treatment response, with men typically more severely affected and more likely to show

negative symptoms, with a more favourable prognosis generally ascribed to women (Abel,

Drake, and Goldstein, 2010). Despite clear, robust sex differences in incidence, differences

in prevalence have not been observed (Saha et al., 2005; McGrath et al., 2008; Charlson

et al., 2018).

Age of onset for schizophrenia is reasonably broad, typically occurring around late ado-

lescence and early adulthood with onset less frequently commencing after the age of 45,

though it can and does occur outside these values. Onset also differs by sex (Figure 1.1).

On average, men receive a diagnosis at a younger age. Typically reported values for average

age of onset of around 28 in men and 32 in women are the mean (Burton, 2016); however,

right-tailed distributions are observed for both sexes. Age of onset for males has a strong

modal peak around 21-25 (Jones, 2013). The distribution of onset in women is bimodal

and less concentrated in late adolescence and early adulthood, with the first mode 3-5 years

later than in men at around 25-29, and the second at around 45-49 years which is suggested

to be related to menopause (Jones, 2013).

1.2.4 Diagnosis

As with other psychiatric disorders, diagnosis of schizophrenia relies on symptoms; there is

no clinical diagnostic test. Assessment is done through psychiatric history and a mental

state examination (MSE). The psychiatric history includes not just that of the individual

and family history of mental disorders, but also medical history and past drug and substance

use. The MSE is an informal assessment principally undertaken through questioning and

observation, in addition to formal cognitive tests where required. Areas of assessment fall

under appearance, behaviour, mood, speech, thoughts, perception, cognition and insight

(Burton, 2016).

Diagnostic procedures can be assessed for their reliability and validity. The former describes

consistency through agreement of independent assessments of the same individuals, while the

latter refers to the ability of a tool to assess its target outcome. The issue of reliability was

studied by several groups prior to standardisation of diagnostic procedures (Spitzer, Fleiss,

et al., 1974). Most of all, reliability was brought to the fore by the US-UK Diagnostic
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Project, in which a key study found individuals were more likely to be diagnosed with

schizophrenia in New York than London, and that use of standardised procedures - the

World Health Organisation (WHO) international statistical classification of diseases (ICD) -

greatly reduced these differences (Cooper et al., 1972). The two current diagnostic tools are

ICD-10 (Organization, 2004) and the diagnostic and statistical manual of mental disorders

5 (DSM-5) (Association et al., 2013). Earlier forms of these were already in existence

at the time of the US-UK Diagnostic Project, DSM-I having been created in 1952 and

psychiatric disorders first incorporated into ICD-6 in 1949; however, it was not until the

overhaul of DSM-III, led by Robert Spitzer, that diagnostic manuals found greater focus

on standardisation and reliability. The pooled estimate for test-retest reliability for DSM-5

diagnoses of schizophrenia is considered good (» = 0.46, 0.34-0.59 95% CI) (Regier et al.,

2013).

ICD-10 combines symptoms into 9 groups, labelled a to i, where items a to e refer to

delusions and hallucinations centred around FRS, f to disorganised speech, g to catatonic

behaviours, and h and i to negative symptoms and behavioural changes. Diagnosis by

ICD-10 criteria requires one or more clear symptom from a-d or two or more symptoms

from e to h. The resulting diagnosis may be one of 9 subtypes: paranoid, hebephrenic,

catatonic or undifferentiated schizophrenia, post-schizophrenic depression, residual, simple

or other schizophrenia, and schizophrenia unspecified. DSM-5 breaks symptoms down into

5 options: psychosis (delusions, hallucinations), cognitive symptoms (as disorganised speech

or behaviour) and negative symptoms. Two symptoms must be present, with at least one

being delusions, hallucinations or disorganised speech. Other possible diagnoses, such as

affective disorders, must be ruled-out, the symptoms present for over a month, and work or

social life must be disrupted for a diagnosis to be given.

DSM-5 and ICD-10 can both be used to frame a diagnosis of schizophrenia. They con-

trast principally in their use of subtypes of schizophrenia, which are present in ICD-10 but

absent in DSM-5, and preference for Schneider’s first rank symptoms, which are less promi-

nent in DSM-5 (Burton, 2016). Many studies have also used the DSM-IV or DSM-IV text

revision (TR); these are similar to DSM-5, but have more emphasis on first rank symp-

toms, presence of schizophrenia subtypes, and do not require one of the two symptoms to

be delusions, hallucinations or disorganised speech (Tandon, 2013). ICD-10 and DSM-IV

show good reliability for schizophrenia, with diagnoses more common in ICD-10 (Cheniaux,

Landeira-Fernandez, and Versiani, 2009). ICD-11, not due to be adopted until 2022 at the

earliest, reformulates the coding of schizophrenia to remove subtypes, replacing them with

first episode, multiple episode and continuous, in addition to "other specified episode" and

unspecified schizophrenia. Coding for ICD-11 relies on a dimensional approach, recording

individuals as being mild, moderate or severe for positive, negative, cognitive, psychomotor,

depressive or manic symptoms.
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Diagnosis in psychiatric genetics uses DSM-IV, DSM-IV text revision (TR), DSM-5 or ICD-

10 criteria, though may use older revised editions of DSM or ICD. Diagnosis in research is

often achieved partly through a structured or semi-structured interview, such as the diag-

nostic interview for genetics studies (DIGS) (Nurnberger et al., 1994), schedules for clinical

assessment in neuropsychiatry (SCAN) (Wing et al., 1990), schedule for affective disorders

and schizophrenia (SADS) (Endicott and Spitzer, 1987) or the structured clinical interview

for DSM (SCID) (First, 2014). The gold standard is a consensus best estimate diagnosis

from two independent psychiatrists using results from a structured clinical interview, family

psychiatric history and medical records, which has higher sensitivity than interview alone

(Kosten and Rounsaville, 1992).

Schizophrenia shares symptoms with many other psychiatric disorders; the border between

schizophrenia and other disorders, or even the absence of a disorder, can be ambiguous.

Many features overlap between schizophrenia and the affective psychoses from which it was

detached by Kraeplin. In particular, schizoaffective disorder and bipolar affective disorder

both consist of psychosis with an affective component. Diagnosis of schizoaffective disorder

requires equal prominence of affective and schizophrenia symptoms, while bipolar disorder

gives primacy to mood symptoms. Schizotypal disorder, induced delusional disorder, per-

sistent delusional disorder, acute or brief psychotic disorder and schizophreniform disorder

(DSM-5 only) are also part of the psychiatric differential for schizophrenia (Burton, 2016).

Schizoaffective disorder is often combined with schizophrenia to form cases in case-control

studies.

1.2.5 Genetic risk

Schizophrenia shows evidence of familial aggregation. That schizophrenia runs in families is

not a recent discovery. The phenomenon had long been observed informally for mental illness.

Bethlem Hospital, for instance, included an assessment of whether illness was inherited

as early as 1820 (Plomin et al., 2013); it is difficult to trace knowledge of inheritance in

schizophrenia back further, as clearly identifiable descriptions of schizophrenia do not appear

until the 1800s (Gottesman, 1991). However, with clinical descriptions of schizophrenia and

the growth of Victorian asylums came careful collection and study of data on heredity

and psychiatry on a scale which attracted statisticians such as Karl Pearson, and led to

the foundations of the quantification of the genetic component in psychiatric disorders, in

addition to fodder for ideas on eugenics and "feeblemindedness" (Porter, 2020). Genetic risk

for schizophrenia is now understood to be highly polygenic. It is commonly interpreted under

a liability-threshold model, whereby common and rare variants confer liability to the disorder

and only those surpassing a threshold of risk meet diagnostic criteria for schizophrenia

(Falconer, 1965; Gottesman and Shields, 1972) (Figure 1.2).
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Figure 1.2: Liability-threshold models assuming normally distributed polygenic liability to
schizophrenia. The prevalence, k , is used to derive the threshold at which individuals become
affected. DZ: dizygotic (fraternal) twins. Varying k are given using risks in relatives from
Gottesman, 1991.

1.2.5.1 Family studies

Ernst Rüdin, working alongside Kraeplin, is considered to have carried out the first sys-

tematic family studies (Gejman, Sanders, and Kendler, 2011), while more comprehensive

assessments of families were later undertaken by Franz J. Kallmann (Gottesman, 1991).

Family studies which track the pedigree of affected individuals (probands) indicate that risk

of schizophrenia increases with genetic relatedness. Pooling of 40 studies spanning a large

part of the 20th century illustrates these effects (Figure 1.3) (Gottesman, 1991). Risk is

highest for monozygotic (MZ) twins (48%), then progressively decreases for first, second

and third degree relatives, suggesting patterns of inheritance follow genetic relatedness. Risk

differs by group within first and second degree relatives. In particular, parents show lowest

risk (6%), followed by siblings (9%), children (13%) and dizygotic (DZ) twins (17%). The

low risk in parents is likely due to effects of selection against presence of schizophrenia in

marriage and parenthood. Values of siblings may be lower than children as siblings may

show deviations from the expected 50% genetic overlap due to crossing over in meiosis,

while DZ twins likely show the highest risk due to shared prenatal environment and identical

ages (Gottesman, 1991). Though presence of familiarity is essential for showing genetic

influence, it does not distinguish between genetic and environmental factors. To exclude the

chance of shared environment causing elevated risk in families, twin and adoption studies

are required.
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Figure 1.3: Risk in relatives. Risk is shown for decreasing relatedness and compared to
population lifetime risk of 1%. Reproduced from Baselmans et al., 2020; data from
Gottesman, 1991.

1.2.5.2 Twin studies

Twin studies support findings from family studies. Twinning occurs naturally and results

in a pair of individuals which derive from the same zygote which splits (monozygotic or

MZ twins, also called identical twins) or from separately fertilised zygotes (dizygotic or DZ

twins, also called fraternal twins). Around a third of twins are MZ, a third same-sex DZ and

the remaining opposite sex DZ. The majority of MZ twins share the same chorion and so

share a more similar prenatal environment to the third of MZ twins with separate chorions

(Phillips, 1993). Their study is made easier through now commonplace twin registers, such

as the Bethlem and Maudsley Twin Register established in 1948. Monozygotic (MZ) twins

have 48% concordance for schizophrenia and DZ twins have 17%, implying a strong genetic

component as MZ twins are genetically identical, excepting de novo mutations and epigenetic

variation, while DZ twins are 1st degree relatives sharing 50% of their DNA on average.

Twins allow for more than comparison of concordances; studies can be used to provide a

measure of broad-sense heritability, H2, the proportion of variance in a trait explained by

the combined influence of all genetic factors. This improves on family studies by separating

genetic and environmental factors and in its simplest form quantifies the relationship by
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taking twice the difference of DZ and MZ twin concordances. If MZ and DZ concordances

are equal, H2 = 0, and when MZ concordance is 1 and DZ 0.5, H2 = 1. In schizophrenia,

concordances are converted to correlations to assess heritability of liability to the disorder.

This produces a H2 of around 0.6 for schizophrenia using the concordances of MZ and

DZ twins from Gottesman, 1991, but these pooled estimates of concordance include studies

from the first half of the 20th century, before reliability became central to diagnostic criteria.

Studies employing standardised assessments have found heritability for schizophrenia be

around 0.80-0.85 (Cardno and Gottesman, 2000). Subsequent meta-analysis of 12 twin

studies produced a revised estimate of heritability for liability to schizophrenia of 0.81 (0.73-

0.90 95% CI) (Sullivan, Kendler, and Neale, 2003). This indicates the majority of variance

in liability can be explained by genetic differences. Caution is required in interpretation of

heritability as measures are specific to the studied population during the period they were

assessed for the observed outcome; the relative influence of genetics and environment can

change as environment becomes more uniform, known as equalising environments, such as

through the same standard of healthcare and education becoming available to all children,

causing the relative impact of genetic factors to be higher. The reverse may also occur where

inequality drives large differences in environment and so decreases measures of heritability.

In addition, heritability accounts only for differences between individuals in a group, and

cannot indicate the proportion of risk explained by genetics in a single person (Plomin et al.,

2013).

1.2.5.3 Adoption studies

Results from adoption studies concur with those of twin studies. They provide a method of

examining the effects of genetics and environment by taking advantage of another commonly

occurring process, and were first used to investigate IQ (Senden Theis, 1924). Offspring

of individuals with schizophrenia may be adopted by parents without schizophrenia, and

vice versa. This can be used to compare the influence of genetics and the prenatal envi-

ronment against post-natal environmental factors. Adoption studies allow for comparison

of the offspring with "genetic" parents which are biologically related but did not raise the

offspring, and with "environmental" parents which adopted the child but are unrelated. The

similarity of the biological or environmental parent with the child informs of the genetic and

environmental contribution. Where environmental and genetic parents also have biological

children, the effects of the family environment can be assessed similarly using "genetic" sib-

lings which have been adopted apart and "environmental" siblings which have been brought

together through adoption. These contrast with family members in normal family studies,

where parents and siblings are both "genetics plus environment". Design of adoption studies

may follow the "adoptees’ study method" by looking at the children of affected individuals

which have been adopted by unaffected parents, the "adoptees’ family method" which takes

affected offspring and compares presence of the outcome in their biological and adoptive

families, or more complicated designs.
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Despite evidence of heritability from twin studies, the early influence of parents and family

environment were believed to be the primary cause of schizophrenia prior to adoption studies

(Plomin et al., 2013). Adoption studies were first used in schizophrenia by Leonard Heston

using the adoptees’ study method. He compared 47 offspring adopted-away from a mother

with schizophrenia and matched offspring of unaffected parents, finding no events in bio-

logical offspring of unaffected parents, and 11% incidence in biological offspring of affected

parents (Heston, 1966). This is only slightly lower than the 13% risk for children of affected

parents given previously; these findings do not agree with any notion of schizophrenia as in-

duced by the home environment created by parents with schizophrenia. Subsequent studies

have supported this. In one such study, researchers also used the adoptees’ study method

to investigate individuals in a Danish sample (Rosenthal et al., 1968). Unlike Heston, they

utilised affected mothers and fathers. They followed-up those that had been hospitalised

and had offspring adopted-away, and compared to adopted-away offspring of unaffected bi-

ological parents; however, unaffected parents were classified by hospital records, with later

work indicating a substantial proportion showed psychiatric symptoms. Lower incidence of

7% was found in offspring of affected biological parents than in Heston, 1966, and no events

were found in adopted-away offspring of unaffected parents, replicating Heston’s work. Fur-

ther work in a Finnish sample also found around 10% of adopted-away offspring of affected

biological parents had schizophrenia (Tienari et al., 1985), while a study using the adoptees’

family method found 5% of proband and 0% of control adoptees’ 1st degree relatives had

schizophrenia (Kety et al., 1994). Adoption studies find no risk from being adopted by a

parent with schizophrenia. Family, twin and adoption studies take different approaches to

tackle the question of whether genetics influences liability to schizophrenia, yet all 3 arrive

at the conclusion that a substantial portion of risk can be attributed to genetic factors.

1.2.5.4 Issues in family, twin and adoption studies

Limitations of twin, adoption and family study methods must also be acknowledged. Family

studies are useful and informative, but cannot alone provide evidence of genetic influence on

an outcome as they only incorporate genetic-plus-environment parents and siblings. While

adoption studies can distinguish between genetics and environment, they too have draw-

backs. Designs may be limited where adopted children, or the biological and environmental

parents, are not representative of the broader population, though some evidence indicates

similarity between studied parents and those which have not adopted children (Plomin et

al., 2013). In addition, adoption studies do not directly compare genetics and environ-

ment, as prenatal risk is still contributed by biological mothers. This is of some concern

for schizophrenia where, as section 1.2.7 makes clear, several risk factors occur during preg-

nancy; there is some evidence that this effect may be minimal as paternal and maternal

half-siblings share similar risk (Kety, 1987). Finally, findings from adoption studies may

be muddied by introduction of correlation between biological and adoptive environments,

such as through selective placement or "open" adoptions where contact can occur between
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biological and adoptive families (Plomin et al., 2013). Twin studies face similar obstacles

in that twins may not be representative of the general population as they are typically born

premature with lower birth weight than singletons (Phillips, 1993), have differences in brain

structure (Knickmeyer et al., 2011), show lower IQ (Deary et al., 2005; Ronalds, De Stavola,

and Leon, 2005; Eriksen, Sundet, and Tambs, 2012), and may be distinctly different from

each other in that MZ twins show bigger birth weight differences from each other than DZ

twins, with differences most pronounced between monochorionic and dichorionic MZ twins

(Corey et al., 1979). However, twinning does not appear to be associated with schizophre-

nia (Rosenthal, 1960; Kendler et al., 1996). Studies have used physical characteristics to

distinguish between MZ and DZ twins before genetic techniques were available. In addition,

the increase in concordance from DZ to MZ could be partly due to environmental aspects

such as more similar treatment due to similar appearance, though the equal environments

assumption holds that environment is similar between DZ and MZ twins and tests of this

have found it justified (Plomin et al., 2013).

1.2.5.5 Linkage studies

Family, adoption and twin studies indicate not just that schizophrenia is partly genetic, but

that it is likely to be polygenic. Risk patterns in family studies do not agree with those

expected under monogenic dominant or recessive patterns of inheritance. For example, risk

in offspring where both parents are affected is just below 50% (Gottesman, 1991), while

such a cross should produce 100% or 75% of offspring with schizophrenia for recessive and

dominant Mendelian inheritance respectively. Under a highly polygenic model, multiple loci

of minor effects are expected, in contrast to loci of major effects expected under monogenic

model, or where there is low polygenicity (Falconer and Mackay, 1996).

Following cues that schizophrenia has a large genetic component and may be polygenic, the

search for genes began. Despite much focused effort, schizophrenia would refuse to yield

until larger association studies. Early efforts focused on linkage studies, which take a family-

based approach to search for regions of chromosomes which segregate with the disorder

in pedigrees. In the early days of the linkage era (1985-2005) (Burmeister, McInnis, and

Zöllner, 2008), several results were reported from linkage studies (for example, Sherrington

et al., 1988). However, later meta-analysis did not replicate findings (McGuffin et al.,

1990). Overall, reports from linkage studies did not indicate loci of major effects, and the

poor replicability of findings was negatively impacted by the low power of linkage studies to

detect loci with small effect sizes. A meta-analysis which incorporated genome-wide linkage

scans from 20 studies did indicate linkage in 2q, 6p and 8p (Lewis et al., 2003), with more

regions reported in a larger and more recent meta-analysis of 32 studies (Ng et al., 2009).

1.2.5.6 Candidate gene association studies

While linkage studies employ a family-based design to identify segregating sites, association

studies rely on unrelated participants. Initial association studies used a candidate gene
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approach, whereby variants in genes for which there is some theorised role in the disease or

disorder (biological candidate genes), or for which there is prior evidence from linkage studies

(positional candidate genes), are tested for allelic or genotypic differences between cases and

controls. Several promising findings emerged for schizophrenia from candidate gene studies.

Many associations were identified, including neuregulin-1 (Nrgn1) (Stefansson et al., 2002),

d-amino acid oxidase (DAAO) (Chumakov et al., 2002) and DTNBP1 (Straub et al., 2002),

with over 1,000 genes tested in total and over 1,700 studies undertaken by 2011 (Gejman,

Sanders, and Kendler, 2011). However, meta-analysis of 14 promising candidate genes

failed to replicate the findings in a European sample of around 1800 cases and 2000 controls

(Sanders et al., 2008). Failed replication was likely due to low sample size and inadequate

procedures for multiple testing correction (Gejman, Sanders, and Kendler, 2011).

1.2.5.7 Genome-wide association studies

Since 2007, association studies began spanning the genome (Burmeister, McInnis, and Zöll-

ner, 2008). As with candidate gene association studies, genome-wide association studies

(GWAS) rely on linkage disequilibrium (LD) between tagged variants which are incorporated

into a genotyping array and causal variants, and on the common-disease common-variant

hypothesis (Reich and Lander, 2001). GWAS test association for many common variants

(minor allele frequency > 1%) called single nucleotide polymorphisms (SNPs), which are

typically bi-allelic. As they include many more SNPs than candidate gene studies, hundreds

of thousands to millions, they can more span regions more densely and find associations

where it is unclear which genes may have been suitable for candidate gene studies. To

account for the large number of tests, GWAS are corrected for multiple testing at 5x10−8

(Dudbridge and Gusnanto, 2008).

Early studies found few loci. Two studies reported regions which fell short of genome-wide

significance and had large odds ratios. Lencz et al., 2007 reported hits for CSF2RA/SHOX

with an OR of 3.23 at p = 3:7x10−7, while a subsequent GWAS reported the AGBLI gene

at OR of 6.01 and p = 1:71x10−6. (Sullivan et al., 2008). Smaller effects were reported

for ZNF804A (O’donovan et al., 2008), at 1.12, and ADAMTSL3 at 0.68 (Need et al.,

2009). The International Schizophrenia Consortium (ISC) performed the first large meta-

analysis of over 3,000 cases and around 3,500 controls, finding associated SNPs in the

major histocompatibility complex (MHC) region at 6p.22.1 which passed the genome-wide

significance threshold (Purcell et al., 2009). Associated SNPs were largely intergenic but

causal loci were not clear due to long-range complex LD in the MHC region.

The ISC paper also examined the polygenic nature of schizophrenia by generating polygenic

risk scores (PRS). These use estimates of effect sizes for common variants from a training set,

derived by univariable tests of association with the outcome such as ffl2 or logistic regression.

Effect sizes are used as weights in a linear combination of variants in an independent target

set to create a single weighted score of additive risk. Testing PRS in the ISC data under

different significance thresholds found that average PRS were higher in individuals with
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schizophrenia than controls, providing strong support for a polygenic theory of schizophrenia

(Purcell et al., 2009).

Several large studies followed. Findings in the MHC region were mirrored in GWAS using

the molecular genetics of schizophrenia (MGS) data (Shi et al., 2009), and a GWAS using

the SGENE-plus data (Stefansson et al., 2009), while the latter also highlighted TCF4

and NRGN as genes of interest. Most notable are the meta-analyses using data from

the psychiatric genomics consortium (PGC). While 2009 had seen the first potential loci

for schizophrenia identified, 5 more were added with the first PGC study, labelled PGC1

hereon, which also implicated microRNA 137 (MIR137) to give 7 loci showing genome-

wide significant association with schizophrenia (Ripke et al., 2011), which was subsequently

extended to 22 loci (Ripke et al., 2013).

Figure 1.4: Manhattan plot of log(p-values), showing 125 genome-wide significant loci.
Reproduced from Pardiñas et al., 2018.

In 2014 the number of loci reaching genome-wide significance was greatly increased and the

evidence extended for a polygenic architecture in schizophrenia (PGC2; Ripke et al., 2014).

Ripke et al. identified 125 genome-wide associated SNPs, mapped to 108 loci. In addition to

finding a strong signal in the MHC region, supporting previous findings (Purcell et al., 2009),

loci were mapped to genes including DRD2, CACNA1C and GRM3, supporting a role for

the synapse and neurotransmitters in schizphrenia. Many were brain-expressed loci (Ripke et

al., 2014), with enrichment in the CNS for excitatory and glutamatergic neurons (Finucane

et al., 2018). Number of loci was extended again in the largest peer-reviewed meta-analysis

of European samples (Figure 1.4). 179 SNPs passed genome-wide significance, which were

mapped to 145 loci (Pardiñas et al., 2018). Using techniques including fine-mapping, these
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were reduced to 33 loci potentially explaining associations. Signal from common variants

was particularly enriched in loss-of-function (LoF) intolerant genes, accounting for around

30% of narrow-sense heritability.

Figure 1.5: Manhattan plot of log(p-values), showing 329 genome-wide significant loci.
Reproduced from Ripke et al., 2020.

Recent analysis from the PGC has applied GWAS of schizophrenia to East Asian samples

of over 22,000 cases and 35,000 controls to identify 21 associations reaching genome-wide

significance (Lam et al., 2019). The study also found similar genetic architecture between

European and East Asian populations, with 208 associations identified in a meta-analysis.

The overwhelming majority of association studies have been performed in European samples,

though more recently GWAS have been performed in other ancestries, such as Bigdeli et al.,

2020, and Lam et al., 2019, albeit with smaller sample sizes than European meta-analyses.

The latest meta-analysis of schizophrenia (PGC3), available as a pre-print (Ripke et al.,

2020), has identified 329 associations mapped to 270 loci using almost 70,000 cases and

around 236,000 controls (Figure 1.5). Loci were further reduced to 130 using fine-mapping.

Results corroborate previous findings in highlighting inhibitory and excitatory neurons and

aspects of synaptic function including organisation and synaptic transmission.

A polygenic theory for the architecture of schizophrenia was suggested decades before geno-

typing data made its testing possible (Gottesman and Shields, 1972), and has consistently

been supported by genome-wide association studies. This has been achieved partly by esti-

mating the variance in liability (narrow-sense heritability, h2) explained by common variants.

This is under a third, with values reported at 23% (Lee et al., 2012a), 32% (Ripke et al.,

2013) and 26% (Anttila et al., 2018); the current estimate from the largest European meta-

analyses is 24% (Pardiñas et al., 2018; Ripke et al., 2020), assuming a prevalence of 1%.

Polygenic scores also provide an assessment of polygenicity; they explain differing amounts
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of variance depending on the p-value thresholds used for inclusion of SNPs. PRS derived by

Ripke et al., 2014, explain a maximum of around 7% of variation in liability to schizophre-

nia, with just above 3% explained by genome-wide significant loci alone. Subsequent PRS

analyses have supported this, reporting just below 6% R2 on the liability scale (Pardiñas

et al., 2018). The largest study to date found 7.7% of variance was explained by PRS, with

2.6% explained by GWS loci (Ripke et al., 2020).

In tandem with accruing evidence for a polygenic architecture of schizophrenia, and the

involvement of dopamine, glutamate, GABA and LoF genes, there has been increasing evi-

dence for associations between PRS and aspects of schizophrenia (Legge et al., 2021) and

support for genetic correlation between psychiatric disorders (Grotzinger, 2021). Schizophre-

nia shows strong positive genetic correlation, rg , with bipolar disorder (rg = 0:7) (Stahl et

al., 2019), weaker positive correlation with major depressive disorder (rg = 0:34) and ob-

sessive compulsive disorder (rg = 0:33) (Anttila et al., 2018), and weak positive correlation

of around 0.22 for autism spectrum disorder (ASD), attention deficit hyperactivity disor-

der (ADHD) and anorexia nervosa (Anttila et al., 2018). High genetic correlation between

schizophrenia and bipolar disorder is well-replicated, supported by evidence from family data

which show significant increased risk for either disorder in relatives of probands (Lichten-

stein et al., 2009), and challenges the Kraeplinean split between the two disorders (Craddock

and Owen, 2010). Schizophrenia also shows genetic correlation with cognitive function, as

previously noted, BMI, cardiovascular disease, cannabis use (expanded on in section 1.2.6),

volume of bain structures and personality traits such as neuroticism (Smeland et al., 2020).

(a) Psychiatic disorders (b) Physical, behavioural and cognitive outcomes

Figure 1.6: Genetic correlations, rg , between psychiatric disorders (A) and between
psychiatric disorders and physical, behavioural and cognitive outcomes (B). Reproduced
from (Anttila et al., 2018).

1.2.5.8 Limitations of GWAS

Linkage and candidate gene studies were both underpowered, hampered by small sample

sizes and insufficiently stringent procedures for multiple comparisons, resulting in failed

replications and an period of uncertainty about what genes may be involved in schizophrenia.

Furthermore, the candidate gene approach relied on prior knowledge of which genes to test
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for association. GWAS which combined many samples together largely ameliorated these

concerns by increasing sample size, improving marker coverage and applying appropriate

correction to the multiple testing problem. However, GWAS require large sample sizes to

detect modest effects, replication of findings, and the reliance of GWAS on LD means the

route from association to causal variant is indirect (McCarthy et al., 2008). As reported

for FTO in obesity, connections between associated variants and risk genes are not always

simple (Smemo et al., 2014). Furthermore, because of the reliance on LD, GWAS are only

well-powered to consider common variants, and therefore usually do not include some of the

strongest risk factors for schizophrenia.

1.2.5.9 Rare variants

Rare variation (minor allele frequency < 1%) has been associated with schizophrenia as copy

number variants (CNVs), single nucleotide variants (SNVs) and indels (small insertions or

deletions) (Legge et al., 2021).

CNVs are large duplications or deletions in the genome that are greater than 1 kilobase

(kb) (Kirov, 2015). Techniques such as array comparative genomic hybridisation (aCGH)

have been utilised for their detection, as CNVs are not visible by karyotyping; they are now

routinely assessed using genotyping arrays. Syndromes that result from CNVs have been

labelled genomic disorders (Lupski, 1998). CNVs associated with schizophrenia show high

penetrance relative to common variants (Kirov et al., 2014). The first locus to be robustly

associated with schizophrenia was a CNV, 22q11.2 deletion (Murphy, Jones, and Owen,

1999), which causes velocardiofacial syndrome (VCFS), also known as DiGeorge Syndrome

or 22q11.2 deletion syndrome. VCFS is a rare 1.5Mb or 3Mb deletion, occurring in less

than 0.1% of foetuses, and has characteristic physical effects including hypoparathyroidism,

immunodeficiency and congenital heart disease (McDonald-McGinn et al., 2015). Follow-

up of adults with VCFS demonstrated an excess of psychiatric disorders, with around a

quarter having schizophrenia (Murphy, Jones, and Owen, 1999). In addition to high rates of

schizophrenia in individuals with VCFS, investigation of schizophrenia samples found some

participants with previously unidentified deletions on 22q (Karayiorgou et al., 1995), with

around 0.3% of individuals with schizophrenia suggested to have a 22q11.2 deletion (Rees

et al., 2014).
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Figure 1.7: Manhattan plot of gene-based associations from CNV losses (a) and gains (b).
Red and blue lines indicate family-wise and false discovery rate correction at 5% respectively.
Reproduced from Marshall et al., 2017.

At least 12 CNVs have now been identified for association with schizophrenia, including

1q21.1 deletion and duplication, 2p16.3 (NRXN) deletion, 3q29 deletion, 7q11.23 (Williams-

Beuren syndrome; WBS) duplication, 15q11.2 deletion, 15q11-q13 (Angelman/Prader–Willi

Syndrome; AS/PWS) duplication, 15q13.3 deletion, 16p11.2 duplication, 16p12.1 deletion,

16p13.11 duplication and 22q11.2 deletion (Rees et al., 2014; Rees et al., 2016). Together

they are present in 2.4% of individuals with schizophrenia and also result in higher risk for

neurodevelopmental disorders including ASD and developmental delay (DD) (Kirov, 2015).

Recent analysis of CNVs by Marshall et al., 2017, found 8 regions passing genome-wide

significance: 1q21.1, 2p16.3, 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and

22q11.2 (Figure 1.7). While some odds ratios for schizophrenia in more common CNVs are

low, at around 2, others are over 50 (22q11.2 deletion) or frequently cannot be calculated

(3q29 deletion) when carriers are not observed in controls. Additional CNVs also show

association and may become significant as sample sizes increase (Kirov et al., 2014; Marshall

et al., 2017). Risk for schizophrenia in CNV carriers is also affected by common variants

Tansey et al., 2016.

Rare SNVs and indels have been investigated by exome studies, typically binning variants

together into genes or gene sets to improve power and reduce multiple testing. Cost and

sample size remain issues for sequencing studies, with whole genome sequencing studies still

limited in size. Early exome studies also suffered from small sample sizes, with number of
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cases less than 100 (Avramopoulos, 2018). Drawing on a larger sample of around 5000, half

of which were cases, Purcell et al., 2014, identified that distributed rare variants collectively

impact risk for schizophrenia in a polygenic manner. These results are supported by later

work employing around 10,000 cases and over 13,000 controls from exome genotyping arrays,

with both studies highlighting targets of the FMRP protein (Leonenko et al., 2017). Ultra-

rare protein-disrupting variants have also been highlighted in a Swedish sample including

close to 5,000 cases (Genovese et al., 2016). Analysis of de novo variants, which are

absent in the parents of probands, has found enrichment in LoF intolerant genes (Rees

et al., 2020). Most recent analysis by the Schizophrenia Exome Sequencing Meta-Analysis

(SCHEMA) Consortium, available as a pre-print, identified 10 genes containing risk variants

for schizophrenia, with a range of odds ratios similar to those observed for CNVs (Singh

et al., 2020). Collectively, studies outline a case for polygenic impact of rare and ultra-

rare disruptive mutations, particularly in LoF intolerant genes and those involved in FMRP

targets. Results of CNV and exome studies both identify risk factors with large effect

sizes which confer risk for schizophrenia and developmental disorders including ASD and

developmental delay (DD) (Kirov, 2015; Singh et al., 2020). Analysis from SCHEMA and

PGC3 also indicate convergence of rare and common risk of schizophrenia (Ripke et al.,

2020; Singh et al., 2020).

Figure 1.8: Distribution of effect sizes for genetic risk factors for schizophrenia. Log(effect
size) is shown against log(allele frequency). Reproduced from Legge et al., 2021.

Overall, studies indicate that genetic risk for schizophrenia is complex. Family, adoption

and twin studies support a large role for genetic factors in schizophrenia risk, with incidence

of below 1% for schizophrenia increasing with genetic relatedness to around 10% for 1st-

degree relatives and close to 50% for MZ twins. Though many early efforts in linkage

and candidate gene studies found difficulty with replication, CNV studies, modern GWAS
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and recent exome studies have found robust associations and have strongly reinforced the

notion of schizophrenia as a polygenic disorder. Common and rare variants both contribute

to the genetic architecture of schizophrenia and confer increased liability for the disorder

(Figure 1.8). Genetic studies have also demonstrated widespread pleiotropy, with genetic

overlap occurring between many psychiatric disorders; schizophrenia shows particularly high

symptomatic and genetic correlation with bipolar disorder.

1.2.6 Environmental risk

Though heritability is high for schizophrenia, it is important to reiterate that monozygotic

twin concordance is estimated at around 50%, and that affected individuals do not typically

have an affected relative (Gejman, Sanders, and Kendler, 2011), leaving substantial room

for non-genetic factors. Offspring of discordant MZ twins also show the same incidence of

schizophrenia (Kringlen and Cramer, 1989), confirming both inherited risk in the unaffected

twin despite no manifest illness, and the role of environmental factors in schizophrenia

risk through discordance despite almost identical genetic risk. Non-genetic factors may be

epigenetic or involve shared or non-shared environment. While genetic risk confers some

liability to schizophrenia, environmental factors may further predispose or precipitate onset

(Murray and Fearon, 1999). Non-genetic factors are labelled as environmental factors here,

but may still be partly heritable. They are loosely grouped into prenatal and postnatal

events.

1.2.7 Prenatal factors

Risk factors for schizophrenia have also centred around insults in utero or in delivery. These

include infection and famine during pregnancy, obstetric complications and season of birth.

Maternal infection in pregnancy is associated with several neurodevelopmental conditions.

Ecological studies implicated the 2nd and 3rd trimester as risk periods for influenza infection

on the likelihood of schizophrenia in the foetus, mainly through investigations of the influenza

pandemic of 1957 (for example, Mednick et al., 1988); however, methodological limitations

necessitated the use of birth cohort studies, as ecological studies only captured mothers that

were pregnant during the pandemic, and could not confirm exposure to influenza. Birth

cohort studies have supported a role for prenatal infections in schizophrenia risk, including

influenza, toxoplasma gondii and genital or reproductive infections, potentially via increases

in maternal cytokines in response to infection (Brown and Derkits, 2010).

Evidence for the role of prenatal malnutrition comes primarily from the Dutch hunger winter,

1944-45, wherein extensive military records and a German blockage in part of the Netherlands

combined to produce a natural experiment wherein a severe shortage of food occurred for

only a limited period of time (Hoek, Brown, and Susser, 1998). Studies of this phenomenon

have investigated disorders in adulthood for individuals who were exposed to the famine

in utero. These have found associations with schizophrenia and schizophrenia spectrum
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disorders, in addition to congenital CNS abnormalities (Susser and Lin, 1992; Susser et al.,

1996). Risk for these was defined as exposure during the 1st trimester, though exposure to

famine during the 2nd and 3rd trimesters has also been indicated for increased risk of affective

psychosis in adulthood (Brown et al., 1995). A similar natural experiment occurred in China,

1959-61, which has replicated the results of increased schizophrenia risk in individuals who

experienced prenatal famine (St Clair et al., 2005).

The season of birth (SOB) effect is hypothesised to be related to maternal infection. As with

other epidemiological evidence for environmental risks, the association is not new; it was

reported first by Tramer in 1929 with additional evidence accumulating over the 20th century

(Bradbury and Miller, 1985). Strong evidence has been found for weak effects of winter birth

on increased risk of a later diagnosis of schizophrenia, with odds ratios generally lower than

those or other known factors such as urbanicity (Boyd, Pulver, and Stewart, 1986; Baron

and Gruen, 1988; Mortensen et al., 1999). These findings have replicated in many studies

in the Northern hemisphere (Davies et al., 2003), with weaker but still elevated effects in

the Southern hemisphere (McGrath and Welham, 1999). The causal factors underlying the

SOB effect are not clear, though maternal nutrition and infection are among those suggested

(Torrey, Torrey, and Peterson, 1977).

Neurodevelopmental insults are also implicated through obstetric complications, which have

been shown to occur more frequently in the births of children who go on to receive a di-

agnosis of schizophrenia (Clarke, Harley, and Cannon, 2006). Confidence has mounted

for three areas of risk: prenatal complications such as preeclampsia and prenatal diabetes,

delivery complications, and abnormal development or growth in pregnancy, evidenced by di-

minished head circumference, low birth weight or congenital malformations (Cannon, Jones,

and Murray, 2002). Pooled effects are generally reported; identifying specific causal factors

has proved difficult, though hypoxia has been suggested as the likely common event in pre-

natal and delivery complications (Cannon, Jones, and Murray, 2002), and findings in some

studies may be skewed by factors such as recall bias, where mothers have been asked to

recall obstetric complications (Geddes and Lawrie, 1995). Prenatal factors, including malnu-

trition, obstetric complications and maternal infection have been noted for their inconsistent

replication in regards to effects and which trimester is affected (Van Os, Kenis, and Rutten,

2010). Furthermore, as mentioned in section 1.2.5, findings from adoption studies show

similar risk for maternal and paternal half-siblings of adoptees with schizophrenia, with both

showing just above 15% risk for half siblings of affected adoptees and less than 5% for half-

siblings of unaffected adoptees, suggesting a lower impact from the prenatal environment

(Kety, 1987).

1.2.7.1 Postnatal factors

Attempts to apply psychodynamic theories to explain schizophrenia have met with some

success. The idea of stressful life events, which grew out of such theories, found that good

or bad events which typically cause stress on individuals, such as marriage or death of a
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loved one, are more common in those which go on to experience schizophrenia (Brown and

Birley, 1968; Day et al., 1987). Not all associations have been replicated (Norman and

Malla, 1993a) and assessment of life events is made challenging by defining stressful events,

as patients often show cognitive disturbances and worsening of function in the prelude to

diagnosis, and so events such as job loss may be consequence, rather than cause (Norman and

Malla, 1993b). Attempts to explain schizophrenia through family risk, also a consequence

of psychodynamic theories, have found more mixed results. Higher expressed emotion (EE)

in households has been linked to higher likelihood of relapse (Brown, Birley, and Wing,

1972), though not as an aetiological factor. This finding has been well replicated; EE is now

known to be one of the most robust predictors of relapse in schizophrenia (Bebbington and

Kuipers, 1994; Butzlaff and Hooley, 1998). However, the suggestion that abnormal speech in

schizophrenia is a learned behaviour through unclear and conflicting messages from parents

during childhood (Wynne and Singer, 1963) was popular and popularised in the ideas of R.D.

Laing, but was not replicated in later work (Hirsch and Leff, 1975). Psychodynamic ideas of

family risk also led to mother-blaming that is typical for neurodevelopmental disorders such

as ASD, with the damaging and now roundly disproved term "schizophrenogenic mother",

coined by Frieda Fromm-Reichmann in 1948, becoming widely known.

Some of the most long-standing and robust evidence for environmental risk in schizophre-

nia has come from epidemiological studies. Two of these, already mentioned in discussions

of incidence, are sex and geography, with risk greater in males and associated with coun-

try, especially latitude. Geography is also implicated through urbanicity, as incidence of

schizophrenia is higher in more urban areas (McGrath et al., 2004). Early evidence of this

association has largely held up through subsequent studies (Vassos et al., 2012). Expla-

nations revolve around the so-called "breeder" and "drifter" or "social drift" hypotheses.

The former suggests the urban environment plays a causal role in schizophrenia, while the

latter implicates prior risk of schizophrenia as causing individuals to move into urban areas; a

similar argument, that unaffected individuals are more likely to move out from urban to rural

areas is known as the "social residue" hypothesis. The cause of the urbanicity-schizophrenia

association is unknown. Social factors associated with urban environments such as greater

population density, overcrowding, and deprivation may be involved, while other potential

causal factors in development such as infection, pollution and obstetric complications have

also been suggested (Murray et al., 2002).

Migration has been associated with increased risk of schizophrenia. Early evidence for this

came from studies of migrants to the United States (Ødegaard, 1932). In the UK, the

most well-investigated findings come from second generation descendants of Afro-Caribbean

migrants to the UK, for which an increased risk of schizophrenia is observed (Harrison et

al., 1988). Though studies have been less successful for some other migrant groups to

the UK (Harrison, 1990), the effect of migration status is seen in other countries for other

migrant groups, implicating migration rather than a specific population of individuals. Causal

factors in migration may be somewhat linked to urbancity, as migrants are more likely to
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reside in cities, however, the association of migration is only partly reduced by accounting

for urbanicity (Murray et al., 2002). It has been suggested that individuals who migrate

may be more likely to have less family ties or support or more deprivation before uprooting,

and so may already be at increased risk for schizophrenia prior to migration, known as

Ødegaard’s selective migration hypothesis (Ødegaard, 1932). This has not received support

from studies (Selten et al., 2002; Ven et al., 2015). Instead, the explanation of increased

risk from social exclusion, isolation and racism is favoured (Henssler et al., 2019). Such a

suggestion ties-in with the higher incidence of schizophrenia observed in ethnic minorities,

which is elevated when minorities constitute a smaller proportion of the population in a

region (Boydell et al., 2001). Increased likelihood of Afro-Carribean migrants to the UK

to encounter psychiatric services or be misdiagnosed may contribute to the effect (Sharpley

et al., 2001). Findings of urbanicity and migration may also be related to deprivation.

Indices of social deprivation, which calculate a weighted score to summarise the degree of

deprivation in a region, have been related to higher incidence of schizophrenia both at birth

and presentation (O’Donoghue, Roche, and Lane, 2016). Together these findings implicate

the social environment in elevated risk for schizophrenia.

Increased cannabis use has often been noted in individuals with schizophrenia. This as-

sociation has received plausible arguments for a causal role of liability to schizophrenia in

increasing the likelihood that an individual would seek out cannabis, or of cannabis consump-

tion increasing schizophrenia risk in itself, where the former may be due to common causal

factors shared between schizophrenia and cannabis use, or that cannabis may be sought to

alleviate symptoms of schizophrenia. Evidence from early studies obtaining information on

substance use prior to onset suggested a causal relationship. Some of the strongest evidence

to this effect has been found in studies of Swedish conscripts (Andréasson et al., 1987;

Zammit et al., 2002) and longitudinal studies (Moore et al., 2007). More recent analysis of

genetic data indicate schizophrenia increases risk of cannabis use. A Mendelian randomisa-

tion study found evidence for schizophrenia increasing risk of cannabis use, but also weaker

evidence of increased schizophrenia risk as a result of cannabis use (Gage et al., 2017), while

another Mendelian randomisation study found schizophrenia increases risk of cannabis use

(Vaucher et al., 2018). The most well-powered study to detect effects found genetic overlap

between cannabis use and schizophrenia, and evidence for a causal role of schizophrenia

in risk of cannabis use (Pasman et al., 2018). Subsequent analysis is consistent with the

interpretation that genetic liability to schizophrenia increases risk of cannabis use (Jones

et al., 2020).

An additional factor in early childhood associated with increased risk for schizophrenia is

childhood trauma. Such studies posit that trauma experienced in childhood, typically includ-

ing sexual or verbal abuse, parental neglect or bullying, can increase risk for later diagnosis

of schizophrenia. Though early work found inconsistent results (Van Os, Kenis, and Rutten,

2010), subsequent longitudinal studies have shown that childhood events inflicted by par-

ents or peers (Arseneault et al., 2011), or peers alone (Schreier et al., 2009) increase the
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likelihood of reporting symptoms of psychosis in early adolescence, including after correcting

for environmental factors and genetic risk (Arseneault et al., 2011). A meta-analysis of

childhood adverse events found these associations are similar across study designs (Varese

et al., 2012). Childhood trauma is also associated with increasing severity of hallucinations

and delusions (Bailey et al., 2018).

Figure 1.9: The interplay of genetic and environmental risk factors. Potential environmental
interactions (ExE) and gene-environment interactions (GxE) are annotated. Reproduced from
Stilo and Murray, 2019.

Collectively, environmental risk factors contribute significantly to liability to schizophrenia,

with risk converging on insult in the intrauterine environment and adverse social experiences

during childhood and early adolescence. These findings support the notion of schizophrenia

as a complex disorder influenced by both genetic and non-genetic risk (Figure 1.9). They

also tie-in with theories of increasing predisposition to schizophrenia from both genetic and

environmental factors, suggested to occur via dysregulation of the dopamine system (Howes

and Kapur, 2009), such that stressful events have a far greater impact and precipitate

psychosis (Howes et al., 2017).

1.3 Prediction

1.3.1 Does psychiatry need prediction?

Prediction modelling and explanatory modelling are distinct endeavours. As elaborated in

chapter 2, the latter is often the focus of statistical methods which aim to draw inference
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about a population by fitting a model to a sample; in a frequentist setting, these may be

used to test hypotheses about the process under study (Bzdok, Altman, and Krzywinski,

2018). By contrast, prediction aims to assign a value to unobserved data, and so aligns

more clearly with the aims of precision medicine (Bzdok, Varoquaux, and Steyerberg, 2020).

The distinction is important as increasingly large datasets allow for reporting of p-values

which fall below significance thresholds despite small effect sizes; such associations may be

genuine yet not predictive (Bzdok, Engemann, and Thirion, 2020).

Leo Breiman, who developed random forests (Breiman, 2001), bagging (Breiman, 1996)

and introduced a form of decision tree alongside Friedman and Stone (Breiman et al.,

1984), wrote of the distinction between what he called "the two cultures" of statistical

modelling, prompting much discussion (Breiman et al., 2001). Breiman, whose experience

is coloured by time spent on both abstract mathematics and applied statistics, in academia

and industry, argued against excessive focus on "data models", such as regression models,

which assume a stochastic data generating process and use this to estimate coefficients

for use in explanation and possibly prediction. Instead, he advocated for a shift to include

more "algorithmic models" which regard this process as unknown, and suggested a wider

statistical toolset focused on practical problem solving would prove fruitful.

Prediction is an important part of achieving improved outcomes in psychiatry, and machine

learning approaches are one, but by no means the only, method of achieving this.

1.3.2 Machine learning for precision psychiatry

The picture described in section 1.2 is one of complexity. Many factors have been associated

with liability to schizophrenia, though none alone are sufficient to cause the disorder. As it

stands, univariable tests of association are commonplace, despite longstanding critiques of

such practices from statisticians (Sun, Shook, and Kay, 1996; Harrell Jr, 2015; Steyerberg

et al., 2019). A drive for both prediction and multivariable models is therefore warranted.

Faced with a multifactorial outcome, supervised machine learning is a promising tool for

several reasons.

First, machine learning puts firm focus on prediction. Machine learning methods trade-off

between bias and variance to improve prediction; this approach can partially account for the

"winner’s curse" that sees effect sizes from association studies decrease upon replication, as

estimation in the training data can be constrained in order to shrink coefficient estimates.

Approaches also employ training procedures to optimise for prediction, including resampling

approaches which allowing the tuning of models to maximise generalisation, not association.

Second, machine learning approaches can handle datasets where predictors, p, outnumber

observations, n, known as the p > n scenario, allowing for use of multivariable prediction

models without resorting to univariable tests of association. In psychiatry, a large increase

in the volume of available data has been observed and is expected to continue (Monteith

et al., 2015); machine learning is a potential method for dealing with this (Iniesta, Stahl,
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and McGuffin, 2016). The p >> n case, a situation where the number of predictors is much

greater than the number of observations, is a common situation in genomics and other

omics areas where a huge number of predictors are assayed. In particular, models which use

embedded predictor selection, discussed in chapter 2, may perform well when only a portion

of predictors are associated in high dimensions.

Third, machine learning allows for flexibility. Though some methods are linear additive

models, many are able to learn complex patterns including non-linear predictor-response

relationships and interactions between predictors. While additive models are common in

schizophrenia, interactions may explain aspects of "missing heritability" (Eichler et al., 2010;

Woo et al., 2017), a term arising from the gap between twin study estimates of heritability

and variance explained by significant GWAS loci. Gene-gene and gene-environment interac-

tions have been reported in schizophrenia (Nicodemus et al., 2014; Bernardo et al., 2017);

gene-environment interactions may even be expected given suggested roles of genetic liabil-

ity and environmental stresses in the aetiology of schizophrenia, as discussed in section 1.2

(Van Os, Kenis, and Rutten, 2010). Notably, these features of machine learning contrast

with PRS, which typically apply no shrinkage to coefficient estimates, use univariable tests

of association and do not consider deviations from additivity within or between loci.

1.3.3 Challenges in machine learning

There are several challenges remaining for applying machine learning in psychiatry. Great

successes in machine learning have typically come off the back of a triad of methodolog-

ical improvements in modelling (for instance, Krizhevsky, Sutskever, and Hinton, 2012),

increased computational power, and the greater availability of large well-labelled datasets

(Halevy, Norvig, and Pereira, 2009). While strides have been made in adapting machine

learning approaches to high performance computing (HPC) clusters (Herrera et al., 2019;

Bayat et al., 2020), algorithms are typically optimised to handle a large number of observa-

tions, not the extremely large number of predictors seen in genomics (Genuer et al., 2017).

An area where deep learning has excelled is image recognition, where it now exceeds human

performance. ImageNet, a standard image dataset often used for pre-training deep learning

models known as convolutional neural networks, contains over 14 million images and 20,000

labels, which have been carefully manually curated (Deng et al., 2009). By contrast, the

most recent analyses in schizophrenia have obtained impressive but much smaller sizes of

69,369 and 24,248 cases for GWAS and exome data respectively (Ripke et al., 2020; Singh

et al., 2020), and the strategy for increasing dataset sizes in genetics is often partly to re-

lax outcome definitions. Compounded with the potential for misclassification in psychiatry,

and the absence of any objective laboratory test to confirm diagnoses, it is unclear whether

machine learning models can repeat previous successes in psychiatric genetics.

Methodological considerations must also be raised. As examined in chapter 3, application of

machine learning to psychiatric genetics is relatively recent and has not been widely adopted.

Teething problems are expected when any methodology is introduced to a field. Early issues
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in GWAS of schizophrenia, for example, have now been ironed-out (Flint and Munafo, 2014).

At the moment it is not only unclear what the predictive performance is of machine learning

methods in psychiatric genetics, but also how and how well they are being applied.

1.4 Aims

The aim of the thesis is to systematically evaluate the predictive performance of a range

of machine learning models for prediction of schizophrenia. This will be achieved through

an assessment of predictive performance and potential bias in the literature, examination of

how approaches perform under simulations of main and interaction effects, and application

to genetic and non-genetic predictors in real data.

1.5 Outline of thesis

Chapter 2 gives an overview of machine learning methods used in the thesis, including

techniques for the training and evaluation of models. After considering the general princi-

ples of machine learning which are germane to the thesis, aspects of model development

and validation are discussed, including cross-validation procedures and scalar measures of

model performance. The remainder of the chapter expounds on the techniques available.

With reference to logistic regression, methods including penalised regression, support vector

machines, random forests, gradient boosting and deep learning are introduced.

A systematic review of machine learning models for genetic prediction in psychiatry is un-

dertaken in chapter 3 to establish how well methods perform. Discrimination is compiled

for 77 models across 13 studies, including 4 psychiatric disorders. Crucially, the review also

assesses within-study risk-of-bias, a procedure which is often ignored in reviews of machine

learning, but is essential for interpreting results. Methodological practices and pitfalls are

also documented for all models.

The question of whether machine learning models can approximate interactions between

loci and use them to improve prediction is taken-up in chapter 4. This chapter further

considers additive models, the effects of introducing LD, how well models perform under

both p > n and n > p scenarios, and whether variations of simulation parameters affect

predictive performance.

Chapter 5 considers the application of machine learning approaches to genetic and non-

genetic factors in real data for schizophrenia. Taking advantage of the deeply phenotyped

UK Biobank dataset, models and modelling procedures are assessed for discrimination and

calibration. Focus is paid to the importance of multivariable models which include genetic

and environmental factors, adjustment for potential confounding from population structure,

and methodological procedures for training and calibrating models in a nested case-control

sample.
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Much optimism surrounds machine learning’s potential role in precision psychiatry. A realistic

assessment of performance is necessary to guide whether its application may be useful.

Previous studies have often either introduced a novel machine learning method or compared

a selection of existing methods without reference to a baseline such as logistic regression

or polygenic risk scores. Furthermore studies often use inadequate procedures for model

development and validation. In this thesis, a wide range of supervised machine learning

methods are systematically compared against polygenic risk scores and logistic regression to

assess their predictive performance in schizophrenia.
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Chapter 2

Methods

2.1 Introduction to machine learning

2.1.1 Learning from data

The two canonical definitions of machine learning are separated by around 40 years. In

1959, Arthur Samuel defined machine learning as the "field of study that gives computers

the ability to learn without being explicitly programmed". In 1997, Tom Mitchell gave the

definition that "a computer is said to learn from experience E with respect to some task T

and some performance measure P, if its performance on T, as measured by P, improves with

experience E". Both definitions are still relevant today, and point to a methodology that

eschews hard-coding of pre-defined rules in favour of learning from data.

In this thesis, supervised machine learning is taken to be a collection of methods for esti-

mating the function that correctly maps inputs (often genotypes) of individuals to outputs

(schizophrenia status). Under this scenario, the learning problem can be constructed as

shown in Figure 2.1, wherein the true target function f is unknown and a dataset D is

available, consisting of observation-outcome combinations, (x1; y1); : : : ; (xN ; yN), and xi is

a scalar or vector for all i = 1; : : : ; N. Each observation x and outcome y is drawn from

the space of possible inputs X and outputs Y.

As f is unknown, the aim is to approximate f using D by a function g that follows the

formula g : X → Y. Obtaining g is not trivial. To do so, a learning algorithm A is applied

which draws potential functions h from the set of all hypotheses obtainable by the learner,

H. A is our supervised machine learning method. The process of approximating f is learning

from data.

In practical terms, the parameters of g are estimated automatically from the data. Hyper-

parameters are also learned empirically following input from the user. The values can be

used to adjust properties of the model, and may constrain or enable flexibility of g . The

options for training and evaluating the resulting models can be complex and are the subject

of later sections.
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Unknown target function
𝑓 ∶ 𝑥	 → 𝑦

Training examples
(x1,y1), (x2,y2),…,(xN,yN)

Learning
Algorithm

𝒜

Hypothesis set
ℋ

Final hypothesis
𝑔 ≈ 𝑓

Figure 2.1: Supervised machine learning takes labelled training examples
(x1; y1); : : : ; (xN ; yN) to approximate an unknown function f using a learning algorithm A
with hypothesis space H. The output, g , is the supervised machine learning model. Adapted
from Abu-Mostafa, Magdon-Ismail, and Lin, 2012

2.1.2 Types of learning

There are several ways to divide up the array of machine learning methods into categories.

Problems are labelled as either classification or regression depending on the outcome. Prob-

lems with a numerical output, such as age of onset for a disease or quantitative traits like

cognitive scores are regression problems, even though the method used to solve them may

not be a form of regression in the statistical sense. Problems with categorical outcomes,

like disorder-status, medication response or disease staging, are classification problems.

Machine learning can also be partitioned into supervised and unsupervised learning. Su-

pervised learning, as previously described, uses input data which come labelled with the

outcome. The sample is then often split into training and test data, with the labels removed

from the test data. The association with features and labels are learned from the training

set and evaluated on the test set. By contrast, unsupervised learning involves unlabelled

data for which we wish to detect patterns or structure in the data. Additional groups include

semi-supervised learning, where some of the data are labelled, and reinforcement learning,

which aims to train an agent in an environment to learn an optimal strategy, or policy,

through rewards and penalties.

Methods may be further categorised as parametric and non-parametric. In a dataset with

many predictors, and therefore lots of parameters to learn, parametric models can be useful.

They simplify the estimation problem to a restricted number of parameters; this imposed

structure makes for easier computation, a simpler and more explainable model, and may

possibly mean better generalisation through reduced variance. However, it also increases

bias; consequently, h is likely to be a poorer approximation of the true form of our unknown

function f . Non-parametric methods can fit a wider variety of the potential forms of f as
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they make fewer assumptions about the relationships in the data, but run the risk of having

high variance through overfitting.

2.1.3 Machine learning, statistics and statistical learning

The distinction between machine learning and statistics can be nebulous. The definition

given in section 2.1.1 could be seen to include methods such as linear and logistic regression;

many of the same problems and methods can be categorised under both fields.

Generally, supervised machine learning involves steps such as hyperparameter tuning and

resampling to find the predictors and model which maximise performance empirically. By

contrast, statistics may be more concerned with choosing the most appropriate modelling

procedures up-front in order to draw inference from a sample. The two fields also dif-

fer in language used to describe the same phenomenon. Terms such as "parameters" or

"variables" are used more commonly in statistics, while "features" or "weights" are more

frequently used in machine learning. Perhaps the most reasonable distinguishing features of

machine learning then are both the type of method used and the way in which it is applied.

A more recent suggestion is that this categorisation runs the risk of dichotomising a con-

tinuous characteristic. A potential solution to this is the machine-learning spectrum, where

the degree to which something falls more under machine learning than statistics roughly

correlates with a move away from interpretability. (Beam and Kohane, 2018).

The term statistical learning was coined by Robert Tibshirani and Trevor Hastie and is similar

in definition to machine learning (Hastie, Tibshirani, and Friedman, 2009). While machine

learning grew out of computer science and the artificial intelligence community, statistical

learning grew out of statistics. Traditionally, machine learning has been mainly associated

with maximising prediction, while statistical learning has had a focus on human-interpretable

results and offering some insight into the problem. However, the difference in these terms

has become difficult to distinguish as the machine learning community has begun to focus

more effort on explainability. Partly for this reason, this thesis will only use the term machine

learning, which is taken to be a sub-field of artificial intelligence (AI). The following sections

further explore the trade-offs and key principles behind machine learning.

2.1.4 The bias-variance trade-off

One of the most central problems in machine learning is the bias-variance trade-off (Figure

2.2). The term applies to the change in predicted values from a model when it is repeatedly

re-trained on a new data set. A highly flexible function that touches every data point will

give a perfect prediction in the training set. This flexibility means there is no systematic skew

in the predicted values, but that they follow the idiosyncrasies of each training set; the model

has learned both the signal and the noise of the data and has overfit. When predictions vary

according to both real associated changes and random fluctuations in predictors, the model

has high variance.
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Figure 2.2: The bias-variance trade-off. Targets illustrate the concept of predictions being
systematically skewed (high bias), or widely dispersed (high variance). In the case prediction
may have high bias and variance, as in the bottom left target. Ideally predictions have both
low bias and low variance, as shown in the top left. Reproduced from Formann-Roe, 2012.

By contrast, a restricted model may limit the number of parameters and be highly inflexible.

In the extreme, the function y = 1 is just a horizontal line across the data. The values

predicted do not vary at all, regardless of what the training set looks like. When predictions

systematically deviate from the true predicted value they are biased, and the model has

underfit. It is typically the case that as bias increases, variance decreases, and vice versa.

Figure (2.2) shows the prediction of the same point after retraining on a new training set

each time.

The challenge of choosing the best method for a task comes down to balancing this trade-off

(Figure 2.3). Often the aim is for both bias and variance to be low. Predictions should not

systematically deviate from the true value, but also should not be so heavily based on the
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training set that they vary greatly when new data are introduced. Methods for controlling

the flexibility of a model aid in balancing this trade-off.

Figure 2.3: The balance between bias and variance. As model flexibility increases, bias
decreases but variance increases. This is accompanied by progressively decreasing error on the
training set; error in the test decreases initially but ultimately increases. Reproduced from
Formann-Roe, 2012.

2.1.5 The accuracy-interpretability trade-off

There is often a trade-off between accuracy and interpretability. A logistic regression may

perform reasonably well at predicting an outcome and provides odds ratios for predictors; it

is easy to explain and some inference can be drawn using the sample. By contrast, support

vector machines may provide an improvement on prediction, but it can be difficult to explain

how a single predictor is associated with the outcome, particularly for non-linear kernels

such as radial basis function. This can be viewed as a trade-off between model flexibility

and interpretability (Figure 2.4). The use of complex supervised machine learning methods

for a prediction problem implies that some sacrifice of interpretability is acceptable to the

user.
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Figure 2.4: Flexibility-interpretability trade-off. Penalised linear models are perhaps the
most interpretable, as they have fewer coefficients. They exhibit low flexibility. Ensembles
and support vector machines can show extreme flexibility but also low interpretability. From
James et al., 2013.

A result of this reasoning may be to suggest the use of an inherently explainable paramet-

ric approach such as logistic regression. However, this would require the fulfilment of all

the ensuing assumptions, such as linearity of the predictor-response relationship and ho-

moschedasticity of the errors, and these may not be met. Further, applying a parametric

model, and following explanatory modelling procedures such as removing correlated predic-

tors, may result in an unacceptable loss of prediction performance. The burgeoning field

of explainable AI and sharp rise in tools for improving interpretability of machine learning

methods has dampened the argument against complex models. Consideration of Occam’s

razor enables a more practical approach.

2.1.6 Occam’s razor

Also known as the law of parsimony, Occam’s razor suggests that the simplest answer

is usually the correct one. A naive interpretation of this is that more complex models,

which involve more parameters should be eschewed in favour of simpler models with fewer

parameters. Such a heuristic is a useful one to keep in mind when building models on small

datasets with noisy predictors, and it can be seen in common practices such as Breiman’s

rule for choosing hyperparameters, in which he suggests picking the most conservative value

for a hyperparameter for which the prediction accuracy is within one standard deviation of

the best-performing option (Breiman et al., 1984). However, the heuristic cannot be taken
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as a rule, particularly given the success of ensembling and deep learning which can build

large complex models that out-compete simpler ones.

The tendency for a more parsimonious model has been further broken down into two razors

(Domingos, 1998):

• prefer the simplest model when two or more have the same test-set performance

• prefer the simplest model when two or more have the same training-set performance.

Domingos suggests that while the first of these is correct, the latter is often disproved. This

more pragmatic approach, which seeks not to elect for parsimony above-all but instead prefer

it when models are equally generalisable, is often employed and more in-keeping with the

success of complex models in some fields.

2.1.7 The curse of dimensionality

High dimensional space influences both our capacity to reason about a problem and the

ability of algorithms to learn from data. Observations which are close together in low-

dimensional space become significantly further apart in high dimensions. As the predictor

space grows with added dimensions, the training observations take up a greatly reduced

portion of the space. This leads to an issue in machine learning known as the curse of

dimensionality.

Figure 2.5: The curse of dimensionality. Progressing from a single point to a unit line,
square, cube and then hypercube increases the area which observations can occupy, and so
increases the average distance between randomly chosen points, illustrated by Euclidean
distance (black lines) between random points (yellow circles). Nodes are shown as black
circles. Red, green, blue and grey lines show the x, y, z, and w axes to represent 1, 2, 3 and
4-dimensions respectively. Adapted from Géron, 2019.

For training data with a set number of observations, increasing the number of predictors

leads many learning approaches to overfit. As observations move further apart in higher

dimensions, the space of possible decision boundaries for separating classes increases, and

the selected option is more likely to be influenced by noise. As the training data are farther

apart, so too are the testing data, resulting in poor generalisation. In algorithms such as

k-nearest neighbours, there are no longer any observations that can be considered nearby.
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In the simplest case, two randomly placed observations in a 2-dimensional unit square are,

on average, closer together than two randomly placed points in a 3-dimensional unit cube

(Figure 2.5). The difference is greater again between a square and a 4-dimensional unit

hypercube, and only increases with the number of dimensions. Spreading the same number

of observations uniformly across squares, cubes, and high dimensional hypercubes leads them

to be increasingly located on the periphery (Domingos, 2012). More generally, our intuitions

in 2 or 3-dimensional space for how a problem may be solved, or how a decision boundary

may be formed, do not necessarily generalise to higher-dimensional space.

Models such as k-nearest neighbours can be much more affected by the curse of dimen-

sionality, as it relies solely on distance between observations, and obtaining a larger sample

size in an attempt to cover the predictor space is intractable. However, in a countering

force labelled "the blessing of non-uniformity" (Domingos, 2012), most observations are not

uniformly distributed across the predictor space, and methods do not spend time exhaus-

tively searching it; they can often find a lower-dimensional representation of the problem by

making small assumptions.

2.1.8 The bet-on-sparsity principle

A relationship may be complex and represented by many factors, some with very small effect

sizes. Assuming population coefficients are drawn from a Gaussian distribution, their true

values are all non-zero; this is called "dense". By contrast, if only a fraction of all predictors

have non-zero population coefficients, the problem is termed "sparse". The bet-on-sparsity

principle states that a sparse solution is preferred, as no method can effectively capture the

relationships in a dense dataset (Hastie, Tibshirani, and Friedman, 2009). If a problem is

dense, including all predictors in the model may seem appropriate. However, estimating

small effects and generalising with them to a new dataset, under the constraint of how large

a dataset can be collected for training, often means that a better or as-good model can be

obtained by setting the weights for predictors with very small population coefficients to zero.

In practice, the bet-on-sparsity principle means that it may be more sensible to choose an L1
penalty over an L2 penalty, discussed in section 2.3.2.2, in situations with many predictors

of small effect sizes.

2.2 Design

This section gives an overview of the main considerations in designing a machine learning

study. First, approaches for developing and validating a machine learning model are con-

sidered, including split-sample and cross-validation. Following this, methods for evaluating

prediction performance in a classification setting are expanded on, principally discrimination

and calibration. The section culminates in a discussion of techniques for comparing the

performance classifiers.
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2.2.1 Validation

Evaluating a model for predictive performance is referred to as model validation. The purpose

of prediction models is to generalise to previously unseen data. As such, models are trained

and evaluated on separate observations. This is important to ensure that unbiased estimates

of predictive performance are obtained, as evaluating predictions in the same observations

in which the model was trained will give an overly-optimistic estimate of prediction error.

In classification problems, evaluation of predictive performance should include evaluation for

both discrimination and calibration.

Model development involves the training of each model and any internal validation, where the

latter includes all model evaluation done in any subset of the original sample. By contrast,

external validation involves evaluating on a separate sample. Such a sample may be partly

or fully external in the extent to which it diverges from the original training data. This may

give a better estimate of the true error of the model. However, if the new sample is drawn

from a region with contrasting exposures that may affect prevalence or predictors, it may

not be representative of the target group, and so may give an overly-pessimistic view of the

model.

In machine learning literature, a ’hold-out’ partition from the training data may be used

in training neural networks or gradient boosting, for example, and can be referred to as a

validation set; to avoid confusion, this convention is not used here.

TRAIN TEST

TRAIN TEST

TRAIN + TESTApparent validation

Split-sample validation

Cross-validation

Figure 2.6: Internal validation. Data may be used for both training and testing (apparent
validation), but is preferably split-up to keep training and testing observations independent.
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2.2.1.1 Apparent validation

The weakest form of internal validation is apparent validation. This simply involves training

and evaluating on the same observations. Discrimination in such a sample will be overly

optimistic, and calibration on the sample in which the model was trained will always be

perfect. See Figure 2.6. Discrimination may only be representative if the sample size is so

large that sample coefficient estimates do no deviate from population parameters.

2.2.1.2 Split-sample validation

A simple method to constrain this optimism to split the data into two partitions, where one

portion is used for training and another is used for testing. This can provide a more realistic

estimate of predictive performance; however, the degree to which this works depends on

sample size. As a single train-test split takes only one sample of the possible estimates

of discrimination and calibration that can be obtained in internal validation, it may not be

representative, and has been shown to be overly pessimistic on average (Steyerberg et al.,

2001). As sample size grows, the validation error from split-sample validation approaches

the true error rate. However, the point at which prediction performance in a split-sample

approach becomes a good estimate is often unfeasible in medicine and means that the

model is so unlikely to overfit that split-sample validation may no longer necessary with

well-regularised models. Altering the size of the split is a compromise between gaining

a sufficient sample size to learn accurate estimates for model coefficients and having a

large enough test set for predictions to generalise well; choice is therefore controlled by the

bias-variance trade-off. In practice, for models trained on tabular data in medicine, often

the training set comprises between 60% and 80% of the sample. However, datasets with

particularly large number of observations may use above 90%, such as when training large

neural networks on imaging data with millions of observations.

2.2.1.3 k-fold cross-validation

Instead of a single split, an alternative is to use multiple train-test splits, where the training

sets of each of these overlap (with the exception of 2-fold cross-validation). The model is

refit in each training split and evaluated in its corresponding test split. This is an example of

a resampling approach. It endeavours to gain a more realistic estimate of predictive perfor-

mance by evaluating multiple correlated models and taking the average of their distribution

as the estimate of model performance. In this sense, the average from resampling repre-

sents the entire dataset, whereas estimates from a split-sample approach only characterise

performance on a fraction of the data.

k-fold cross-validation is an approach to resampling which maintains independence between

each of the test sets (Figure 2.6). The dataset is divided into k chunks. These are used

to build k training sets consisting of k − 1 chunks. Each training set is paired with the

remaining chunk, which is the test set. Train and test splits within cross-validation are
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referred to as the train fold and test fold. The predictions for each test fold are used to

calculate performance metrics separately; the average and standard error across folds is then

used to understand prediction. As models are not independent, it is not a true standard

error, but has been shown to behave similarly and so remains useful.

The value chosen for k is typically 5 or 10. The choice is a trade-off between bias and

variance, with leave-one-out cross-validation (LOOCV), where k = n, at one extreme, and

2-fold CV at the other. LOOCV is computationally expensive as many models are built,

and give low bias in estimating prediction performance as each training fold includes n − 1

observations. By contrast, 2-fold CV has higher bias because it makes use of smaller chunks

of the dataset, but lower variance because it averages a smaller number of less-correlated

models (James et al., 2013). 5 or 10-fold CV are convenient choices which keep bias and

variance reasonably low.

2.2.2 Tuning hyperparameters

The average across test folds from k-fold CV can be used for both model selection and

model evaluation. Model selection is the practice of selecting between versions of the same

model which have been trained with different hyperparameters. It navigates the trade-off

between bias and variance by tuning model flexibility. Unlike parameters which control the

weight given to predictors or nodes, hyperparameters are a meta-aspect of machine learning

models which control the overall fit of the model.

Evaluation of different hyperparameter choices is most often done through cross-validation.

As many different hyperparameters may need to be tuned for a single learning approach, each

possible combination of the different hyperparameter values to be tried must be evaluated

in a separate cross-validation. For example, given 3 important hyperparameters, trying 10

values for each and assessing using 5-fold CV means 30 different models will be evaluated,

each performed 5 times, resulting in a total of 150 models being trained.

The exact function of hyperparameters varies between learning approaches. Though not

all are equally useful, some are essential and their optimal choice ultimately controls how

well the model generalises to new observations. The practice of choosing their value is

therefore of great interest. However, the task has not typically been approached as a formal

optimisation problem. Instead, a set of reasonably simple search methods have been most

popular.

By far the simplest is a manual exploration of hyperparameters. This involves keeping plots

of the breadth of search space covered and the prediction performance achieved for each

combination of hyperparameters with the aim of ensuring that the region with minimum

error or maximum discrimination has been well-covered. Such an approach may be used

after systematic searches have returned an area of the hyperparameter space for further

exploration. Alternatively, it can be used to update the learning rate in neural networks

on-the-fly when a single large model is being trained and computation is too expensive to
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afford repeated rounds of fitting. The model’s performance is evaluated in both the training

set and a hold-out sample, with the learning rate altered over time to achieve convergence.

A more systematic approach is grid search. As the name suggests, this involves enumerat-

ing a grid of all values of interest for each hyperparameter and then exhaustively searching

over every combination. The combination which performs the best, as given by the average

test-fold performance over cross-validation, is taken forward. Where only one or two hyper-

parameters need to be tuned, such as in linear SVMs, this is a reasonable approach and may

not be computationally burdensome. It can also be particularly useful where an idea of the

optimal region of the search space is already known, and a researcher wishes to thoroughly

search for the global optimum. However, as previously stated, trying only 10 values for 3

hyperparameters in 5-fold cross-validation requires 150 models. This can quickly escalate;

trying 20 values of 4 hyperparameters through 10-fold CV requires training 800 models. If

there is a broad search space or more than two hyperparameters to tune, it is often beneficial

to turn to alternatives.

Random search provides a possible solution to this by limiting the number of combinations

to try up-front. Instead of enumerating all values, the number of combinations is chosen

and a distribution (in Monte Carlo random search) or selection from which to draw values is

defined. For each iteration, a value is drawn from the distribution for each hyperparameter.

This is useful as adding more hyperparameters does not increase the number of combinations

to search. Furthermore, evaluating all combinations by grid search leaves many searches with

similar values. With random search, each hyperparameter varies every time, meaning a bigger

proportion of the search space can be covered. It has been shown empirically to be useful

for this, and can reach a similar accuracy to grid-search using a fraction of the computation

(Bergstra and Bengio, 2012).

2.2.3 Nested cross-validation

When evaluating models and tuning hyperparameters, a common pitfall is that researchers

use the same rounds of cross-validation for both model selection and model evaluation. The

practice of running many cross-validations with different combinations of hyperparameters

means that the prediction performance for the selected values will be optimistic, in a similar

manner to how p-values from repeatedly tweaked analyses will be optimistic.

Nested cross-validation separates model selection and evaluation (Figure 2.7). An ’outer’

loop of cross-validation evaluates the model. Within the training fold of this, an ’inner’ loop

of cross-validation is used for model selection, and is therefore run as many times as there are

combinations to select from. Such an approach sufficiently constrains the optimism, so that

it is a good approximation to the true error for a model (Varma and Simon, 2006; Vabalas

et al., 2019). While there are extremely large datasets in which a split-sample approach may

be sufficient, practically most datasets in medicine are limited in size by the cost of sample

acquisition and so require nested cross-validation.
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TRAIN TEST

TRAIN TEST

Outer loop 
Train with best hyperparameters
Evaluate final model on test folds

Inner loop 
Repeat once for each set of
hyperparameters to try

Figure 2.7: Nested cross-validation. An outer loop of k-fold cross-validation is used to
perform model evaluation. Within each training fold of this there is an inner cross-validation,
which is performed once for every combination of hyperparameters. The best model is refit to
the outer loop’s training fold and evaluated on the outer loop’s test fold.

2.2.4 Predictor selection

Predictor selection, also called feature selection, is the practice of reducing the number of

candidate predictors. Often the preferred method of doing this is to use prior knowledge,

particularly if the current dataset is small. However, the use of increasingly ’wide’ datasets

with limited observations means that further reducing the number of models in a data-driven

manner can help reduce the likelihood of overfitting, though it does not reduce events per

variable (EPV), as this includes candidate predictors. The three types of predictor selection

are embedded, filter and wrapper.

Embedded predictor selection uses the modelling procedure itself to drive-down the number

of predictors. This is most commonly implemented using the L1 penalty, which may be

applied in support vector machines, gradient boosting and neural networks but is perhaps

most commonly associated with least absolute shrinkage and selection operator (LASSO)

regression. In addition to this, tree-based methods are able to reduce the number of predic-

tors. When partitioning the data, decision trees select a predictor at each ’split’ in a tree,

which may mean that one or more predictors are never incorporated in the trees if they are

always out-done by other variables.

Filter-based methods employ an up-front selection process which reduces the number of

predictors before any modelling of the data occurs. For genetic prediction models using

common variants, the most common method is to use univariable association tests on each
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predictor with the outcome and filter by the strength of the evidence for association, known

a p-value thresholding. Use of principal component analysis (PCA) to obtain a set of orthog-

onal predictors before modelling is sometimes also considered to be a filter-based selection

as it is applied before modelling, though it projects to a subspace rather than selecting

predictors in the input space. Alternatively, correlation between predictors or measures for

association or information may be used to filter predictors.

Finally, wrapper based methods take a more algorithmic approach to predictor selection by

encapsulating a modelling approach with a series of steps for dropping predictors. A popular

technique in gene expression studies is to use recursive feature elimination to iteratively

drop predictors (Guyon et al., 2002). Alternative methods, are to use forward or backward

selection, or a mixture of the two. Backwards selection should always be preferred over

forward selection, but is not possible when p > n (Harrell Jr, 2015).

2.2.5 Leakage and pipelines

To successfully evaluate different modelling approaches which involve steps such as predictor

selection and transformation, pipelines should be used. These exist to combat the effect of

information leakage, one of the most common sources of inflation of estimates of prediction

performance. This refers to the accidental incorporation of information from the test set

into the predictors or model, as information has ’leaked’ from the test set to the training

set. For predictor transformation, anything which uses summary measures such as mean and

standard deviations, are at risk. Z-transformation of predictors is a common source of this.

A pipeline requires a sequence of steps, such as z-transformation, filter-based predictor

selection and machine learning model, to be defined beforehand. This pipeline is then applied

in each fold of cross-validation, and is set up so that measures learned in the training fold,

such as the mean and standard deviation of a predictor or its association with the outcome,

are saved and then applied in the test set. The pipeline is therefore used in every fold of

cross-validation, and no up-front transformation or selection of predictors should be done

before cross-validation unless they avoid leakage of information from the test set. The

erroneous practice of applying predictor selection outside of cross-validation is so frequent in

parts of the bioinformatics community that it is highlighted in introductory machine learning

textbooks (for example, James et al., 2013).

2.2.6 Model evaluation

All methods of model validation require evaluation of predictive performance. To do this

requires quantifying model predictions. For automatic model selection, such as in hyper-

parameter tuning, this also inclines us toward scalar summaries of prediction models. The

choice of method depends on modelling context, and what type of output is produced by

the model.
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2.2.6.1 Classification metrics

When a class is predicted, classification metrics can be calculated from a confusion matrix

(Figure 2.8). If a model outputs predicted probabilities, a threshold must first be applied

in order to discretise the output; a value of 0.5 is typically used by default. Classification

metrics are therefore discontinuous scoring rules.

Figure 2.8: The confusion matrix. The true class labels are cross-tabulated with the
predicted class labels to get true positive, false positive, false negative and true negative
counts. From these, all classification metrics follow.

The confusion matrix can be used to derive classification metrics (Table 2.1). In medicine,

concern is often placed on sensitivity and specificity, which measure the ability to detect true

positives and to reject true negatives, respectively. There is a trade-off between these two

measures. A greater sensitivity means catching more true positives, but the ability to detect

additional labels often comes with inadvertent selection of more false positives too. For a

predicted probability, moving the threshold at which class labels are assigned to be lower

may increase sensitivity, but will also decrease specificity. In information retrieval and much

of machine learning, the focus lies instead on the relationship between precision (positive

predictive value; PPV) and recall (sensitivity). These are often summarised using the F1-

score (Table 2.1) which, unlike relying on sensitivity and specificity, takes no account of the

number of true negatives.

Measures Synonyms Calculation Definition

Accuracy TP+TN
TP+TN+FP+FN The proportion of correct clas-

sified results. Equivalent to

1− error.

Sensitivity Recall, hit rate,

true positive

rate (TPR)

TP
TP+FN The proportion of positive out-

comes that were correctly clas-

sified.

Specificity True negative

rate (TNR)

TN
TN+FP The proportion of negative

outcomes that were correctly

classified.

Positive predictive

value (PPV)

Precision TP
TP+FP The proportion of positive pre-

dictions that are truly positive.
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Measures Synonyms Calculation Definition

Negative predictive

value (NPV)

TN
TN+FN The proportion of negative

predictions that are truly neg-

ative.

F1-score 2TP
2TP+FP+FN The harmonic mean of PPV

and sensitivity.

Table 2.1: Classification metrics. Measures are derived from the confusion matrix, which
gives true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).

While the terms classification and prediction are used interchangeably here, the distinction

is important to be aware of. For instance, support vector machines are classification meth-

ods, as they work to assign classes to observations purely via linear algebra, while logistic

regression makes use of probability theory. In situations where only assignation of classes

is required, and the threshold for choosing these can be decided beforehand, attacking the

classification problem directly may be optimal. However, in biological and medical sciences,

often an estimate of the likelihood that an observation belongs to a class is desired. The

optimal choice of threshold may need to be amended based on some clinical need, or the

degree of risk communicated to a patient.

2.2.6.2 Discrimination

The use of discontinuous scoring rules, such as classification metrics, is not recommended

(Moons et al., 2015). Though choice of a discrete class can be necessary, classification

metrics are often not useful in model development as assignment of a threshold is premature,

and throws away useful information. It should ideally be delayed till clinical need demands

it and directs its location. Measures of discrimination are continuous scoring rules. These

provide a measure of how well the distributions of predicted probabilities of belonging to the

positive class discriminate between the true classes. By far the most common measure of

this is the area under the curve (AUC) for the receiver operator characteristic (ROC), also

known as the c-statistic.

First pioneered in World War II for the correct detection of radar signal by a receiver op-

erator, ROC curves (Figure 2.9) were taken-up in machine learning as early as 1989, and

were subsequently embraced a decade later to meet the deficiencies of discontinuous mea-

sures (Fawcett, 2006). The AUC is now one of the most frequently used measures in both

clinical prediction modelling and machine learning for binary classification. By contrast, in

genetic epidemiology, studies of polygenic risk scores typically adopt an explanatory mod-

elling paradigm, reporting measures of goodness-of-fit, such as Nagelkerke’s pseudo-R2, or

variance explained on the liability scale (Lee et al., 2012b). However, AUC is also reported

for large studies of polygenic risk scores, for instance (Ripke et al., 2014), has been investi-

gated for the maximum AUC achievable given the heritability and prevalence of an outcome
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(Wray et al., 2010), and related to other measures including reclassification statistics and

risk of disease for different percentiles (So and Sham, 2010).
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Figure 2.9: Assessment of discrimination via the ROC curve. Rows show predictions with
increasing AUC from top to bottom. The predicted probability of class membership coloured
by actual class (left), can be transformed to the ROC plot (right), which follows the diagonal
at pure chance and reaches the upper left corner with perfect prediction. AUC can be
calculated from the area under the ROC curve. The central column shows the predictions for
all case-control pairs connected by a line. AUC is equivalent to the proportion of lines with a
positive slope.

In the decision-threshold interpretation of the AUC, a plot is generated by calculating sen-

sitivity (true positive rate) and 1-specificity (false positive rate) for each threshold for the

predicted probability from a model. This presentation of the ROC plot is simply a transfor-

mation of predicted risk distributions (Janssens and Martens, 2020). The ROC plot itself

may be used to choose an optimal threshold for a given task. More frequently, a single

number is desired to summarise the ROC curve, which is done using the AUC (Bradley,

1997).

An alternative and more intuitive probabilistic interpretation of the AUC is achieved by

taking all possible case-control pairs of observations for which a prediction has been given.

Counting all the times a case was correctly assigned a higher probability than a control and

dividing this sum by the number of pairs creates the AUC. For this definition, the AUC may

be referred to as the concordance index. This has the same value as calculating the area

under the ROC curve and aids in its interpretation. It then follows logically from this that

a value of 0.5 is pure chance, 1 is perfectly correct and 0 is perfectly incorrect. Further, it

also follows that the AUC is insensitive to distributional assumptions and class imbalance.
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The distributional insensitivity of the AUC is also evident in the last of its "three-way equiva-

lences" as a rank-based measure (Hanley and McNeil, 1982). The AUC is simultaneously the

area under the ROC curve, the probability of correctly ranking a case higher in any randomly

chosen case-control pair, and is equivalent to the non-parametric Wilcoxon/Mann-Whitney

U statistic.

Criticisms levied at the AUC often revolve around insensitivity. These typically assert that

the AUC changes little when discrimination is high, or that changes in the actual predicted

probabilities are not reflected by a change in AUC. However, these two features follow

naturally from the descriptions of the AUC given above. For a high AUC, distributions of

predicted risk for cases and controls must be well-separated, and so further improvements

in the model only affect the ranking of the small number of observations in the tails of

the distributions, and hence contribute little to the total calculation of AUC. Similarly, the

AUC is unaffected by the actual value assigned by a model, as long as the pairwise rankings

of cases and controls remain the same. Consequently, a model may be clinically useful in

moving a subgroup of interest into the highest risk group, or many participants could shift

above or below an important decision threshold, but a concomitant increase or decrease in

AUC may not be observed. The latter may easily occur where a threshold is placed toward

the centre of a risk distribution. Alternative measures such as reclassification metrics may

be employed to address these concerns.

The AUC has also been criticised as a scalar summary of a two-dimensional problem (Drum-

mond and Holte, 2006), a critique which extends to all single-value summaries of prediction

performance. Others have noted that it is unlikely the entire range of thresholds are poten-

tially useful, and that AUC may be misleading where ROC curves for two classifiers cross

each other (Adams and Hand, 1999).

2.2.6.3 Calibration

Discrimination is complemented by calibration (Steyerberg et al., 2010; Van Calster et

al., 2019), which can be assessed where a method provides predicted probabilities of class

membership. A model has achieved calibration when the observed risk of having an outcome

is the same as the predicted risk assigned by the model. For instance, in a model of having

or not having schizophrenia, taking all individuals assigned a 0.6 probability of having the

disorder, 60% should have the true label of schizophrenia. The extent to which calibration

has been achieved can be broken down into mean, weak, moderate and strong (Steyerberg

et al., 2019).

Mean calibration compares the average prediction with the average outcome. It can be

summarised by an odds ratio, by taking odds of the mean ŷ (model predictions) over odds

of mean y . However, mean calibration is uninformative for internal validation measures,

including apparent validation and cross-validation, as it is perfect in the dataset from which
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a model was developed, but is informative for external validation. The assessment of average

calibration is also referred to as calibration-in-the-large.

Weak calibration is often evaluated by a calibration slope (Cox, 1958). For a logistic regres-

sion, this is assessed by fitting a model on the dataset using the linear predictor (LP), which

is the linear combination of coefficients and predictors in the test set. This takes the form

logit(y) = a + b · LP, where the calibration slope b shows the direction of miscalibration,

and the intercept a the overall miscalibration. A b greater than 1 indicates over-estimation

in individuals with lower risk and underestimation in individuals with highest risk. b less

than 1 indicates the opposite of this effect, while a b of 1 is perfect (Huang et al., 2020).

During internal validation, b less than 1 therefore requires contracting predictions toward

0.5, which can be achieved through recalibration or through applying penalisation of coeffi-

cients in model development. Alternatively, shrinkage can be applied directly on predictions

using the calibration slope. During external calibration, b is affected by both overfitting and

differing predictor-response relationships in the development and validation sets (Steyerberg

et al., 2019). Though a b of 1 is a perfect slope, predictions may still be underestimated

overall if a is greater than 0, or overestimated if a is less than 0. Ideal predictions therefore

have b of 1 and a of 0.
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Figure 2.10: Graphical assessment of calibration. A loess smoother with 95% confidence
interval is used to show the general relationship between predicted and observed outcomes.
Observation are also grouped by decile to give a visual alternative to the Hosmer-Lemeshow
goodness-of-fit test. Plots show perfect calibration (left); consistently over-predicted risk due
to training in a sample with a higher prevalence than the population used for prediction
(centre), as may happen if training on a case-control sample before predicting in the general
population; and predictions which are too extreme (right), as coefficients have been
overestimated in the training sample, leading to unlikely events assigned a probability too low
and likely events assigned one too high.

Moderate calibration is best assessed graphically (Steyerberg et al., 2019) (Figure 2.10). This

takes the predicted probabilities from a model on the x axis and the observed proportion of

individuals in which the outcome occurred on the y axis (Austin and Steyerberg, 2014). A

diagonal line here defines perfect calibration. A loess smoother is used to aggregate-together

observations with similar probabilities assigned by the model to allow plotting the observed

proportion on the y-axis. Following this, confidence intervals can be used, and typically

the mean observed proportions and predicted probabilities in groups of observations is also
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annotated, often binned into quintiles or deciles. Graphical assessment of calibration in

this manner is particularly useful as it shows both mean calibration and weak calibration;

it is a visual representation of the Hosmer-Lemeshow goodness-of-fit test. Interpretation of

calibration plots can be influenced by the number of groupings chosen, the flexibility of the

loess smoother, prevalence of the outcome and discrimination of the model. Finally, strong

calibration extends this to visualise calibration for all categorical predictors. For each level of

a category, such as sex, separate calibration plots are generated. These can aid in visualising

poor model specification, such as omitted interaction or polynomial terms.
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Figure 2.11: Visualising discrimination and calibration by validation plots. Calibration is
combination with a plot of the distribution of predictions for cases and controls. Examples are
given for traditional kernel density estimation (KDE) plots (left) and the mirrored
histogram-style plots (right) preferred in Steyerberg et al., 2019. Calibration is also separated
into a full graphical calibration, including grouped observations and confidence intervals (left),
or only the loess curve, which can be used to overlay results from multiple models or rounds
of cross-validation; the latter is shown here. Rows, showing 0.7 AUC on the top and 0.6 AUC
on the bottom, demonstrate how calibration and summary measures can vary depending on
the strength of discrimination. AUC, Brier’s score and mean calibration (as
observed/expected; O/E) may also be annotated (left).

2.2.6.4 General prediction measures

Overall performance measures seek to measure the difference between predictions and the

true outcome (Steyerberg et al., 2019). Measures of these residuals involve elements of both

discrimination and calibration.

The most frequently used are Nagelkerke’s R2 and Brier’s score. R2 gives the proportion of

variation in the outcome explained by the model. It is often estimated in assessing predictions

of a continuous outcome by machine learning models, in the form



2.2. Design 51

R2 = 1−
PN

i=1(yi − ŷi )2PN
i=1(yi − ȳi )2

; (2.1)

where yi is the continuous outcome and ŷi is the predicted value for the ith observation.

As R2 cannot be computed for a binary outcome, alternative pseudo-R2 can be calculated.

The Cox & Snell R2 is

R2
CoxSnell = 1−

„
‘0
‘M

« 2
N

; (2.2)

where ‘0 is the likelihood (described in section 2.3.1) of the null model, ‘M is the likelihood

of the fitted model and N is the number of observations. Nagelkerke’s R2, a scaling of the

Cox & Snell R2, is computed by

R2
Nagelkerke =

R2
CoxSnell

max(R2
CoxSnell)

; (2.3)

where max(R2
CoxSnell) = 1−‘

2
N
0 . Though R2

Nagelkerke spans the same interval as R2, it does

not have the same intuitive interpretation. Brier’s score summarises the squared difference

between observed outcomes and predictions,

1

N

NX
i=1

(yi − ŷi )2; (2.4)

where yi and ŷi are the observed and predicted values of the outcome, and N is the sample

size. A lower Brier score means closer agreement between the outcome and predictions.

However, unlike Nagelkerke’s R2, Brier score is not standardised to any range. It is con-

sequently more difficult to interpret. In addition, its value is dependent on the proportion

of cases in the sample. It is therefore mainly useful for relative comparison between clas-

sifiers. Despite these caveats, it is an attractive measure for prediction models because it

is a proper scoring rule, as it is optimised when the true probabilities equal the predicted

probabilities. By contrast, optimising for accuracy may simply lead to predicting the most

frequent outcome.

As noted in section 2.2.6.3, graphical calibration is influenced by discrimination. To be

explicit, discrimination can be incorporated directly to create a "validation plot" which

provides a general assessment of predictive performance (Figure 2.11). Furthermore, scalar

summaries of discrimination and calibration can be annotated to provide a more detailed

picture for model evaluation.
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2.2.6.5 Comparing classifiers

Where two or more competing models have been developed, quantification of the difference

between them is desirable. A range of measures are used where classifier output is binary, no-

tably McNemar’s chi-squared test and a binomial exact test for pairwise comparisons, which

may be used in addition to a combined F -test for comparing multiple classifiers (Raschka,

2018). Where model output is predicted probabilities, discrimination for a single split-sample

approach can be evaluated in the test set using DeLong’s test for two correlated ROC curves

(DeLong, DeLong, and Clarke-Pearson, 1988). However, cross-validation produces a set of

models, for which the average AUC is reported. Furthermore, if k > 2 then models are

correlated, as their training sets overlap by at least one fold, making AUCs from k-fold CV

non-independent. For 10-fold CV all models share 80% of their training data, and so taking

all test-fold predictions together for a single statistical test, as if they had been produced by

a single model, may cause the variance to be underestimated. How then should comparison

of classifiers proceed?

Two general solutions are available to employ statistical tests for cross-validation results.

The first is to apply a modified validation procedure. The most well-used of these is a 5x2-

fold cross-validation (5x2 CV), wherein each 2-fold split is independent (Dietterich, 1998).

5x2 CV was originally developed for use in classification tasks, using proportion misclassified

(error rate) as the metric. Models are trained and evaluated on each of the 2 folds, which

is repeated 5 times; mean and variance of difference in proportions from the 2 folds are

calculated for each of the 5 repeats, which is used to create a t-statistic. Though well-

used in machine learning in general (Aggarwal, 2015), 5x2 CV is less commonly applied in

biomedical fields.

The second is to use an existing test with the best empirical results. The two most prominent

options are a parametric approach, the paired t-test, and the non-parametric equivalent, the

Wilcoxon signed-rank test. Comparisons by Dietterich, 1998, again using error rate, showed a

slightly elevated type I error for the paired t-test performed after k-fold cross-validation, and

a highly elevated type I error for the "resampled paired t-test", which is performed by taking

repeated random samples from the dataset. Given increased power for parametric tests, the

k-fold cross-validated t-test is only recommended where type II error takes precedence over

type I (Dietterich, 1998). Furthermore, distributional assumptions of parametric approaches

may not be correct, and are difficult to assess when k is low.

As a result, the Wilcoxon signed-rank test is recommended for pairwise comparison of ma-

chine learning models (Demšar, 2006). This ranks the difference in AUCs by their absolute

value and calculates a test statistic, W , from the product of the ranks and the sign of the

differences. However, it has lower power to detect differences than the paired t-test when

assumptions for the t-test have been met, so may be at greater risk of type II error.

To avoid inflation of Type I error through multiple comparisons, multiple classifiers may be

first compared using the repeated measures analysis of variance (ANOVA) or the Friedman
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test depending on whether a parametric or non-parametric approach is indicated. Following

this, pairwise tests between classifiers may be performed. The family-wise error rate (FWER)

of pairwise comparisons must also be controlled; however, Bonferroni correction is too severe

for many comparisons (Aggarwal, 2015), particularly as all models produced by k-fold cross-

validation are correlated, with correlation between any two folds increasing with k . Many

alternatives are used in the machine learning literature to control FWER. Alternatively,

controlling the false discovery rate (FDR) has been suggested to be less suitable in evaluating

machine learning approaches as it requires pre-specifying the FDR when there may be no

clear guidance for this (Demšar, 2006). However, it is frequently used in statistical genetics

and biomedical applications, and consequently more-easily interpreted, and a threshold of

0.05 is commonly accepted as sufficiently stringent.

2.3 Learners

An enormous variety of supervised machine learning methods exist. The comparison of sev-

eral approaches on a dataset is necessary and commonplace. As the true function which

maps inputs to outcome is unknown, and each classifier makes different small assumptions,

there is rarely a strong theoretical basis to prefer a single method over others when using

tabular data. The framework of evaluating multiple approaches is also part of the more

empirical approach taken in machine learning; the model which maximises predictive per-

formance in a dataset should be chosen. This section introduces the methods used in the

thesis: penalised regression, support vector machines, random forests, gradient boosting

and neural networks. These are the most widely taught approaches in machine learning, for

example (James et al., 2013), and as chapter 3 will make clear, these are also the most

commonly used methods in psychiatric genetics. Their description is best understood by

first reviewing logistic regression.

The terms "learner" and "classifier" have slightly different uses in the literature, but are here

used interchangeably to refer to a supervised machine learning algorithm or its implementa-

tion for a classification problem, regardless of whether its output is a class or probability of

class membership. For simplicity, learners are considered only for a binary outcome.

2.3.1 Logistic regression

Logistic regression models the conditional probability of class membership given the training

data, P (Y = 1|X). This contrasts with ordinary least squares (OLS) linear regression,

which models the outcome directly. A multivariable linear regression contains more than

one predictor and can be written as

Y = ˛0 + ˛1X1 + ˛2X2 + · · ·+ ˛pXp + › (2.5)
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for p predictors. Applying this to a classification problem would be simple and even intuitive,

as the average outcome, Y, is the proportion of cases in the sample. However, linear

regression makes no assumptions on the limits of Y, which can only be 0 or 1 in binary

classification. Logistic regression accounts for this using the logistic function. For simplicity,

substituting P (X) for the conditional probability of Y given X, P (Y = 1|X = x), the logistic

function is

P (X) =
e˛0+˛1X1+˛2X2+···+˛pXp

1 + e˛0+˛1X1+˛2X2+···+˛pXp
: (2.6)

The output from the logistic function is sigmoidal and always within the 0-1 range. Equation

2.6 can be rewritten using the logit transformation,

log

„
P (X)

1− P (X)

«
; (2.7)

to give

log

„
P (X)

1− P (X)

«
= ˛0 + ˛1X1 + ˛2X2 + · · ·+ ˛pXp; (2.8)

where the left hand side gives the log odds (logit) of the outcome, and the right hand side

is known as the linear predictor.

Coefficients are obtained using maximum likelihood, which produces estimates that max-

imise the probability of the observed data. Taking P (X) from equation 2.6, and assuming

independent observations, the likelihood function is

‘(˛) =
NY
i=1

P (X)yii (1− P (X)i )
(1−yi ); (2.9)

where
Q

is the product operator and N is the number of observations. In practice, the log

is used for ease of computation. The log-likelihood,

‘(˛) =
NX
i=1

{yi log(P (X)i ) + (1− yi )log(1− P (X)i )}; (2.10)

can be maximised using iterative weighted least squares via the Newton-Raphson algorithm.

The resulting coefficients, ˆ̨, are the maximum likelihood estimates.

Unlike in linear regression, it cannot be concluded that a coefficient is the average change

in Y per 1 unit change in X, all other effects held constant. For logistic regression, a

coefficient is interpreted as the change in log odds per one unit change in X. While the

relationship between log odds and the linear predictor (equation 2.8) is linear, the relationship
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between P (X) and the logistic function (equation 2.6) is not. As a result, the coefficient

expressed in terms of P (X) will vary depending on the value of X. Furthermore, unlike

the normally distributed errors in linear regression, errors in logistic regression follow the

binomial distribution.

Predictions on new data are made with equation 2.6 using the estimated coefficients from

the training set and the predictors from the testing set.

As a broad definition of supervised machine learning includes all methods that learn from

data, linear and logistic regression may be considered by some to be a machine learning

approach, especially if used in prediction modelling context when using typical ML designs

such as cross-validation. In this and subsequent chapters it is regarded as a contrasting

method, however, due to its frequent use in statistical analysis.

2.3.2 Penalised regression

2.3.2.1 Overfitting and optimism

Linear and logistic regression models obtain maximum likelihood estimates of model coef-

ficients. This procedure seeks an unbiased estimate in the data on which the model is fit.

A possible consequence of this is that overfitting occurs. Particularly under small sample

sizes, effect sizes derived in the training set are likely to overestimate true effect sizes, due

to regression-to-the-mean upon generalisation to a new dataset. Penalisation addresses this

issue by introducing a penalty or regularisation term to the loss function, forcing effect sizes

to shrink toward zero. As sample size for the training data increases, coefficients estimated

by maximum likelihood become more accurate and are less likely to require penalisation to

ensure generalisation. This section introduces norms and two of the natural extensions to

logistic regression they enable.

2.3.2.2 Norms

Penalisation, or regularisation of model coefficients can be applied to logistic regression

models. These methods shrink coefficients to be closer zero than the maximum likelihood

estimates. Such shrinkage can improve generalisation by increasing bias and decreasing

variance.

The most common regularisation terms in machine learning are the L1 and L2 penalties.

In linear algebra, the L1 and L2 penalties are norms, a method for measuring the size of a

vector. Norms also can also be seen as giving a measure of the distance from the origin to

the point assigned by the vector. The L1 (Manhattan) norm takes the absolute values of

elements in the vector, and is given by

||x ||1 =

pX
j=1

|xj |; (2.11)
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for each element xj in a vector x ∈ Rp.It is often used when discrimination between zero and

near-zero is essential, as its use of absolute values means its rate of change is unaffected by

the position of the vector (Goodfellow et al., 2016). By contrast the L2 (Euclidean) norm

takes the square of each element using

||x ||2 =

0@ pX
j=1

x2j

1A 1
2

=
√
xT x; (2.12)

for a vector x . In contrast to L1, the L2 norm changes more slowly when values approach

zero (Goodfellow et al., 2016). The Euclidean norm is often simply denoted ||x ||. The

squared L2 norm, ||x ||22, is typically used for computational simplicity and is henceforth

referred to as just the L2 norm. Both L1 and L2 are cases of the generic Lq norm,

||x ||q =

0@ pX
j=1

xqj

1A 1
q

(2.13)

for q ∈ R and q ≥ 1. q is set to 1 and 2 for the L1 and L2 norms respectively. Norms are

applied across machine learning, including in support vector machines, gradient boosting,

neural networks and regression models, by applying them to a vector of coefficients or

weights from a model. The inclusion of the L1 or L2 penalties in the loss function for a

model therefore includes a measure of the size of the vector of weights, such that a larger

size decreases the measured fit to the data. This encourages a smaller size in order to

achieve a better fit, consequently forcing coefficients or weights to be closer to zero.

2.3.2.3 Ridge

Adding either of these regularisation terms creates two natural extensions to linear regression,

or logistic regression, that help to control overfitting by restricting the parameters of the

model: least absolute shrinkage and selection operator (LASSO) regression (Tibshirani,

1996) and ridge regression (Hoerl and Kennard, 1970).

A penalty term can be applied by subtracting it from the log-likelihood. The inclusion of

the square of the L2 norm with the log-likelihood gives

‘(˛) =
NX
i=1

{yi log(P (X)i ) + (1− yi )log(1− P (X)i )} − –
pX
j=1

˛2j ; (2.14)

where ˛ is a p-length vector of estimated coefficients, excluding the intercept. This produces

a ridge-penalised logistic regression which shrinks all coefficients but the intercept. This

introduces a new tuning parameter, –, which takes values of 0 or above and is chosen through

cross-validation. If – = 0, the L2 norm is nullified. As the hyperparameter increases toward
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infinity, the ridge penalty forces coefficients closer to zero than the maximum likelihood

estimates; however, none will actually reach 0 until – = ∞, at which point ||˛||22 = 0. It

therefore shrinks coefficients but does not perform predictor selection.

2.3.2.4 LASSO

Swapping the L2 for the L1 norm produces a LASSO-penalised logistic regression,

‘(˛) =
NX
i=1

{yi log(P (X)i ) + (1− yi )log(1− P (X)i )} − –
pX
j=1

|˛j |; (2.15)

where ˛ ∈ Rp is a vector of coefficient estimates, excluding the intercept. The LASSO was

first proposed by Tibshirani, 1996. It addresses the principle issue with ridge regression,

that regardless of the number of predictors or the size of – (below ∞), all predictors will

be included in the resulting model. By contrast, the LASSO penalty may restrict some

coefficients to be zero, and so includes predictor selection in modelling. It is therefore a

sparse model and an example of embedded predictor selection. As with ridge, penalisation

increases with –, with coefficients equal to the maximum likelihood estimates when – = 0,

and the values of coefficients decreasing toward zero as – increases. A higher – further

reduces the number of coefficients with non-zero values.

Optimisation for ridge and LASSO in equations 2.14 and 2.15 can be rewritten as max-

imisation of log-likelihood, subject to the constraint that the L1 or L2 norm must be less

than some value, s, where each value of s has a corresponding value for –. This reformat-

ting allows us to visualise the optimisation in 2-dimensional space when considering only

2 predictors. Figure 2.12 demonstrates a situation where s, and hence –, takes on values

that forces the maximum likelihood estimates for the two coefficients to not overlap with

the constraints from L1 or L2 penalties. The values for ˆ̨
1 and ˆ̨

2 for the 2 predictors are

constrained to the point where the contour plot for ˆ̨ meets the blue diamond or sphere.

The shape of the constraints makes it more likely that interaction between the contour and

the diamond (LASSO) is on an axis, therefore setting the value of ˛1 to 0, while the sphere

(ridge) meets the contours at a point away from the axis (James et al., 2013). ˆ̨ here

gives the least-squares estimate from linear regression when p = 2. However, this intuition

extends to logistic regression applied to higher-dimensional problems. A third extension, the

elastic net, is a generalisation of the LASSO and ridge which combines both penalties, but

is not considered here.
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Figure 2.12: Optimisation for ordinary least squares linear regression with ridge or LASSO
penalties on a 2-dimensional problem. The blue diamond and sphere show the values that ˛1
and ˛2 are constrained to take under the L1 and L2 penalties, respectively, for a given s. The
red area surrounding ˆ̨ illustrates a contour plot, often used for illustrating an optimisation
minimum, where points in a single ring take the same value. The region where the contour
meets the green region provides the values of ˛1 and ˛2 which minimise the penalised least
squares, while the point denoted ˆ̨ gives the least squares estimates. Adapted from (James
et al., 2013).

2.3.2.5 Implementation

All machine learning and statistical approaches are implemented in the popular open source

Python package, scikit-learn. LASSO and ridge-penalised logistic regression is parameterised

differently in scikit-learn than listed given here, and in other popular packages, such as

glmnet. Logistic regression is implemented with multiple options for solvers in scikit-learn.

Choosing ’newton-cg’ with no penalty produces an unpenalised logistic regression in the

same manner as that from the R statistical programming language. Use of both L1 and L2
penalties with logistic regression is only possible with the ’liblinear’ solver, which performs

well in high dimensions. Here shrinkage is parameterised by C, equivalent to 1
– , which

provides stronger regularisation with smaller values; optimisation is performed by coordinate

descent.

2.3.3 Support vector machines

The support vector machine (SVM) is a classifier in the true sense, in that it directly

considers class assignment, rather than attributing probabilities of class membership. It

first emerged in the 1990s (Cortes and Vapnik, 1995) and received widespread use in the

biological sciences for micro-array classification in the early 2000s. The technique forgoes

probability to produce a geometrically-derived classification. The method works only on

numerical data, where each predictor is a dimension in space: a dataset with p predictors
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will have p dimensions. A hyperplane is fit to the training data with the aim of separating

the two classes. The hyperplane that best separates the two classes in the training data is

then used to predict classes in the test data.

The SVM is best understood by reviewing its foundations: the linearly separating hyperplane,

the max-margin classifier, and the support vector classifier.

2.3.3.1 Separating hyperplanes

If trained on a dataset with 2 predictors, the hyperplane is simply a 1-dimensional line, and

with 3 predictors it becomes a 2-dimensional plane. In higher feature space it becomes more

difficult to visualise, but the same principle applies. A hyperplane in p-dimensions is given

as

b + w1X1 + w2X2 + · · ·+ wpXp = 0; (2.16)

where b is the bias term, w is a weight vector of length p and X1; : : : ; Xp are the predictors.

Each observation xi ∈ Rp, ∀i = 1; : : : ; N is assigned to a class, yi ∈ {−1; 1}, depending on

which side of the hyperplane it falls. Class assignment can therefore be denoted by

h(x) = sign(b + xTw); (2.17)

where values which deviate further from 0 indicate greater confidence that an observation

belongs to the class. Assuming the outcome is linearly separable, and a hyperplane can be

found which separates the two classes, an issue is encountered: how to choose the best

linearly separating hyperplane when an infinite number exist?

2.3.3.2 Max-margin classification

The maximal margin classifier is a precursor of the SVM that applies the same principle of

fitting a hyperplane to the data, but can only be used for linearly-separable classes. For

any given hyperplane, the margin is the area between it and the surrounding data points,

calculated as perpendicular distance from the hyperplane to the point. The selection of the

best hyperplane for separating the data is done by maximising the size of the margin, so

producing the largest possible gap either side of the hyperplane.

To achieve max-margin classification, we seek to maximise the margin of width 2M, where

M = 1
||w || , ||w || is the Euclidean norm of the weights w1; : : : ; wp, and the weight vector w

is orthogonal to the hyperplane (Figure 2.13). The optimisation problem can be denoted as
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min
w;b
||w ||

subject to yi (b + xTi w) ≥ 1; ∀i ;
(2.18)

where yi (b + xTi w) ≥ 1 ensures observations lie on the correct side of the hyperplane.

This formulation produces a convex optimisation problem that can be solved with quadratic

programming. The resulting hyperplane is called the maximal margin hyperplane, or optimal

separating hyperplane. Significantly, only the points which touch the margin, called support

vectors, contribute to its placement.

Figure 2.13: The margin for a max-margin classifier (left) and a support vector classifier.
The latter allows for margin violations, shown here as ‰1; : : : ; ‰5. The hyperplane, shown in
blue is the equation of the line in p-dimensional space. The margin, shown in yellow, has
width 2M where M = 1

||w || . Adapted from Hastie, Tibshirani, and Friedman, 2009.

Use of this optimal hyperplane produces the maximal margin classifier, which has the agree-

able property that the hyperplane has the greatest possible distance between itself and

observations in the training data, and so is likely to generalise better to the testing data

than alternative separating hyperplanes.

2.3.3.3 Support vector classification

Classes are rarely linearly-separable in biomedical applications; for any hyperplane that can

be fit to the data there will be points that lie on the ’wrong’ side. The solution to this is to

use a ’soft’ margin, where vectors which violate the boundary can be tolerated to some level.

The implementation of this for non-separable cases is called the support vector classifier or

soft margin classifier. To account for these violations, errors are defined (‰ = ‰1; : : : ; ‰N)

for all N support vectors, also known as slack variables.

Allowing for margin violations, the optimisation of the support vector classifier is taken as
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min
w;b
||w ||

subject to

yi (b + xTi w) ≥ 1− ‰i ;∀i

‰i ≥ 0;
nX
i=1

‰i ≤ C:

(2.19)

We can see from this that the hyperparameter that denotes the cost, C, provides an up-

per bound for the sum of the violations to the margin and hyperplane which are deemed

acceptable.

Figure 2.14: Application of a 3-degree polynomial kernel (left) and radial kernel (right) on a
2-dimensional problem when a linear boundary would not be sufficient. Adapted from James
et al., 2013.

2.3.3.4 The support vector machine

The SVM uses a maximal margin hyperplane with a soft margin, making it similar to the

support vector classifier, but able to handle non-linear boundaries. It does this using a

powerful and widely-used technique in machine learning: kernel functions.

An intuitive solution to solve a non-linear problem is to transform predictors to a higher-

dimensional space and use a linear classifier. The decision boundary will be linear in the

high-dimensional space in which it was learned, but non-linear in the original space. The

brilliance of kernel functions is that they introduce a method for performing such an operation

without needing to transform predictors. This is made possible by first noting that the SVM

optimisation problem can be represented in its dual formulation using
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NX
i=1

¸iyi 〈xi ; xi ′〉+ b; (2.20)

for any two observations xi and xi ′, where ¸ is a vector taking non-zero values only for

support vectors and 〈xi ; xi ′〉 denotes the inner product. It can be solved using only the inner

products of all pairs of observations in the training set (Hastie, Tibshirani, and Friedman,

2009). Similarly, classifying new observations requires only the inner product between the

new observation and all training observations. The support vector machine replaces 〈xi ; xi ′〉
with a kernel function, K, which calculates the inner product in the transformed space.

This allows for a non-linear decision boundary in the predictor space (Figure 2.14) and

makes finding the optimal hyperplane computationally efficient even in high (or infinite)

dimensions. A kernel function takes the form

K(xi ; xi ′) = 〈g(x); g(x ′)〉: (2.21)

By far the most popular kernels are the linear, polynomial and radial:

Linear kernel: K(xi ; xi ′) =

pX
j=1

xi jxi ′j = 〈x; x ′〉; (2.22)

Polynomial kernel: K(xi ; xi ′) = (1 + 〈x; x ′〉)d ; (2.23)

Radial kernel: K(xi ; xi ′) = exp(−‚||x − x ′||2); (2.24)

where d , the degree of the polynomial, and ‚, which controls localisation of the decision

boundary, are hyperparameters for the polynomial and radial kernels respectively. Only

the linear and radial kernels are considered here due to their overwhelming popularity and

contrasting behaviour. SVMs making use of the radial kernel are referred to as radial basis

function (RBF) SVMs.

2.3.3.5 Loss function

Previous sections have considered the SVM from a max-margin perspective. It can also be

viewed from a penalisation perspective. This requires reformulating the optimisation using

the hinge loss

‘hinge(b; w ; yi ; xi ) = max(0; 1− yi (wT xi + b)); (2.25)

to give the L2-regularised L1 hinge loss,



2.3. Learners 63

min
w;b

1

2
||w ||22 + C

NX
i=1

‘hinge(b; w ; yi ; xi ): (2.26)

It takes the typical form of a loss function with a penalty term, and is equivalent to equation

2.19 (Aggarwal, 2015). Equation 2.26 illustrates that the standard formulation of the SVM

implements L2 penalisation of the weights. Squaring equation 2.25 gives the alternative

L2-penalised L2 hinge loss. Further discussion of loss functions is given in section 2.3.6.1.

2.3.3.6 Hyperparameter tuning

Tuning the linear SVM involves altering C, which controls how soft the margin of the

hyperplane is. C is a positive tuning parameter usually set to 1 by default. At C = 0,

no margin violations are tolerated, and only a linearly-separable problem can be solved.

Increasing C creates a wider margin that is more frequently violated by support vectors.

This means the position of the hyperplane depends on more individuals, giving it higher bias

and lower variance (as it depends on so many individuals, a small change in the training set

is less likely to cause a large shift in the hyperplane, and consequently any predicted classes).

Lowering C forms a smaller margin that is less tolerant of violations; it depends on far fewer

instances in the training data, so has higher variance and lower bias.

The RBF SVM uses the ‚ hyperparameter, in addition to C. ‚ controls how localised and

hence non-linear the hyperplane is. The default value is typically 1
N , where N is the number

of samples. A higher value for ‚ means the hyperplane becomes more linear and depends on

more distant support vectors to form its shape, while a lower value means only points much

closer are likely to have a strong effect, making it more non-linear and localised. In practice,

both C and ‚ are used to control model regularisation in the bias-variance trade-off. A

low C and ‚ can cause higher variance and increased bias, while increasing them both may

improve generalisability of the model up to a point.

2.3.3.7 Implementation

SVMs are implemented in scikit-learn, which makes use of the liblinear (Fan et al., 2008)

and libSVM (Chang and Lin, 2011) packages. The output of SVMs is a class assignment or

distance from the hyperplane, which may be converted to a probability using Platt scaling

(Platt et al., 1999); output was kept as distance from the hyperplane by setting ’probability’

to ’False’ unless indicated otherwise.

The SVM is often touted as one of the best "out of the box" classifiers, and is particularly

useful for high-dimensional data such as that found in genomics. However, the lack of

interpretable weights in non-linear kernels often earns it the label of a "black box". This

may partly explain why it has often found competition in a class of methods that are easier

to intuitively grasp and can also provide a helpful in-built measure of predictor importance:

trees.
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2.3.4 Decision trees

While logistic regression and support vector machines take probabilistic and geometric ap-

proaches to prediction respectively, trees are a fundamentally algorithmic operation with an

intuitive geometric interpretation. Decision trees alone can be a useful predictor, but they

are perhaps most widely known for their use in two contrasting ensemble approaches. This

section covers the foundation of decision trees before progressing to random forests and

gradient boosting.

Decision trees have been in use for regression and classification problems since the 1960s

and 70s respectively as the automatic interaction detection (AID) and THAID programs

produced by Morgan, Sonquist and Messenger (Breiman et al., 1984). However, modern

classification trees owe much of their origin to Jerome Friedman and Leo Breiman. To-

gether they independently re-implemented trees, and later jointly introduced classification

and regression trees (CARTs). These are now the most common form of decision tree and

can be used for both classification and regression. Many alternatives to CARTs have been

considered. The most prominent of these are iterative dichotomiser 3 (ID3) (Quinlan, 1986)

and C4.5 (Quinlan, 2014), both developed by Ross Quinlain. ID3 made use of entropy for

considering splits and could be applied to classification using categorical predictors only,

while C4.5 grew out of ID3, using the gain ratio for node splitting, extending handling of

data types and introducing tree pruning. Only CARTs are expanded on here, due to their

frequent use and incorporation into ensembles.

Decision trees use an iterative, greedy procedure to partition the predictor space into regions.

In CARTs, each partition, or split, separates the observations into two groups, and continues

recursively, each time further separating the newly formed groups. This process is known

as recursive binary splitting, and each of these groups or regions are called nodes or leaves.

A node can also be labelled as the ’root’ node if it is the first node to be considered at

the top of the tree, ’internal’ if it is further split in two, or ’terminal’ if it is not, while

’branches’ connect the nodes together. For each predictor Xj , every possible cut-point s is

considered for splitting. The reduction in error in the resulting splits is evaluated for each

cut-point. From all predictors and cut-points, the split that maximises node purity is chosen

for partitioning the data. The procedure is repeated for each of the resulting regions. This

continues until a stopping criterion is reached.

2.3.4.1 Splitting criteria

The choice of splitting criterion is one possible hyperparameter in decision trees (Figure

2.15). For classification, the logical choice might be simply the classification error (E),

E = 1−max
k

(p̂mk); (2.27)
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where p̂mk refers to the proportion of observations in the mth region of the kth class.

However, this has proven too insensitive to be useful (James et al., 2013). Instead, the Gini

index (G) and entropy measures (D) are commonly used. The Gini index is given as

G =
KX
k=1

p̂mk(1− p̂mk); (2.28)

and approaches zero when the majority of observations in a region are the same class. It

therefore measures how pure a node is, taking on a lower value as the node becomes more

pure, and is minimised to give the estimated best split. The most common alternative,

entropy, is simply a generalisation of Shannon’s entropy for more than two classes, also

known as the cross-entropy or deviance, and is given by

D = −
KX
k=1

p̂mk logp̂mk : (2.29)

As with the Gini index, entropy gets closer to zero as as nodes become more pure, and so

the cut-point with the smallest entropy is used to split the node.

Figure 2.15: Splitting criteria in CARTs. Curves show the values that classification error,
Gini index and rescaled entropy take for different p, the proportion of observation in a region
taking the desired class. Adapted from (Hastie, Tibshirani, and Friedman, 2009).

As values increase as purity decreases, criteria are labelled as measures of node impurity.

For all three measures, the splitting criterion is actually calculated on the potential new

daughter nodes or regions, with the sum of the impurity function for both potential nodes

minimised; i.e. for the candidate daughter regions
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R1(j; s) = X|Xj ≤ s and R2(j; s) = X|Xj > s; (2.30)

for the j th predictor and cut-point s, the sum of each region is minimised using

min
j;s

[c(R1(j; s)) + c(R2(j; s))]; (2.31)

where c is the classification error, Gini index or entropy evaluated for all observations in the

mth region xi ∈ Rm(j; s). Alternatively, the difference between the impurity of the parent

node and the sum of the impurity of the daughter nodes can be maximised. Many alternative

splitting criteria have been suggested, such as the Gain ratio and normalised information

distance; however, only Gini index and entropy have enjoyed widespread adoption in CARTs

(Aggarwal, 2015).

2.3.4.2 Predictions from decision trees

The final collection of all splitting rules can be visualised in a tree-like structure which

shows the recursive nature of the splits. At prediction-time, each new observation is traced

down the tree, following the splitting rules, until a terminal node is reached. Predictions

from terminal nodes are made by taking a majority vote or average of the outcome for the

training-set observations.

Trees are an attractive option because of their high level of interpretability, speed of compu-

tation, robustness to distributions due to rank-based splitting, ability to capture interactions

and the option of being used in both classification and regression. However, trees struggle to

capture additive effects (Hastie, Tibshirani, and Friedman, 2009), an aspect of some concern

for traditional quantitative genetic models of polygenic traits. They also show bias toward

predictors with high cardinality when choosing splits, though this can be addressed through

the use of conditional inference trees and forests (Hothorn, Hornik, and Zeileis, 2006; Strobl

et al., 2007). Furthermore, they are liable to overfit, showing low bias and high variance,

and consequently poor prediction, a feature Breiman referred to as "instability" (Breiman,

1996). Modifications have been developed to control such overfitting, mainly by limiting

tree depth or pruning-back fully grown trees. The former requires making tree-depth a hy-

perparameter that is tuned by cross-validation to ensure the tree is large enough to capture

the structure of the data without being so large as to capture noise as well. Controlling

tree depth through pruning similarly involves tuning a hyperparameter, here by indexing all

sub-trees of the fully grown tree and choosing the best index through cross-validation. This

relies on the intuition that restricting tree depth up-front partially ignores the greedy nature

of trees, and allowing them to first grow fully enables them to possibly find more informative

splits further down the tree. Despite these efforts, trees still show worse prediction than

modern machine learning methods. Rather than optimising the structure of a single tree, it
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is far more common for them to be combined together in an ensemble which improves over

the prediction of any individual tree. Such an approach is the basis for random forests.

2.3.5 Random forests

The high variance of fully-grown decision trees can be addressed by bagging (Algorithm

1), a simple but powerful technique. Bagging takes repeated samples of a dataset, with

replacement, builds a high-variance model on each subsample and averages the predictions

from all models (Breiman, 1996). The resulting ensemble has greatly reduced variance

compared to any of the individual models, typically decision trees, and is the foundation on

which random forests are built. The key insight Breiman made was that variance can be

reduced even further if the correlation between individual trees is also reduced, and that this

can be done by random subsampling of both observations and predictors.

Algorithm 1: Bagging, adapted from (Aggarwal, 2015)

input : Training data D = {xi ; yi}Ni=1(xi ∈ Rp; yi ∈ Y)

output: An ensemble classifier g

for t ← 1 to T trees do
Construct a sample data set Dt by randomly sampling with replacement in D
Learn base classifier ht based on Dt

end
return g(x) = argmax

y∈Y

PT
t=1 I(ht(x) = y)

While bagging is a generic method that can be applied successfully to any classifier with low

bias and high variance, random forests take advantage of the specific structure of decision

trees. As with bagging, the data for building each tree is bootstrapped from the original

dataset. In random forests, however, at each split the predictors are also subsampled, serving

to further decorrelate trees (Algorithm 2). The subsampling fraction is another tune-able

hyperparameter for random forests. However, for classification it is typical to take a random

subsample of m predictors from all p which are available, where m =
√
p is normally used

(Breiman, 2001). Setting m to be lower than this further decorrelates trees, while setting it

to the maximum of 1, taking all predictors at each split, is equivalent to bagging.

The use of bootstrapping in random forests has the side-effect of creating a set of obser-

vations which were not used in training for each tree. These are termed out-of-bag (OOB)

observations and can be used to provide an estimate of the test error for hyperparameter

tuning or to monitor the value of including additional trees. On average, the bootstrapping

procedure will allocate around two thirds to use in training a single tree, leaving the remain-

ing third available. To obtain predictions for an observation used in training, we simply make

use of all trees in which it is not used (i.e. where the observation is OOB). This is around

T=3 predictions, where T is the number of trees built, from which a majority vote can be

taken, or average probability in classification. The OOB error approaches the LOOCV error

as T increases. This makes it a useful option for particularly large datasets, but for smaller
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ones on which many classifiers are compared, it is often foregone in favour of using 5 or

10-fold cross-validation because the computational cost is not too great, and classifiers can

be compared together under a common validation framework.

Algorithm 2: Random forest, adapted from (Aggarwal, 2015)

input : Training data D = {xi ; yi}Ni=1(xi ∈ Rp; yi ∈ Y)

output: An ensemble classifier g

for t ← 1 to T trees do
Construct a sample data set Dt by randomly sampling with replacement in D
Learn a decision tree ht by applying LearnDecisionTree(Dt , iteration = 0,

ParentNode = root):

If stop criterion is satisfied, return

Randomly subsample predictors in the whole predictor space Rp to get a

new data set D̂current = RandomSubset(Dcurrent)
Find the best feature q∗ according to impurity gain

Split data (DL;DR) = spl it(Dcurrent ; q∗)
Label the new parent node v = parent:newchi ld(q∗)

Conduct

LearnDecisionT ree(DL; i teration = i teration + 1; P arentNode = v)

and

LearnDecisionT ree(DR; i teration = i teration + 1; P arentNode = v)

end
return g(x) = argmax

y∈Y

PT
t=1 I(ht(x) = y)

After training trees separately, they are taken together to provide a prediction. To predict

the outcome for a new observation, it is passed down each tree making up the forest until

it reaches the terminal node. Breiman originally proposed taking a majority vote of each

decision tree in the ensemble (Breiman, 2001). However, scikit-learn averages probabilities

(the proportion of training observations belonging to the positive class) across terminal

nodes. In addition, Breiman suggested trees should be fully-grown in a random forest, but

subsequent analysis suggests restricting tree depth is likely to improve prediction (Segal and

Xiao, 2011).

Random forests have remained a popular method in bioinformatics and machine learning

more generally. This is because they persist many of the appealing properties of decision

trees, such as importance scores and invariance to scale or transformation, but their im-

plementation can be easily parallelised and their predictive ability is competitive with other

top-performing approaches. They are, however, less interpretable than decision trees. In ad-

dition, they are not the only approach to building ensembles of decision trees for improved

prediction. While random forests mostly average over fully-grown trees, an alternative ap-

proach which sequentially combines many shallow trees has become increasingly popular

in recent years following computational improvements and the growth of online machine
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learning competitions.

2.3.6 Gradient boosting machines

Random forests were initially developed in response to boosting (Cutler, Cutler, and Stevens,

2012), an alternative ensembling methodology. Boosting creates an ensemble, or ’commit-

tee’, through the combination of ’weak’ base learners, where accuracy has a high probability

of being slightly greater than chance, to create a single ’strong’ learner that has accuracy

competitive with other modern approaches. Unlike the parallel algorithms of bagging and

random forests, boosting is done sequentially. In a regression context, each new base learner

is fit to the residuals of the current ensemble, each time making small improvements to

the learned function. In this sense it follows a general principle in machine learning that

learning slowly via smaller steps gives improved prediction over a single, fast model such as

a fully-grown decision tree. Boosting is a general method that can be applied to any base

learner; SVMs and logistic regression have been proposed as appropriate for classification,

but shallow decision trees are the most commonly used. Boosting is introduced through

AdaBoost, followed by a description of gradient boosting and modern implementations.

2.3.6.1 AdaBoost

Boosting first became popular after appearing in a classification context as AdaBoost (Freund

and Schapire, 1997), following separate earlier work by both authors (Schapire, 1990; Freund,

1995), and inspired by research from Kearns and Valiant on improving the performance of

a weak learner. As with other boosting methods, AdaBoost sequentially adds weak learners

then takes a weighted majority vote to predict from the ensemble. During learning, weights

are applied to the observations. These are initially equal, but get updated after iteration,

also known as a step or boosting round, where a new tree is added. After each step, weights

are modified to focus increasingly on the misclassified observations.

AdaBoost was the first method to clearly demonstrate the ability to ’boost’ an arbitrary

learner. It was later formalised as a forward stagewise additive model with an exponential

loss function that approximates an additive basis expansion (Friedman, Hastie, Tibshirani,

et al., 2000). Here, the additive basis expansion is a weighted summation over the weak

learners,

g(x) =
MX
m=1

˛mb(x ; ‚m); (2.32)

with ˛ as the vector of coefficients for expansion and b(x ; ‚m) a basis function on x with

parameters ‚. Instead of fitting equation 2.32 through maximum likelihood, for example,

which can be computationally expensive, boosting adds basis functions sequentially, each

time choosing a new weight, without updating previous weights in ˛. In this sense it is

additive, as it is a summation over the basis functions (weak learners), and forward in
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that each new weight and basis function to be added are solved alone, without ever moving

’backwards’ to modify previous weights in response. It also stagewise, as rather than learning

a single function g to approximate f , one is composed from parts learned in stages.

Figure 2.16: Loss functions scaled for comparison where the outcome y ∈ {−1; 1}. The x
axis, the product of y and f (x), is the "margin", so that if yf (x) > 0 then classification is
correct. The squared error is the least squares estimate, binomial deviance is the negative log
likelihood, support vector is the hinge loss, and exponential loss is that used by AdaBoost.
Misclassification loss applies only a unit penalty for incorrect classifications. Adapted from
(Hastie, Tibshirani, and Friedman, 2009).

It has been demonstrated that AdaBoost is equivalent to equation 2.32 learned through

an exponential loss function (Friedman, Hastie, Tibshirani, et al., 2000). The use of an

exponential loss is computationally useful but may be considered sub-optimal when used

with noisy data that have weak predictors or imperfect class labels. The negative log-

likelihood (binary cross-entropy or deviance) or hinge loss (used in SVMs) are similar in

that they place a linearly-increasing penalty on observations which are misclassified (Figure

2.16), and to a lesser extent a decreasing one on those correctly classified (with the Hinge

loss not considering correctly labelled observations). However, exponential loss applies a

significantly greater penalty on the most misclassified observations, while hinge loss and

binomial deviance rely on a wider spread of the instances. This makes hinge and binomial

deviance more robust when the observations most difficult to classify may be impossible to

improve upon using available predictors (Hastie, Tibshirani, and Friedman, 2009), or may

have mislabelled classes; these properties suggest AdaBoost may be less suited to prediction

from common variants in psychiatry. The squared error is also inappropriate for classification

in general, as it places increasing penalty on correctly classified observations. Ideally, loss



2.3. Learners 71

functions for classification should approximate the misclassification error (shown in grey

for Figure 2.16); the hinge and binomial deviance loss functions are continuous monotonic

examples of this.

Algorithm 3: GBMs, adapted from (Hastie, Tibshirani, and Friedman, 2009)

input : Training data D{xi ; yi}Ni=1(xi ∈ Rp; yi ∈ Y)

output: An ensemble classifier g

Initialise h0(x) = argmin‚
PN

i=1 ‘(yi ; ‚).

for m← 1 to M iterations do
for i ← 1 to N observations do

rim = −
»
@‘(yi ; h(xi ))

@h(xi )

–
h=hm−1

(2.33)

end
Fit a regression tree to the targets rim giving terminal regions Rjm; j = 1; 2; : : : ; Jm.

for j ← 1 to Jm terminal nodes in the mth tree do

‚jm = argmin‚
X
xi∈Rjm

‘(yi ; hm−1(xi ) + ‚) (2.34)

end
Update hm(x) = hm−1(x) + ”

PJm
j=1 ‚jmI(x ∈ Rjm).

end
return g(x) = hM(x)

2.3.6.2 Gradient boosting in regression

The result of statistical exploration of the success of AdaBoost was the creation of a boosting

method for learning via differentiation of an arbitrary loss function and base learners that

is more robust to noise. The method was termed gradient boosting, and the classifiers

gradient boosting models or gradient boosting machines (GBMs) (Friedman, 2001). In

these, an approximate method is used for solving the forward stagewise model by minimising

‘(h) =
NX
i=1

‘(yi ; h(xi )); (2.35)

where h(x) is an additive combination of trees, as in equation 2.32, and ‘(h) is the loss

function. We seek the h that minimises ‘(h) in order to obtain g . Algorithm 3, as given by

Hastie, Tibshirani, and Friedman, 2009, describes the details of the traditional procedure for

gradient boosting for regression problems, using a generic loss function as in equation 2.35.

In the context of regression, typically half the squared error is used as the loss function to

make taking the derivative easier. This procedure is started by initialising h0(x) as the mean

response; this may be viewed as a single terminal node.
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Following this, the procedure iterates through all M trees to compute the necessary steps

(Algorithm 3). First, pseudo-residuals, rim, are obtained from the negative gradient of the

loss function for each observation i in the current tree m (equation 2.33). The derivative

for regression can be simplified to yi − ŷi , where ŷi is the predicted value from the previous

boosting round. Second, the vector rim is taken as the response in fitting a regression tree.

The tree partitions the feature space into J terminal regions, Rj , where j = 1; 2; : : : ; J.

Third, the values ‚jm are computed from the jth terminal nodes in the current tree, m,

where ‚ is the predicted value for each observation xi which reaches that terminal node, Rj
(equation 2.34). For regression, this is simply the mean value in Rj . While the negative

gradient in equation 2.33 gave the direction of steepest descent in which to move, equation

2.34 gives the step size. Finally, the function h(m) is updated to combine previous trees

with the output from the new tree, scaled by the learning rate. The learning rate therefore

reduces the fit to the pseudo-residuals. Each tree takes a small step toward better prediction;

the smaller the learning rate, the more slowly the model converges.

2.3.6.3 Gradient boosting in classification

For a binary outcome, the procedure follows that for regression quite closely. Twice the

negative log-likelihood is taken as the loss function to minimise for classification,

‘(˛) = −2
NX
i=1

yi log(P (X)i ) + (1− yi )log(1− P (X)i ); (2.36)

similar to the maximisation of the log-likelihood (equation 2.10) shown for logistic regres-

sion. The initial estimate, h0(x), is taken to be the log(odds) of the outcome, log( y
1−y ).

The derivative taken to calculate the pseudo-residual for binary classification, rim, given in

equation 2.33, can again be simplified to be observed minus predicted; as predictions are

on the log(odds) scale, the logistic function is used. For the first tree, h1(x), this is the

outcome minus the logistic transformation of the log(odds) from h0(x). For the following

step in classification, a regression tree is fit to the residuals. However, for equation 2.34

a slightly different approach is taken to obtain each ‚jm by using the log(odds) from each

region Rj , as

‚jm =

P
xi∈Rjm

wim(yi − pi )P
xi∈Rjm

wimpi (1− pi )
; (2.37)

where pi is the logistic transformation of the value in Rjm and wim are the sample weights in

treem. The final prediction is the sum of the initial log(odds) from h0(X) and the subsequent

log(odds) produced by individual trees 1; 2; : : : ;M, each weighted by the learning rate, ”.

The predicted probability is obtained from the this by the logistic function, ehM (x)

1+ehM (x) . Were

an exponential loss function to be used instead, the resulting algorithm would be AdaBoost.
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An important difference between standard CARTs and those used in gradient boosting is the

splitting criterion. A typical CART for regression will use the mean squared error (MSE) for

splits, 1
N

PN
i=1(yi − ȳi )2, for N observations, where ȳ is the mean outcome in node m. In

gradient boosting, the "proxy gain" is used to quickly find the best cutpoint, as the optimal

split minimises both of these measures; MSE is then calculated once for the best chosen

split. The gain is given by

Gain =
G2
jmL

njmL
+
G2
jmR

njmR
; (2.38)

where G is the sum of the gradient of the loss function in the left (L) or right (R) hand

daughter leaf from node j of tree m.

2.3.6.4 eXtreme Gradient Boosting

Modern implementations of gradient boosting use the method described in Algorithm 3

in addition to subsampling of observations, following work by Friedman demonstrating a

further reduction in overfitting (Friedman, 2002). An additional hyperparameter controls

the maximum depth of trees. This bounds the possible interactions that can be detected

by gradient boosting, whereby a stump, with only 2 terminal nodes, can only detected main

effects. More generally, a tree of depth k can detect k − 1 order interactions. Together,

learning rate, subsampling and tree depth are the main tunable hyperparameters in classic

GBM implementations. Generally, more shallow trees with a slow learning rate (below 0.1)

give improved prediction.

One of the most popular and effective implementations is eXtreme Gradient Boosting (XG-

Boost), a highly-optimised implementation of regularised GBMs (Chen and Guestrin, 2016).

XGBoost makes several key changes to decrease overfitting.

First is to formalise regularisation in gradient boosting by adding penalty terms to the

objective function. As with other methods introduced so far, the objective function is made

up of the loss and the regularisation terms. Following the convention in Chen and Guestrin,

2016, the objective function is defined as

L(„) =
NX
i=1

‘(ŷi ; yi ) +
MX
m=1

Ω(hm); (2.39)

where Ω controls model complexity and „ represents the additive boosting model which

produces yi for each observation xi . The unpenalised loss function is the second-order

Taylor expansion of the loss after removing constant terms,

‘(hm) =
JmX
j=1

NX
i∈Rjm

[gradimwjm +
1

2
hessimw

2
jm]; (2.40)
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.

where gradi is first order derivative (gradient) and hessi is the second order derivative

(Hessian) of the loss for observation i , and wjm is the score in node j for iteration m. This

is equivalent to

‘(hm) =
NX
i=1

[Gjmwjm +
1

2
Hjmw

2
jm]; (2.41)

where Gjm and Hjm are the sum of the gradient and Hessian at the mth iteration in node j .

Optimisation of the loss is only a function of the gradient and the Hessian, unlike for GBMs.

Applying both L1 and the squared L2 norm, the regularisation term is

Ω(hm) = ‚T +
1

2
–||w ||22 + ¸||w ||1; (2.42)

for T leaves in a tree, where w is a vector of scores in the terminal nodes (Chen and Guestrin,

2016). Complexity is therefore controlled at the tree-level using three hyperparameters. ‚

limits the size of the tree by setting the minimum gain required to split. ¸ and – adjust

the strength of the L1 and L2 penalties on the terminal node values, respectively. XGBoost

allows for use of either L1, L2 or both, similar to elastic nets.

Second, the gain function is updated as

Gain =
1

2

"
G2
jmL

HjmL + –
+

G2
jmR

HjmR + –
− (GjmL + GjmR)2

HjmL +HjmR + –

#
− ‚; (2.43)

for the L2-penalised loss. It is not feasible to search all possible trees to optimise equation

2.41 at each step. Instead, trees are built using the modified gain function above to optimise

in a level-wise manner for each tree. This uses both the gradient and Hessian to improve

the estimate of the direction of steepest descent. This is in contrast to standard GBMs,

which use only the gradient to perform splits (equation 2.38).

Third is the introduction of column subsampling to gradient boosting, similar random forests,

on either the tree or at each level in the tree; standard GBM implementations now often also

implement tree-level predictor subsampling. There are a range of additional hyperparameters

available in XGBoost to control other aspects of learning, such as fine-tuning aspects of

tree growth or including additional regularisation techniques. XGBoost also implements

several performance enhancements not covered here, including optimisation for sparse data,

caching for out-of-core computation, an approximate split-finding algorithm, and blocking

for improved parallelisation. These allow for more thorough hyperparameter search when

computation is expensive.
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2.3.6.5 Comparison to random forests

Though random forests and gradient boosting seem superficially similar, the techniques

actually represent contrasting approaches. Random forests are a tree-specific method that

averages many models with low bias and high variance as a natural extension to bagging.

They improve prediction primarily by reducing variance; generally, adding more trees cannot

make a model worse. In contrast, boosting is a generic modelling approach which often

works best with shallow decision trees as weak learners. This is because it combines many

models with high bias and low variance. It primarily improves prediction by reducing bias,

and adding more trees only improves prediction up to a point, after which it can get worse.

The two do share the same fundamental idea that individual models can be combined to

improve prediction in a way that focuses on reducing bias or variance. This has proven to be

a particularly useful paradigm for increasing prediction performance. As computing power

has increased, and prediction modelling competitions gained in popularity, algorithms have

moved beyond simply combining small, fast models like decision trees. The next section

addresses a more general approach.

2.3.7 Averaging, stacking and blending

Random forests and gradient boosting provide large gains over their composite learners.

Where predictive ability is the main concern, smaller gains can be made by considering

ensembles of more complicated models. These take reasonably competitive, predictive mod-

els such as SVMs and random forests and combine them together into a single score or

model. Their success relies on taking diverse techniques which make different assumptions

in model-building and combining these together, such they collectively span the hypothesis

space of approaches for estimating f on a given dataset. They follow similar logic to bagging

and random forests: taking an average of less-correlated models reduces the variance and

improves prediction.

Ensembles can be partitioned into the two operations of generating base learners on the

training data, and aggregating them into a final model (Hastie, Tibshirani, and Friedman,

2009). It has become more possible and popular to use ensembles in recent years as online

machine learning competitions such as Kaggle have flourished, where small improvements

in discriminative ability determine rankings of competitors, and the average computational

budget available to practitioners has increased. Despite this, the concept of creating ensem-

bles is certainly not new. Error-correcting codes, proposed by Dietterich and Bakiri, 1994, for

improved prediction in multi-class problems, provide intuition around the improvements seen

in model averaging. Error correcting codes employ a distributed representation of each class

in a multi-class problem. A p-length code for each output is devised, as shown in Table 2.2,

such that each class is uniquely represented by its code, and p separate binary models are

trained to predict each column of the coding. The final prediction is taken by combining the

output of each binary model to give a predicted code. Later work showed that this method
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was partly effecting because it trains p binary models, instead of a single multi-class model,

and combines them, reducing the variance of predictions (Kong and Dietterich, 1995).

Class A B C D E F

0 0 0 0 1 0 0

1 1 0 0 0 0 0

2 0 1 1 0 1 0

3 0 0 0 0 1 0

4 1 1 0 0 0 0

5 1 1 0 0 1 0

6 0 0 1 1 0 1

7 0 0 1 0 0 0

8 0 0 0 1 0 0

9 0 0 1 1 0 0

Table 2.2: Distributed codes for a 10-class digit-recognition problem. Each class is
represented by a 6-digit code. 6 binary classifiers are trained with one of the columns as the
outcome. As codes overlap, all columns except F involve multiple classes. Their combined
prediction produces a 6-digit code, which is compared to the true codes by Hamming
distance (number of mismatches). Adapted from Dietterich and Bakiri, 1994.

The 3 most common approaches for combining competitive models are considered. The

first is a simple averaging of predictions. The most basic form of this is taking a majority

vote (hard voting), but more commonly predicted probabilities are averaged (soft voting).

Individual classifiers may also be weighted by a learned or pre-chosen measure. While effective

and easy to implement, averaging relies on all models producing a probability, as opposed

to the decision boundary used in SVMs, for instance. It also requires all models to be
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well-calibrated.

Algorithm 4: Stacking, adapted from (Aggarwal, 2015)

input : Training data D = {xi ; yi}Ni=1(xi ∈ Rp; yi ∈ Y)

output: An ensemble classifier g

Step 1: Learn first-level classifiers

for t ← 1 to T base classifiers do
Learn a base classifier ht based on D

end
Step 2: Construct new data sets from D
for i ← 1 to N observations do

Construct a new data set that contains {x ′i ; yi}, where
x ′i = {h1(xi ); h2(xi ); : : : ; hT (xi )}

end
Step 3: Learn a second-level classifier

Learn a new classifier h′ based on the newly constructed data set

return g(x) = h′(h1(x); h2(x); : : : ; hT (x)

A solution to these problems is to use a meta-estimator. This is termed stacking, and

was first introduced before the bagging or random forest procedures described by Breiman

(Wolpert, 1992). The idea is simply taking the predicted classes or probabilities for each

model, where these should have reduced correlation for better improvements, and ’stacking’

them together as meta-features or meta-predictors. These are used as the training data

for a meta-estimator such as logistic regression, decision tree or random forest. Regression

has been suggested as the most appropriate choice for meta-estimator (Ting and Witten,

1999). The models which produce the meta-predictors are termed first-level classifiers or

base estimators and the outer model which combines these is known as the second-level

classifier or meta-estimator. In practice, it is much more common to take probability of

class membership than class assignments, as the former has been shown to be essential

for successful stacking in classification (Ting and Witten, 1999). The predictions from the
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trained meta-estimator are taken as the final predictions from the whole ensemble.

Algorithm 5: Stacking with K-fold cross-validation, adapted from (Aggarwal, 2015)

input : Training data D = {xi ; yi}Ni=1(xi ∈ Rp; yi ∈ Y)

output: An ensemble classifier g

Step 1: Adopt cross-validation approach in preparing a training set for second-level

classifier

Randomly split D into K equal-size subsets: D = {D1;D2; : : : ;DK}
for k ← 1 to K folds do

Step 1.1: Learn first level-classifiers

for t ← 1 to T base classifiers do
Learn a base classifier hkt from D\Dk

end
Step 1.2: Construct a training set of second-level classifier

for xi ∈ Dk do
Get a record {x ′i ; yi}, where x ′i = {hk1(xi ); hk2(xi ); : : : ; hkT (xi )}

end

end
Step 2: Learn a second-level classifier

Learn a new classifier h′ from the collection of {x ′i ; yi}
Step 3: Re-learn first level classifiers

for t ← 1 to T base classifiers do
Learn a classifier ht based on D

end
return g(x) = h′(h1(x); h2(x); : : : ; hT (x)

A concern when using stacking is multicollinearity, wherein one variable in a dataset can be

predicted by other variables using a linear model. This has been suggested to be an issue

for stacking, resulting in an ensemble which does not out-compete base classifiers (Duman-

cas and Bello, 2015). However, the principle concern in stacking classifiers is preventing

information leakage from the base classifiers to the stacked meta-estimator. This can easily

occur if a simple split-sample approach is taken, where the base estimators are fit to the

training data, and give predictions on that same data (Algorithm 4). These training set

predictions are then used as input to learn the meta-estimator in the training set. Each base

estimator gives predictions for the test set, which feeds into the meta-estimator to give the

final test set predictions. Such an approach can lead to overfitting.

Applying cross-validation to stacking reduces the risk of overfitting (Aggarwal, 2015). A sin-

gle train-test split is first applied, followed by cross-validation in the training fold. Algorithm

5 describes this improved procedure, wherein the predictions from the base estimators in

the training split are the test-fold predictions from cross-validation. The stacked predictions

from base estimators are therefore all predictions on unseen data, from distinct but correlated

models. The base estimators must then be refit to the whole training set before predicting
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on the test set. This runs less risk of leading to overfitting as it avoids the meta-estimator

giving more weight to more flexible models which may have overfit the training data (Hastie,

Tibshirani, and Friedman, 2009). In small datasets, this process can be adjusted for nested

cross-validation by simply repeating the split-sample approach K times on K equal-sized

non-overlapping outer folds. Alternatively, a hold-out set may be reserved specifically for

training a meta-estimator. This is sometimes termed blending (Töscher, Jahrer, and Bell,

2009), but is less frequently used as it requires a much larger dataset to be possible. The

use of stacking, blending or averaging will likely incur reduced interpretability of the model,

but with the possible gain of improved prediction.

An additional concern in stacking is multicollinearity, wherein multiple predictors show re-

lationships. While machine learning methods are often noted for not having strict requires

for multicollinearity that are rpesent in classicial statistical approaches, stacking has been

shown to be affected by this ().

2.3.8 Neural networks

Deep learning is a subset of machine learning focused on using neural networks. As with

gradient boosting, neural networks make use of sequential optimisation of an objective

function. They differ by applying a network of weights to the input which are iteratively

updated through backpropagation to learn associations with the outcome (LeCun, Bengio,

and Hinton, 2015). Specific notation is adopted for discussing neural networks:

• L - the number of layers in a network

• sl - the number of neurons in the l th layer

• zml - the linear combination of inputs and weights for neuron m in layer l

• gml - the activation function of neuron m in layer l

• aml - the output of neuron m in layer l

• wl - a matrix of weights from layer l to layer l + 1

• bl - the bias term for layer l

• T - the number of gradient updates

• w tl the weight matrix for the l th layer in the tth update

2.3.8.1 Neurons

The fundamental unit of a neural network is the neuron, shown in the centre of Figure 2.17.

A neuron, or node, is a single unit of computation with two functions. The first takes a

linear combination of inputs z ,

z = wT x + b; (2.44)
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using learned weights w , and adds a bias term b. The second applies an non-linear activation

function to transform the output. The single-neuron model in Figure 2.17 is known as a

perceptron.

h(x)z g(z)

x1

x2

x3

b

𝑤!

𝑤"

𝑤#

Figure 2.17: A perceptron. A linear combination of weights and predictors is added to the
bias, before being passed through a non-linearity (activation function).

Many activation functions are available in neural networks. The absence of a non-linearity,

sometimes termed a linear activation function, applies no transformation to the output. A

network with only linear activations can only learn a linear function, no matter how deep

the network. In binary classification, a sigmoid function is used at the terminal node. This

is applied to the scalar from z to give the final output of a neuron, a, as

a = g(z) =
1

1 + e−wT x+b
(2.45)

While sigmoid is used for the output layer for binary classification, the hyperbolic tangent

activation function,

g(z) = tanh(z) =
ez − e−z
ez + e−z

; (2.46)

and rectified linear unit (ReLU) activation function,

g(z) =

8<:z if z > 0

0 if z ≤ 0
; (2.47)

are often used for layers within the network. ReLU is a piecewise linear function which be-

comes the identity function when z > 0. It is perhaps the most popular activation function

as computation is cheap - the derivative is only ever 0 or 1 - and it solves the "vanishing

gradient problem" when training deep neural networks, an issue where the gradient of the
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tanh and sigmoid functions can become vanishing small, preventing the loss being propa-

gated through the network. Many modifications to these exist, including leaky ReLU and

exponential linear unit (ELU). Leaky ReLU is a suggested fix for the "dying ReLU" problem,

whereby the computation for z is negative, causing ReLU to output zero for g(z), resulting

in a gradient of zero and no further learning for that neuron. Leaky ReLU changes g to a

small value when z < 0 by using

g(z) =

8<:z if z ≥ 0

¸z if z < 0
; (2.48)

where ¸ is a constant, typically around 0.1. ELU also adapts ReLU by taking the exponent

of negative inputs and scaling them, using

g(z) =

8<:z if z ≥ 0

¸(ez − 1) if z < 0
: (2.49)

Whether there is a benefit from using these alternatives is not clear, and researchers often

stick to ReLU for fast computation with large networks.

2.3.8.2 Networks

Neurons are combined together into networks as connected layers (Figure 2.18). In the

simplest form, neurons in each layer take inputs from the previous layer and pass outputs to

the next. This is initiated with the inputs to the network, which is not counted as a layer here,

so that a network consisting of inputs, 1 hidden layer and an output layer is considered to be

a 2-layer network. In the final layer the node, or nodes, provide the prediction. Each neuron

in a layer is connected only to neurons in the adjacent layer, but not to other neurons in the

same layer. This structure is a feed-forward network, and may be referred to as "dense".

Between the input and output layers, so-called hidden layers may be used. Use of one or

more hidden layers typically earns the moniker "deep" learning. The feed-forward network

described here is a multi-layer perceptron.
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Figure 2.18: Neural network architecture, where each circle is a neuron and lines denote
weights. Inputs are connected to a hidden layer through weights. Each predictor connects to
each node in the next layer in a dense multi-layer perceptron. The hidden layer feeds forward
to the output layer, a3. Bias terms are present for inputs, x0, and hidden layers, a20

Taking the computation from a single neuron in equation 2.45, computation of layers can

be considered. For a given layer l with sl units, the matrix of weights wl connecting it to

a layer l + 1 with sl+1 units is an sl+1xsl matrix, excluding the bias. In Figure 2.18, the

matrix of weights w1 ∈ R6x4 connects the input vector x = [x1; x2; x3; x4]T to layer 1 (the

hidden layer). The output from this, z2 = w1x+b1, undergoes element-wise transformation

to give a2 = g(z2) using the chosen activation function, where a2 ∈ R6, excluding the bias

term.

Passing values through the network, from left to right in Figure 2.18, is known as forward

propagation. The choice of number of neurons and number of layers affects the size of the
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network and its capacity to learn. The number, layout and connections between neurons is

known as the architecture of a network. There is no clear rule for choosing an architecture.

The input and output layers are set by the data. Rules-of-thumb for hidden layers typically

rely on keeping the number of layers small for tabular data with a small-to-moderate sample

size, often 1 to 3, and constraining the number of hidden neurons to limit the risk of overfit-

ting. The geometric pyramid rule suggests that number of hidden neurons should decrease

as layers get deeper in the network, and that a single hidden layer with
√
s1 ∗ sL neurons

is acceptable (Masters, 1993), where s1 and sL are the size of the input and output layers

respectively. Other sources suggest a good approximation can be achieved by choosing the

size of a hidden layer to be between s1 and sL, or between 2
3sl and 2sl (Heaton, 2008). Both

sources suggest such heuristics achieve a reasonable starting point, but multiple architectures

should be tried for a dataset.

Neural networks are not a recent invention. In silico neuronal models have existed since the

mid-20th century as a linear combination of binary values (McCulloch and Pitts, 1943);

Rossenblatt’s perceptron and its associated learning procedures followed in the ensuing

decades. Despite such early work, interest in applying neural networks has waxed and waned

through several AI "winters", periods of diminished interest and funding that occurred prin-

cipally in the 1970s to 1990s. Modern neural network architectures enjoy huge success due

to a surfeit of funding, open source software, computational power and, in many fields, data.

Preceding all this was a fundamental development in the 1980s that provided an effective

mechanism for training larger neural networks.

2.3.8.3 Gradient descent

Neural networks are trained by gradient descent, which involves updating weights through

backpropagation (Rumelhart, Hinton, and Williams, 1985). In order to achieve this the

gradient of the objective function must be determined. The negative gradient gives the

direction of steepest descent in which to step. First, weights are randomly intialised. These

are typically drawn from a standard normal distribution before reducing the variance to an

appropriate scale, for example by
p

( 2
N ) when using ReLU (He et al., 2015), where here

N is the number of weights. Next, the partial derivative of each node in the Lth layer is

calculated with respect to the loss function. Once the gradient has been computed, weights

are updated,

w t+1
1 = w t1 − ”@w1 (2.50)

bt+1
1 = bt1 − ”@b1 (2.51)

where ” is the learning rate that controls the size of the step. ” is a hyperparameter that

is tuned in training, with values typically chosen from a logarithmic scale in the range 10−5
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to 10−1 (Goodfellow et al., 2016). The partial derivative is then calculated for each node

in the L− 1 layer, followed by a weight update, then layer L− 2 and back to the first layer,

each time propagating results backwards through the network.

Data can be passed to the network in mini-batches, often with 2n observations (e.g. 16, 32,

64, 128). Scaling of each mini-batch, rather than on the entire training set, improves speed

of convergence (Ioffe and Szegedy, 2015). Typically a z-transformation is applied to bring

predictors into the same range.

Gradient descent is repeated for a number of epochs (complete passes through the data)

until the loss function begins to converge. This can be monitored by plotting the loss against

epochs, or applying a test designed to automatically check for convergence. The number of

epochs to train for depends on the learning rate and the problem. A smaller learning rate

will require a larger number of epochs to reach convergence.

Figure 2.19: Visualisation of the loss landscape. Smoothness can be affected by different
choices of hyperparameters during learning. The figure illustrates this for a type of
convolutional neural network, ResNet-56 (left), compared to the same network with skipped
connections (right). Adapted from (Li et al., 2017a)

Variations on gradient descent can be used to alter the number of observations used to

compute a step, or apply a constant or adaptive learning rate. Instead of computing the

loss for a whole dataset (batch) or chunk of it (mini-batch), stochastic gradient descent

(SGD) takes a single observation at a time. This greatly increases computation speed but

also causes much more variation in the gradients; steps are more affected by noise, move

in opposite directions and take much longer to approach convergence. An adaptation to

gradient descent which improves speed and often performance is momentum (Sutskever et

al., 2013). This applies exponentially weighted averaging over rounds of gradient descent

to smooth-out the steps taken, resulting in a more direct path to the optimum. Use of

momentum adds another parameter to adjust the strength of the weighted average, with

values typically set between 0.8 and 0.99.

Architecture and hyperparameter choices made in training can vastly change the landscape

for the loss function (Figure 2.19). Appropriate choice of learning rate and momentum can
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attain convergence on local minima in a multilayer perceptron, but does not ensure the global

minimum is reached. Adaptive learning rates can be used to help speed up or decrease the size

of the steps in gradient descent depending on the landscape of the loss function. Adaptive

moment estimation (Adam) (Kingma and Ba, 2014), adaptive gradients (AdaGrad) (Duchi,

Hazan, and Singer, 2011) and root mean squared propagation (RMSprop) (Tieleman and

Hinton, 2012) and other techniques apply such learning rate schedulers, allowing for much

larger initial steps to be taken, followed by smaller steps as the loss approaches convergence.

The most popular and successful of these, Adam, combines momentum and the adaptive

learning rate method from RMSprop.

Gradient descent performed in training neural networks is similar to that used for training

gradient boosting machines. The key difference between these is that neural networks use

gradient descent to update the weights directly, and so employ it on the input space. GBMs

update the residuals for each round of boosting based on the gradient, performing gradient

descent in the function space. Neural networks use gradient descent to train a single strong

model, while GBMs use it to boost the prediction from multiple weak models.

The ability to switch-out different activation functions and objective functions highlights a

small fraction of the flexibility of neural networks. For instance, a single neuron with a linear

activation function and a hinge loss is equivalent to a linear SVM; alternatively, attaching a

sigmoid function and minimising the log-likelihood is equivalent to logistic regression, though

both are trained here through gradient descent.

Figure 2.20: Regularisation by weight decay for simulations with 2 predictors, 100 train
observations and 10,000 test observations. Test error is shown for a neural network with one
hidden layer with (right) and without (left) L2 regularisation. The results show the
distribution across 10 random weight intialisations, for varying number of hidden neurons. 0
nodes is a network with no hidden layer. Adapted from (Hastie, Tibshirani, and Friedman,
2009).
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2.3.8.4 Regularisation

Large networks can easily overfit in small datasets. Several methods are available for con-

trolling this. As with other models described so far, an L1 or L2 penalty can be used to

constrain optimisation of the weights. This is termed weight decay. L2 regularisation is the

most common (Goodfellow et al., 2016); it is often reported to give improved prediction

over L1, and allows for more stable predictions when deeper architectures are used (Figure

2.20). Values for weight decay are normally chosen from a logarithmic scale between 0 and

0.1.

An alternative method is dropout (Srivastava et al., 2014). This randomly zeros-out neurons

in a hidden layer, with a pre-specified probability. Different neurons are zeroed-out in a

layer for each iteration of gradient descent, forcing the model to be more robust by learning

alternative routes through the network. The most common implementation of this is inverted

dropout, whereby output al from a layer is scaled relative to the probability of dropout, to

account for the decreased value from zl due to the zeroed-out nodes. Dropout is simple and

effective, and may be used alone or in addition to other regularisation techniques like weight

decay. At prediction time, the whole network is used. A further option is early stopping.

Here, convergence is monitored in a hold-out set, and optionally also in the training set.

Training is stopped if no improvement is seen within a set number of epochs, often labelled

the "patience", in the hold-out set. This allows learning to be halted before overfitting

occurs, but is only possible in large datasets where a portion of training data can be set

aside for monitoring.

Though the multi-layer perceptron described here can be increased to a large number of

hidden nodes and layers, it remains the simplest architecture. Much more complicated

structures have been developed for specific applications. Principal among these are the

convolutional neural network (CNN) and the recurrent neural network (RNN). CNNs combine

1, 2, or 3-dimensional convolution layers with pooling layers to greatly reduce the number

of parameters in a model, culminating in a fully-connected feed-forward network. They are

specialised for image processing but have been adapted to other fields. RNNs maintain an

internal state to process sequence data, such as language models.

2.4 Summary

Machine learning comprises a broad array of methods for leaning from data. This chapter

has introduced commonly-used methods which approximate a target function f using g .

Each learning algorithm A makes assumptions to produce a final competitive prediction.

The chapter has also detailed the methods of developing, validating and comparing models.

The most competitive machine learning models are used in Chapters 4 and 5: ridge, LASSO,

linear SVM, RBF SVM, random forest, XGBoost and neural networks. These are compared
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to polygenic risk scores whenever estimates of effect sizes are available and logistic regres-

sion where p < n. Decision trees and AdaBoost were both described in this chapter, but

are not implemented in analyses; decision trees are liable to high variance and low bias,

while the exponential loss function in AdaBoost makes it unlikely to perform well in genetic

data for psychiatric disorders. While chapter 4 aims to compare many methods to identify

which perform best under different conditions, chapter 5 seeks to maximise prediction of

schizophrenia from real data, and so also incorporates stacking and additional assessment

of the predictive models.

With few exceptions, no machine learning method has a clear theoretical basis for being

deemed superior or inferior for genetic prediction. The next chapter systematically reviews

the literature to assess the predictive performance of supervised machine learning methods

in psychiatric genetics.
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Chapter 3

Systematic Review of Machine Learning
Methods for Genetic Prediction of
Psychiatric Disorders

3.1 Introduction

Machine learning represents a contrasting approach to traditional methods for genetic pre-

diction. It has increased in popularity in recent years following breakthroughs in deep learning

(Glorot, Bordes, and Bengio, 2011; Hinton et al., 2012; Krizhevsky, Sutskever, and Hinton,

2012; Sutskever, Vinyals, and Le, 2014), and the scaling-up of datasets and computing

power. The ability to function in high dimensions and detect interactions between loci

(Cordell, 2009) without assuming additivity makes such methods an attractive option in

statistical genetics, where the effects of myriad factors on an outcome is difficult to pre-

specify. Calls to address the complexity of disorders like schizophrenia with machine learning

have also become more frequent (Krystal et al., 2017; Schnack, 2017; Tandon and Tandon,

2018). However, the predictive performance of machine learning methods in psychiatric

genetics is unclear, and a recent review of clinical prediction models across various outcomes

and predictors found them to be no more accurate than logistic regression (Christodoulou

et al., 2019); it is therefore timely to review their predictive performance in psychiatry.

Genome-wide association studies, genetic prediction and psychiatry have each been reviewed

with respect to machine learning. Chen and Ishwaran, 2012, give a detailed history of the

algorithmic modifications that have been made to random forests for application to genetic

data. A methodological focus is also taken in a review of machine learning in psychiatry,

with attention paid to the principles of machine learning, which methods are available and

application to large psychiatric datasets (Iniesta, Stahl, and McGuffin, 2016). A more

recent review of deep learning, where the authors cover common architectures of neural

networks, highlights examples of neuroimaging and data from health records or electronic

devices being used for prediction in psychiatry (Durstewitz, Koppe, and Meyer-Lindenberg,

2019). By contrast, two further reviews look across diseases to give an overview of machine

learning with respect to interactions, predictor selection and regularisation (Okser, Pahikkala,

and Aittokallio, 2013; Okser et al., 2014). Single nucleotide polymorphism (SNP)-based
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prediction has also been reviewed across diseases in two articles. An earlier publication

aimed to systematically review machine learning on data from genome-wide association

studies (GWAS) (Kruppa, Ziegler, and König, 2012). They identify 115 papers, 91 of which

apply machine learning (ML) to candidate loci; none of the articles included by Kruppa,

Ziegler, and König, 2012, overlap with the present chapter. Prediction from SNPs has

also been reviewed more recently (Ho et al., 2019). Here, the authors give an overview of

penalised regression and tree-based models with examples from the literature, highlighting

the differences between machine learning and polygenic risk scores.

Though several reviews have sought to address aspects of machine learning and genetics

across diseases, psychiatry presents a distinct problem from somatic and neurological diseases

as a result of genetic correlation between disorders (Anttila et al., 2018) and the risk of class

mislabelling due to biological heterogeneity that may underlie symptom-based diagnoses

(Kapur, Phillips, and Insel, 2012). In addition, only two previous reviews of machine learning

and psychiatric disorders are systematic. The first of these evaluated 51 studies for the use

of machine learning and any data-type to predict bipolar disorder (Librenza-Garcia et al.,

2017). 5 genetic studies were included in the review by Librenza-Garcia et al., 2017, 2 of

which are also included here (Pirooznia et al., 2012; Acikel et al., 2016). The remaining 3

were excluded from the current review as they exclusively used gene expression data, only

used random forests to perform quality control, or combined multiple disorders into a single

outcome. The second systematic review assessed 26 studies for use of machine learning in

prediction of treatment-related outcomes in depression (Lee et al., 2018). 3 studies with a

genetic predictor were included by Lee et al., 2018, but all were excluded in this chapter as

they involved prediction of treatment response instead of a disorder.

Systematic reviews have become an essential facet of the medical literature, requiring authors

to apply "systematic and explicit methods to identify, select, and critically appraise relevant

research, and to collect and analyse data from the studies that are included in the review"

(Higgins et al., 2019). Ideally, they involve an assessment of risk of bias (Moher et al., 2009),

a systematic issue in a study which causes optimistic or distorted performance measures

(Wolff et al., 2019). Given the potential for machine learning methods to overfit and

the often complex modelling steps occurring within a pipeline, analysis of risk of bias is a

crucial step in evaluating approaches. However, no previous reviews on machine learning in

psychiatric genetics have systematically assessed within-study risk of bias.

3.1.1 Aims and objectives

The aim of this chapter is to establish the current state of machine learning methods for

prediction in psychiatric genetics. The objectives are:

• Systematically search, extract, summarise and present literature on machine learning

methods for prediction of psychiatric disorders from genetic data
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• Report the ability of machine learning methods to discriminate between cases and

controls

• Assess studies for inflation of performance measures through evaluating risk of bias in

participants, predictors, outcome and analysis

• Summarise methods used by researchers in model development and validation

Literature was systematically reviewed related to the question: what is the ability of machine

learning methods to predict psychiatric disorders using only genetic data? Discrimination,

methodology and potential bias is reported for diagnostic or prognostic models and compared

to logistic regression (LR) and polygenic risk scores (PRS) where available.

3.2 Methods

3.2.1 Search strategy

Medline via Ovid, PsychInfo, Web of Science and Scopus were searched for journal articles

matching terms for machine learning, psychiatric disorders and genetics on 10th September

2019. Searches were broad, with terms for psychiatric disorders including schizophrenia,

bipolar, depression, anxiety, anorexia and bulimia, attention-deficit hyperactivity disorder,

obsessive compulsive disorder, Tourette’s syndrome or autism. Terms for machine learning

were also wide-ranging, including naïve Bayes, k-nearest neighbours (k-NN), penalised re-

gression, decision trees, random forests, boosting, Bayesian networks, Gaussian processes,

support vector machines and neural networks, but excluding regression methods without

penalty terms, such as logistic regression. Searches were restricted to English language

journal articles on humans, with no limits on search dates. All abstracts were indepen-

dently reviewed for inclusion by two individuals. Full texts were assessed and independently

screened against inclusion criteria if either individual had chosen to access them. Where con-

flicts occurred a third researcher was consulted as an arbiter. Duplicate reading of articles,

extraction of discrimination, and assessment of risk of bias in studies was assisted by Karen

Crawford; resolution of ties between assessors was assisted by Valentina Escott-Price, and

all three parties contributed to the development of a data extraction form. All other work

is the product of the author. An example search for Medline (Ovid) is given in appendix A

(Table A.1).

3.2.2 Inclusion and exclusion criteria

Studies were restricted to cohort, cross-sectional or case-control designs of individuals for

binary classification of a single DSM or ICD-recognised psychiatric disorder compared to

unaffected individuals, where only genotyping array, exome or whole-genome sequencing

data were used as predictors. Studies based solely on gene expression were excluded, but

designs which made use of gene expression or functional annotations to inform models of

genetic data were accepted. Studies which combined genetics and non-genetic data (such as
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from neuroimaging) were included if they developed or validated a model using only genetic

data. Models were only considered for inclusion if they contained two or more genetic

predictors from more than one locus.

No further restriction was made on participants. Studies were excluded if they only predicted

medication response, sub-groups within a psychiatric disorder or a psychiatric phenotype sec-

ondary to another disease. Psychiatric disorders were limited to those with demonstrated

heritability and for which large association studies have been undertaken; neurological condi-

tions with psychiatric comorbidities were excluded. A machine learning or statistical learning

method was required to be used as the prediction model, with models only using ML for qual-

ity control or predictor selection not considered. Studies were also considered ineligible if they

had a clear primary aim of drawing inference at the expense of prediction, if they developed a

novel statistical method or only made use of unsupervised or semi-supervised methods. The

review was registered to PROSPERO in advance (registration number CRD42019128820).

Changes were made to the registered protocol to further restrict the review’s scope, and to

clarify inclusion and search criteria before completing database searches.

3.2.3 Extraction and analysis

A data extraction form was developed prior to screening of publications. Items from the

critical appraisal and data extraction for systematic reviews of prediction modelling studies

(CHARMS) checklist (Moons et al., 2014) were included as-is or modified, and additional

items were included based on expert knowledge and relevance to the review topic, with

reference to the genetic risk prediction studies (GRIPS) statement (Cecile et al., 2011) for

items pertaining to genetic prediction studies. The complete form is given in the appendix

(Table A.2). The form was piloted with five publications, containing 40 extracted ML models

between them, and updated before being applied to all texts by simplifying questions and

merging related items.

Where models were fit and internally evaluated before external validation in a single study,

information was extracted for both internal and external validation. Internal validation is

taken to be any form of evaluation on a subset of the same sample used for training,

including splitting samples between training and test sets, bootstrapping and k-fold cross

validation. Apparent validation, where training and testing are both done on the whole

sample, is also recorded under internal validation for this chapter. Any form of internal

validation is considered to be part of model development. External validation is understood

as evaluation on an independent dataset, which differs in temporal, geographic or other

aspects, and is not simply a splitting-off from the original sample. If multiple models were

presented with subsampled predictors or participants, only main models presented in the text

were extracted; if such a distinction was unclear, all models were selected for review.

The discrimination of machine learning methods was extracted as area under the receiver
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operating characteristic curve (AUC), or c-statistic. Model performance measures for clas-

sification by accuracy, sensitivity and specificity were also extracted. Where area under

the receiver operating characteristic curve (AUC) was only available graphically it was ex-

tracted from the figure using Plot Digitizer (Plot digitizer), and accuracy was calculated

from the confusion matrix if not provided in-text. 95% confidence intervals for validation

were estimated for AUC using Newcombe’s method (Debray et al., 2019). Results were not

meta-analysed due to sample overlap, present in at least half of studies (see Table A.4),

which cannot easily be accounted for in the meta-analysis. Though the logit-transformed

AUC provides a more stable inter-study measure of discrimination (Snell et al., 2018), AUC

is presented here on the original scale for ease of interpretation and because a meta-analysis

was not performed, so transformation was not required. Information on participants, pre-

dictors and model development and validation were also obtained, with LR or PRS models

extracted when present. The presence of LR and PRS as comparators was not made a

requirement due to their sparsity in the literature.

3.2.4 Risk of bias

Risk of bias (ROB) and applicability were assessed using the prediction model risk of bias

assessment tool (PROBAST) (Wolff et al., 2019). PROBAST consists of 20 questions

designed to signal where ROB may be present in either the development or validation of

a model across 4 categories: participants, predictors, outcome and analysis (Table A.3).

These include, for instance, questions on how missingness or complexities in study design

were handled. Information on handling of population structure, a common confound in

genetic association studies, was also extracted to aid ROB assessment (see Table A.2).

Where information was unavailable within a study, any references or links given for descrip-

tions of datasets or methods were examined. The signalling questions from PROBAST

remained unchanged; however, recommendations for assessing studies using genetics and

machine learning were added to adapt the tool and keep consistency in answers across mod-

els and reviewers (appendix A). Reporting of the systematic review follows the preferred

reporting items for systematic reviews and meta-analyses (PRISMA) guidelines (Moher et

al., 2009).

3.3 Results

3.3.1 Selection

1,241 publications were identified through searches in Ovid Medline, PsychInfo, Scopus and

Web of Science which included restrictions to English language journal articles (Figure 3.1).

After merging and removing duplicates, 652 studies were assessed for inclusion. Of these,

63 full texts were assessed to determine eligibility. 14 publications were selected, with two

merged following Cochrane recommendations (Higgins et al., 2019) as publications included
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the same models on the same dataset. A final total of 13 studies were selected for inclusion,

containing 77 distinct machine learning models.

Records identified through database
searching
(n = 1241)

Records after duplicates removed
(n = 652)

Records screened
(n = 652)

Full-text articles assessed for
eligibility
(n = 66)

Studies included in qualitative
synthesis
(n = 13)

Records excluded
(n = 586)

Full-text articles excluded
(n = 52)

Not disorder/unaffected outcome (15)
Predicts genetics (9)
Explanatory model (8)             
No genetics-only model (5)
Not journal article (5)
Single locus/predictor (3)             
Prediction model not ML (3)
Not genotyping/sequencing (3)
New methodology (1)
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Figure 3.1: PRISMA flow diagram. Counts of publications are given for ’eligibility’,
’screening’ and ’identification’, while counts of studies are used for ’included’. Two of the 14
selected publications were merged to give 13 studies for inclusion in the review.

3.3.2 Studies

A wide range of machine learning methods were applied to schizophrenia (7 studies, 47% of

models), bipolar disorder (5 studies, 39% of models), autism (3 studies, 10% of models) and

anorexia (1 study, 4% of models) (Table 3.1), with no studies identified for the 6 remaining

disorders. Single nucleotide polymorphisms (SNPs) were the most common source of genetic

data. Copy number variants (CNVs) and PRSs were each incorporated in models from a

single study, and exome-sequencing data formed the basis of two studies. Datasets typically

consisted of publicly-available GWAS; potential sample overlap was established for at least

7 studies (Table A.4). Briefly, 3 studies (Pirooznia et al., 2012; Guo et al., 2015; Vivian-

Griffiths et al., 2019) included controls for the 1958 Birth Cohort (Power and Elliott, 2006) or

the UK Blood Service (Consortium et al., 2007), 4 studies included controls from Knowledge

Networks (Pirooznia et al., 2012; Li et al., 2014; Acikel et al., 2016; Chen et al., 2018), 2
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studies used a Swedish population-based sample (Chen et al., 2018; Trakadis et al., 2019),

and 3 studies used the same dataset, or provided a common reference for part of the dataset

(Pirooznia et al., 2012; Li et al., 2014; Acikel et al., 2016). The remaining 6 studies (Aguiar-

Pulido et al., 2010; Aguiar-Pulido et al., 2013; Yang et al., 2010a; Engchuan et al., 2015;

Laksshman et al., 2017; Wang et al., 2018; Ghafouri-Fard et al., 2019) either gave unclear

information, reported no previous reference for the dataset, or used datasets which appear

to be separate from other studies. Where samples overlap, all models included in the review

are distinct, using different predictors or modelling approaches. Additional overlap or cryptic

relatedness may be present between studies.

Missingness was reported clearly in about half of all studies and models. When reported, it

was most commonly handled by imputation after excluding genotypes with high missingness.

Studies also reported complete-case analysis and inclusion of missing values in coding of

predictors (Table A.5).

3.3.3 Machine learning methods

Support vector machines (SVMs) and neural networks were the most popular, followed by

random forests and boosting (Table 3.2). SVMs were split roughly equally between using

a linear kernel (3 studies, 7 models), a radial basis function (RBF) kernel (3 studies, 6

models), or an unreported kernel (3 studies, 6 models). Authors applying neural networks

most commonly used multilayer perceptrons (3 studies, 6 models), an RBF network (2

studies, 5 models) or restricted Boltzmann machines (RBMs; 1 study, 9 models), with linear

networks, convolutional neural networks (CNNs) and embedding layers each used once.

Weak learners in boosted models were mainly decision trees, with the exception of a method

which combined feature selection with the boosting of RBF-SVMs in AdaBoost (Yang et al.,

2010a). Penalised regression was employed alongside linear and non-linear methods as least

absolute shrinkage and selection operator (LASSO; 3 studies, 4 models) or ridge regression

(1 study, 2 models).

Choice of model appears to be at least partly driven by availability: neural networks (RBF

kernel), decision tables, BFTree and decision tree naïve bayes were only used in WEKA.

51% of all models were implemented in R or WEKA; Matlab and Python were preferred for

neural networks (Table A.6).

3.3.4 Risk of bias

Risk of bias was assessed for each model within each study (Figure 3.2). All models displayed

risk of bias, mostly in relation to participants (study design and inclusion/exclusion criteria),

outcome (standardised definition and assessment of outcomes) and analysis. Within-study

ROB for participants was due to the use of case-control studies. Predictors were mostly rated

to have unclear or low ROB; instances of high ROB were limited to predictors which are
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Machine Learning Methods Studies Models
SVMs 8 19 (25%)
Neural networks 7 23 (30%)
Random forests 5 8 (10%)
Boosting 4 4 (5%)
Penalised regression 3 6 (8%)
Bayesian networks 2 5 (6%)
Naïve Bayes 2 2 (3%)
Decision trees 2 2 (3%)
MDR 2 3 (4%)
Other 5 5 (6%)

Table 3.2: machine learning models. Boosting includes Adaboost and gradient boosting
machines such as XGBoost. Boosting of RBF SVMs via Adaboost in (Yang et al., 2010a) is
counted once under boosting. Other includes models seen only once: evolutionary
computation, k-nearest neighbours (k-NN), conditional inference forests (CIF), decision
tables and decision tree naïve Bayes (DTNB). Percentages are rounded to the nearest
integer.

unavailable at the point of model use. Outcome definitions or measurements often differed

between cases and controls.

Models displayed high ROB during analysis. This was often traced to inappropriate or

unjustified handling of missingness and removal of enrolled participants prior to analysis,

predictor selection using univariable methods and failure to account for overfitting. No

studies reported calibration measures. In addition to PROBAST, information on population

structure within studies was extracted (Table A.7). Most studies did not illustrate genetic

ancestry across all observations in the current publication using dimensionality reduction, and

none reported any evaluation of the final trained model for bias due to population structure.

However, 2 studies (18% of models) visualised principal components for a subsample or

showed a table of reported ancestry for participants (Acikel et al., 2016; Wang et al., 2018).

Where ancestry was not addressed in a study, it was most often visualised in a referenced

publication (55% of all models). 2 studies (13% of models) had no details or references

which addressed genetic ancestry.

Across-study ROB was not formally assessed. For schizophrenia, bipolar and autism, stud-

ies with smaller numbers of cases in the development set report AUC less often, instead

preferring classification metrics such as accuracy, sensitivity and specificity.

PROBAST encourages assessment of studies for applicability to the review question as this

is often narrower than inclusion criteria (Wolff et al., 2019). Concern was identified for

models in three studies (Pirooznia et al., 2012; Li et al., 2014; Wang et al., 2018). All

others demonstrated either low concern or unclear applicability. Reasons for concern were

attributable to outcomes which combined closely-related disorders, or the use of post-mortem

gene expression data, whereas the review question focussed on models of single disorders

with potential use in diagnosis or prognosis.
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Figure 3.2: within-study risk of bias and applicability assessed by the prediction model risk
of bias assessment tool (PROBAST). Colours indicate low, high or unclear risk of bias or
applicability. Assessments were carried out for each validation of each prediction model in a
study across 4 domains; the final rows give the overall assessment for risk of bias and
applicability. Methodology is given further in sections 3.2.4 and A.1.2.

Methods Studies Models

Internal validation

Cross-validation 8 44 (57%)

3-fold 1 4

4-fold 1 8

5-fold 2 8

10-fold 3 22

LOOCV 1 2

Split-sample 5 16 (21%)

34% train1 1 3

40% train2 1 3

70% train 1 4

80% train 1 2

90% train 1 4

Apparent validation 1 1 (1%)

Not reported3 1 16 (21%)

External validation

External (temporal, geographic)3 1 16 (21%)

Partly external4 1 4 (5%)

Not performed 11 57 (74%)
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Methods Studies Models

Table 3.3: validation. Percentages are given with respect to 77, the total number of
models. Methodology for internal validation differed between models in a study (Purcell
et al., 2014), which is counted in cross-validation (CV), split-sample and apparent.
1Approximately equal three-way split between predictor selection, train and test, with 10-fold
CV performed in the training fold for hyperparameter tuning. 240% train, 10% test, 50%
final test. 3No performance measures reported for internal validation, but discrimination for
fully external validation reported (Daneshjou et al., 2017). 4Control sample used in
development and validation partially overlaps. LOOCV: Leave-one-out cross validation.

3.3.5 Model performance

Over half of all models assessed discrimination using AUC (58% models). A wide range of

classification metrics and measures of model fit were also reported (Table A.8), with less

than a quarter of models clearly reporting choosing a decision threshold a priori (Table A.9).

Around 79% of models, from 12 studies, reported some form of internal validation (Table

3.3). The majority of these were k-fold cross-validation (57% of all models; 8 studies), a

resampling approach which involves testing a model on each of k independent partitions of a

dataset, every time training on the remaining k − 1 folds. 10-fold cross-validation (CV) was

most commonly used, with just below half of all cross-validated models invoking repeats with

different random splits. The remainder of studies using internal validation created a random

split between training and testing sets (21% of all models; 5 studies), or applied apparent

validation, where training and testing are both done on the whole sample (Acikel et al.,

2016). A minority reported external validation (26% of models; 2 studies). Use of internal

validation was not reported for 16 models from a single study (Pirooznia et al., 2012), but

for which geographic and temporal external validation was given. External validation was

reported for one other study, but with partly overlapping participants between development

and validation sets (Chen et al., 2018).
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0.64 [0.62-0.65]SVM (linear)m 5 554SNP  
0.62 [0.61-0.64]SVM (linear)m 5 554SNP  
0.63 [0.62-0.64]SVM (RBF)m 5 554SNP  
0.66 [0.65-0.67]SVM (RBF)m 5 554SNP  

  Bipolar
0.71NN (cRBM)d 94SNP/GE  
0.67NN (cRBM)2d 94SNP/GE  
0.77NN (cRBM)3d 94SNP/GE  

0.65 [0.54-0.76] 0.64CNNf 200Exome 11

0.55 [0.44-0.66] 0.55RFf 200Exome  
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0.53 [0.52-0.55]SVM1e 2 191SNP  
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  Autism
0.63NN (cRBM)d 31SNP/GE  
0.59NN (cRBM)2d 31SNP/GE  
0.68NN (cRBM)3d 31SNP/GE  

0.81 [0.78-0.83] 0.74NN10b 487SNP  
0.53 [0.51-0.55]CIFk 1 570CNV  
0.53 [0.51-0.55]RFk 1 570CNV  
0.53 [0.51-0.55]SVM (linear)k 1 570CNV  
0.52 [0.50-0.54]NNk 1 570CNV  

  Anorexia
0.69 [0.68-0.70]LASSOi 1 341SNP  
0.69 [0.68-0.70]SVM (RBF)i 1 341SNP  
0.62 [0.61-0.63]GBMi 1 341SNP  

Study Data n Model AUC [95%CI] AUC [95%CI] Accuracy

Validation
CV (internal/development)
Split-sample (internal/development)
External (replication)

Figure 3.3: discrimination for all models. n: number of cases in training set. Studies: a
(Yang et al., 2010a), b (Ghafouri-Fard et al., 2019), c (Aguiar-Pulido et al., 2010;
Aguiar-Pulido et al., 2013), d (Wang et al., 2018), e (Pirooznia et al., 2012), f (Laksshman
et al., 2017), g (Acikel et al., 2016), h (Li et al., 2014), i (Guo et al., 2015),
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Figure 3.3: j (Trakadis et al., 2019), k (Engchuan et al., 2015), l (Chen et al., 2018), m
(Vivian-Griffiths et al., 2019). 1SVM kernel not reported. 2Modified architecture with
intermediate phenotypes in training set only. 3Modified architecture with intermediate
phenotypes for training and test sets. 4;5;6;7Internal and external validation are shown for
study l, where validations for the same model are denoted with the same number. 8Two-way
MDR. 9Three-way MDR. 10Neural network embedding layer. 11Accuracy calculated from
confusion matrix. AB: AdaBoost, BN: Bayesian networks, BFTree: best-first tree, CIF:
conditional inference forest, cRBM: conditional restricted Boltzmann machine, CI:
confidence interval, CNN: convolutional neural network, CNV: copy number variation, DTb:
decision tables, DTNB: decision table naïve Bayes, DT: decision tree, EC: evolutionary
computation, GE: gene expression, GBM: gradient boosting machine, k-NN: k-nearest
neighbours, LASSO: least absolute shrinkage and selection operator, LNN: linear neural
network, MDR: multifactor dimensionality reduction, MLP: multi-layer perceptron, NB:
naïve Bayes, NN: neural network, PRS: polygenic risk scores, RBF: radial basis function, RF:
random forests, SNP: single nucleotide polymorphisms, SVM: support vector machine, XGB:
extreme gradient boosting.

Model performance varied by choice of statistical method, sample size and number of pre-

dictors within studies (Table A.10). Discrimination for models of schizophrenia (Figure 3.3)

was extremely varied (0.54-0.95 AUC), with the highest AUC from exome data using XG-

Boost (0.95 AUC) (Trakadis et al., 2019). In this study, Trakadis et al. (2019) used counts

of variants in each gene, after annotation and predictor selection, on participants with part-

Finnish or Swedish ancestry (Purcell et al., 2014). Similarly high AUC (0.91 AUC) made use

of multiple schizophrenia-associated PRS (Chen et al., 2018). However, the authors identify

the presence of both the development and validation samples in the psychiatric genomics

consortium (PGC) GWAS used to generate the schizophrenia PRS (Ripke et al., 2014), in

addition to having overlapping controls between internal validation (model development) and

external validation (replication) samples. All other schizophrenia models involved learning

from SNPs (Yang et al., 2010a; Aguiar-Pulido et al., 2010; Aguiar-Pulido et al., 2013; Li

et al., 2014; Vivian-Griffiths et al., 2019), with the exception of Wang et al., 2018 where

gene expression data from post-mortem samples informed the weights in a conditional RBM

trained on genotypes.

Predictive ability for bipolar disorder (Figure 3.3) was consistently lower than for schizophre-

nia, frequently overlapping with chance (0.48-0.65 AUC). Models were trained on genotypes,

excepting a study (Laksshman et al., 2017) using exome data to train a CNN as part of the

Critical Assessment of Genome Interpretation (CAGI) competition (Daneshjou et al., 2017),

for which moderate discrimination was achieved (0.65 AUC).

Significantly fewer models were reported for autism (8 models, 3 studies) and anorexia (3

models, 1 study) (Figure 3.3). Varying predictive performance was illustrated in autism

(0.52-0.81 AUC). High AUC (0.81 AUC) was shown for a single prediction model (Ghafouri-

Fard et al., 2019), while models developed with a greater sample size by Engchuan et al.

(2015) using CNVs were closer to or overlapping with chance (0.52-0.53 AUC) (Engchuan

et al., 2015). The only models predicting anorexia nervosa had moderate discriminative

ability between cases and controls (0.62-0.69 AUC) (Guo et al., 2015).
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3.3.6 Logistic regression and polygenic risk scores

Three studies reported AUC for either logistic regression (5 models) or polygenic risk scores

(12 models) alongside machine learning methods. PRS were weighted by summary statistics

from a GWAS on the same disorder as the outcome and used as the sole predictor in a logistic

regression model. Discrimination for ML is similar to logistic regression for two studies

(Pirooznia et al., 2012; Chen et al., 2018) and worse than PRS for two studies (Pirooznia

et al., 2012; Vivian-Griffiths et al., 2019). Where ML and LR perform better than PRS

(Chen et al., 2018), multivariable models were built using multiple PRS for schizophrenia-

associated traits as the predictors. Though discrimination shows some difference between

model types, the number of studies for comparison is low and results are clustered by study

and type of validation (Figure 3.4).

Pirooznia et al. (2012) Chen et al. (2018) Vivian-Griffiths et al. (2019)

Method

0.5

0.6

0.7

0.8

0.9
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ML             LR             PRS ML             LR             PRS ML                               PRS

0.52 AUC2

0.52 AUC2

0.54 AUC2

0.69 AUC2 0.73 AUC2

0.64 AUC2

0.82 AUC1 0.79 AUC1

0.76 AUC1

0.63 AUC1

0.67 AUC1

Internal validation (development)
External validation (replication)
Machine learning
Logistic regression
Polygenic risk score

Figure 3.4: discrimination (AUC) for machine learning, logistic regression and polygenic risk
scores. Internal validation (split-sample) and partly-external validation (with sample overlap)
are reported for the same models in a single study (Chen et al., 2018). 1Median AUC for
internal validation (model development). 2Median AUC for external validation (independent
replication). Annotated scores are the median AUC for each model and study. Pirooznia et al.
(bipolar disorder) and Vivian-Griffiths et al. (schizophrenia) show SNP-only models for LR and
ML (Pirooznia et al., 2012; Vivian-Griffiths et al., 2019), while Chen et al. (schizophrenia)
used multiple schizophrenia-associated trait polygenic risk scores as predictors (Chen et al.,
2018). PRS model performance was extracted from a figure when unreported in-text
(Vivian-Griffiths et al., 2019). AUC is shown only for 5 of the 9 reported logistic regression
models; a fourth study compared ML and LR but did not report discrimination (Wang et al.,
2018). AUC was not available for a logistic regression which was reported as attempted but
not completed for one study (Pirooznia et al., 2012). AUC: area under the receiver operating
characteristic curve, ML: machine learning, LR: logistic regression, PRS: polygenic risk scores.
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3.3.7 Predictors

Coding of predictors was mostly unclear or unreported (7 studies, 55% of models). Coding

was unclear if it was implied through the description of the type of classifier or software

but not clearly articulated for the reported study. PRS were continuous (Chen et al., 2018)

while counts of variants-per-gene or genes-per-gene-set were used for exomes and CNVs

respectively (Trakadis et al., 2019; Engchuan et al., 2015). SNPs were coded under an

additive model, a z-transformation of additive coding, or one-hot encoded (one predictor

per genotype at a locus) (Table A.11). GWAS summary statistics from external datasets

were also used in the selection, weighting or combining of predictors (9 studies, 64% models;

Table A.12).

Predictor selection was adopted by most (12, 73% of models) and limited to filter-based

selection, used prior to modelling, and embedded selection, an integral part of the prediction

model (Table A.13). The latter involved LASSO regression, or ensembles and hybrids of

decision trees and decision tables, in addition to a modified AdaBoost (Yang et al., 2010a).

Filters were based on internal or external univariable association tests (GWAS). Embedded

and wrapper-based methods, which typically ’wrap’ a model in forward or backward-selection,

were both also used prior to any predictive modelling. Modification of predictors using

information from the test set was the most common cause of information ‘leaking’ from the

test set to the training set, a source of inflation in performance measures (Table 3.4).

Leakage handled appropriately? Studies Models

Yes/Probably Yes 7 44 (57%)

No/Probably No 7 32 (42%)

Predictor selection performed prior to cross-validation 2 7

Predictor transformed prior to cross-validation1 4 22

Prior knowledge in predictors generated from test set 1 4

DEV and VAL sets overlap 1 4

HP chosen by test-set/split performance 4 22

GRN from whole dataset used to set NN architecture 1 6

Unclear2 1 1 (1%)

Table 3.4: handling of information “leaks” during training. Where studies have multiple
reasons for suspected leakage, each of these is counted separately. If predictors were reduced
to a set number before cross-validation was described, or a transformation was not reported
as having been done within a pipeline or for each fold of cross-validation, this is recorded as
‘probably no’. 1Transform includes anything that summarises information from the test set,
such as the mean of the whole sample in a z-transformation. 2Predictor handling implied, as
scikit-learn is listed for pre-processing and preparation, but no pre-processing steps are given
(Ghafouri-Fard et al., 2019). DEV: development, VAL: validation, HP: hyperparameter,
GRN: gene regulatory network, NN: neural network.



104
Chapter 3. Systematic Review of Machine Learning Methods for Genetic Prediction of

Psychiatric Disorders

3.3.8 Sample size

Total sample size was generally low where a single sample had been used, but higher if geno-

types from publicly-available amalgamated datasets used in a GWAS had been downloaded

(median 3486, range 40-11853) (Table A.10). Number of events in development followed

a similar pattern (median 1341, range 20-5554) as class imbalance was minimal (median 1,

range 0.65-2.93, calculated as non-events over events). Around half of studies gave suffi-

cient information to calculate events per variable (EPV) (median 0.69, range 0.00063-74.6).

It could not be calculated where the number of candidate predictors where not reported for

models in 2 studies (Pirooznia et al., 2012; Wang et al., 2018); approximations are given

in appendix A where reporting was unclear in a further 5 studies (Guo et al., 2015; Chen

et al., 2018; Trakadis et al., 2019; Aguiar-Pulido et al., 2010; Aguiar-Pulido et al., 2013;

Laksshman et al., 2017) (Table A.10).

3.3.9 Hyperparameter search

Hyperparameter search was mostly unreported or unclear (41 models, 9 studies), with some

models reported as having been used with default settings. Ambiguous reporting resulted

from description of search and tuning for a specific model, with no clarity as to whether

these conditions applied to other models in the study. Only 19% of models clearly reported

attempting different hyperparameters for the extracted models (Table 3.5). Studies also

report non-standard final hyperparameters, such as uneven batch size in neural networks, or

showed good accuracy for a model which is highly sensitive to tuning of crucial hyperparam-

eters, yet few reported tuning (Table A.14). It is therefore likely that most studies evaluated

several hyperparameter choices but did not report this.

Search method for hyperparameters Studies Models

Search method reported 4 15 (19%)

Grid 1 1

Random 1 8

Manual 2 12

Bias variance decomposition 1 2

Default hyperparameters 1 16 (21%)

Search method unclear/unreported 9 46 (60%)

Not clearly reported1 2 8

Not reported 7 38

Table 3.5: hyperparameter search technique. 1Methods reported clearly for other models in
publications, but not made clear that the same methods apply to extracted models. One
publication (Vivian-Griffiths et al., 2019) used both manual and random elements for search,
and is counted in both categories. Manual tuning by Chen et al. (2019) is implied through
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Table 3.5: reported values which were attempted for hyperparameters, but not explicitly
stated (Chen et al., 2018). Hyperparameters searched systematically using a given set of
values are denoted as grid search. If authors report attempting various hyperparameter
choices but give no indication of systematic search or value choices, this is recorded as
manual. Two studies (12 models) reported hyperparameters that were tuned but gave no
indication of how this was done (Laksshman et al., 2017; Wang et al., 2018). A study (1
model) reported search methodology, but not what hyperparameters were tuned (Yang
et al., 2010a).

3.4 Discussion

3.4.1 Predictive ability in schizophrenia

All studies displayed high risk of bias in model development and validation with infrequent

reporting of standard modelling steps. Performance measures consequently demonstrated a

wide range of abilities to discriminate between cases and controls (0.48-0.95 AUC) (Figure

3.3). These are likely optimistic owing to the high risk of bias identified through PROBAST

and unaddressed sample overlap and population structure, as two studies showing the highest

AUCs left these issues unresolved (Chen et al., 2018; Trakadis et al., 2019). Interpretation

is further muddied by low effective sample size: 13 studies studies were included, where at

least half had clear sample overlap, and not all studies reported a measure of discrimination.

Ideally, use of a ROB assessment tool enables identification and meta-analysis of a subgroup

with little or no suspected inflation of performance measures. This was not possible, as all

studies were identified as high ROB. For schizophrenia, removing the studies where inflation

of performance measures was most clear (Chen et al., 2018; Trakadis et al., 2019) reduces

the range of discrimination measures from 0.54-0.95 AUC to 0.54-0.66 AUC. While this may

give a more feasible range for predictive ability for schizophrenia, it is still highly likely to be

inflated, and is based on just two studies (Li et al., 2014; Vivian-Griffiths et al., 2019).

Relating discrimination for schizophrenia and other psychiatric disorders to machine learning

efforts in genetics more generally is difficult. Very few systematic reviews exist, and assess-

ment of risk of bias, which is critical for interpreting machine learning and other predictive

models, is also uncommon. Beyond psychiatry, however, broad discrimination has also been

observed for machine learning studies in cancer genomics (Patil et al., 2019), though this

constituted just 7 studies and did not include an assessment of ROB. More established fields

with clearer predictor-response relationships, such as medical imaging, have much more con-

sistent values for measures of predictive ability across studies (for instance (Islam et al.,

2020)).

3.4.2 Comparison with logistic regression and polygenic risk scores

Similar factors constrain comparison of machine learning methods to logistic regression and

polygenic risk scores (Figure 3.4). Within each study, machine learning appears to show

similar performance to logistic regression, in line with previous findings (Christodoulou et
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al., 2019). As machine learning approaches require tuning of hyperparameters, a common

source of inflation in performance measures, such a comparison may give an overly-favourable

impression of ML. Where PRS appears to give better discrimination than ML, this may be

due to the value of incorporating external weights from much larger sample sizes or the

assumption of additivity within and between loci.

3.4.3 Within-study risk of bias

Despite difficulty with interpretation of predictive performance, low standards of model de-

velopment, validation and reporting are a clear and consistent theme throughout all studies.

Issues relating to ROB often rest on distinctions in methodology between clinical prediction

modelling, machine learning and genetic association studies. For instance, genetic studies

most commonly employ a case-control design. Such studies are extremely useful for iden-

tifying genetic risk factors for rare outcomes, but are considered inadequate for prediction

modelling as absolute risks cannot be estimated; instead, case-cohort, nested case-control,

or prospective cohort designs are preferred (Moons et al., 2012). Case-cohort and nested

case-control designs involve sampling from an existing cohort and can be used for prediction

models if the sampling fraction in controls is accounted for in analysis (Biesheuvel et al.,

2008). To project the prediction to the whole population in case-control studies, positive

and negative predictive values should be corrected in accordance with the disease prevalence

in the population and ratio of cases and controls in the sample (Kallner, 2018). Similarly,

univariable tests of association are applied routinely in GWAS, and are often used in selec-

tion of predictors for genetic prediction models. Their application in prediction modelling

though is usually discouraged, as predictors may differ in their importance when evaluated

in isolation as compared to when considered concurrently with other variables (Sun, Shook,

and Kay, 1996).

Lack of adherence to appropriate procedures for machine learning are also a common cause

of a model being assessed as at high risk of bias. Standard model validation procedures

were followed by some researchers; however, many ’leaked’ information between training and

testing sets by not restricting predictor manipulation and selection to the training set/fold, or

by using the testing set/fold to adjust model hyperparameters, which can impose significant

bias on estimates of prediction performance (Vabalas et al., 2019). Most studies provided

a measure of classification or discrimination for each model; none reported a measure of

calibration. Model calibration compares observed and predicted probabilities of the outcome

occurring, and is a crucial part of model development (Steyerberg et al., 2019) which has

been noted for its absence in genetic prediction literature (Janssens et al., 2011). Authors

reporting only classification measures, such as accuracy, sensitivity or specificity, should

also note that measures of discrimination are preferred as they use all the information over

predicted probabilities and delay any thresholding of risks to a more appropriate time. Of

discrimination measures, the AUC is the most widely used in both machine learning and

genetics (Bradley, 1997; Wray et al., 2010).
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Hyperparameter optimisation is an essential part of developing machine learning models as

it determines how they navigate the bias-variance trade-off and learn from data (James

et al., 2013). It is therefore surprising that it was so often unreported or subject to a

small number of manual experiments. Hyperparameters should be systematically searched

to ensure a model is not over or under-fit. Randomised search has been shown to be more

effective than grid search where two or more such parameters require tuning (Bergstra and

Bengio, 2012), though grid search is also recommended by practitioners for SVMs, often

with an initial ’coarse’ search followed by a more thorough exploration of a finer grid of values

(Hsu, Chang, Lin, et al., 2003; Ben-Hur and Weston, 2010). The importance of search is

particularly relevant in domains where there are a small number of events per candidate

predictor (Pavlou et al., 2015), such as genomics, as appropriate hyperparameter choices

can reduce overfitting.

Split-sample approaches were used by several studies, but should be avoided in favour of

resampling methods such as bootstrapping or k-fold cross-validation (Steyerberg et al.,

2001). The latter is an appropriate form of internal validation for traditional statistical

methods; however, estimated prediction accuracies become overly-optimistic if done re-

peatedly, as when used for hyperparameter tuning through repeated rounds of CV. Nested

cross-validation, where hyperparameters are optimised in an inner-fold and evaluated in the

outer-fold, has been shown to give more realistic estimates (Varma and Simon, 2006; Va-

balas et al., 2019) but was not used in any studies. A single study presented both internal

and external validation of models (Chen et al., 2018), for which a large drop in performance

is seen upon replication. Though partly due to sample overlap between the development set

and the summary statistics used for generating a PRS, difficulty with replication is a wider is-

sue in polygenic risk prediction. Risk scores for psychiatric disorders typically explain a small

proportion of variance in a trait (Lee et al., 2013), with generalisation issues compounded

by variants with small effect sizes and different allele frequencies between populations. Risk

scores generated through machine learning methods have the potential to be more affected

by these issues if appropriate modelling procedures are not followed.

3.4.4 Population structure

A source of bias not explicitly covered in PROBAST is population structure. Genetic an-

cestry has the potential to bias both associations (Marchini et al., 2004; Price et al., 2006)

and predictions (Belgard et al., 2014; Martin et al., 2017) from genetic data. Supervised

machine learning methods have proved particularly sensitive in detecting aspects of pop-

ulation structure (Bridges et al., 2011; Schrider and Kern, 2018; Flagel, Brandvain, and

Schrider, 2019). Few researchers discussed visualising ancestry or reported exclusions, and

none reported modelling adjustments, even when previous association studies on the same

datasets had demonstrated stratification and included principal components as covariates.

The extent of the bias introduced in these studies is not clear: evidence mostly relates to

deliberately predicting populations in humans using ML or looking at bias in complex trait
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prediction from PRS. Furthermore, work using neural networks has shown equivalent perfor-

mance in genetic prediction of populations when non-linear activation functions are removed

and networks are restricted to learning only a linear model (Bridges et al., 2011). It may

therefore be that the supervised nature of the learning problem drives stronger prediction

of populations, rather than that flexible ML methods are better at detecting population

structure, as the outcome or as a confounder of disease-status.

Despite this, the potential for population stratification to impact prediction in general is

apparent, though the method for dealing with it when using machine learning methods

is not. Several techniques have been proposed, including modifications to random forests

(Stephan, Stegle, and Beyer, 2015); exclusions by, or inclusion of, principal components;

and regressing-off the linear effects of principal components on SNPs before modelling (for

example (Zhao et al., 2012; Zheutlin et al., 2018)). Whether any combination of these is

sufficient to reduce the effects of population stratification in non-linear machine learning

predictions has not been demonstrated.

3.4.5 Reporting

General reporting guidelines for machine learning prediction models are yet to be developed

(Collins and Moons, 2019), though recommendations for undertaking (Teschendorff, 2019;

Boulesteix et al., 2020) evaluating (Tandon and Tandon, 2019) or reporting (Luo et al.,

2016) exist for machine learning in omics data, psychiatry and medicine respectively, in

addition to reporting guidelines outside of machine learning (Cecile et al., 2011; Collins et

al., 2015). Researchers applying machine learning approaches to genetic prediction should

consult guidelines on best practices in model development, validation and reporting. Fur-

thermore, methods should be reported alongside polygenic risk scores and a linear model,

such as logistic regression, as standard baseline models for comparison.

3.5 Conclusion

The ability of machine learning methods to predict schizophrenia or other psychiatric dis-

orders from genetics remains unclear. Attributes of studies which elevated risk of bias for

analysis often relate to information leaking from the test set to the training set. Further-

more, comparison between machine learning, logistic regression and polygenic risk scores is

hampered by low effective sample size. These limitations can be dealt with adequately by

considering simulations. Here, for any given population parameters, a large external sample

can be drawn after any models are developed on the training set, avoiding any possibility

of information leaking. In addition, additivity of genetic effects, and deviations from this,

can be investigated alongside polygenic risk scores with and without prior information. For

these reasons, the next chapter turns to simulations.
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Chapter 4

Simulation Study of Binary
Classification of Complex Traits

4.1 Introduction

Machine learning (ML) methods are increasingly used in prediction modelling, with interest

growing in psychiatric genetics. A systematic review of machine learning learning approaches

found widespread risk of bias in analysis of models and a lack of comparison to polygenic

risk scores (PRS) and logistic regression (LR). The discriminative ability of machine learning

models for genetic data in psychiatric disorders remains unclear. Simulations allow for

simplification of the intricate genetic landscape of complex traits, the ability to assess a

wide array of potential scenarios, and separation of train and test data to avoid information

leakage. Here they are applied to models of additive effects and interactions under a range

of simulation parameters.

4.1.1 Main and interaction effects

The terms "epistasis" and "interaction effects" are both used for situations involving an in-

teraction between genes. Epistasis was defined separately and differently by William Bateson

(Bateson, 1909), referring to the masking of the effects of one locus by another (Figure 4.2

A), and Ronald Fisher (Fisher, 1918), describing a phenotype that deviates from the addition

of the effects of two loci as exhibiting "epistacy". Fisher’s definition is more expansive, and

includes the situation described by Bateson and many others (Phillips, 1998). These uses

of epistasis also differ in that the phenotype Fisher referred to was a quantitative trait or

metric character, while Bateson described a generalisation of dominance at a single-locus to

dominance between two loci for a Mendelian trait.

The definition of epistasis given by Fisher and used in quantitative genetics is taken forward

here; however, the term "interaction" is used instead to avoid confusion, and refers to a

deviation from a linear model that describes the effects of two or more loci on a phenotype.

Absence of interaction for a binary trait on the penetrance scale is given by the model

pi j = ¸i + ˛j ; (4.1)
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where ¸i and ˛j are the effects of genotype i at locus A and genotype j at locus B respec-

tively, and pi j is the penetrance (Cordell, 2002).

The effect of genotypes at a single locus may also differ from additivity if the effect of

the heterozygote is not equal to the mean of the effects of the two homozygotes. This

phenomenon, referred to a ’dominance deviation’, violates linearity assumptions of typical

logistic regression models. In extreme cases, the effect of the heterozygote may be greater

than or less than the range of the effects of the homozygotes, termed ’overdominance’

and ’underdominance’ respectively. Models with monotonicity constraints, such as logistic

regression, will be unable to correctly estimate such a function. The terms dominance

deviation and interaction effects therefore describe within-SNP and between-SNP deviations

from linearity, respectively.

bb bB BB Marginal
Effect

AA 1 0 0 0.25

aA 0 0.5 0 0.25

aa 0 0 1 0.25
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Figure 4.1: A two-locus interaction model
showing epistasis with no marginal effects, adapted
from Frankel and Schork, 1996. Genotypic
proportions are 0.25 and 0.5 for all homozygotes
and heterozygotes respectively. The marginal effect
for a genotype at one locus is the sum of the
penetrance times the frequency across genotypes at
the second locus.

A distinction is made between interac-

tion effects and a "main effect", which

is the effect of a single locus averaged

over all other loci, regardless of whether

it interacts with them or not (Frankel

and Schork, 1996). Similarly, the term

"marginal effects" is also used to re-

fer to the effect of a genotype at one

locus averaged across all other geno-

types at a second locus when describing

two-locus interaction models (Cordell,

2009), and the terms are used inter-

changeably here. The presence of inter-

action effects and use of the term here

does not imply any underlying physical

interaction between biological compo-

nents, nor even that the effect is of any

biological interest (Cordell, 2002).
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Figure 4.2: The many faces of epistasis. A shows Bateson’s formulation of epistasis as a
masking effect, where the presence of the B allele causes grey coat colour, and prevents us
from seeing the white or black effect of the alleles at locus A. B and D show a heterogeneity
model and a general model of epistasis (Cordell, 2002). The symmetry in D means we cannot
tell which locus is "masking" which. Though B could be two loci acting independently
through different mechanisms, when viewed as a recessive model it can be labelled as
epistasis. E also falls under epistasis, showing a recessive effect between loci (Neuman, Rice,
and Chakravarti, 1992). A, B, D and E show penetrance tables, where interactions exhibit
complete penetrance, while C and F show multiplicative effects for two loci on a quantitative
trait and a binary outcome with incomplete penetrance.

4.1.2 Models of two-locus interactions

Many interaction models have been described (Figure 4.2, Table 4.1). Although they are

typically defined in tables on the penetrance scale (for example, Li and Reich, 2000), modern

genetics studies are more commonly carried out as case-control studies, in which the main

effects of a locus, and possible interaction models, are defined on the odds or log(odds)

scale. The effects of two independent loci on the odds scale can be written as:

pi j
1− pi j

= ¸i + ˛j ; (4.2)

Departure from this additive model, for example as ¸i + ˛j + ¸i˛j , implies statistical in-

teraction. It is important to note, however, that this only suggests interaction on the odds

scale; an additive effect defined on the odds scale is not additive on the penetrance scale,

where interaction terms would be needed to describe the effect.

For many interaction models it is possible to devise a transformation which renders the

relationship additive between loci. Such situations are included here as interaction models,

provided they deviate from a linear model on the odds scale.

512 pair-wise SNP interactions for fully-penetrant binary phenotypes have been enumerated

(Li and Reich, 2000), ranging from simple multiplicative interactions to complex exclusive-or
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(XOR) models. Though described on the penetrance scale , these can easily be transported

to an odds scale, and other models have been described on the odds scale directly (Figure

4.3).
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Figure 4.3: Interaction models defined on the Odds Scale, reproduced from Marchini,
Donnelly, and Cardon, 2005. The top row shows an odds table, with the baseline effect ¸ and
interaction effect „. A shows multiplicative odds within and between loci, and B requires at
least one risk allele at both loci to show an effect. C is analogous to the fully-penetrant
model in Figure 4.2, where risk hits some threshold and does not increase further. Multiplicity
between loci, as shown in B, is taken forward as the multiplicative model.

4.1.3 Detection of interactions using machine learning

Many methods have been evaluated for detection of interaction effects using ML (Cordell,

2009; Koo et al., 2013; Niel et al., 2015; Uppu, Krishna, and Gopalan, 2016b). Random

forests (RFs) have received particular attention. Modification of RFs to improve detection of

interactions has been investigated (Pan et al., 2013; Yoshida and Koike, 2011; Li et al., 2016)

along with their use upstream of statisical tests (Wei and Lu, 2014), though studies typically

focus on the ability of variable importance measures (VIMs) in RFs, or novel variations of

them, to screen for interactions (Lunetta et al., 2004; Wright, Ziegler, and König, 2016).

RFs have also been adapted for high-dimensional data (Schwarz, König, and Ziegler, 2010)

and applied for screening in rheumatoid arthritis (Liu, Ackerman, and Carulli, 2011) and
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age-related macular degeneration (Jiang et al., 2009). Gradient boosting has been used in a

pipeline to detect interacting SNPs (Behravan et al., 2018), and to detect interacting SNPs

in schizophrenia (Andreasen et al., 2012), but has otherwise received much less attention

for detection of interactions than random forests.

Support vector machines (SVMs) have been used to uncover interactions through combi-

nation with multifactor dimensionality reduction (MDR) (Fang and Chiu, 2012)) and were

applied via L1-penalised SVMs in Parkinson’s disease (Shen, Liu, and Ott, 2010). They have

also been assessed for detection of interactions in prostate cancer (Chen et al., 2008) and

alongside neural networks to select interacting SNPs in simulations (Matchenko-Shimko and

Dube, 2007). Deep learning has been assessed alone for prediction from genetic interactions

in asthma (Tomita et al., 2004), and more recently for learning 2-SNP interaction models

with reference to cancer genetics using multilayer feedforward networks (Uppu, Krishna, and

Gopalan, 2016a), where the authors report a neural network with 3 hidden layers which out-

performs logistic regression, random forests, naïve Bayes and gradient boosting machines

when assessed by accuracy and area under the receiver operator characteristic curve (AUC).

In addition, neural networks trained on 2-SNP interaction models have been found to give

improved performance over logistic regression and MDR (Günther, Wawro, and Bammann,

2009), with optimisation of networks using genetic programming suggested to improve de-

tection of interactions (Ritchie et al., 2003; Motsinger et al., 2006; Ritchie et al., 2007;

Motsinger-Reif et al., 2008)

Machine learning approaches have often been evaluated on genetic simulations in order to

assess a novel method; such studies may provide an optimistic view of predictive performance

(Boulesteix, Lauer, and Eugster, 2013). Assessment of ML in psychiatric genetics has been

less frequent. Comparison of ridge, least absolute shrinkage and selection operator (LASSO)

and bivariate ridge regression was assessed in simulations of two binary outcomes which

share a proportion of causal SNPs to inform results from real data on bivariate modelling of

schizophrenia and bipolar disorder (Li et al., 2014).

While aspects of interactions and main effects have been considered for several ML models

in different studies, a systematic assessment of supervised machine learning approaches with

main and additive effects, along with the impact of unassociated SNPs, heritability, preva-

lence, effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) has not been

conducted. Furthermore, studies often do not overtly aim to maximise prediction through

incorporation of interactions, but instead take an explanatory modelling approach in intro-

ducing new methods or comparing existing ones for detecting the presence of interactions

(for example (Chatelain et al., 2018)), rather than predicting from them; here the focus is

solely on prediction. In addition, no study has evaluated polygenic risk scores and logistic

regression against machine learning classifiers on a range of 2-SNP interaction models for

their effect on the decision boundary.
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4.1.4 Aims and objectives

The aim of this chapter is to establish a baseline of what performance to expect for algorithms

trained on SNPs where either main or interaction effects are present, and understand the

effect of varying simulation parameters on predictive performance of linear models and flexible

machine learning approaches. The objectives are:

• Evaluate which approaches are preferred for high or low polygenicity

• Compare performance of classifiers under p > n and p < n scenarios

• Understand the ability of linear and flexible approaches to fit pairwise interaction

models

• Asses the effects of including SNPs which are unassociated, have varying minor allele

frequency (MAF) or are in linkage disequilibrium (LD) with the causal variant

4.2 Methods

4.2.1 Main effects

4.2.1.1 Additive simulations

Additive simulations were created by combining the effects of SNPs on a phenotype through

an additive model on the liability scale (Falconer and Mackay, 1996). This is the same

underlying model of polygenic risk scores, that all allelic effects are additive within and

between loci, and as such polygenic risk scores are expected to perform best. To allow

for training of multiple machine learning models using cross-validation, and the evaluation

of a range of parameters, simulations were restricted to 25 repeats. Additive simulations

were performed with 100, 200, 500 1,000 or 2,000 SNPs and sample sizes of 500, 1,000,

1,500 or 2,000 with equal numbers of cases and controls. For each simulation, genotypes

were assigned under Hardy-Weinberg equilibrium (HWE) using MAFs drawn from a uniform

distribution between 0.05 and 0.5 for 500,000 observations.

Each causal variant was randomly assigned an effect size, uj , drawn from a standard normal

distribution, such that uj ∼ N (—; ff2), using — = 0 and ff = 1, and Gi j ∈ {0; 1; 2} for any
sample i and causal SNP j , and G ∈ Rn×p for n observations and p predictors. The dot

product of the samples-by-genotypes matrix G and the effect sizes u gives the genotypic

values of individuals, g , which is normally distributed.

The narrow-sense heritability of a trait, given by

h2 =
var(g)

var(d)
; (4.3)

is set, where d is the outcome on the liability scale, and environmental deviation, e, is drawn

from a normal distribution with variance
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var(g)(
1

h2
− 1); (4.4)

and mean 0, following (Yang et al., 2010b). The addition of an individual’s genotypic value,

g , and environmental deviation, e, gives their phenotypic value on the liability scale, d

(Falconer and Mackay, 1996), i.e. d = g + e.

The result of this is a range of genotypic effects which together bestow some value on

individuals, and environmental effects which cause a deviation from the genotypic values

with a variance that gives the desired narrow-sense heritability of the binary trait on the

liability scale (Falconer and Mackay, 1996). Narrow-sense heritability on the liability scale

was fixed to 0.2 for most simulations, but is also shown for 0.15, 0.25 and 0.3. Proportion

of genotypes which are causal, m, was varied for p < n, where m ∈ {0:05; 0:25; 0:5; 0:75; 1}
and p > n scenarios, where m ∈ {0:05; 0:1; 0:25; 0:5}.

A threshold is applied to the phenotypic value on the liability scale to give a binary outcome.

The prevalence of the population, K, was fixed to 0.0025 for the majority of simulations,

but also evaluated at 0.0025, 0.005, 0.01 or 0.02. Phenotypic values on the liability scale,

d , were standardised to have mean 0 and unit variance, with K used to obtain the threshold

from the inverse cumulative distribution function; this was achieved with SciPy’s percentage

point function in ’stat.norm’ to produce thresholds of around 2.81, 2.58, 2.33 and 2.05 for

a prevalence of 0.0025, 0.005, 0.01 and 0.02 respectively. To mimic ascertainment in case-

control studies and obtain a balanced sample, both classes were undersampled to bring the

prevalence of the sample to 0.5; cases could not be oversampled, as is typical, as this would

create overlap between training samples in cross-validation. For each simulation, a test set

of 2.5 million of observations was created to ensure sufficient cases could be subsampled for

the lowest prevalence; this was subsampled to 5,000 cases and 5,000 controls. The test set

was created with a separate random seed independently of any training simulations.

0.0 0.2 0.4 0.6 0.8 1.0a b

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.4: 20 SNP LD blocks. LD was either kept constant, shown left with r2 = 0:8, or
varied by drawing r2 values uniformly between 0 and 1 (right). All causal SNPs were replaced
by LD blocks.

The proportion of SNPs which are causal, m, or unassociated was varied, with unassociated

SNPs drawn from a binomial distribution with two trials and chance of success (MAF)
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drawn from a uniform distribution between 0.05 and 0.5. SNPs in LD with the causal SNPs

were created in block structures using fixed or varying LD (Figure 4.4). LD was simulated

by shuffling a proportion of observations for the LD-SNP to give the desired r2 with the

causal variant. Fixed LD was assigned a single r2 value for all LD-SNPs to give homogenous

LD blocks (Figure 4.4a). Varying LD simulations took r2 values drawn from a uniform

distribution between 0 and 1 to give a more complex structure closer to that observed for

real data (Figure 4.4b). In all simulations the causal SNP was replaced by the variants

in LD. Blocks were set at 20 SNPs. LD was considered for the p > n scenario, where

p = 1; 000 and n = 500, and LD SNPs replaced all variants in the dataset, including those

unassociated with the outcome. As p was also fixed, where the proportion of causal variants

m was limited to 5% of SNPs, replacing these by 20-SNP LD blocks kept the original value

for p. However, when m > 0:05 the dimensions of the LD-SNPs exceeded p. To keep p

consistent, LD-SNPs were randomly subsampled down to give a sparse LD structure. LD

simulations, where m is 0.05, 0.1, 0.25 or 0.5 therefore give contrasting polygenicity and LD

structure (Figure 4.5).
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Figure 4.5: LD structures vary with the number of causal variants, m. For fixed LD block
size of 20, n = 500 and p = 1; 000, m was taken as 0.05, 0.1, 0.25 or 0.5. For m = 0:05, the
dimensions of the LD-dataset equal the original dataset, so predictors show strong LD
structures between a few causal loci (left). For m = 0:5, p increases to 10,000 when replacing
causal variants with 20 SNP LD blocks. Predictors are then randomly subsampled to the
original dimensions to give a more sparse LD structure. Code for simulations and plotting is
given at https://github.com/seafloor/simulations.

4.2.1.2 Independent simulations

The simulations in section 4.2.1.1 combine effects across loci in an additive manner to create

a genotypic value for each individual, assigning case-control status from the combination

of this and noise. An alternative is to assign case-control status beforehand and simulate

genotypes separately. This method is labelled ’independent’ simulations to distinguish it from

the ’additive’ simulations described in the previous section, though both describe additive

effects.

Genotyping data was simulated for independent SNPs with main effects only according to

HWE. Genotypes were coded as number of risk alleles, Gi j ∈ {0; 1; 2}, for any individual i

and SNP j . MAF for each SNP were drawn from a uniform distribution with range 0.05

to 0.5, as for additive simulations. Genotypes were then assigned to that SNP for controls
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using HWE proportions, and MAF and genotypes in cases were calculated according to odds

ratios (OR) chosen for each dataset. Odds ratios are established based on two-by-two tables,

where presence of a risk allele is considered ’exposed’.

Number of samples (500, 1,000, 1,500 or 2,000) and SNPs (100, 200, 500, 1,000 or 2,000)

were varied in each dataset as done for additive simulations, along with the proportion of

SNPs which were associated with the outcome, m ∈ {0:05; 0:25; 0:5; 0:75; 1} for p < n

and m ∈ {0:05; 0:1; 0:25; 0:5} for p > n, and the OR of the association. The latter was

either held fixed for all causal variants in a simulation, with OR taking values of either

1.1, 1.2, 1.3, 1.4 or 1.5 for all SNPs, or drawn from a distribution. Given the bimodal

distributions for OR of significant SNPs from GWAS, kernel density estimation (KDE) was

used to estimate a probability density function (PDF) from the empirical distribution of

odds ratios for genome-wide significant SNPs reported by the largest schizophrenia GWAS

available when simulations were generated (Pardiñas et al., 2018). The KDE was tuned to

give a close fit to the empirical distribution (Figure B.1). Odds ratios of causal SNPs were

drawn randomly from the estimated PDF for simulations. Independent simulations were

also evaluated in the presence of unassociated SNPs, with OR set to 1, or where causal

SNPs were replaced by LD blocks. The chosen MAF range is a reasonable match to the

MAF distribution reported for genome-wide significant SNPs (Figure B.2). As with additive

simulations, when one parameter was varied, all others were kept constant.

The fundamental difference between additive and independent simulations is that the former

keeps heritability constant, while the latter sets odds ratios of individual SNPs to be constant.

As a result, the methods differ in how they adapt as the proportion of causal variants, m,

and number of total SNPs, p, change. Considering p set to a constant value, as additive

simulations maintain a fixed heritability, where m is low they task a small fraction of SNPs

with explaining variance on the liability scale, giving them larger effect sizes. By contrast

independent simulations apply the same range of effect sizes to SNPs whether m is large or

small. As m increases, independent simulations imbue a large number of SNPs with similar

odds ratios, which is expected to cause prediction performance to greatly increase. Additive

simulations explain the same proportion of variation using a larger number of causal variants,

and so assign smaller effect sizes, so that prediction performance may instead decrease. As

a consequence associated variants may be more distinguishable from noise when m is low

under additive simulations (Figure B.3).

4.2.2 Interaction effects

Pairwise SNP-SNP interactions were simulated using a method similar to that described

by Zhang and Liu, 2007 (Figure 4.6). Minor allele frequencies were set for each locus,

and the probability of co-occurrence under random mating, calculated for controls. The

element-wise product of the probability of co-occurrence and the odds model matrices gives

the probability in cases. A weighted random choice sampling method, which allows for

probabilities that do not sum to one, is then used to draw genotype combinations at the
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desired frequencies for cases and controls. 25 simulations were created for each 2-SNP

interaction model. Interaction models are parameterised by the baseline odds ratio ¸, set to 1

for all simulations, and „ which describes the interaction effect. Purely epistatic models that

consistently exhibit no marginal effects, such as Table 4.1, were not considered; however,

M170 XOR, M78 XOR and M68 interference models, described below, show weak or no

marginal effects under some simulation parameters.
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Figure 4.6: simulation of a 2-SNP multiplicative interaction model. Minor allele frequency is
set to 0.4 for both SNPs (A), and Hardy-Weinberg Equilibrium is calculated (B). The product
of HWE at both SNPs gives the frequency of each genotype combination between the two
loci in controls (C). To set frequencies in cases, an interaction model (D) is first defined in
terms of the baseline effect, ¸, and the interaction effect, „ (E), set to 1 and 0.5 here
respectively. Finally, the product of the values in (C) and (D) give the frequencies in cases
(F). Genotype combinations are then assigned in cases and controls according to these
frequencies with some randomness. The same procedure was followed to produce 25
simulations of varying cases, controls, MAF, „ and LD for each interaction model.

Models were chosen to be consistent with previous literature on detecting epistatic effects,

and to provide an assessment of simple and complex interactions. The ‘multiplicative’

and ‘threshold’ models are well-studied 2-loci interactions (Zhang and Liu, 2007; Marchini,

Donnelly, and Cardon, 2005), while the XOR models show more complicated effects and

have been previously described (Wan et al., 2010). Additionally, use of an XOR model here

matches a history in computer science of using binary XOR problems to demonstrate an

ability to learn complex functions, for example the requirement of a hidden layer in neural

networks to fit a binary XOR model. The three-levels of SNPs, however, brings an increase

in complexity to XOR problems; two hidden layers are sufficient to represent such functions,

shown by the table in Figure 4.7b, which gives the prediction and calculations at each hidden

unit for a combination of inputs from two loci and the manually chosen weights in 4.7a.

Tracing each pair of inputs through the network in 4.7a produces predictions in 4.7b which

correctly match the model for M170 XOR.
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(a) Network architecture

Input Hidden layer 1 Hidden layer 2 Output

x1 x2 𝒂𝟏𝟐 𝒂𝟐𝟐 𝒂𝟏𝟑 𝒂𝟐𝟑 𝒂𝟏𝟒

0 0 0 0 25 0 𝑔 −5 	≈ 0
0 1 0 10 15 0 𝑔 5 	≈ 1
0 2 0 30 0 5 𝑔 −5 	≈ 0
1 0 10 0 15 0 𝑔 5 	≈ 1
1 1 0 0 25 0 𝑔 −5 	≈ 0
1 2 0 10 15 0 𝑔 5 	≈ 1
2 0 30 0 0 5 𝑔 −5 	≈ 0
2 1 10 0 15 0 𝑔 5 	≈ 1
2 2 0 0 25 0 𝑔 −5 	≈ 0

(b) Node outputs

Figure 4.7: Neural networks are capable of representing M170 XOR models using two
hidden layers. A hypothetical deep neural network with two hidden layers is presented with
weights chosen to produce the desired classification (A). Circles represent neurons, or nodes.
The first layer is the input layer; in every subsequent layer, each neuron is a computation
unit where inputs are combined using manually-chosen weights and the activation function
for that layer. ‘+1’ neurons are present in all layers, except the last, as bias terms. The final
neuron uses a sigmoid function that gives an output between zero and one. The table shows
the input values for an M170 XOR model, the results of calculations at each neuron and the
final output of around 1 for a predicted case and zero for a predicted control (B). An output
of 1 is correctly given for input combinations associated with higher risk of becoming a case.
Outputs are all correctly predicted.

As multiple XOR and interference models have been proposed in genetics, those chosen

have been attributed their codes M170, M78 and M68 from Li and Reich, 2000, where

they are defined as fully-penetrant two-locus interactions on the penetrance scale; here they

are transported to the odds scale (Figure 4.8). All methods were compared for interaction

simulations, except the external PRS (detailed in section 4.2.3.1), as no marginal effects

were set in simulations.
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Figure 4.8: Interaction models used in simulations. The left column shows a 3D bar plot of
the odds ratios for each two locus genotype with respect to the homozygous wild type,
"aabb", using „ = 0:5 for illustrative purposes. Odds ratio are given on the z axis (vertical).
The central column gives the model in terms of the baseline effect ¸ and the interaction
effect „. The right column gives an example of the expected odds table for a two-locus
interaction with „ set to 0.1.

4.2.3 Statistical methods

4.2.3.1 Polygenic risk scores

Polygenic risk scores (PRS) are a simple weighted average of allelic effects across loci,

pX
j=1

˛jqj ; (4.5)

where ˛j is the effect size for SNP j , qj is the number of risk alleles at SNP j , and p is

the number of SNPs. They can be broken down into two components: the additive model

and the weights. To separate these, two different versions of PRS are given, named here

as external PRS (ePRS) and internal PRS (iPRS). ePRS is a traditional PRS with effect

sizes taken from an external source; here ˛ are the effects in the population set during

simulations. For additive and independent simulations ePRS can be interpreted as the best
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possible prediction, as it contains the true effect sizes in the population; it is therefore a

useful benchmark but not a realistic comparison. In contrast, ˛ in iPRS is an estimate of

the effect sizes from fitting a univariable logistic regression model in the training set for each

SNP. All PRS are taken as the sole predictor in a logistic regression.

4.2.3.2 Machine learning algorithms

Ridge, LASSO, linear support vector machines (SVMs), radial basis function kernel (RBF)

SVMs, random forests, extreme gradient boosting (XGBoost) and neural networks were

evaluated as the most widely reported methods in psychiatric genetics (described in chapter

3 and compared to unpenalised logistic regression, iPRS and ePRS.

Ridge (Hoerl and Kennard, 1970) and LASSO (Tibshirani, 1996) logistic regression apply

L2 and L1 norms to the negative log-likelihood to give a penalised objective function. Ridge

and LASSO provide dense (all coefficients are non-zero) and sparse (some coefficients are

shrunk to zero) solutions respectively; LASSO therefore performs predictor selection. Values

for C, which controls the strength of the penalty term in the objective function, were drawn

from the exponential distribution with – = 1.

SVMs approximate the target function geometrically and use the side of the hyperplane on

which a test observation falls as a means of direct class assignment (Cortes and Vapnik,

1995). Linear SVMs can only learn linear functions, while RBF-kernel SVMs are flexible

models capable of learning non-linear decisions boundaries. The distribution for C is the

same as for penalised regression; ‚, which controls how flexible the decision boundary is,

was drawn from the exponential distribution with – = 10.

Random forests ensemble CARTs, a form of decision tree which takes a greedy approach to

partition the predictor space, to reduce the variance of the predictions from low-bias high-

variance trees (Breiman, 2001). Maximum depth of trees was drawn from a shifted binomial

distribution with two trials and a 0.45 chance of success per trial, such that values were

generally less than 10 with a minimum of 2; minimum samples per split was drawn from a

similar distribution but shifted to values closer to 2. Max features was searched between
√
p and p

3 .

XGBoost implements an efficient, heavily-regularised gradient boosting algorithm which se-

quentially adds weak base learners to build a strong model (Chen and Guestrin, 2016).

Learning rate was drawn from the log-uniform distribution between 0.001 and 0.25. Pro-

portion of columns and rows were taken uniformly from 0.4 to 1 and 0.5 to 1 respectively.

Maximum depth of trees was taken from a shifted binomial distribution with two trials, 0.5

chance of success and minimum value of 2, favouring a slightly smaller tree than random

forests. L2 penalty was drawn from a shifted exponential distribution with – = 0:16 and a

minimum value of 1.
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Neural networks combine units of computation through a network of weights which are

updated through backpropagation (LeCun, Bengio, and Hinton, 2015). Deep learning models

consisted of feed-forward multilayer perceptrons with ReLU activation functions in all hidden

units and a sigmoidal activation function in the output neuron. Overfitting was controlled

through the L2 penalty. Learning rate with momentum and weight decay were both drawn

from the log-uniform distribution between 0.0001 and 0.1, with the momentum coefficient

set to 0.9. Hidden layers were fixed to be 1 or 2, with number of hidden units chosen from

between 1
2p and 3

2p. All simulations used 15 epochs, a batch size of 32, batch norm (Ioffe

and Szegedy, 2015) and He initialisation of the weights (He et al., 2015).

Hyperparameter tuning differed slightly between main and interaction effect simulations for

some models. Ridge, LASSO, linear SVM, RBF SVM and random forests kept the same

distributions for both types of simulation. However, XGBoost made no use of L2 penalisation

or column sampling for interactions. Neural networks also allowed for a lower learning rate

(uniformly drawn from 0.00001 to 0.1 on the log scale) and L2 weight decay (0.00001 to

0.01, also from the log-uniform distribution) for interactions. In addition, architecture was

searched for 3-6 hidden layers, each having between 2 and 8 hidden neurons, as smaller

networks following the design used for main effects struggled to learn interaction models.

Unpenalised multivariable logistic regression was only run for simulations where p < n, as a

unique solution for coefficient estimates cannot be obtained when the number of predictors

outstrips the number of observations. ePRS was not compared when causal SNPs were

replaced with LD blocks in simulations of main or interaction effects, as these do not directly

assign population parameters to each SNP in the simulated dataset. As LASSO, random

forests and XGBoost are capable of predictor selection, they are referred to as "sparse"

methods, while remaining approaches are labelled "dense".

4.2.4 Model development

Separate train and test simulations were drawn for developing and validating models. Train-

ing sample sizes varied; test sets for main effects had a sample size of 10,000, while interac-

tions had a sample size of 100,000. Models were trained using 5-fold cross-validation with

Monte Carlo random hyperparameter search, as described in chapter 2, with the best model

refit on the entire training set before predicting on the test set.

To ensure many models could be trained, 30 iterations of random search were performed

for machine learning models. As all predictors are SNPs with values in the set {0; 1; 2},
no scaling was performed within cross-validation. All PRS were z-transformed within cross-

validation using a pipeline.

4.2.5 Model evaluation

For simulations with interaction effects, visualisations of the decision boundary were com-

puted by predicting the probability of the positive class (cases) for all combinations of a
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continuous range of values between -0.5 and 2.5 at each locus. The result of this is vi-

sualised as a contour plot. The boundary is an estimation of the function learned on the

training set, not a calculation of the exact decision boundary, nor a representation of the al-

gorithm’s predictive ability on a new dataset. All methods were compared for discrimination

using the area under the receiver operating characteristic (AUC) in the test set.

4.2.6 Code

4.2.6.1 Simulations

All simulations were run in Python 3 using core packages from Python’s scientific computing

stack: SciPy (Virtanen et al., 2020), NumPy (Walt, Colbert, and Varoquaux, 2011) and

Pandas (McKinney et al., 2010). All images were generated using seaborn 0.10.1 (Waskom

et al., 2020) and matplotlib 3.2.1 (Hunter, 2007). Separate classes were defined for in-

dependent, additive and interaction simulations, each with a ’simulate’ method which can

be called repeatedly to generate new simulations with an incrementing random seed. Test

sets were created by including an option to maintain simulation parameters, such as LD

structure, MAF, effect sizes, heritability or location of causal SNPs, but supply a new seed

and sample size before drawing genotypes from the binomial distributrion. All classes inherit

from a base class which has methods for adding simple or complex LD as SNPs or blocks

of SNPs, to combine with or replace the causal SNP, and methods for plotting LD, adding

noise SNPs and checking effect sizes. All simulations and analyses were run on the Cardiff

Hawk supercomputer, part of the Supercomputing Wales project. Code for simulations is

available at https://github.com/seafloor/simulations.

4.2.6.2 Machine learning

Neural networks were implemented in PyTorch v1.5. A Python wrapper was written to ensure

cross-validation and any pipeline-dependent operations such as scaling or generating an iPRS

could be carried out in the same manner for PyTorch tensor’s and NumPy arrays. iPRS and

ePRS were calculated by creating a custom transformer in scikit-learn that can accept effect

sizes or derive them from the training fold, and can be incorporated into pipelines to ensure

it is correctly refit in each training fold for cross-validation. All cross-validation used the

same random splits across Scikit-learn and PyTorch. The Python API was used for XGBoost

(Chen and Guestrin, 2016), and all other algorithms were done in Scikit-learn (Pedregosa

et al., 2011).

4.3 Results

4.3.1 Main effects

Comprehensive simulations of main and interaction effects were undertaken (Figure 4.9).



124 Chapter 4. Simulation Study of Binary Classification of Complex Traits

Draw MAF and 
genotypes from 

uniform and binomial 
distributions

LD

Set block size to 20 SNPs and r2 to fixed or drawn 
from uniform distribution for each SNP in block

Pruning

Replace each causal 
SNP with 20-SNP LD 

block 

Noise

Set number of noise 
SNPs as fixed 

(interaction) or from 
m and p (additive, 

independent) 

Set MAF, n and p

Set OR according to 2-SNP 
interaction model type

Interactions

Assign expected genotypic 
frequency in controls

Calculate frequency in cases 
as product of OR and 
frequency in controls

Assign case-control status to 
n individuals in 50:50 ratio

Draw genotype combinations 
according to frequencies

Set n, p and m

Draw MAF and ORs from 
uniform and empirical PDF 

distributions

Independent

Assign case-control status in 
50:50 ratio

Draw genotypes from 
binomial distribution in 

controls

Modify MAF in cases to give 
desired ORs

Draw genotypes from 
binomial distribution in cases 

using modified MAF

Set h2, K, n, p and m

Draw MAF and effect sizes 
(β) from uniform and normal 

distributions

Additive

Draw genotypes from 
binomial distribution for 

500,000 observations

Assign genotypic value as dot 
product of genotypes and 

effect sizes

Add normally-distributed 
noise, e, and apply a 

threshold for case-control 
status which satisfy h2 and K

Downsample to n
observations to give 50:50 
ratio of cases and controls 

Repeat procedure with same 
same parameters and new 
random seed to generate 

test set

Repeat procedure with same 
same parameters and new 
random seed to generate 

test set

Main Simulations

Repeat procedure with same 
same parameters and new 
random seed to generate 

test set

Additive & Independent

Randomly shuffle proportion of observations for 
each LD SNP to give desired r2 with causal variant

Replace causal variant with LD block

Interactions
Fix r2 for LD SNP and shuffle proportion of 

individuals to give desired r2

Replace one or both causal variants with LD SNPs

Additive & Independent

Randomly 
downsample SNPs 

back to p predictors

M
et

ho
ds

M
ai

n 
Co

nc
lu

si
on

s

1. Sparse methods such as LASSO perform better when 
there are few causal SNPs of strong effects; dense 
methods such as ridge perform better under high 
polygenicity (Figures 4.10 and  4.12)

2. Linear models should be preferred over flexible ML 
approaches under an additive model (Figures 4.10, 4.12, 
4.13 and  4.14)

3. Penalised approaches outperform unpenalised logistic 
regression (Figure 4.12)

1. Flexible ML 
approaches are 
required to model 
complex non-linear 
interactions (Figures 
4.15 to 4.19)

2. XGBoost shows more 
consistent high AUC 
compared to other 
methods (Figures 4.20 
to 4.23)

1. Performance of all models is affected by 
changes in LD, noise and pruning

2. Replacement of causal SNPs with LD SNPs 
causes reduced AUC, except where a block 
of LD SNPs are all kept without column 
subsampling (Figures 4.10, 4.11 and 4.21)

3. Increasing the proportion of unassociated 
SNPs relative to causal variants is 
accompanied by a decrease in AUC; sparse 
methods are affected less (Figures 4.10, 
4.12 and 4.23)

Figure 4.9: Workflow and key conclusions for additive, independent and interaction
simulations. h2: narrow-sense heritability, K: prevalence, m: proportion of SNPs which are
causal, n: number of observations, p: number of SNPs, AUC: area under the receiver
operator characteristic curve, LASSO: least absolute shrinkage and selection operator, LD:
linkage disequilibrium, MAF: minor allele frequency, ML: machine learning, OR: odd ratio,
PDF: probability density function, SNP: single nucleotide polymorphism, XGBoost: extreme
gradient boosting.

For main effects, the proportion of causal SNPs, m, in a simulation was evaluated at p < n

with 1,000 observations and 200 SNPs, where the remaining non-causal SNPs are drawn ran-

domly from the binomial distribution (Figure 4.10). Additive (Figure 4.10a) and independent

(Figure 4.10b) simulations show contrasting results. While independent simulations showed

increasing test set AUC for all classifiers as m increased, additive simulations demonstrated

roughly constant AUC for iPRS, logistic regression, ridge regression, SVMs and neural net-

works, but falling AUC for models which perform embedded predictor selection: random

forest, XGBoost and LASSO. Under additive simulations, such sparse approaches all showed

greater AUC than dense models where m = 0:05. This approached the maximum AUC given

by ePRS, calculated using the population effect sizes set during simulations, as m decreases,

but equal or worse discrimination when m = 1. Sparse machine learning approaches there-

fore show greater discrimination than dense methods when a few variants of large effects

are simulated, but worse discrimination for a large number of SNPs of smaller effect.
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Figure 4.10: Discrimination of independent and additive simulations with varying proportion
of causal SNPs, m. Additive simulations (a, c, e) are contrasted with independent simulations
(b, d, f). p < n scenarios set p = 200 and n = 1000, while p > n used p = 1000 and
n = 500. Simulations with LD (e, f) create 20-SNP LD blocks where r2 with the causal SNP
is drawn uniformly between 0 and 1; these replace all original SNPs, including those
unassociated with the outcome. All independent simulations used empirical PDF-derived
values; all additive simulations use k = 0:0025 and h2 = 0:2. ePRS was not calculated in e
and f as population effect sizes are not set for LD SNPs.

Discrimination was also examined when p > n, but only a proportion of SNPs are causal,

as is common in genetics of complex traits (Figure 4.10c and d). Unlike p < n simulations,

m was kept less than 0.5 to focus on the more likely scenario in high dimensions where

a smaller fraction of SNPs show association with the outcome. Results demonstrate the

same relationships as when p < n. By contrast, replacing all causal SNPs with LD blocks

where r2 is sampled uniformly from between 0 and 1 (Figure 4.10e and f) shows decreasing

discrimination for all models as m increases under additive simulations, but increasing dis-

crimination for independent simulations. While m is the initial proportion of causal SNPs

chosen in simulations, the LD-blocks replace all SNPs in the original dataset to create sim-

ulations which vary in the strength of LD block structure; the majority of SNPs in the final

dataset will therefore show some association with the outcome. Where n = 500, p = 1000

and m ∈ {0:05; 0:1; 0:25; 0:5}, original simulations of 50, 100, 250 or 500 causal SNPs re-

sult in around 1000, 2000, 5000 and 10000 associated SNPs after replacement with 20-SNP
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LD blocks; the exact number will be lower on average as LD may be set to 0. Replacing

m = 0:05 simulations with 20-SNP LD blocks recreates a dataset of p = 1000, but with

strong correlation through intact block structure. At m = 0:5, a p = 10000 dataset is made

which is subsampled back to p = 1000, creating more sparse LD structure. As a conse-

quence, the lowest values of m result in a larger number of SNPs with weaker effect sizes

than in p > n simulations with no LD, so that the contrasting relationship between sparse

and dense methods is no longer observed. Independent simulations with LD show the same

increase in AUC with m as seen in simulations without LD, but with a dampened increase

in discrimination. Results from additive simulations with LD illustrate that discrimination

when m = 0:5 is low relative to when m = 0:05, which can be ascribed to the assignment

of smaller effect sizes to a larger number of SNPs when m = 0:5, combined with the less

direct predictor-response relationship than that simulated in datasets without LD.
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Figure 4.11: Varying r2 in LD blocks when p > n for m = 0:05 and m = 0:5. All
independent simulations used empirical PDF-derived values; all additive simulations use
k = 0:0025 and h2 = 0:2. ePRS was not calculated as population effect sizes are not set for
LD SNPs.

A cleaner but less realistic view of the effect of LD can be seen by setting LD to constant

values when p > n (Figure 4.11). For both simulations of main effects, AUC shows a

slight sigmoidal relationship with r2 for fixed n = 500 and p = 1000 when m = 0:5. At

m = 0:05, all SNPs are part of strong uniform LD blocks in association with the outcome, as

illustrated in Figure 4.5a; as such performance saturates as LD approaches 1. At m = 0:5,

replacement of causal variants with 20-SNP LD blocks creates 10000-dimension datasets
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which were subsampled back to p = 1000, creating the more sparse LD structure in Figure

4.5b. Performance does not saturate as not all variants are present.
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Figure 4.12: Varying sample size and number of predictors in simulations of main effects.
For different values of n (a, b), p = 200 and m = 0:5. For simulations altering p with fixed m
(c, d), n = 1000 and m = 0:5. Simulations increasing p, while also varying m to maintain a
constant number of causal variants (e, f), set n = 1000 and m ∈ {0:5; 0:25; 0:1; 0:05; 0:025}.

Increasing sample size for all simulations of main effects results in improved discrimination

(Figure 4.12a and b). Increases from baseline (500 observations) to the maximum (2000

observations) causes around 2-5% increase in AUC for most models in both simulations.

Increasing the number of predictors, p, while holding m constant, again shows characteristic

negative and positive relationships between AUC and p for additive and independent simula-

tions respectively (Figure 4.12c and d). As the proportion of causal SNPs is kept constant,

the actual number of causal variants increases with p, and so discrimination also rises with

p for independent simulations. This represents a scenario where additional SNPs include

some associated variants so that the proportion associated stays constant. Under an alter-

native scenario, the number of causal variants was kept constant at 50 by setting m = 50
p

for increasing values of p (Figure 4.12e and f). Here, the additional SNPs do not contain

more associated variants, and so only dimensionality and noise are increased. Discrimination

decreases with p for both additive and independent simulations in this situation.
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All additive simulations set prevalence, K, to 0.0025, and heritability, h2, to 0.2. Though

these may be considered low compared to typical estimates for schizophrenia, assessing

discrimination for different values of K and h2 demonstrated the same relationship between

models (Figure B.4). Discrimination shows a positive relationship with heritability and a

negative relationship with prevalence (Figure 4.13). As such, raising h2 to 0.25 increased

discrimination, while setting K as 1% decreased discrimination. With the exception of

additive simulations where m is low, iPRS performed as well or better than logistic regression

or machine learning approaches.
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Figure 4.13: Evaluating discrimination for additive simulations under alternative values for
narrow-sense heritability (a) and prevalence (b). AUC shows an approximately linear
relationship with both, where simulations are fixed to n = 1000, p = 200 and m = 0:5 to be
comparable with previous p < n simulations.

Independent simulations set effect sizes of causal variants to all be drawn from an estimated

PDF fit to the distribution of odds ratios for genome-wide significant SNPs (Pardiñas et al.,

2018). Odds ratios were also assessed when set to a constant value for all variants in a

dataset. Comparing the empirical odds ratios against OR ∈ {1:1; 1:2; 1:3; 1:4; 1:5} shows

a strong linear relationship between AUC and effect sizes (Figure 4.14). Discrimination for

the empirical PDF odds ratios are similar to those when all ORs are set to 1.1.
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Figure 4.14: Discrimination for independent simulations with odds ratios set to constant
values or drawn from an estimated PDF from GWS SNPs in Pardiñas et al., 2018. For all
simulations p = 200, n = 1000 and m = 0:5.

4.3.2 Interaction effects

Interactions were simulated under 5 different 2-SNP interaction models, with varying effect

sizes (parameterised by „), MAF, sample size, LD and number of additional unassociated

SNPs. Holding number of observations fixed at n = 2000, discrimination from 2-SNP

interactions with no additional SNPs simulated were strongly influenced by MAF and „

for all models (Figure 4.15), with AUC either at or slightly above chance for all models

when both „ and MAF are set to 0.1. Increasing MAF for a fixed „, or vice versa, caused

small improvements in discrimination, with average AUC across machine learning approaches

highest when „ = 0:5 and MAF = 0.5.
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Figure 4.15: Discrimination of classifiers for simulations of 2-SNP interaction effects at
p = 2, n = 2000, MAF ∈ {0:1; 0:2; 0:3; 0:4; 0:5} and „ ∈ {0:1; 0:2; 0:3; 0:4; 0:5}. Interaction
models which can be mostly separated by a linear decision boundary (multiplicative and
threshold) show similar performance between classifiers. XOR and interference models show
differences between linear and non-linear models, particularly for high MAF and „. A „ of 0.1
corresponds to an odds ratio of 1.1 when the interaction between genotypes is given by
¸(1 + „) and baseline odds ratio ¸ is set to 1; multiplicative models give higher odds ratios of
1.21 and 1.46 for genotype interactions of ¸(1 + „)2 and ¸(1 + „)4 respectively when „ = 0:1.
Figure 4.8 describes model parameterisation further. Y axis limits differ between rows of
subplots to allow for trends to be clear for all models.

Interactions represent a deviation from a linear model, where interaction terms or other

methods are required to correctly model the effects. This situation is a natural fit for flexible

methods that can learn complex patterns. Visualisations of the decision boundary confirm

expectations that flexible ML methods are capable of fitting simple and complex interaction

models (Figures 4.16, 4.17, 4.18). Linear statistical and ML methods gave reasonable

approximations of multiplicative and threshold models, but were unable to approximate the

more complicated simulations of XOR and interference models. The ability to learn complex

models was not uniform across non-linear machine learning algorithms, however. RBF SVMs,

random forests and XGBoost generally gave more consistent results than neural networks

(Figure 4.15), and were more able to learn both linear and non-linear models well.

A notable exception to the rule that low MAF results in AUC around 0.5 is the M170 XOR
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model, which showed higher discrimination than other interaction models and a strong pos-

itive relationship between AUC and „ when MAF = 0.1 (Figure 4.15). This is due to M170

XOR’s use of wild type homozygote-heterozygote combinations, aAbb or aabB, where A

and B are risk alleles. All other models depend on double heterozygotes (aAbB), double

homozygotes for the risk allele (AABB), risk-wild type homozygotes (AAbb, aaBB) or risk

homozygote-heterozygote combinations (AAbB, aABB), as illustrated in the parameterisa-

tion column of Figure 4.8.

As MAF is assigned to the risk allele andMAF ≤ 0:5, the wild type homozygote-heterozygote

combinations (aAbb, aabB) used in the M170 XOR model are more likely to be observed

in the training set for low n and MAF than the risk homozygote-heterzygote combinations

(AAbB, aABB). The double homozygote (AABB), is not expected to be observed in the

training data when n = 2000 and MAF = 0:1 (Table B.3); it is expected to be present

at MAF = 0:5. When MAF is high, the full XOR model is simulated; it is unlearnable by

linear models and noise dictates the decision boundary. At low MAF, genotypes in the upper

right in Figure 4.19a influence the model less, causing linear models to base the decision

boundary on the aAbb and aabB combinations, with the result that AUC increases for linear

models at lower MAF (Figure 4.19a). A related scenario occurs for decision boundaries in

M68 interference models (Figure 4.19b) where a drop in MAF at a single locus causes an

increase in discrimination for linear models (Figure 4.22). These contrast with multiplicative

models, where AUC increases with „ as expected for higher MAF (Figure 4.19c). Expected

number of observations for each AABB genotype combination when n = 2000 are given for

each interaction model in the appendix (Tables B.1, B.2, B.3).
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Figure 4.19: Decision boundaries for logistic regression (LR) and RBF SVM trained on
M170 XOR (A), M68 interference (B) and multiplicative (C) models. Presence of genotypes
AABB, AAbB or aABB confound linear models when the classification task cannot be solved
by a linear model. At low MAF, these risk genotypes are less likely to be observed in training
data at n = 2000 and linear models can achieve better discrimination (A). The opposite
situation occurs for multiplicative models (C). Decision boundaries for M68 interference are
shown where MAF at only one SNP is dropped (B), while M170 XOR and multiplicative
show the effect of a drop in MAF at both loci. LR and RBF SVM illustrate typical decision
boundaries for linear and non-linear models. AUC in the test set is annotated in the top
right of each plot.

To examine the sample size at which discrimination from interactions moves above chance,

machine learning approaches were assessed for three scenarios. As stronger effects are gen-

erally more common at lower MAF, the first simulated high MAF (0.5) and low effect sizes
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(„ = 0.1), the second low MAF (0.1) and high effect sizes („ = 0:5), and the third with

both MAF and „ set to 0.5, each with increasing sample size n ∈ {1000; 2000; 5000; 10000}.
Interactions models which had previously shown discrimination around chance for all classi-

fiers at MAF = 0:1 or „ = 0:1 showed minor improvements in AUC (typically less than 1%)

when n = 10000 (Figure 4.20). Similarly, machine learning and statistical approaches pre-

viously demonstrated AUC between around 0.5 and 0.6, with classifiers using multiplicative

interaction simulations showing the highest AUC. Discrimination for these increased with n

by around 1-3%.
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Figure 4.20: Discrimination increases on average with sample size. Varying sample size was
assessed for common variants with small effects (top), less common variants with strong
effect (middle) and common variants with strong effects (bottom). Y axis limits differ
between subplots to allow for trends to be clear for all models.

Results in Figure 4.15 represent an ideal scenario of tagging both causal SNPs in a 2-SNP

interaction and learning when dimensionality is very low (p << n). Three scenarios assessed

how discrimination degraded in response to decreasing LD with the causal SNP at one or

both loci (Figure 4.21), decreasing MAF in one or both loci (Figure 4.22), and addition of

noise through unassociated SNPs (Figure 4.23). To ensure initial AUC was high enough to

observe any decrease, all simulations fixed „ = 0:5 and MAF 0.5, with n = 2000.

The effects of LD on 2-SNP interactions were assessed by varying r2 at one or both loci,

with r2 ∈ {0; 0:2; 0:4; 0:6; 0:8; 1}. Where r2 = 0 at SNPb, only the marginal effect of SNPa
is present; r2 = 1 at both loci gives the original simulation in Figure 4.15.
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Figure 4.21: Degradation of classifier performance on 2-SNP interaction models when LD is
introduced at one (top row) or both (bottom row) loci. All simulations fixed n = 2000,
„ = 0:5 and MAF 0:5. Y axis limits differ between subplots to allow for trends to be clear for
all models.

Where LD between a single SNP and the causal variant is reduced from 1 to 0 (Figure

4.21, top row), discrimination of classifiers on multiplicative and threshold models decreases

by around 2% but AUC is still maintained above 0.58 and 0.52 respectively. XOR models

show a decrease of 4-5% AUC, dropping to around 0.5 and 0.51-0.52 for M170 and M78.

Interference models similarly drop around 2% AUC to just above chance. All curves for

classifiers show a sigmoidal relationship when decreasing LD at a single locus, so that when

r2 = 0:8 predictive performance is largely maintained, but at r2 = 0:6 a large decrease in

AUC occurs. By contrast, introducing LD at both loci results in a sharp linear decrease in

AUC from between r2 = 0:6 and r2 = 1, with AUC for all models reduced to 0.5 when

r2 = 0. Linear models show AUC of 0.5 for all values of r2 under M170 XOR and M68

interference models.

Increasing MAF at both loci is generally followed by an increase in discrimination, as shown

in Figure 4.15, with the previously-noted exceptions of M170 XOR and M68 interference

interaction models (Figure 4.22, bottom row).
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Figure 4.22: Reduction of classifier performance in response to decreasing MAF at one or
both loci in 2-SNP interaction models. MAF at SNPa was held at 0.5 when MAF at SNPb
was varied. All simulations fixed n = 2000, „ = 0:5 and did not include LD. Y axis limits
differ between subplots to allow for trends to be clear for all models; multiplicative models
show high AUC on average.

Reduction of MAF at a single locus shows a similar decrease in performance for classifiers

under multiplicative and threshold models, but with a smaller drop in AUC with decreasing

MAF (Figure 4.22, top row); however, classifiers trained on non-linear M170 XOR, M78 XOR

and M68 interference models show reasonably consistent performance despite changing MAF

at one locus, and even decreasing AUC with increasing MAF under an interference model,

previously visualised in Figure 4.19b.
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Figure 4.23: Decrease in discrimination for classifiers trained on 2-SNP interactions models
with an increasing number of unassociated SNPs. Simulations set n = 2000, „ = 0:5 and
MAF = 0:5 with no LD. Unassociated SNPs are drawn randomly from the binomial
distribution with two trials and chance of success equal to MAF, which is taken uniformly
between 0.05 and 0.5. Y axis limits differ between subplots to allow for trends to be clear for
all models.

Addition of noise to simulations through unassociated SNPs also causes discrimination to

decay. Under multiplicative models, all classifiers except XGBoost and LASSO, which en-

force sparsity, show decreased AUC with increasing number of noise SNPs. Addition of even

a single unassociated SNP causes a decrease in AUC for all interaction models except mul-

tiplicative; performance of classifiers on M170 XOR was most affected by noise, dropping

to around chance after the addition of 10-50 noise SNPs. XGBoost is generally the least

affected by noise, but its performance is similar to logistic regression with an interaction term

for M78 XOR and is exceeded by it for interference models. However, logistic regression
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models with an interaction term give an unfair comparison as they only include an interaction

term for the two associated SNPs; its use presupposes the interacting loci are known.

Across all simulations of interaction effects, discrimination remains low, with AUC typically

below 0.6 and often closer to 0.5 despite accurate estimates of the decision boundary for

some flexible models. This is expected given the use of only two SNPs showing small

effect sizes. Logistic regression with an interaction term demonstrates competitive predictive

performance under multiplicative and threshold models, but chance discrimination under

M170 XOR models; iPRS does not show superior performance under any 2-SNP interaction

models. Evaluation of decreasing test set size for all 3 simulation types indicate it does not

contribute strongly to variance in discrimination (Figure B.5).

4.3.3 Neural networks

Computation time for training varied significantly between models, with neural networks

displaying the longest training time. Larger neural network architectures were required

to adequately learn interactions in a small number of epochs for the given learning rate

and weight decay distributions used in hyperparameter tuning. Small architectures showed

worse discrimination in the test set and less ability to fit approximate flexible functions

(Figure 4.24). This effect was replicated across different simulation runs and interaction

models (Figures B.6, B.7, B.8, B.9). Networks employing larger architectures and ReLU

activation functions in hidden layers showed angular decision boundaries. Though smoother

functions were learned with tanh activation functions, ReLU allows for faster computation

of the gradients, and no significant corresponding improvement in AUC in the test set was

observed when using tanh. Even with a modified architecture, neural networks show a higher

variance that most other models, with occasional drops in average performance for a group

of simulations due to low AUC in 1 or 2 iterations. This reflects their requirement for more

careful hands-on tuning of network architecture and hyperparameters.
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Figure 4.24: Examination of different neural network architectures on the decision boundary
for M78 XOR models. The left-hand column gives the contour plots for the decision
boundaries using either ReLU or tanh activation functions, and the small or large
architectures given in section 4.2.3.2. The right-hand column shows the loss function, which
should converge during the 15 epochs.

4.4 Discussion

4.4.1 Sparsity and flexibility

Two of the most fundamental machine learning principles separating results from classifiers

are sparsity and flexibility. LASSO and ridge are illustrative of the former, as they apply

either the L1 or L2 penalty to the same logistic regression model and so enforce a sparse

or dense model respectively. Their results diverge most clearly in when a small number of

associated variants are in the presence of a large number of unassociated SNPs, as seen

for additive simulations when m = 0:5 (Figure 4.10), independent and additive simulations

with increasing p for a fixed number of causal variants (Figure 4.12), and 2-SNP interaction

simulations with increasing noise SNPs (Figure 4.15). These additive and independent

simulations also describe the only scenarios in which machine learning models improved upon

polygenic risk scores in the presence of additive effects, where LASSO, random forest and

XGBoost all outperformed internal PRS (iPRS). This suggests that, under the assumption

of additive effects, sparse machine learning methods may perform best in diseases with low
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polygenicity and stronger effect sizes, while highly polygenic diseases where common variant

associations are driven by many associations of small effect may be more favourable toward

polygenic risk scores. External PRS (ePRS) represents the maximum achievable AUC and is

not a fair comparison to machine learning approaches. However, the higher discrimination

indicates the improvements in prediction that more accurate estimates of the true effect

sizes may give.

The second main separating factor is the bias-variance trade-off, which is most easily viewed

through the lens of model flexibility. The ability of models to learn flexible functions provided

no advantage under additive simulations. This is clear through the comparison of LASSO

with random forests and gradient boosting. All 3 machine learning approaches enforce

sparsity, yet superior discrimination was consistently observed for LASSO in the presence of

an additive model. By contrast, flexible approaches showed greater consistency in achieving

higher discrimination in 2-SNP interaction models, with linear models failing to achieve AUC

above 0.5 for M170 XOR and interference simulations. XGBoost and random forests also

typically outperformed LASSO in the presence of noise.

4.4.2 Differences between classifiers

The effects of the bias-variance trade-off are also seen among linear models; logistic re-

gression was often outperformed by other models which are capable of balancing bias and

variance through choice of hyperparameters, including both linear and flexible models, par-

ticularly as p approached n. This confirms the importance of machine learning not just for

p > n scenarios, but also when p < n. Performance of logistic regression degraded when

events per variable (EPV) fell below 2.5, with an almost 10% AUC decrease in performance

compared to the best performing classifiers when EPV decreased to 1. Performance of lo-

gistic regression also contrasts with that from polygenic risk scores. Predictors in additive

and independent simulations of main effects are truly independent, and any correlation be-

tween them incidental. It is therefore expected that iPRS scores, which include an additive

combination of independently-estimated effect sizes, should slightly outperform multivariable

logistic regression.

Ridge and linear SVM learn penalised linear models, but show differences in predictive per-

formance. As detailed in chapter 2, the methods are connected: the hinge loss function used

in SVMs is related to the logistic loss function (James et al., 2013), with both applying an L2
penalty. Both methods also give greater priority to instances closer to the decision boundary,

though SVMs enforce sparsity on observations through only using instances which prop-up

the hyperplane margin. Differences in AUC between models may be due to sub-optimal

hyperparameter tuning.

Random forests and gradient boosting generally perform worse than other models in inde-

pendent and additive simulations, particularly where embedded predictor selection does not

confer an advantage (m ≥ 0:5). This confirms expectations that tree-based models will
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perform poorly under additive effects (Hastie, Tibshirani, and Friedman, 2009). Though

rare variants were not simulated, tree-based approaches would be expected to deviate from

other models. For any rare variant Vj associated with the outcome where Vj ∈ {0; 1; 2}
and the risk allele homozygote (coded as 2) is not observed in the training data, a single

cut-point will be learned at 0.5. Tree methods will therefore learn a dominant model. By

contrast, a logistic regression assumes a linear predictor-response relationship and will learn

an additive model whether the risk homozygote is observed or not.

4.4.3 Interaction and main effects

Flexible machine learning approaches are capable of learning complex 2-SNP interactions.

This ability is largely unaffected by change in MAF at one locus for XOR and interference

models. Only small reductions in performance are seen when r2 at one locus is set to 0.8.

However, decreasing MAF at both loci, or introducing more extreme LD at one or both

SNPs causes a decrease in discrimination for most classifiers such that almost all show AUC

of around 0.5 when MAF or LD drop to their lowest values in simulations, with the exception

of multiplicative and threshold models, wherein classifiers show a more modest decrease in

AUC in response to introduction of LD at one locus. The results imply that applying machine

learning models to variants with low MAF does not necessarily mean interactions will not be

incorporated into the model. Furthermore, selection of the causal variant or a tagging SNP

in high LD is important for building prediction models with interaction effects, particularly

when marginal effects at a locus are weak. In the presence of only additive effects, inclusion

of multiple SNPs in LD with the target variant may improve prediction, with the caveat that

this risks greatly increasing p for low r2 thresholds.

Pairwise simulations alone are limited by the extent to which results can be applied to com-

plex diseases, as intuitions around how methods behave may not apply in higher dimensions;

findings from 2-SNP simulations do not necessarily generalise to datasets with a much larger

number of predictors. Unassociated SNPs were introduced to evaluate the extent to which

an increase in dimensionality and noise would drown-out signal from interactions. While

classifiers trained on multiplicative and threshold models showed some resistance to noise,

almost all learners showed AUC approaching chance as the number of noise SNPs increased.

A potential criticism of using random forests in the presence of interactions is that they

favour learning of marginal effects in high dimensions (Winham et al., 2012); however, all

models here are impacted by high dimensions, with random forests among the best per-

forming classifiers. Assessment of the decrease in discrimination with noise indicates that

increasing the number of SNPs in a machine learning model without prior expectation of

association may decrease predictive performance under both additive and interaction effects,

and that the sparse approaches of LASSO and XGBoost should be used if such a scenario

is unavoidable.

Though it is clear neural networks can compute complex interactions, for example, an M170

XOR model can be solved by hand as in Figure 4.7, representable is not synonymous with
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learnable (Domingos, 2012). A large number of arbitrary functions can be represented by

a neural network with a single hidden layer (Hornik, 1991) through choice of appropriate

weights and architecture to compute the expected output. This does not imply that the

corresponding weights and architecture can be learned from a real dataset. This is particularly

true where the effect sizes of the predictors in a dataset are low. As such, application of a

small network with 2 hidden layers and 2 hidden units often resulted in a linear or piece-wise

linear function which failed to adequately learn XOR and interference models for the given

learning rate and number of epochs. Deeper or wider models may be necessary to more

easily learn complex interactions with neural networks, and more advanced hyperparameter

tuning methods such as genetic programming, as proposed by Ritchie et al., 2003, may be

helpful.

Classifiers were compared to logistic regression with an interaction term, which showed

competitive performance under most scenarios except for M170 XOR models. However,

though a useful comparison in assessing the flexibility required to learn an interaction, using

multivariable prediction models with interaction terms for genetic datasets with a large

number of predictors is not a practical solution. In simulations on adding noise SNPs

to 2-SNP interactions, only a single interaction term was included. It is not feasible to

include all pairwise interaction terms in a multivariable model for all unassociated variants

when n = 2000; at 50 noise SNPs, 1,225 interaction terms are required, exceeding the

number of cases, and at 100 noise SNPs 4,950 terms are required, far exceeding the number

of observations. Further examining alternative models with higher-order interactions, or

polynomial terms for dominance deviation at a single locus, exacerbates this issue (Frankel

and Schork, 1996). Computational burden is also an issue when running pairwise tests for

interactions under an explanatory modelling paradigm. Although strides have been made in

increasing computational speed for this (Yung et al., 2011), typically only a multiplicative

model is tested for. Prediction by a flexible machine learning model offers a more practical

solution that avoids systematically considering all possible pairwise interactions and focuses

on generalisation. XGBoost shows the strongest ability to detect interactions across models,

MAF, LD, and in the presence of unassociated SNPs.

4.4.4 Randomness

Noise across simulations of training data comes from several sources. In all simulations

genotypes are random draws from the binomial distribution. While MAF and effect size are

fixed for interactions, they are randomly drawn in each iteration for additive and independent

simulations. After selecting parameters for a simulation round, genotypes were assigned to

create the sample directly. In real data individuals might be considered to be drawn from an

underlying data generating process to create a population of individuals from which a sample

is taken for study. This therefore includes an additional round of sampling, and so includes

a further source of randomness not covered in independent or interaction simulations. In

addition, simulations represent an ideal scenario of a single homogeneous population with a
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single true effect size for each variant from which both training and test data are drawn. In

reality, samples are heterogeneous. They may comprise several underlying populations with

differing population parameters, with train and test data also possibly drawn from separate

populations. Simulations may give an overly-optimistic view of the discrimination that is

achievable. However, though they may simplify the true complexity of disorders such as

schizophrenia, simulations allow for observations which would otherwise likely be obscured

by the heterogeneity of real data.

Four main sources of randomness have been highlighted in evaluation of machine learning

models (Dietterich, 1998). First, variation between different random draws of the test set,

has been mitigated through simulation of independent test sets with large enough sample

size that discrimination converges on the true AUC. Use of a separate simulation for test

data also avoids any leakage of information that may occur in poorly devised resampling

approaches, as observed in chapter 3. The second, variation between training sets, described

previously, is one of the main causes of variance across simulations. Third, randomness

in the machine learning model, is due here to both internal aspects of the algorithm -

such as out-of-bag sampling in random forests, or weight initialisation in neural networks

- and model selection through Monte Carlo random search. This is the second source of

randomness in evaluation observed across simulations. The fourth, random mislabelling of

observations which sets an upper limit on possible classification error, was not simulated

here. In real learning problems for schizophrenia, it is expected that test error will also affect

variance of predictions, particularly for rare variants and interactions, and that mislabelling

between cases and controls, or between psychiatric disorders, may be present and further

limit discrimination.

4.4.5 Simulation parameters

The study aimed to provide general guidance for common variants in psychiatric disorders.

An important question is whether parameters are appropriate for schizophrenia in particular.

In independent simulations, effects sizes and MAF mimic those observed for genome-wide

significant SNPs in real data. In additive simulations, effect sizes varied with m, for fixed p

and h2. At m = 0:05, odds ratios on the observed scale for a small number of variants are

large and deviate from empirical results, with odds ratios approaching more realistic values

as m increases (Figure B.3). While additive simulations at m = 0:05 do not yield realistic

effect sizes for common variants in schizophrenia, they provide an important explanation

of why some machine learning methods are reported to do particularly well in other fields,

or in diseases for which stronger effect sizes have been reported. Values for narrow-sense

heritability on the liability scale (h2 = 0:2) and prevalence (k = 0:0025) were fixed at low

values for many simulations; estimates of h2 for schizophrenia are closer to 0.26 (Anttila

et al., 2018). Median point prevalence, period prevalence and lifetime morbid risk for

schizophrenia have been estimated as 0.46% (0.19% - 1%), 0.33% (0.13% - 0.82%) and

0.72% (0.31% - 2.71%), with 10th and 90th percentiles shown in brackets (McGrath et al.,
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2008). A recent estimate places point prevalence at 0.28% (0.24 – 0.31 95% CI) (Charlson

et al., 2018). The value of k = 0:0025 used for most simulations, a prevalence of 0.25%,

is within reasonable limits for point and period prevalence. Altering these parameters, for

h2 ∈ {0:15; 0:2; 0:25; 0:3} and k ∈ {0:0025; 0:005; 0:01; 0:02}, showed patterns replicate

across a range of heritabilities and prevalences. Though h2 = 0:2 is below the 0.26 estimate

for schizophrenia, it is above the variance explained for only genome-wide significant SNPs.

PRS analysis using an independent PGC sample as the training set and CLOZUK data as

the target using GWS SNPs found an AUC of 0.57 and R2 on the liability scale of 0.011

(Pardiñas et al., 2018). Effect sizes in independent simulations are reasonable when p is low,

but assigning the odds ratios found in genome-wide significant SNPs to all associated SNPs

as p increases is likely to mean AUC is an overestimate when p is high. The most realistic

simulations are therefore when p is high for additive simulations, where AUC is 0.606-0.669

for 1000 causal SNPs, and when p is low for independent simulations, achieving 0.546-0.563

AUC for 100 causal variants.

Simulations took a simplified approach to linkage disequilibrium, contrasting extremes. While

those at m = 0:05 represent complete LD blocks, SNPs generated under higher values of

m have more diffuse correlation. Simulations of LD with r2 drawn uniformly from 0 to

1 and m = 0:5, where blocks were subsampled back to maintain p, may come closest to

representing situations where genotyped SNPs are in LD with the causal SNP and correlated

SNPs have been pruned. Classifiers in this scenario achieve lower AUC, with the majority of

classifiers obtaining AUC between 0.565 and 0.6. Under additive simulations, performance

is similar to creating LD blocks which are in constant moderate LD (r2 = 0:6) with the

causal SNP at m = 0:5.

Interactions set odds ratios for 2-loci combinations to between 1.1 and 1.5, except for

the presence of risk alleles at both loci in multiplicative models. The extent to which

interactions are present in schizophrenia is unclear, as testing for interactions requires large

computational power and sample size and tests may assume only a single interaction model.

Testing of GWS SNPs from PGC found no evidence of interaction effects (Ripke et al.,

2014), but interactions with weak marginal effects may be missed by stringent p-value cut-

offs in GWAS. Furthermore, evidence for interactions in schizophrenia has been found by

several studies (Andreasen et al., 2012; Nicodemus et al., 2014; Guan et al., 2016). Of

these, Guan et al., 2016, report odds ratios for schizophrenia risk for interactions at 0.47

(0.12-0.96), 2.63 (2.37-3) and 3.56 (3.27-3.98) for different genotype combinations between

two SNPs with respect to the baseline in a Han Chinese population; 95% confidence intervals

are given in brackets. Though it is unclear if these are typical values for interaction effects

in schizophrenia, simulated effects span from 1.1, using ¸(1 + „) at „ = 0:1, to 5.06,

using ¸(1 + „)4 when „ = 0:5, with the majority of interactions between 1.1 and 1.5

across simulations, indicating values chosen in simulations are not unreasonable. It should

also be noted that the largest simulated odds ratios for double homozygotes for the risk

allele (AABB) in multiplicative models are less likely to be observed in smaller samples
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with low minor allele frequencies at both loci (Table B.1), and so are unlikely to greatly

influence the decision boundary for multiplicative and threshold models. The issue of rarely

observing combinations of genotypes with low expected frequency extends to other risk allele

combinations under 3 or 4-loci interactions, which would require even larger sample sizes,

or higher MAF, to reliably observe simulated odds ratios in both train and test sets, as well

as within cross-validation folds in the training set.

4.4.6 Hyperparamter tuning

Hyperparameter tuning affected differences between models. More flexible models may ben-

efit from a greater number of iterations of random search; low AUC seen for RBF SVMs

(Figure 4.11, for instance) or large variance in AUC for neural networks (such as Figure 4.15)

may resolve to a level similar to other flexible approaches with more tailored hyperparameter

tuning. It is challenging to choose ranges or distributions for hyperparameters to enable fair

comparison of flexible classifiers across datasets with different dimensionality and main or

interaction effects. Such large-scale comparisons on heterogeneous data are less favourable

toward flexible models. The chosen distributions and number of iterations produce machine

learning classifiers which are good enough to detect patterns of behaviour in types of ap-

proach across simulations, but small differences, for example between ridge regression and

linear SVM under an additive model, are likely to decrease with improved search.

4.5 Conclusion

This chapter turned to simulations for a fundamental understanding of the behaviour of

machine learning approaches in the presence of main and interaction effects. This allowed

investigation of changes in sample size, effect size, heritability, prevalence, and number

of associated predictors while controlling the type of association. In addition, it enabled

assessing of machine learning methods where bias was avoided by independently sampling

test data from the same population parameters; it therefore compares PRS and ML without

the suspected high risk of bias seen in the previous chapter, and addresses the lack of fair

comparisons in the literature by applying PRS, LR and ML to all simulations. It demonstrated

that machine learning methods are capable of learning complex genetic interactions, but

that performance from such models is liable to decay under imperfect conditions. It also

highlighted the expected dominance of PRS under additive effects, which is rarely challenged,

and their poor performance on interactions. However, simulations are partly limited in

that ePRS represents the unrealistic scenario of knowing the true effects in the population.

Furthermore, AUCs of below 0.7 were typically achieved for more realistic simulations. The

next chapter turns to real data from the UK Biobank to address these challenges, and

whether combining genetic predictors with widely-available demographic factors can further

improve prediction in machine learning models.



147

Chapter 5

Multivariable machine learning models
of schizophrenia in UK Biobank

5.1 Introduction

Simulations provide a useful simplification, but real data may show more complicated rela-

tionships between predictors and outcome. The aetiology of schizophrenia in particular is

complex, involving contributions from both environmental and genetic risk factors (Owen,

Sawa, and Mortensen, 2016). As noted in chapter 1, many predictors in early life have been

long-established (McDonald and Murray, 2000), while large strides in identifying common

genetic variants associated with schizophrenia have been made through genome-wide associ-

ation study (GWAS) consortia (for example, Pardiñas et al., 2018). Despite these advances,

prediction from common variants through a polygenic risk score typically explains only a

small proportion of the variance in liability to a psychiatric disorder. Narrow-sense (SNP-

based) heritability for schizophrenia is estimated at around 0.26 (Anttila et al., 2018). For

prediction in a new sample (CLOZUK) using a polygenic risk score (PRS) from an indepen-

dent training set (psychiatric genetics consortium; PGC2), variance explained on the liability

scale is just under 6% (Pardiñas et al., 2018); this amounts to a Nagelkerke’s pseudo-R2 of

0.12, and an area under the receiver operating characteristic (AUC) of 0.68. This supports

the predictive ability in PGC2 (Ripke et al., 2014), for which an R2 of around 0.18 and

variance on the liability scale of about 7% were reported. Ripke et al., 2014, also provide

results for a 40-fold leave-out-one PRS analysis of each of the datasets in the meta-analysis

(mean 0.70 AUC, range 0.62-0.81). While an AUC of 0.7 may be considered high for genetic

prediction in psychiatry, it only gives moderate discriminative ability and is not high enough

to be clinically-useful alone. Clinically prognostic models using only traditional factors in

cardiovascular disease, for example, have AUCs of over 0.8 (Lewis and Vassos, 2020).

A potential solution to this is to combine PRS with other predictors. Multivariable prediction

models can be used to combine risk factors of complex disorders into a single model. Use

of PRS with other factors is motivated by the notion that while common variants are not

clinically predictive alone, their incorporation into a model with non-genetic factors may

be. Prediction models of complex disease have been shown to benefit from the combined
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modelling of genetics as PRS and traditional factors, particularly in cardiovascular diseases.

Inouye et al., 2018, demonstrated a model where PRS alone (0.62 AUC) was combined

with traditional risk factors (0.67 AUC) to give improved discriminative ability (AUC 0.70).

Results in cancer studies have also suggested the combination of PRS and traditional factors

may be predictive, though by using PRS with fewer single nucleotide polymorphisms (SNPs)

(Fung et al., 2019), and a similarly PRS-augmented traditional model may also improve

psychosis prediction in those deemed clinical high risk (Perkins et al., 2020).

Multivariable modelling efforts which are applied in this context typically make use of a linear

model. However, alternative approaches using flexible machine learning models have the

potential to detect more complicated relationships than a linear additive model, build models

when the number of predictors outstrips the number of observations, and may enhance

discriminative ability by optimising the trade-off between bias and variance for improved

prediction. As with traditional statistical models, use of machine learning for multivariable

modelling of risk factors has been applied to a range of diseases and disorders.

For schizophrenia and related outcomes, demographic, environmental and genetic predictors

have been used in prediction studies applying machine learning (ML). The earliest employed

a neural network to predict response to clozapine using SNPs alongside demographic and

physical data (Lin et al., 2008); the authors report that a neural network (0.82 AUC)

outperformed logistic regression (0.58 AUC) in this study. Demographic information, SNPs,

predictors covering physical characteristics and lifestyle factors such as smoking were also

used to predict weight change in response to medication using a neuro-fuzzy model (Lan et

al., 2008) which combines neural networks with human-like fuzzy logic. The authors report

the ML model outperforming logistic regression for sensitivity but not specificity. Both

studies evaluated a multivariable model without comparison to models with a single data

type (genetic-only or environmental-only), making it unclear whether genetic information

improved prediction.

Later efforts have focused more on neuroimaging. Genetic, imaging and cognitive predictors

showed variable accuracy when used by a support vector machine (SVM) to differentiate

healthy, ultra-high risk and first episode psychosis individuals (Pettersson-Yeo et al., 2013),

but for which the added value of data types was also not examined. Machine learning using

random forests found no added value for combining PRS with cognitive and neuroimaging

data, despite modest prediction from PRS alone (Doan et al., 2017). Several methodological

studies have focused on development of sparse or hybrid models for functional magnetic

resonance imaging (fMRI) and SNP data, where their combination was either not compared

(Li et al., 2020) or was shown to improve prediction (Yang et al., 2010a; Cao et al., 2013).

Prediction of schizophrenia-related traits has also been evaluated by using schizophrenia-

associated SNPs to predict cognitive measures with random forests (Zheutlin et al., 2018).

Chapter 3 reviewed genetic prediction of psychiatric disorders, identifying variable predictive

abilities of machine learning approaches in schizophrenia (0.54-0.95 AUC) and demonstrating
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high within-study risk of bias (ROB). ROB has not been similarly assessed for the models

combining genetic and other predictors described above, but given widespread sub-optimal

practices, caution should be taken when interpreting the measures of discrimination and

classification reported in such studies. Further scepticism should also be brought to studies

reporting novel methods, such as those developed to combine fMRI and SNP data, as these

may be more favourable toward the newly-developed technique than objective comparison

studies (Boulesteix, Lauer, and Eugster, 2013).

Chapter 3 revealed that reporting results alongside logistic regression and PRS, or evaluation

of models with SNPs as independent predictors or combined in a PRS, have been largely

absent from the literature. Furthermore, it highlighted a dearth of investigation of models

for potential confounders, with no recommended strategy available for machine learning in

psychiatric genetics.

5.1.1 Aims and objectives

The aim of this chapter is to report the development of multivariable machine learning

models for the prediction of schizophrenia using data in the UK Biobank. The objectives

are:

• Evaluate statistical and machine learning approaches for their discrimination and cal-

ibration

• Compare prediction using genetic, demographic or combined predictors

• Investigate model predictions for potential confounders and generalisable associations

• Assess subsampling approaches to class imbalance in a large dataset

Linear and flexible modelling approaches were compared in a nested case-control design in

the UK Biobank using common variants and demographic predictors.

5.2 Methods

5.2.1 Participants

The UK Biobank is a large prospective cohort of around 500,000 individuals aged 40 to

69 that were recruited between 2006 and 2010 and assessed at 22 centres across the UK.

Participants gave consent, provided physical and cognitive measures, and completed a touch-

screen questionnaire with inputs checked by a nurse. They supplied blood, saliva and urine

samples (Sudlow et al., 2015). This study is part of UK Biobank project 15175. Ethical

approval was given by the North-West Multi-Centre Research Ethics Committee.
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5.2.2 Genetic quality control

Participants were restricted to unrelated individuals with a kinship coefficient of less than

0.2; one individual was randomly removed from each related pair, with preference given

to keeping affected participants. The sample was further restricted to those who self-

reported as white British or Irish (field 21000). Individuals were removed if consent was

withdrawn as of 17/03/20. Genetic data was imputed by the UK Biobank (Bycroft et

al., 2018). Imputed SNPs from the Haplotype Reference Consortium (HRC) were kept if

they had Hardy-Weinberg equilibrium less than 10e-6, minor allele frequency greater than

1%, imputation quality score greater than 0.4 and posterior probability greater than 10e-4.

Genotyping and imputation have previously been described by the UK Biobank (Bycroft

et al., 2018).

5.2.3 Outcome

Schizophrenia was defined by the presence of international classification of diseases (ICD)-

10 codes for schizophrenia (codes F200-F209) or schizoaffective disorder (codes F250-F259)

in primary or secondary hospital records (fields 41202 and 41204) or death records (fields

40001 and 40002), or if self-reported (field 1289) in any of the first three timepoints (initial

assessment, first repeat assessment and imaging visit). Participants with no occurrence of

these were considered as controls, excluding those with other psychoses (codes F21-23, F28,

F29) in hospital and death records or bipolar disorder in hospital and death (codes F30-31)

or self-report (code 1291) fields. A total of 807 cases and 370,468 controls remained before

subsampling.

5.2.4 Predictors

5.2.4.1 Genetic predictors

31,603 nominally significant and 116 genome-wide significant (GWS) SNPs (Pardiñas et al.,

2018) were used as dosages from imputed genotypes after pruning for linkage disequilibrium

(SNPs with strongest evidence of association preferentially kept, r2 = 0.2, distance 1Mb;

Figure C.3). The 0.05 threshold is the most predictive for schizophrenia (Ripke et al., 2014;

Pardiñas et al., 2018; Ripke et al., 2020), while GWS SNPs give contrasting dimensionality,

and consequently faster computation, yet still account for around half the variance explained

on the liability scale to schizophrenia in a PRS (Ripke et al., 2014; Ripke et al., 2020).

For both the nominally significant and genome-wide significant SNPs, two types of PRS

were created to evaluate the role of prior information. PRS were either generated using

weights from summary statistics of an external dataset (Pardiñas et al., 2018), known here

as external-PRS (ePRS), or from univariable association tests in the training fold which

were performed in cross-validation, termed internal-PRS (iPRS). Where an ePRS was used,

genotypes were thresholded (imputation quality > 0.9) and combined into a PRS, with any

subsequent adjustments for transformations performed within cross-validation, to match the
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methodology used for individual SNPs. ePRS were computed using PLINK (Purcell et al.,

2007).

PRS using weights generated within each training fold of cross-validation (iPRS) were derived

by performing univariable linear association tests for each SNP in the training fold, then

taking the dot product of the resulting effect sizes and the genotypes in the training and

test folds to produce a PRS without prior (external) weights. A scikit-learn-compatible

transformer was created to ensure coefficients from the training fold were stored and applied

to the test fold correctly; this allowed the transformer to be incorporated into a standard

pipeline. PRS using external weights of all nominally-significant SNPs are referred to as

0.05 ePRS, while those using only genome-wide significant SNPs with external weights are

labelled GWS ePRS. To ensure experiments were able to complete, given the large number

of models and training time needed for gradient boosting and neural networks, comparison

of SNPs, iPRS and ePRS was limited to GWS SNPs only. Nominally significant SNPs were

only considered as an ePRS.

5.2.4.2 Deconfounding

To account for the linear effects of genetic ancestry and genotyping array, SNPs used as

independent predictors were regressed against 40 principal components, provided by UK

Biobank, and array type, with residuals z-transformed. Several procedures are available to

apply a linear adjustment for genetic confounders in this way during model development

(Figure 5.1) or after (Dinga et al., 2020), in addition to more complex modified neural net-

work architectures to select features which predict the outcome independently of confounders

(Zhao, Adeli, and Pohl, 2020). So-called "deconfounding" may be performed before cross-

validation; this has previously been applied in genetic prediction models (Zhao et al., 2012;

Zheutlin et al., 2018). A recommended alternative, outlined by Chyzhyk et al., 2018, is to

apply deconfounding within cross-validation in a prediction modelling paradigm, such that

a separate fit on both training and test folds is avoided as potentially causing overly pes-

simistic results and requiring new observations to always appear in groups, instead favouring

a single fit on the training fold and prediction in the test fold, shown in Figure 5.1c. This

approach is used here and applied in all main analyses. Labels of prior, double and single

are used to refer to deconfounding performed before cross-validation (Figure 5.1a), or using

two separate fits (coefficients estimated separately in training and testing folds; Figure 5.1b)

or one fit during cross-validation (coefficients estimated once in training fold; Figure 5.1c)

respectively.
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Prior 
deconfounding

Double deconfounding

Before nested CV
Adjust all observations for 
coefficients estimated on all 
observations

Within nested CV
Adjust training observations for 
coefficients estimated on training 
fold, then adjust testing observations 
for coefficients estimated on the test 
fold

Within nested CV
Adjust training observations for 
coefficients estimated on training 
fold, then adjust testing observations 
also using training-fold coefficients

Single deconfounding

a

b

c

Estimate B
Adjust for CB

Estimate Btrain
Adjust for CtrainBtrain

Estimate Btest
Adjust for CtestBtest

Estimate Btrain
Adjust for CtrainBtrain

Adjust for CtestBtrain

train test

train test

Figure 5.1: Deconfounding procedures. A common approach is to use a linear regression to
remove the linear effects of confounding. Often this is done on data before cross-validation
(a). However, it is preferred to keep the step within cross-validation to avoid inadvertently
using information from the test folds to modify predictors in the training fold, and to keep
train and test folds independent. This may be done by creating two separate regression
models for train and test folds for each predictor in a train-test pair within cross-validation,
leading to two sets of coefficients for each predictor (b). The alternative, which is used here
as it sticks more closely to cross-validation principles, is to create a single regression model for
each predictor in the training fold, and use the same coefficients for the test fold, for each
train-test fold pair within cross-validation (c).

For any train-test fold pair within cross-validation, an ordinary least squares (OLS) linear

regression is built for each SNP or PRS in the training set, as

Xtrainj = ˆ̨
train0j + ˆ̨

train1jCtrain1 + · · ·+ ˆ̨
trainkjCtraink (5.1)

for k confounders and j predictors, where Ctrain is an ntrain × k matrix of confounders in

the training fold and Xtrain is an ntrain × j matrix of genetic predictors for observation in

the training fold. All coefficients except the intercept for all OLS models are then stacked

into a matrix Btrain, so that Btrain ∈ Rk×j , and is stored for use in both training and test

folds. To apply deconfounding to the training fold, the dot product of Ctrain and Btrain is

then taken, so that a new ntrain × j matrix of residuals is defined as

Rtrain = Xtrain − Ctrain · Btrain: (5.2)

This is the new matrix of residuals for the training fold. The same procedure is applied to

the test fold, using the stored coefficient matrix Btrain from the training fold, as

Rtest = Xtest − Ctest · Btrain; (5.3)
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where Rtest and Xtest are ntest× j matrices and Ctest is the ntest×k matrix of confounders

for the test fold. Residuals are then z-transformed in each train-test fold pair using statistics

from the training fold. A scikit-learn compatible transformer was created to incorporate this

method into pipelines. Methods essential to scikit-learn’s RandomizedSearchCV class and

the cross-validate function were also modified to allow for setting and checking the correct

confounder index for train and test folds within cross-validation. As the main analysis

was performed using self-reported ancestry, results for deconfounding were also re-analysed

after reducing participants to a homogeneous cluster of genetic ancestry using principal

components (field 22006 from UK Biobank).

5.2.4.3 Demographic predictors

Participants self-reported answers to a touchscreen questionnaire at assessment centres.

Predictive models included 6 variables derived from information reported at baseline. Num-

ber of siblings (UK Biobank fields 1883 and 1873), handedness (field 1707), severe parental

depression (fields 20107 and 20110), educational attainment (field 6138), season of birth

(derived from field 52) and sex (field 31) were used in prediction models. Demographic

predictors were selected if they showed evidence for prior association in the literature and

mostly complete records. Factors associated with schizophrenia surrounding obstetric com-

plications and trauma were absent in too many participants to be included, while measures

such as deprivation, body mass index (BMI), smoking and cognitive measures are partly a

consequence of schizophrenia and its treatment, and so were not included. Included demo-

graphic predictors benefit from being easily-collected variables for events which largely occur

before disorder onset.

Lower educational attainment and cognitive impairment are associated with schizophrenia

(Rajji et al., 2013), with education often taken as a proxy phenotype for cognition. Though

published associations with schizophrenia in UK Biobank were not used to select predictors,

as this would introduce bias in validation, educational attainment has also been associated

with genetic liability to schizophrenia within the UK Biobank (Escott-Price et al., 2020)

and shared loci for education and schizophrenia have been identified in PGC2 (Le Hellard et

al., 2017). Association between non-right handedness and schizophrenia has been reported

by many, and is suggested to occur via abnormal brain lateralisation. Two early meta-

analyses confirmed an excess of mixed handedness in schizophrenia (Sommer et al., 2001;

Dragovic and Hammond, 2005), with a more recent meta-analysis offering support that the

relationship is genuine (Hirnstein and Hugdahl, 2014).

Sex differences are robustly associated with schizophrenia, affecting many aspects of the

disorder, including prevalence, onset and response to treatment (Aleman, Kahn, and Selten,

2003; McGrath et al., 2008). Maternal depression during pregnancy has been associated

with schizophrenia (Jones et al., 1998), possibly through obstetric complications and post-

natal depression (Verdoux and Sutter, 2002), though more recent analysis in the same data

reports elevated risk for schizophrenia only in the presence of genetic risk for psychosis
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(Mäki et al., 2010). Weaker relationships have also been reported for number of siblings

with schizophrenia (Wahlbeck et al., 2001) and schizophrenia-associated outcomes (Üçok

and Bıkmaz, 2007). Season of birth is a well-studied association with schizophrenia whereby

increased risk is observed in those born during winter in both hemispheres; stronger effects

are seen in the Northern hemisphere (McGrath and Welham, 1999; Davies et al., 2003).

Importantly, such factors are typically assessed for their association with schizophrenia un-

der an explanatory modelling paradigm, which does not guarantee generalisation (Bzdok,

Engemann, and Thirion, 2020); here, they are assessed only for prediction.

Number of siblings was counted by summing number of full brothers (field 1873) and number

of full sisters (field 1883), curtailed at 10 and log transformed. Handedness was binary-coded

as 1 for right-handed and 0 for left-handed or ambidextrous. Additive coding was used for

severe parental depression, with 1 for a single affected parent and 2 if both parents were

affected. Educational attainment is coded as 1 for GCSE or higher, and 0 for lower. Season

of birth is coded as 1 for winter birth (December to February inclusive) and 0 otherwise.

Sex was kept binary, as coded by UK Biobank. All items selected by participants as ’Prefer

not to say’ were coded as missing.

5.2.5 Study design

5.2.5.1 Model development

Genetic and demographic variables were considered both individually and together for each

modelling method. Analysis followed a nested case-control design, where a ratio of 1:5 of

cases to controls was chosen for computational efficiency, in keeping with recommendations

in epidemiology (Biesheuvel et al., 2008). Participants missing demographic predictors in

each dataset were excluded prior to randomly subsampling controls. Models were trained

and evaluated using 10-fold nested cross-validation (CV), an approach involving hyperpa-

rameter tuning on inner folds before evaluating on outer folds using the best-performing

hyperparameters, as this has been shown to approximate the true error rate and give more

accurate estimates of prediction performance when compared to split-sample or non-nested

cross-validation (Varma and Simon, 2006; Vabalas et al., 2019). k was set to 10 for both in-

ner and outer folds. Identical training folds were maintained across classifiers by passing the

same random seed to scikit-learn’s StratifiedKFold class, ensuring all methods performed

nested CV on the same data splits. For all methods, hyperparameters were tuned using

Monte Carlo randomised search, which is more efficient than grid search when many hyper-

parameters require tuning (Bergstra and Bengio, 2012). 100 values of hyperparameters were

randomly drawn from the chosen distributions for each hyperparameter to ensure thorough

hyperparameter search (Figure C.1). Deconfounding and transformation of predictors were

performed within each fold of cross-validation, with deconfounding following the procedure

in Figure 5.1c, using a scikit-learn pipeline to avoid ’leakage’ of information from the test

fold. The most predictive models were evaluated for predictor importance and generalisable
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associations. In evaluating 9 classifiers on 9 datasets, using 10x nested CV and 100 iterations

of random search, 810,000 models were trained for the main analysis alone.

5.2.5.2 Discrimination

Discrimination was evaluated for all models using the area under the receiver operating

characteristic curve. The median AUC across CV folds is presented alongside the distri-

bution for each model. Machine learning classifiers underwent pairwise comparisons with

logistic regression using AUCs from the outer round of nested CV. As detailed in chapter 2,

though the paired t-test is still commonly used, it displays a greater chance of type I error

(Dietterich, 1998); instead, the non-parametric Wilcoxon signed-rank test is used for all

pairwise comparisons (Demšar, 2006). All tests were conducted with a two-sided alternative

hypothesis. Due to correlation between tests, multiple testing was accounted for using the

Benjamini-Hochberg false discovery rate (FDR) at 0.1.

5.2.5.3 Calibration

Models were re-calibrated to allow for fair comparison of predicted probabilities, as SVM

output is distance from the hyperplane, and the structure of trees forces random forests and

gradient boosting to push predicted probabilities toward 0.5 (Niculescu-Mizil and Caruana,

2005); such max-margin-based methods typically produce sigmoidal-shaped calibration plots

which can be appropriately corrected by re-calibration using a logistic regression. To ensure

bias was not introduced in calibration, Platt scaling was used in cross-validation (Platt et

al., 1999), where the test-set predictions of the base model from the inner-fold of cross-

validation for the best performing hyperparameters is used to fit a logistic regression, which

then takes predicted outer-fold test set probabilities from the base model as the input to

give re-calibrated probabilities. Recalibration changes the predicted probabilities but will

not change AUC, as this is a rank-based measure and calibration here applies a monotonic

transformation.

Calibration was assessed graphically using loess smoothers (Austin and Steyerberg, 2014),

which were extended to be "validation plots" by including the distributions of predicted

probabilities (Steyerberg et al., 2010), and using Brier’s score.

Calibration, predictor importance and confounding were further assessed in the best per-

forming linear and non-linear modelling approaches across datasets. To rigorously assess

calibration, plots were also generated by predictor and confounder subgroups where cat-

egorical variables were present (Steyerberg et al., 2019). To show calibration for models

on the whole of UK Biobank, predictions for the unsubsampled controls not included in

the nested design were generated by refitting models on the nested dataset before pre-

dicting on all remaining controls which were previously not included when subsampling.

Predicted probabilities from the outer fold of nested CV were then combined with this so

that all observations had a risk of schizophrenia assigned by each machine learning classifier.
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Predicted probabilities were then adjusted for the sampling fraction using Elkan’s transfor-

mation to alter probabilities where the base rate, or prevalence, differs between groups, as

it does between the nested case-control sample and the full cohort (Elkan, 2001). Val-

idation plots were previously unavailable in python and can be accessed through GitHub

(https://github.com/seafloor/validation_plot).

5.2.5.4 Predictor importance

Predictor permutation importance (also called permutation feature importance) scores were

used to estimate the relative contribution of each predictor to the model in a model-agnostic

manor (Molnar, 2019) in the most performant models. Permutation importance expands on

the idea developed by Breiman for random forests (Breiman, 2001) by applying permutations

to the whole model, rather than to subgroups of trees. It was used in preference to built-

in measures of predictors such as regression coefficients or hyperplane weights to enable

consistent interpretation across different model types. Though training-set and test-set

permutations may both be used (Molnar, 2019), here test-set permutations were chosen to

focus on generalisable contributions to the model. For each predictor, and for each outer

fold of nested CV, the test-set predictors were randomly shuffled and fed into the model 10

times. The drop in discrimination compared to the full (unshuffled) model is taken as the

importance score, with the median of these for the 10 permutations taken forward. The

final reported value is the median of these across the 10 outer-CV folds.

To give an estimate of the importance of groups of variables, the same method was applied

using a predictor mask, where variables are assigned to different groups, and all predictors in

a group are shuffled together. The subsequent drop in AUC gives an estimate of the relative

importance of all the permuted predictors taken together. This technique is used in deep

learning, for example (Kokhlikyan et al., 2020), and was implemented here by extending

scikit-learn’s "permutation_importance" function. A mask was applied to put genetic and

demographic predictors into separate groups and estimate their relative importance.

5.2.5.5 Generalisable associations of model predictions

Predictions from the most performant models were further investigated for confounding and

generalisable associations. Chapter 3 identified that no previous studies of ML prediction in

psychiatric genetics had investigated models for population structure. Understanding model

confounds is a complex issue; bias in machine learning is an ongoing area of research with

no single solution (Mehrabi et al., 2019). However, as ML is focused on prediction over

explanation, a recommended protocol for researchers is to investigate how well potential

confounders predict either the outcome itself or the predictions from a model (Kohoutová et

al., 2020). Assessment of models therefore used a regression model of UK Biobank variables

to predict risk scores from machine learning models in 5-fold cross-validation. To ensure

the bounded nature of predicted probabilities was correctly modelled, a beta regression was

used. This assumes dependent variables are beta distributed, and is appropriate for use
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where the response is between 0 and 1, such as with proportions, rates and fractions. As

with generalised linear models, a link function is used, here to connect the linear predictor

to the mean outcome. Models were fit using the response, yi , as the risk for schizophrenia

assigned by a machine learning model for the ith observation, and a matrix C ∈ Rnxp

of all p independent variables and n observations. C may be a matrix of confounders or

other variables to be investigated for generalisation with the model. Principal components

considered together, or combined with array type, were evaluated in unsubsampled controls.

Machine learning risk scores were also considered for how they were predicted by cognitive

tests, neurological diseases, psychiatric disorders and widely-measured demographic variables

in unsubsampled controls. Mean variance explained (R2) was assessed between all test-fold

predictions from a 5-fold cross-validated beta regression and the risk assigned by the model

of interest to give an estimate of how well risk scores from machine leaning models could

themselves be predicted using potential confounders and variables of interest. Cognitive,

demographic and disease variables used in assessing model correlations are described in

appendix C.1.2.

5.2.6 Statistical methods

5.2.6.1 Algorithms

Common linear and non-linear machine learning methods were compared for all datasets

and predictors. Least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996)

and ridge regression (Hoerl and Kennard, 1970) are commonly-used penalised regression

methods for genetic prediction. The LASSO (L1) and ridge (L2) penalties were applied to

logistic regression.

Support vector machines (Cortes and Vapnik, 1995) take a kernel-based approach to learning,

using similarity measures to fit a maximally-separating hyperplane to distinguish between

classes (Noble, 2006). Linear SVMs maximise the margin either side of the hyperplane and

control the porousness of the plane to violations using a hyperparameter, ’C’. Non-linear

kernels are available which compute similarity between observations for higher-dimensional

space without the need for transforming predictors. Radial basis function (RBF) SVMs are a

popular choice, and include an additional tuning parameter, ‚, for controlling how localised

the influence from support vectors is on the hyperplane. Both linear and RBF-kernel SVMs

were applied.

Ensemble methods, which combine multiple ’weak’ learners together into a strong learner,

are commonly used as they perform well in many domains. Random forests (Breiman,

2001) combine classification and regression trees which make recursive binary splits to par-

tition observations (Breiman et al., 1984). Maximum depth of each tree, maximum number

of predictors to search at each split, and minimum number of observations in the child

nodes to allow splitting to occur were searched during hyperparameter tuning to reduce tree

complexity and control overfitting. Number of trees was kept constant at 1000; the Gini
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index was used as the splitting criterion. In contrast to random forests, gradient boosting

machines (GBMs) sequentially optimise against the gradient of an objective function (Fried-

man, 2001). Extreme gradient boosting (XGBoost) is a highly-regularised implementation

of gradient boosting which has been thoroughly optimised (Chen and Guestrin, 2016) and

combines several useful features into a single package. XGBoost was assessed using decision

trees as weak learners and a logistic objective function. Learning rate, maximum depth of

trees, regularisation (L2 penalty) and subsampling observations and columns (by tree) were

searched during training. Number of trees was kept at constant at 1000.

Neural networks also make use of sequential optimisation of an objective function by applying

a network of weights to the input which are iteratively updated through backpropagation

to learn associations with the outcome (LeCun, Bengio, and Hinton, 2015). They show

different abilities and properties depending on the architecture of the network. A fully-

connected feed-forward network, or multi-layer perceptron (MLP), was used with batch

norm, logistic loss and rectified linear unit (ReLU) activation function in all layers apart

from the last, which uses a sigmoid function. Layer initialisations followed PyTorch defaults.

Number of hidden layers and units per hidden layer were searched in training. Models were

optimised using mini-batch gradient descent with momentum set to 0.9 and variable learning

rate and weight decay (L2 penalty). Batch size and number of epochs were kept constant

at 32 and 15 respectively.

Stacking ensembles combine the output of several models by ’stacking’ the output of base

models together to create a new set of predictors (Wolpert, 1992). A meta model is then

trained on these to decide the optimal weighting from each of the base models. A meta

logistic regression was trained through stacking to combine the outputs of all models. All

machine learning methods were also compared to an unpenalised logistic regression trained

on the original predictors.

5.2.6.2 Software

Logistic regression, support vector machines and random forests were implemented in scikit-

learn version 0.22.1 (Pedregosa et al., 2011). Unpenalised logistic regression for prediction

modelling was implemented in scikit-learn using a newton solver with penalty set to ’none’,

so as to be equivalent to regression run in the R statistical programming language. Gradient

boosting used the scikit-learn API for the python XGBoost package, version 1.1.1 (Chen

and Guestrin, 2016). Neural networks were implemented in PyTorch version 1.5 via a

custom wrapper which allowed scikit-learn pipelines to be applied. To speed computation

and allow for a large randomised search, all analyses were performed on the Cardiff Hawk

supercomputer, with neural networks run separately using Nvidia V100 and P100 graphical

processing units (GPUs). Statsmodels 0.10.1 (Seabold and Perktold, 2010) and NumPy were

used to adjust predictors for principal components and genotyping array, and to perform

association tests between phenotypes and risk scores. PLINK version 1.9c3 was used to

generate PRS (Purcell et al., 2007). Tests comparing machine learning models on the same
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dataset were implemented in SciPy version 1.4.1 (Virtanen et al., 2020). Preprocessing and

search used pandas 1.03 (McKinney, 2010; The pandas development team, 2020), NumPy

1.18.1 (Walt, Colbert, and Varoquaux, 2011) and SciPy. Adjustment for multiple testing

using FDR was done with the fdrcorrection function in Statsmodels. Beta regression was

run with the betareg R package version 3.1-3 (Cribari-Neto and Zeileis, 2009), which was

called from Python using rpy2 version 3.1.0. Missingness plots were partly created using

the missingno package (Bilogur, 2018). All other plots were created using matplotlib 3.2.1

(Hunter, 2007) and seaborn 0.10.1 (Waskom et al., 2020).

5.3 Results

5.3.1 Samples

371,275 individuals were retained for analysis after sample QC. (Figure 5.2). Controls were

filtered for missingness and randomly subsampled in a nested case-control design of 1:5 cases

to controls to give 738 cases and 3,690 controls (sampled from 341,822) for demographic

data, corresponding to a sampling fraction of 0.01 for controls. Cases consisted of some

self-report only, some hospital records only, and some participants with both hospital and

self-reported schizophrenia (Figure C.2).

Comparison of demographic information in cases before and after excluding those with

missing values (Figure C.4), or controls before and after excluding by missingness (Figure

C.5) and subsampling (Figure C.6) indicate observations used in analysis are similar to

the full UK Biobank cohort. By contrast, comparing the same characteristics between the

analysed cases and controls shows differences for age, sex, BMI, deprivation and genotyping

array (Figure C.7).
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Biobank participants
502,641

Genetic data present
487,409

Restricted to self-report white British/Irish
443,019

Consent withdrawn (as of 17/03/20)
441,101

Removed participants with bipolar and non-SZ psychoses
441,162

Removed participants on clozapine
441,125

Related individuals removed
371,275

15,232 participants removed

44,390 participants removed

1,857 participants removed

37 participants removed

24 participants removed

69,826 participants removed

Figure 5.2: Workflow for UK Biobank participants before nested case-control and
missingness filters. Number of participants removed reflects only that stage in the protocol; a
larger number of participants may meet the criteria in the total sample. Individuals on
clozapine were removed to reduce the likelihood of sample overlap with the CLOZUK dataset,
used to produce the 0.05-threshold ePRS; overlapping controls may still be present.

Missingness was evaluated for demographic predictors only, as SNPs were imputed. Before

subsampling, 39,788 participants contained missing values for at least one predictor, con-

sisting of 39,675 controls and 113 cases, which were not used in later analyses. Tests were

applied to each predictor using a binary coding for presence of missingness and a chi-squared

or Fisher’s exact test to evaluate association between missingness and case-control status.

Two demographic predictors (number of siblings, parental depression) indicate strong evi-

dence for association between missingness and case-control status (Table C.2), with presence

of missingness also highly correlated between these predictors (Figure C.9). Remaining pre-

dictors show weak (education) or no evidence (sex, handedness, winter birth) for association

between missingness and presence of schizophrenia (Table C.2). Further comparison of cases

with and without missingness show almost identical distributions for age, BMI, deprivation,

sex, array and the first two principal components (Figure C.4), indicating included cases

are otherwise representative of all cases, after exclusions, in UK Biobank. Per-predictor

missingness is given in appendix C (Figure C.8).

5.3.2 Predictive performance of machine learning methods

5.3.2.1 Discrimination by modelling approach

Methods were compared across all datasets for discrimination (Figure 5.3). Prediction us-

ing machine learning approaches showed small differences from logistic regression for some
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models after correction for multiple testing (Table 5.1). However, no modelling approach

showed consistently better results than any other. Tests could not be run for ridge, LASSO

and linear SVM for PRS-only models as they returned identical AUCs to logistic regression.

Models were also compared with and without educational attainment as a predictor, as edu-

cation may not be completed before onset of schizophrenia in some individuals, but showed

no difference in discrimination (Figure C.10).
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Figure 5.3: Discrimination for models across all datasets. 7 machine learning methods were
compared to logistic regression. Models were trained with different types of genetic
predictors, including or excluding demographic variables. Poor prediction is observed for
neural networks for 0.05 ePRS, as models failed to converge within the specified number of
epochs for some folds of cross-validation.

Despite moderate correlation between some model predictions (Figure C.11), a stacking-

based meta-classifier trained on models built using the 0.05 ePRS did not improve upon

other learning approaches.

Classifier Genetic Demographic W p Adjusted p Reject H0

XGBoost 0.05-threshold ePRS Present 0 0.005062 0.07463 True

Neural Network 0.05-threshold ePRS Present 0 0.005062 0.07463 True

Random Forest GWS ePRS Absent 0 0.005062 0.07463 True

Random Forest 0.05-threshold ePRS Present 1 0.00691 0.07463 True

XGBoost None Present 1 0.00691 0.07463 True

XGBoost GWS iPRS Present 3 0.01252 0.1126 False

XGBoost GWS ePRS Present 4 0.0166 0.1281 False

Random Forest GWS iPRS Present 5 0.02182 0.1309 False

Neural Network GWS ePRS Present 5 0.02182 0.1309 False

XGBoost 0.05-threshold ePRS Absent 6 0.02842 0.1535 False

Random Forest GWS iPRS Absent 7 0.03666 0.18 False

Neural Network GWS ePRS Absent 2 0.04252 0.1914 False

Random Forest 0.05-threshold ePRS Absent 8 0.04685 0.1946 False

Ridge GWS SNPS Present 9 0.05934 0.2003 False
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Classifier Genetic Demographic W p Adjusted p Reject H0

LASSO GWS SNPS Present 9 0.05934 0.2003 False

XGBoost GWS ePRS Absent 9 0.05934 0.2003 False

Random Forest GWS ePRS Present 10 0.07446 0.2234 False

Random Forest None Present 10 0.07446 0.2234 False

Ridge GWS iPRS Present 12 0.1139 0.3237 False

Ridge None Present 2 0.138 0.3726 False

RBF SVM GWS SNPS Present 14 0.1688 0.4143 False

Ridge 0.05-threshold ePRS Present 14 0.1688 0.4143 False

Linear SVM None Present 15 0.2026 0.4757 False

Linear SVM GWS ePRS Present 16 0.2411 0.5425 False

XGBoost GWS SNPS Present 17 0.2845 0.5938 False

LASSO GWS iPRS Present 13.5 0.2859 0.5938 False

RBF SVM GWS iPRS Present 18 0.3329 0.6658 False

RBF SVM GWS iPRS Absent 15 0.3743 0.6717 False

Random Forest GWS SNPS Present 19 0.3863 0.6717 False

Linear SVM GWS SNPS Present 19 0.3863 0.6717 False

Neural Network 0.05-threshold ePRS Absent 19 0.3863 0.6717 False

Neural Network GWS iPRS Absent 9 0.398 0.6717 False

RBF SVM GWS ePRS Present 20 0.4446 0.7061 False

Linear SVM GWS iPRS Present 20 0.4446 0.7061 False

Neural Network GWS iPRS Present 21 0.5076 0.7214 False

RBF SVM None Present 21 0.5076 0.7214 False

LASSO GWS SNPS Absent 21 0.5076 0.7214 False

XGBoost GWS SNPS Absent 21 0.5076 0.7214 False

Linear SVM GWS SNPS Absent 22 0.5751 0.7574 False

Linear SVM 0.05-threshold ePRS Present 22 0.5751 0.7574 False

RBF SVM 0.05-threshold ePRS Present 22 0.5751 0.7574 False

Ridge GWS SNPS Absent 18 0.594 0.7637 False

RBF SVM GWS SNPS Absent 23 0.6465 0.7934 False

XGBoost GWS iPRS Absent 23 0.6465 0.7934 False

RBF SVM 0.05-threshold ePRS Absent 15 0.6744 0.8093 False

Neural Network GWS SNPS Absent 24 0.7213 0.8467 False

LASSO GWS ePRS Present 25 0.7989 0.9178 False

Ridge GWS ePRS Present 21 0.859 0.9488 False

Random Forest GWS SNPS Absent 26 0.8785 0.9488 False

Neural Network None Present 26 0.8785 0.9488 False

RBF SVM GWS ePRS Absent 10 0.9165 0.9541 False

LASSO 0.05-threshold ePRS Present 26.5 0.9188 0.9541 False

LASSO None Present 27 0.9594 0.9594 False
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Classifier Genetic Demographic W p Adjusted p Reject H0

Neural Network GWS SNPS Present 27 0.9594 0.9594 False

Ridge 0.05-threshold ePRS Absent False False

LASSO 0.05-threshold ePRS Absent False False

Linear SVM 0.05-threshold ePRS Absent False False

Ridge GWS ePRS Absent False False

LASSO GWS ePRS Absent False False

Linear SVM GWS ePRS Absent False False

Ridge GWS iPRS Absent False False

LASSO GWS iPRS Absent False False

Linear SVM GWS iPRS Absent False False

Table 5.1: Comparison between each classifier and logistic regression for all datasets using
the Wilcoxon signed-rank test. Tests statistics, W , and p-values are missing where AUCs
were identical between a model and logistic regression. p-values were adjusted for multiple
testing using FDR at 0.1. "Reject H0" gives a boolean of whether the null hypothesis of no
association for the FDR-corrected p-value would be rejected. Stacking could not be included
in comparisons as it includes the output of logistic regression in its stacked models. XGB:
extreme gradient boosting, NN: neural network, RF: random forest, LASSO: least absolute
shrinkage and selection operator, SVM: support vector machine, RBF: radial basis function,
GWS: genome-wide significant, iPRS: internal polygenic risk score, ePRS: external polygenic
risk score.

Though no model consistently out-performed all others, on average linear models showed

slightly better prediction across all models (Figure 5.4a). In general, distributions became

more diffuse with more flexible methods, though differences between modelling approaches

and logistic regression are often small (<2% AUC), illustrated most clearly by comparing all

linear models against all non-linear models (Figure 5.4b).
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Figure 5.4: Comparison of modelling approaches. The outer-fold AUCs for each modelling
approach were subtracted from the corresponding AUCs for logistic regression, to show the
distributions of differences from logistic regression across all models (a). Models capable of
linear (logistic regression, ridge, LASSO, linear SVM) and non-linear (RBF SVM, random
forest, XGBoost, neural networks) mappings were binned together to show the overall
difference between techniques (b). The median value is given by the blue bar and annotated
on each strip.

5.3.2.2 Discrimination by predictor type

Discrimination between cases and controls (Figure 5.3) using genetic, demographic or com-

bined predictors was compared for the datasets using the 0.05 ePRS, as this showed the

highest discrimination of all genetic predictors considered. Tests for each classifier comparing

combined data with either the 0.05 ePRS or demographic predictors showed strong evidence

for differences for all approaches apart from neural networks (Table 5.2). Overall, models in-

corporating combined predictors improved discrimination by around 5-6% AUC compared to

those using genetics or demographic factors alone. Combined predictors showed significantly

higher AUC (median 0.71 AUC across methods) over prediction using only demographic pre-

dictors (median 0.66 AUC) or only 0.05 ePRS (median 0.65 AUC). By contrast, combination

of demographic factors with genome-wide significant SNPs as individual predictors (median

0.66 AUC) or combined into a PRS with external (median 0.66 AUC) or internal (median

0.65 AUC) effect sizes showed equivalent prediction to demographic factors alone (median

0.66 AUC). This may be expected as prediction from each of the genetic predictors based

on genome-wide significant SNPs alone is low (0.54-0.57 median AUC).

Classifier Comparison W p Adjusted p Reject H0

Logistic Regression Combined vs. Genetic 0 0.0051 0.0058 True

Logistic Regression Combined vs. Non-genetic 0 0.0051 0.0058 True

Ridge Combined vs. Genetic 0 0.0051 0.0058 True

Ridge Combined vs. Non-genetic 0 0.0051 0.0058 True
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Classifier Comparison W p Adjusted p Reject H0

LASSO Combined vs. Genetic 0 0.0051 0.0058 True

LASSO Combined vs. Non-genetic 0 0.0051 0.0058 True

Linear SVM Combined vs. Genetic 0 0.0051 0.0058 True

Linear SVM Combined vs. Non-genetic 0 0.0051 0.0058 True

RBF SVM Combined vs. Genetic 0 0.0051 0.0058 True

RBF SVM Combined vs. Non-genetic 0 0.0051 0.0058 True

Random Forest Combined vs. Genetic 0 0.0051 0.0058 True

Random Forest Combined vs. Non-genetic 0 0.0051 0.0058 True

XGBoost Combined vs. Genetic 0 0.0051 0.0058 True

XGBoost Combined vs. Non-genetic 0 0.0051 0.0058 True

Neural Network Combined vs. Genetic 18 0.33 0.36 False

Neural Network Combined vs. Non-genetic 21 0.51 0.51 False

Table 5.2: Per-model comparison of combined versus genetic and demographic-only
models using the Wilcoxon signed-rank test. Tests were carried out for models using
demographic and 0.05 ePRS predictors. Demographic or ePRS models were compared to
combined models in a pairwise manner for each classifier. Adjusted p-values were produced
using FDR-correction at 0.1.

Models trained on genome-wide significant SNPs, without demographic variables, showed

improved discrimination for iPRS or SNPs compared to ePRS (Figure 5.3). Pairwise com-

parisons of iPRS or SNPs to ePRS found weak evidence for a difference for the majority

of classifiers (Table 5.3), which was not significant using an FDR of 0.1. As noted previ-

ously, to enable comparison across genetic and demographic datasets, all datasets had been

reduced to the same sample of cases and controls by removing observations which showed

missingness in demographic predictors. Re-analysis of ePRS-only models compared to iPRS-

only and SNP-only models in the larger nested sample, which includes individuals previously

removed due to missingness, found stronger evidence of a difference between cases and

controls (Table C.3), with most classifiers reaching significance at FDR of 0.1.

Classifier Comparison W p Adjusted p Reject H0

Random Forest ePRS vs. SNPs 3 0.013 0.13 False

Random Forest ePRS vs. iPRS 4 0.017 0.13 False

XGBoost ePRS vs. iPRS 7 0.037 0.17 False

XGBoost ePRS vs. SNPs 8 0.047 0.17 False

Neural Network ePRS vs. SNPs 9 0.059 0.17 False

Neural Network ePRS vs. iPRS 10 0.074 0.17 False

Logistic Regression ePRS vs. SNPs 13 0.14 0.17 False

Ridge ePRS vs. SNPs 13 0.14 0.17 False

LASSO ePRS vs. SNPs 13 0.14 0.17 False
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Classifier Comparison W p Adjusted p Reject H0

Linear SVM ePRS vs. SNPs 13 0.14 0.17 False

Logistic Regression ePRS vs. iPRS 14 0.17 0.17 False

Ridge ePRS vs. iPRS 14 0.17 0.17 False

LASSO ePRS vs. iPRS 14 0.17 0.17 False

Linear SVM ePRS vs. iPRS 14 0.17 0.17 False

RBF SVM ePRS vs. SNPs 14 0.17 0.17 False

RBF SVM ePRS vs. iPRS 14 0.17 0.17 False

Table 5.3: Per-model comparison of ePRS versus iPRS or SNP models of genome-wide
significant SNPs only using the Wilcoxon signed-rank test. Each iPRS or SNP model
underwent pairwise comparison with the corresponding ePRS model from the same classifier.
Adjusted p-values were produced using FDR-correction at 0.1. iPRS: internal polygenic risk
score, ePRS: external polygenic risk score, SNPs: single nucleotide polymorphisms.

5.3.3 Importance scores

Models using the 0.05 ePRS (which uses external estimates of effect sizes from Pardiñas

et al., 2018) combined with all demographic predictors showed the highest discrimination on

average; these were further evaluated for interpretation and calibration. To assess whether

any difference was present in the weight given to different predictors, test set permutation

importance was evaluated for the overall best-performing linear (LASSO) and non-linear

(RBF SVM) models (Table C.4) for all outer CV folds. Models gave very similar weights

to predictors despite different modelling approaches (Figure 5.5), ranking the 0.05 ePRS as

the strongest predictor. Accuracy of importance scores was checked by inclusion of binary

or normally-distributed random noise predictors in the model, which received the lowest

importance ranking (Figure C.19).

A group-wise mask applied in permutation of predictors, however, showed similar importance

was given to all demographic predictors taken together when compared to PRS.
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Figure 5.5: Permutation importance scores for LASSO and RBF SVM. Very similar values of
relative importance are seen for both methods. Models were trained on the combined set of
demographic and 0.05 ePRS predictors. Strip plots are annotated with the median value for
each predictor across outer folds from nested cross-validation.

5.3.4 Calibration

Calibration was evaluated for all models. To allow for comparison, models were recalibrated

in cross-validation. All models showed good calibration using graphical evaluation via loess

smoothers (Figure 5.6), though neural networks still display a slight sigmoidal curve.
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Figure 5.6: Calibration for all models in the nested case-control sample. Predicted
probabilities have been adjusted through Platt scaling in cross-validation. Validation plots are
shown for all models, displaying calibration via loess curves and discrimination through kernel
density estimation. All models appear well-calibrated within the nested sample, with the
exception of neural networks which display a slight sigmoidal shape. Validation plots are
shown for the overall best linear and non-linear models in the combined demographic and
0.05 ePRS dataset.
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Calibration in different predictor and confounder subgroups was investigated, as recom-

mended for strong calibration (Steyerberg et al., 2019). LASSO and RBF SVM models

showed slightly better calibration and discrimination on the Axiom array used in genotyping

when compared to the BiLEVE array; however, perfect calibration is within the confidence

intervals for the BiLEVE array and may converge toward that of Axiom with a larger sample

size. (Figure 5.7). Calibration by principal components could not be assessed as it is only

possible for categorical variables. Data from all folds are combined for validation plots;

curves are similar when split by fold (Figure C.12).

Investigation by each categorical predictor shows similar calibration for subgroups. Deviation

from the diagonal of perfect calibration occurred for handedness (Figure C.14), where models

tended to give a lower predicted probability of schizophrenia occurring in those who are

left-handed or ambidextrous than was actually observed. Simulations have shown that such

deviations occur under small sample sizes with an AUC of 0.7 (Austin and Steyerberg, 2014),

and that increased sample size and discrimination give more readable calibration curves. By

contrast, sex (Figure C.15), education (Figure C.16), winter birth (Figure C.17) and parental

depression (Figure C.18) all showed similar calibration across subgroups, with the exception

of less common events (having severe depression in both parents) where confidence intervals

can become particularly large, and interpretation of calibration plots is impaired.
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Figure 5.7: Validation plots by genotyping array. Calibration in categorical groups can reveal
where a subgroup is not adequately handled by a model. Plots demonstrate that probabilities
are not systematically over or underestimated for either array. Wider confidence intervals are
present for the BiLEVE array, which has fewer observations. Validation plots are shown for
the overall best linear and non-linear models in the combined demographic and 0.05 ePRS
dataset.

Though overall calibration within the study sample is good, only the reduced, nested case-

control dataset has been used. The ’true probability’ in Figure 5.6 is therefore only the pro-

portion in the nested case-control sample. Taking predicted probabilities for the whole UK

Biobank cohort together, classifiers consistently overestimate the probability of schizophre-

nia occurring, as the sampling fraction of 0.01 means the prevalence of schizophrenia in

the nested case-control sample and the whole UK Biobank cohort differ; adjusting for the

sampling fraction ameliorates this issue but gives more variable predicted probabilities (Fig-

ure 5.8), which is expected when both sample size and prevalence are low (Austin and

Steyerberg, 2014).
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Figure 5.8: Calibration of models in the entire UK Biobank cohort. Predictions from
cross-validation were combined with predictions in remaining unsubsampled controls in the
cohort, generated through a refit on the nested case-control sample. Probabilities are
consistently over-estimated due to the differing prevalences in the nested sample and the total
cohort. Adjustment for the sampling fraction improves calibration but is difficult to assess due
to variability. Validation plots are shown for the overall best linear and non-linear models in
the combined demographic and 0.05 ePRS dataset. Due to in-memory limits of the loess
algorithm in the scikit-misc package, a subsample of 30,000 participants is shown;
regenerating validation plots with different random subsamples shows curves are
representative (Figure C.13).

5.3.5 Generalisable association of predictions with cognitive, demographic,
psychiatric and neurological outcomes

To further assess the prediction given by different models, predicted probabilities from LASSO

and RBF SVMs in the remaining unsubsampled UK Biobank cohort were evaluated. The

ability to predict calibrated risk scores from LASSO and RBF SVM models using cognitive

and demographic variables was assessed through a cross-validated beta regression. Similar

patterns were shown for both classifiers (Figure 5.9). Results are reported as heatmaps of

mean test-set R2 from 5-fold cross-validation; accompanying plots of standard errors are

given in the appendix C (Figures C.20 and C.21).

Highest mean variance explained was observed for demographic information such as depri-

vation, BMI and smoking status, factors which have clear associations with schizophrenia.

These were strongest for demographic-only models. Demographic and combined models also
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showed generally higher variance explained for schizophrenia-related factors than genetic-

only models for both cognitive and demographic factors. Despite diverging age distributions

for cases and controls, age was not associated with predictions in controls, indicating no

age-related confounding in unaffected participants.

Cognitive tests show mixed results, with low R2 for fluid intelligence, symbol digit substitu-

tion and trail making test B, while trail making test A, pairs matching, digit span and reaction

time show little to no variance explained in schizophrenia risk scores. Results indicate as-

pects of reasoning, complex processing speed and visual attention were most detected in

machine learning models. Combining all cognitive tests into a multi-variable beta regression

showed the strongest predictive ability to predict schizophrenia risk scores, though sample

size was much lower (n = 7; 919) as relatively few individuals completed all tests. Height

generalises with demographic and combined risk scores, but not genetic models, as expected

(Figure 5.9).
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Figure 5.9: Prediction of risk scores using cognitive tests and widely-available demographic
information in UK Biobank controls. Height is included as a negative control for genetic
liability to schizophrenia and a positive control for models including demographic factors, as
average height differs by sex, which is included as a predictor in demographic and combined
datasets. LASSO and RBF SVM models are shown for genetic (0.05 ePRS), demographic or
combined models. Values are the test-fold R2 between calibrated machine learning risk scores
and predictions from a beta regression of cognitive or demographic factors regressed against
model predictions, averaged across a 5-fold cross-validation. Values may be negative or
positive, with small negative values expected for the test-set when true R2 = 0. Colour
mapping differs for height, as it shows much higher average R2, but is consistent for other
subplots. Cognitive and demographic outcomes are detailed in appendix C.1.2.

Prediction of machine learning risk scores using psychiatric or neurological outcomes, visu-

alised on the same scale as cognitive and demographic factors, showed a mean R2 of around

0 for most outcomes (Figure 5.10). For psychiatric disorders, the highest variance explained
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in risk scores was observed for depression, but all disorders showed extremely low or no gen-

eralisation with model predictions. Having seen a psychiatrist for nerves or anxiety showed

the highest R2 for all psychiatric factors. Neurological outcomes showed highest mean R2

for stroke in demographic and combined models. Genetic models showed no generalisation

with neurological factors.
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Figure 5.10: Prediction of risk scores using neurological and psychiatric outcomes in UK
Biobank controls. LASSO and RBF SVM models are shown for genetic (0.05 ePRS),
demographic or combined models. Values are the test-fold R2 between calibrated machine
learning risk scores and predictions from a beta regression of cognitive or demographic factors
regressed against model predictions, averaged across a 5-fold cross-validation. Values may be
negative or positive, with small negative values expected for the test-set when true R2 = 0.
Psychiatric and neurological outcomes are detailed in appendix C.1.2.

5.3.6 Deconfounding

Deconfounding was performed within cross-validation for 40 principal components and geno-

typing array on all genetic predictors. Presence of residual confounding in unsubsampled

controls was assessed by cross-validated prediction of machine learning risk scores using 15

principal components, genotyping array, or their combination. Mean test fold R2 is around

0 for genotyping array, but is consistantly elevated for principal components (Figure 5.11a

and b), suggesting some population structure in controls was not accounted for in model

development. Schizophrenia also shows weak prediction in the nested sample (0.535 AUC)

from principal components, which may be expected for a confounder, given that the sample

is only restricted to individuals self-reporting as white British or Irish. Participants were

subsequently further restricted to those for whom genetic ancestry appears homogeneous

by principal components (using field 22006 supplied by UK Biobank). This decreased the

number of nested cases from 738 to 643 (∼8% reduction), and nested controls from 3,690
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to 3,410 (∼13% reduction) and showed substantially less structure in plots of principal com-

ponents in the full UK Biobank sample (Figure C.22). Prediction of schizophrenia status

from principal components maintained an AUC of 0.535 in the more homogeneous nested

sample. Variance in machine learning risk scores explained by principal components did not

decrease upon restriction to homogeneous genetic ancestry for genetic models, but roughly

halved for demographic models (Figure 5.11d and e).
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Figure 5.11: Assessment of deconfounding in unsubsampled controls. Model predictions
were evaluated using genetic (0.05 ePRS), demographic or combined predictors for how well
they could be predicted using principal components, genotyping array, or a combination of the
two. LASSO (a, d) and RBF SVM (b, e) models were evaluated. The ability of genetic
confounders to predict schizophrenia in the nested sample using logistic regression was also
assessed (c, f). Standard error bars are shown for all points. Mean values across
cross-validation and standard errors are annoted. SZ: schizophrenia., LR: logistic regression.

Comparison of the three most common deconfounding methods to models with no decon-

founding procedure showed marked differences in ability to control for population structure

(Figure 5.12). Results from RBF SVM and LASSO models show that all methods for de-

confounding reduce variance in risk scores explained by principal components. Estimating

coefficients for deconfounding once in each training fold in cross-validation, used in all main
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analyses and detailed Figure 5.1c, shows higher generalisation with genetic ancestry. To-

gether with results from restricting to genetic ancestry, this suggests the elevated R2 in

Figure 5.11 is consistent with a broader distribution of population structure in the unsub-

ampled controls, rather than the consequence of outliers for genetic ancestry. Applying a

single fit and transformation to the whole dataset prior to cross-validation showed very sim-

ilar results to estimating coefficients separately in the train and test data and gave the best

control for population structure.
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Figure 5.12: Comparison of deconfounding methods. LASSO and RBF SVM models were
assessed for genetic (0.05 ePRS), demographic or combined predictors in unsubsampled
controls for different deconfounding procedures. Methods were evaluated for how well model
predictions could be predicted using 15 principal components, genotyping array, or a
combination of the two. Methods either applied no deconfounding procedure (none),
deconfounding on the whole dataset prior to cross-validation (prior fit), a separate fit for the
effects of principal components on predictors in both train and test folds within
cross-validation (double fit), or a single fit in the training fold within cross-validation (single
fit). Standard error bars are shown for all points.

5.3.7 Sampling fraction in nested case-control designs

A nested case-control design was chosen for computational efficiency. Learning under class

imbalance is an open field of research within machine learning, as classifiers may predict the

majority class or attain reduced discrimination if imbalance is not handled correctly. The

optimal ratio of controls to cases is not always clear; however, a choice of less than 1:5 cases

to controls is often used in epidemiology (Biesheuvel et al., 2008). Predictive ability and its

variance between folds is shown for 1, 2, 5 and 10x controls for logistic regression using all

predictors (Figure 5.13). Discrimination generally remains constant as controls increase; by

contrast, variance of AUC scores across folds largely decreases with increasing controls.
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Figure 5.13: Discrimination across sampling fractions in nested case-control design.
Headings indicate which genetic or demographic predictors were used, with combined-absent
denoting demographic predictors only. Controls were sampled at 1, 2, 5 or 10 times the
amount as cases, corresponding to sampling fractions of approximately 0.002, 0.004, 0.01 and
0.02 in controls. Discrimination was evaluated for logistic regression across all datasets. Mean
AUC across folds remains reasonably stable with increasing sampling fraction for all datasets.

5.4 Discussion

5.4.1 Discrimination

Supervised machine learning models were successfully trained and evaluated in the first com-

prehensive assessment of discrimination and calibration for genetic prediction of schizophre-

nia in machine learning. Models trained on genome-wide significant SNPs alone demon-

strated improved discrimination for SNPs and iPRS (which uses effect sizes from UK Biobank)

compared to ePRS (which uses effect sizes from Pardiñas et al., 2018), suggesting the esti-

mation of effect sizes within UK Biobank is more useful than external sources; the divergent

sample ascertainment strategies in the CLOZUK-PGC2 sample and the UK Biobank may

underly this difference. Genome-wide significant SNP and iPRS models showed similar dis-

crimination, but more variance across folds was observed with SNPs, likely due to overfitting.

Further assessment of the most predictive linear and flexible models, LASSO and RBF

SVM respectively, suggest that demographic and genetic predictors are equally important

for discrimination. However, the aetiology of schizophrenia is multifactorial, and inclusion of

additional genetic or demographic predictors may alter the strength of these contributions to

the model. Importance scores give only the relative contribution of predictors in a particular

model and should not be interpreted as an estimate of the overall contribution of genetic or

other factors to schizophrenia in general. Despite this, the importance scores and significance

tests indicate that building multivariable models of genetic and demographic factors together

can provide improved discrimination for schizophrenia.

No improvement was seen from ensembles of machine learning approaches. Stacked models

do best with diverse predictors, samples and modelling approaches in each of the base learners

of the ensemble. A more extensive investigation of stacking could combine such diversity by



176 Chapter 5. Multivariable machine learning models of schizophrenia in UK Biobank

incorporating a wider range of modelling approaches, trained using different subsets, codings

and transformations of predictors. Such an approach would lie at the extreme end of the

accuracy-interpretability trade-off.

No benefit was observed from more flexible modelling approaches. It is possible that no

improvement from flexible modelling approaches was seen due to the heterogeneity of

schizophrenia, shown by the subgroups captured in the derived definition of schizophre-

nia in this study (Figure C.2), such that averaging of any non-additive effects is seen. The

number of cases available for the detection and generalisation of interactions between pre-

dictors is also limited. Furthermore, the coding used for predictors may favour additive

models, as variables for handedness, educational attainment and parental depression could

alternatively be encoded as separate predictors. These explanations withstanding, it is pos-

sible that the true function that maps the predictors used here to the derived schizophrenia

status is indeed linear in UK Biobank. Under such a situation, it is expected that more

flexible approaches show similar or worse discrimination than linear approaches, and that

tree-based models perform slightly worse than linear models, despite the smoothing effects

of ensembling. Results in Figure 5.3 appear to support this scenario.

It has been suggested that machine learning provides no improvement over logistic regression

(Christodoulou et al., 2019). Chapter 3 also intimates that what has been observed as

differences between modelling approaches in psychiatric genetics may be due to within-

study bias in model development - such as more tinkering with difficult-to-train models like

neural networks or novel methodological approaches, more possibility of information leakage

in more complex pipelines, and more potential for overfitting to information leakage with

more flexible models - and that there may be no difference between traditional statistical

approaches and ML for prediction of schizophrenia. This chapter offers tentative support

for this suggestion.

However, there are important caveats to this. As noted in the discussion for chapter 4, the

comparison of many different models implicitly favours those which are the easiest to train.

Methods with more hyperparameters can require more hands-on tuning to ensure global

minima are reached, or within the search space, during optimisation. Neural networks, for

example, have an extremely large potential number of hyperparameters to tune, and new

algorithmic developments and options are emerging continuously. This is the most plausible

cause of the sometimes diffuse distribution of AUCs for neural networks. Furthermore,

effective training of both gradient boosting and neural networks requires some monitoring

of convergence, which is made more difficult when many models are run. Comparison of

a smaller number of approaches using a split-sample validation may bring AUCs for neural

networks into line.
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5.4.2 Calibration

Models showed good calibration within the nested sample. Adjusting for the sampling

fraction to obtain predictions for all observations caused probabilities to deviate from the

diagonal more, particularly for RBF SVMs, indicating that additional steps may be needed

to gain well-calibrated predictions from a nested case-control design.

Even well-calibrated models developed in UK Biobank would likely be unsuitable for pre-

dicting schizophrenia in the general population, however. The volunteer-based recruitment

for UK Biobank reduces the chance of more affected individuals participating. Indeed, the

prevalence of schizophrenia in the UK Biobank, at just over 0.2%, is lower than estimates

of lifetime prevalence given in chapter 1, despite reasonably broad inclusion criteria. While

it has been argued that the cohort may be generalisable despite not being representative

(Manolio and Collins, 2010), with some support found for this (Batty et al., 2020), this

is less likely to be true for severe psychiatric disorders. In general, participants in the UK

Biobank are healthier, from less socioeconomically-deprived areas, and more likely to be

female than the general population (Fry et al., 2017). UK Biobank also has a slightly higher

percentage of individuals of self-reported white ethnicity (94.6%) than the 2011 UK census

(91.3%).

It is likely that more affected cases are not present and UK Biobank represents a more high-

functioning sample of individuals with schizophrenia than the UK population. This affects

both discrimination and calibration. Assuming the UK population as the target population

for a model, ascertainment bias has likely caused a systematic deviation of sample effect

sizes from population parameters. As a consequence, discrimination is diminished compared

to a model trained in a sample with more severe cases. In the context of logistic regression,

effect sizes for associations between predictors and outcome are reduced, causing predicted

probabilities to be constrained compared to those from a model with more affected cases.

Contraction of the linear predictor is associated with an anti-clockwise tilting of calibration

curves from the diagonal (Austin and Steyerberg, 2014), as probabilities move closer to

0.5, leaving controls typically assigned a probability which is too high, and cases too low.

Graphical calibration of UK Biobank-trained models in the general population would likely

show the loess curve following such a pattern.

5.4.3 Study design

Concerns may also be raised due to the small effective sample size present for schizophrenia

in UK Biobank, and the potential impact of missingness on models. Though there is a small

number of cases compared to common variant association studies, this is mainly a concern

for models built with individual SNPs as predictors, as externally-weighted PRS are mostly

dependent on the discovery sample for power (Dudbridge, 2013), and the sample size is

reasonable for standard clinical prediction models. Events per candidate predictor parameter

(EPP) counts the number of cases per candidate predictor, including all those considered for



178 Chapter 5. Multivariable machine learning models of schizophrenia in UK Biobank

association within the sample, and any additional parameters included in the model, such

as categorical variables requiring more than 1 coefficient. The EPP for models of combined

demographic and ePRS predictors in a logistic regression is 92 (738 cases/8 parameters, as

parental depression has 3 levels), sufficiently high for clinical modelling contexts. Combined

models of demographic factors and SNPs have a relatively large number of predictors, with an

EPP of 3 (738 cases/240 parameters, as 116 SNPs and parental depression have 3 levels),

an increase in cases may be beneficial, as models with more coefficients, such as deep

neural networks, will have a lower EPP, so these LR-based EPPs represent an upper bound

compared to ML models. However, AUCs across folds from these show a similar distribution

to those for other predictors, with the exception of random forests and XGBoost in SNP-

only models, suggesting that discrimination is reasonably stable under internal validation

even with low effective sample size. Similarly, despite differential missingness displayed

by several predictors, participants with complete records are demographically highly similar

to those with missing data for controls (Figure C.5). A particular concern is that more

severely affected cases may be less likely to fully participate in all assessments undertaken by

UK Biobank; comparisons indicate that cases with missingness are not outliers for genetic

ancestry and do not diverge from those cases without missingness for key demographics.

However, a preferred solution to missingness is multiple imputation (Janssen et al., 2010),

which was not feasible here due to the computational burden of performing this within

cross-validation for all models.

This chapter set out to assess the challenge of learning under severe class imbalance. To

address this, techniques from epidemiology and machine learning were combined. A nested

case-control design was undertaken as an established technique to greatly reduce the number

of controls in a cohort, combined with the model-based technique of re-weighting observa-

tions by class imbalance. Results confirm it is an efficient strategy for building machine

learning models in a cohort with large class imbalance. Diminishing returns in predictive

performance are seen with increasing controls; the often-recommended 1:5 ratio of cases to

controls appears reasonable in UK Biobank.

5.4.4 Generalisable model associations

LASSO and RBF SVM models were selected for further investigation as the most discrim-

inative approaches capable of linear or non-linear models, respectively. Analysis in controls

indicates that several features in the general population are associated with a higher pre-

dicted risk of schizophrenia. Rather than association, often used in explanatory modelling,

the ability to predict schizophrenia risk from factors is utilised through a cross-validated beta

regression approach. This is potentially more useful in a predictive modelling context as it

stresses generalisation, which is more aligned with real world utility than association (Bzdok,

Varoquaux, and Steyerberg, 2020).

This analysis demonstrates weak generalisation of factors associated with schizophrenia,

such as deprivation, BMI, smoking and cognitive tests, with machine learning predictions.
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By contrast, height, for which association with genetic risk for schizophrenia is not ex-

pected, shows R2 close to 0. It also explained the greatest variance in schizophrenia risk

for demographic and combined models, which is expected as these use sex as a predictor.

Though age shows association with schizophrenia status, it is not also associated with the

most important predictors in the model, and so does not meet the criteria for a confounder.

This is born out by the low R2 demonstrated between age and machine learning predictions.

Together these give confidence that the technique is effective in tagging associations which

generalise with model predictions.

Results also illustrate the benefit of incorporating demographic factors, as known schizophre-

nia associations generalise with predictions from these, while little or no variance in genetic

scores is explained by factors such as smoking and BMI. Given the differing profiles of R2 for

genetic and demographic predictors, and the increase in discrimination seen from combining

them, the included genetic and demographic predictors incorporate partly distinct features

of schizophrenia risk in this dataset.

5.4.5 Deconfounding

Generalisable associations may also highlight unintended consequences of model develop-

ment which warrant improved specification of the model. This chapter presents the first

detailed dissection of model confounding for a machine learning-based genetic prediction

model in schizophrenia. Results show clearly that deconfounding procedures do reduce gen-

eralisation of population structure with model predictions. Applying deconfounding before

or within cross-validation, where the latter involves learning coefficients separately in the

training and testing folds, provide similar levels of adjustment for genetic ancestry. Though

prior deconfounding is far easier to implement, it should be avoided as it breaks the statistical

validity of cross-validation. As a result of prior deconfounding, train and test folds are no

longer independent, a core assumption of cross-validation (Hastie, Tibshirani, and Friedman,

2009). Furthermore, separately estimating the linear effect of population structure on pre-

dictors in both training and testing data also breaks predictive modelling assumptions. This

assumes that new predictions will only ever be needed on batches of individuals for which

principal components can be computed, and so precludes prediction on a single individual.

Despite higher variance explained by genetic ancestry, use of a single fitting procedure in the

training set for deconfounding, as applied here, is still preferred. While deconfounding was

assessed in a large sample of controls, care should be taken if assessing deconfounding from

cross-validation results. Amalgamated predictions from across all folds are from distinct

but correlated models. Though their combination may be a useful simplification for visual

calibration, measures such as the AUC are only viable if calculated separately for each test

fold. In the same vein, cross-validated beta regression of confounding variables must be

run separately for each test fold, rather than once on the pooled predictions, and so risks

overfitting on small datasets with many principal components.
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Despite attempts to remove the linear effects of population structure, principal components

still show some predictive ability in controls from the full UK Biobank cohort. Though

the distribution of principal components appears similar between unsubsampled controls and

those in the nested case-control sample, a greater spread is a consequence of a larger sample;

variance explained by population structure is expected to reduce as sample size for model

development increases. It is also possible that though linear effects were removed from

each predictor individually, learning multivariable functions between SNPs and schizophrenia

status still approximates some population structure which is not detected here. Evidence for

this process occurring in deconfounding of neuroimaging data when using machine learning

models has recently been provided, along with suggestions for a post-hoc approach as a

solution (Dinga et al., 2020).

5.5 Conclusion

Chapter 3 demonstrated widespread risk-of-bias in machine learning models in psychiatric

genetics, in addition to a lack of assessment of calibration and no correction for genetic

ancestry or investigation of the potential effects of genetic confounders on the model. Here,

supervised machine learning methods were assessed in a large, deeply-phenotyped cohort

with severe class imbalance. Unlike previous studies assessing machine learning models

of schizophrenia, approaches were systematically compared to logistic regression. Overall,

no clear benefit was observed for applying flexible learning approaches. Improved predic-

tion of schizophrenia was demonstrated by jointly modelling genetic and demographic fac-

tors. Collectively, assessment of both discrimination and calibration, in addition to use of

per-predictor and group-wise importance scores, deconfounding within cross-validation, and

cross-validated beta regression outline a framework for evaluating machine learning models

in psychiatric genetics.
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Chapter 6

Discussion

6.1 Overview

Schizophrenia is a complex psychiatric disorder characterised by a triad of negative, positive

and cognitive symptoms. Decades of family, twin and adoption studies have supported the

notion that schizophrenia is genetic, but only relatively recently have common and rare vari-

ants been reliably associated with the disorder. Despite high heritability, discrimination is

generally modest for genetic factors. As outlined in chapter 1, the aetiology of schizophrenia

is multifaceted, with contributions from common polymorphisms, rare variants and environ-

mental factors suggested to interact in effecting increased susceptibility to schizophrenia.

Prediction of outcomes in psychiatry, and schizophrenia specifically, is important and in-

creasingly used by researchers. Prediction models typically take the form of PRS which are

passed to a logistic regression to evaluate fit or rescale predictions to between 0 and 1.

Such models have proved extremely useful and are now a common method for assessing

the polygenic common variant component of genetic liability to a disease or disorder. They

are attractive for their discrimination and simplicity, as they require only an estimate of the

effect size for each SNP and employ a model which is typically additive within and between

loci. This makes their application practical where genetic data on individuals cannot be

freely shared due to permissions, as summary statistics from association studies are widely

available. However, PRS only explain a small portion of risk, with current estimates at

around 7-8% of variance in liability (Pardiñas et al., 2018; Ripke et al., 2020). Furthermore,

the assumption of additivity, restriction to common variants and averaging of risk alleles

into a single score reduce the likelihood of capturing more complex aspects of risk, such

as interactions between genetic and environmental factors. An emphasis on prediction in

psychiatry also opens it up to methods in machine learning. These approaches contrast with

standard techniques such as PRS in their complexity, allowing dominance deviation, inter-

actions between predictors and multivariable modelling when p > n. Furthermore, while

machine learning approaches place emphasis on learning from data, standard PRS do no

learning in the target sample. In an era of increasingly large datasets, both in sample size,

the depth of phenotyping and range of omics data, machine learning holds promise of com-

bining heterogeneous data to give personalised predictions and improve patient outcomes.
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This is perhaps most exciting for schizophrenia, as it increases the likelihood of capturing risk

to a disorder with markedly diverse aetiology. Understandably, this has garnered increased

interest in the use of machine learning, but predictive ability has not been systematically

assessed across methods or consistently compared to PRS and LR.

A systematic review was undertaken to assess the performance of published models in chapter

3. Several narrative reviews, editorials and comments have been previously written addressing

the wealth of flexible tools available from machine learning and their promise for improving

prediction in psychiatry. Notably lacking has been a critical assessment of the potential

for inflated estimates of predictive performance which can easily arise from small decisions

made during model development. Semi-quantitative assessment using the prediction model

risk of bias assessment tool (PROBAST) tool identified high risk of bias in all stages of

model development and validation for all 77 models. The results highlighted the need for

standardised reporting and practices with regards to use of pipelines to avoid data leakage

and nested cross-validation when applying machine learning to small and moderate sample

sizes. In particular, many studies performed predictor transformations or selection within

the whole sample before cross-validation, a process well-known to inflate discrimination and

classification measures. Also highlighted was the tendency of authors to use the same rounds

of cross-validation to choose hyperparameters and assess prediction performance. This is

akin to repeatedly tweaking analyses in explanatory modelling and reporting the best p-value;

model selection and validation should be separate, preferably using nested cross-validation

where computation is feasible. Issues were also identified in the use of samples which were

inappropriate for prediction modelling or a lack of investigation into the impact of population

structure on models. These observations were incorporated into subsequent chapters.

Simulations were devised to assess prediction from main or interaction effects in chapter

4. They also provide a useful baseline for what to expect when applying approaches to

real data. Gene-gene interactions have received much attention due to their potential for

explaining missing heritability in schizophrenia and other psychiatric disorders. Though their

detection using machine learning has been studied, prediction has attracted surprisingly little

interest. Studies have typically evaluated use of machine learning, often random forests, to

detect interactions before applying statistical tests on promising loci; this implicitly takes

an explanatory modelling approach by assuming the desired end-point of modelling is the

detection of risk factors. Alternatively, a focus on prediction provides a more intuitive fit

for machine learning, better assesses how well any interaction effects generalise, and as-

sumes individualised prediction is the focus of research. Analysis found that sparse models,

including LASSO, random forest and XGBoost, were favoured under additive effects when

a small proportion of variants accounted for the majority of variance in liability, with dense

approaches (ridge, support vector machines and neural networks) preferred as the propor-

tion of causal variants increased. The latter is likely to be more appropriate for common

variation in schizophrenia; diseases with a small number of loci of large effect may be best
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modelled by sparse machine learning models. Findings from interactions highlighted XG-

Boost and random forest as the most consistently competitive across different interactions

models, with good performance also shown by RBF SVMs. Neural networks, while capable

of fitting highly non-linear models, showed high variance across simulations and datasets.

Discrimination for interactions also showed sensitivity to decrease in linkage disequilibrium

with the causal variant, changing minor allele frequency or addition of unassociated vari-

ants. This suggests that careful curation of variants for prior knowledge of association, and

possibly less-stringent pruning for LD, may increase the likelihood of good prediction from

interactions. Overall, results demonstrated best performance for linear sparse approaches

under additive simulations, and tree-based ensembles in the presence of interaction effects.

Chapter 5 took up several leads from the systematic review and applied them to prediction

in UK Biobank. In particular, it made use of a cohort to apply nested cross-validation on

a nested case-control design in which calibration was assessed. Results demonstrated using

nested case-controls was an efficient design which did not sacrifice prediction performance,

and still allowed for predictions to be generated on the full cohort. Models were recalibrated

within cross-validation in addition to being subsequently adjusted for the sampling fraction.

The former was necessary for SVMs, which provide predictions as distance from the hyper-

plane, and tree-based models which have a tendency to retract predicted probabilities toward

0.5. This recalibration, via Platt scaling, also meant base classifiers gave predictions on the

same scale to the stacking meta classifier, and that all calibrated predictions in unsubsampled

controls were between 0 and 1, and so suitable for later analysis in a beta regression. The

second calibration to predicted probabilities accounted for the study design by adjusting for

the different proportion of cases in the nested and full samples. Together, these produced

predictions from LASSO and RBF SVM models with good calibration in the full cohort. This

procedure is extremely useful where generalisation from a sample to the larger population

is desired, but is only practical when these are well-matched. Chapter 5 and appendix C

demonstrated that the nested sample is similar to the full sample for predictors and key

demographic variables. While such recalibration can be reasonable when this occurs, ex-

trapolation from case-control studies to other populations by adjustment for the prevalance

may prove hazardous as predictor distributions will differ. Models from association studies

are likely to require full recalibration in a target dataset using Platt scaling.

6.1.1 Associations and deconfounding

In addition to calibration, chapter 5 used pipelines for all predictor transformations, evaluated

models for generalisable associations, attempted to account for population structure in model

development and assessed its impact in model validation. To assess model predictions, it

is often desirable to understand how predictions are associated with other variables. This

analysis is often used in genetic epidemiology where the prediction, in the form of a PRS, is

assessed for association with other risk factors such as cognitive measures. Following calls in

the literature for assessment of models under a prediction paradigm, a cross-validated beta
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regression was introduced to understand how well the prediction (from a machine learning

model) can be predicted by risk factors including demographic, cognitive and psychiatric

outcomes. This gives an indication of generalisable associations, which are of greater interest

for prediction. It was made possible through the use of the nested case-control design, as this

allowed for a large sample of controls to be assessed for prediction from a single model, as

opposed to the set of correlated models produced by cross-validation. Results demonstrated

that predictions from cognitive measures could explain a small amount of the variance in

machine learning predictions; factors such as BMI, deprivation and smoking only showed

generalisable associations for models including demographic predictors. More generally, the

procedure demonstrated a proof-of-principle for how such an analysis can be used to assess

prediction models in a broad dataset such as UK Biobank.

To account for the linear effects of population structure, a deconfounding transformer was

devised in scikit-learn that could be applied in all pipelines, with careful attention given to

correct assignment of principal components to samples, which can easily become misaligned

as sample IDs are not maintained in pipelines and row shuffling is used in cross-validation.

While previous studies in psychiatric genetics have applied deconfounding to variants be-

fore cross-validation, none had included it within cross-validation or compared approaches.

Results identified separate fitting of coefficients in the training and test folds, or prior fit-

ting before cross-validation, as most able to reduce the variance in predictions explained

by principal components. Despite this, a single fit of coefficients in each training fold of

cross-validation is still preferred, as detailed in chapter 5. However, this implementation of

deconfounding is costly. While the procedure is fast for a single predictor, use of 116 SNPs in

10-fold nested cross-validation and 100 iterations of hyperparameter tuning requires around

1.2 million separate regression models, which increases to over 315 million models at 31,603

SNPs.

It is also unclear the degree to which adjustment for principal components is necessary.

Selection of individuals which self-report as the same ethnicity should account for social

effects which increase risk to a disorder or likelihood of diagnosis. Further restriction to a

homogeneous group by genetic ancestry can be used, though this was insufficient to reduce

prediction of schizophrenia by principal components in UK Biobank. Deconfounding also

faces practical difficulties in that prediction in a single new individual in a real-world setting

would require either recomputation of principal components after combining the existing

dataset with the new individual, in the case of separate coefficient estimates for train and test

folds, or projection of new observations onto components derived in the training data in the

case of training fold-only estimates. Ultimately, accounting for allele frequency differences

across populations and subpopulations in prediction will require recruitment of more diverse

datasets.



6.2. How well can machine learning predict schizophrenia from genetic data? 185

6.2 How well can machine learning predict schizophrenia

from genetic data?

A motivating question for this thesis is how well classifiers perform in genetic prediction of

schizophrenia. As noted in chapter 2, there are several ways of defining what good predictive

performance is. It may simply be the ranking of cases and controls by risk (discrimination),

or how well predicted and true probabilities concur (calibration). Performance may also

be a relative improvement over another model, reclassification of an important subset of

individuals, or detection of biologically relevant phenomena.

Discrimination estimates in chapter 3 identified the most likely range as 0.54-0.66 AUC,

but noted the caution needed as just two studies contribute to this, with both assessed

as at risk of inflated performance estimates. Careful interpretation of simulation results is

also required, as assumptions around the number of causal loci, the presence of interaction

effects and the homogeneity of populations may be incorrect. However, results from additive

simulations indicate ranges of 0.606-0.669 AUC, for 1000 causal variants under additive

simulations on the liability scale, and 0.546-0.563 AUC when using 100 causal variants of

independent additive effects. Together these estimates span the range of discrimination

from the systematic review. Analysis in UK Biobank using 116 genome-wide significant

SNPs reached an AUC of around 0.56, matching that expected under additive simulations

of a similar number of variants. This indicates that around 0.55 AUC is expected for GWS

SNP-based prediction in schizophrenia, and that prediction from machine learning models

in UK Biobank can be explained by additive effects.

6.2.1 Does performance differ between machine learning, logistic regres-
sion and PRS?

Comparison of machine learning to simpler approaches is important, as more interpretable

models are preferable if they provide similar or better discrimination. In comparing machine

learning to logistic regression and PRS in published studies, chapter 3 did not identify strong

differences between ML and LR, but found slightly better performance for PRS. Though this

is attached to the caveat that only 3 studies reported comparisons, it indicates that addition

of independent effects or external estimates of effect sizes boost prediction. Simulations

in chapter 4 established that both of these phenomena contribute to discrimination in the

presence of additive effects. PRS generated using population parameters from simulations

represented the best possible prediction, with discrimination far above other models. PRS

with internal estimates of effect sizes, calculated in the training data, also showed superior

discrimination over ML in most simulations including those incorporating strong linkage dis-

equilibrium. PRS are only improved-upon where a small proportion of variants are associated

with the outcome, such that sparse machine learning models thrive, or when trained on only

interaction effects, where flexible ML methods excelled, indicating highly polygenic disorders

are best modelled by PRS. Logistic regression typically showed equal or worse performance
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when compared to ML approaches, which deteriorated as p approached n. In the UK

Biobank, where dimensionality was reasonably low, LR and ML showed similar performance;

their results may diverge as a larger number of SNPs are introduced to models.

While comparison of ML to PRS (or LR) is informative, it risks creating a false dichotomy.

PRS is often treated as a single prediction, but in machine learning it can be conceptualised

as feature engineering, the construction of new variables to improve prediction. There

is therefore no reason why one or many PRS, weighted by different effects, could not be

incorporated into machine learning models. Such an approach was highlighted in chapter 3 as

displaying high risk of bias due to sample overlap; increasing the number of separate summary

statistics used generally increases the risk of inflating estimates of predictive performance

unless overlapping samples can be removed. Similarly, comparison to logistic regression

might indicate that ML and LR are independent, but LASSO or ridge with weak penalties

perform equivalently to LR. It is perhaps more appropriate to prefer a penalised regression

approach in prediction modelling, where a weaker penalty will be chosen in cross-validation

if this maximises discrimination.

6.3 Limitations

Several limitations have been highlighted in the thesis. Principle among these are sample

size and hyperparameter search. The former is present in both the systematic review and

UK Biobank. The effective sample size is low for reviewed papers as many make use of the

same datasets compiled for association studies. This overlap further precluded meta-analysis,

which would have aided in interpretation of discrimination. However, previous systematic

reviews in genetic prediction have also had reasonably small sample sizes, and none had

systematically assessed risk of bias. UK Biobank was primarily devised for common diseases

and those for which numbers will increase as the cohort ages (Collins, 2012). Small sample

size for schizophrenia means variants with lower minor allele frequency or small effects may

not contribute to predictions, and that predictions may not generalise to new data upon

external validation. This likely also negatively impacted the predictive performance of ML

approaches, as flexible methods need more observations to accurately estimate effects from

interactions. These limitations are balanced by the depth of phenotyping in UK Biobank,

which is rare in large genetic studies, and the large number of controls which underwent

common assessments and genotyping. Together these allowed for further investigation of

prediction models that would otherwise not have been possible.

As noted in chapters 4 and 5, comparison of many machine learning models negatively

impacts those which require more careful hyperparameter tuning. Neural networks are par-

ticularly difficult to train across many datasets without manual intervention. Training of

a single flexible model may therefore show better performance. Recent improvements to

tuning, such as hyperband (Li et al., 2017b), may make for more fair comparisons. Au-

tomated tuning procedures such as those based on genetic algorithms (for example, Le,
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Fu, and Moore, 2020), collectively called "Auto-ML", may also be useful in this regard.

An additional limitation is the exclusive focus on common variants. Incorporation of rare

copy number variants, which have relatively large effect sizes for schizophrenia, was not

deemed useful in chapter 5. This is because the small number of cases in the UK Biobank,

which is biased toward less-affected individuals, would mean CNVs would not be observed in

both train and test folds in cross-validation and so would not be informative for prediction.

Additionally, exome data for UK Biobank was not available at the point of analysis.

6.4 Future work

An outstanding question is whether increasing the number of SNPs in machine learning

models in UK Biobank to the 31,603 used in the 0.05-threshold PRS would improve discrim-

ination. Computation for this was deemed prohibitive for the large number of datasets and

models, broad hyperparameter search and deconfounding within cross-validation, and so was

not conducted. Given the small number of cases in UK Biobank it is likely that results from

such a model would not reach the discrimination achieved by schizophrenia PRS (around

0.66 AUC) but may improve over GWS SNPs if sufficient control for overfitting is in place.

In addition, it can be asked whether increasing the sample size would allow for better estima-

tion of any non-additivity or interactions in flexible approaches. While this was not possible

here, future work could assess both increased sample size and predictors by making use of

recent speed improvement in penalised regression approaches. A fast LASSO procedure for

large genomic datasets was recently reported, which could be used within cross-validation

to reduce dimensionality before flexible modelling approaches (Qian et al., 2020).

Finally, models employed here are tabular in that they take each variable as a separate

predictor without encoding structure between them. Deep learning models which include

network information may improve modelling of the relationships between predictors and

consequently improve discrimination. Such an approach would require large sample sizes,

such as found in case-control association studies. As these were identified as unsuitable for

prediction models, a preferred approach may be to select variants present in both a large

sample, such as the CLOZUK study used by Pardiñas et al., 2018, and a cohort such as

UK Biobank, and train deep learning models in the case-control sample. The network of

weights can then be frozen, with the final layer or layers retrained in the UK Biobank by

cross-validation, in a process called "transfer learning". This would provide increased sample

size and prior information, in addition to a deeply phenotyped cohort in which to investigate

the consequences of model predictions.

6.5 Conclusion

Machine learning models hold promise for improved prediction of outcomes in psychiatry,

but had previously not been systematically assessed for predictive performance. In this thesis
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they were compared for discrimination, calibration and biological interpretation. Results from

a systematic review and simulations indicate methods can achieve high discrimination, but

are unlikely to out-compete traditional statistical approaches under additive effects. Though

this finding was replicated in real data, results from simulations of a small number of causal

variants and interactions demonstrate potential for improved prediction in schizophrenia and

other psychiatric disorders where interactions between genetic and environmental factors

are expected. Increasingly large data in psychiatry are being obtained from multiple sources

including common and rare variants in genomics, neuroimaging and health records. Precision

medicine will require models which can handle large heterogeneous data and learn complex

patterns to predict risk for individuals. Machine learning approaches will play an important

role in achieving this and improving outcomes in psychiatry.
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Appendix A

Systematic Review of Machine Learning
Methods for Genetic Prediction of
Psychiatric Disorders

A.1 Methods

A.1.1 Extraction

Events per candidate predictor, or events per variable (EPV), were extracted for all models.

Candidate predictors include all predictors considered for inclusion in a model by their asso-

ciation with the outcome. Predictors removed due to association only with other predictors

were not counted. As coding of variables is not supplied by most authors, categorical predic-

tors that may be converted to multiple indicator variables by methods are considered only as

a single candidate predictor. Similarly, where methods consider additional parameters in the

model, such as hidden layers in deep neural networks, only the number of actual predictors

is used, not including all possible additional parameters estimated in the model. EPV should

therefore be considered an upper bound. Where authors were ambiguous in their reporting

of sample size or number of predictors, bounds of the highest and lowest possible EPV are

given.

Model discrimination was extracted independently by two individuals. AUC extracted were

the same for both authors, except for 3 of 77 models from a single study; consensus was

reached after reviewing the text. Studies often included many models; logistic regression

models were only extracted where they received the same predictors as ML methods, in order

to keep models comparable.

A.1.2 PROBAST method

Risk of bias (ROB) was assessed using the prediction model risk of bias assessment tool

(PROBAST). No studies dictated if a model was intended for prognostic or diagnostic

use. For the purpose of assessing ROB, models are assumed to be diagnostic; changing

intended model use to prognostic does not alter the final ROB assessments for models.
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Where databases or publications were referenced for a study, these were assessed for infor-

mation relevant to ROB. As large genetic datasets may change composition over iterations

as smaller studies are added, additional publications that may describe an iteration of a

publicly available dataset, but which were not referenced in the included study, were not

examined.

Questions in PROBAST are formatted such that answering “Yes” indicates low risk of bias,

and answered “no” indicates high risk of bias. Normally, if any questions within a domain

are rated “no” or “probably no” (N/PN), then the rating is considered to be “high” ROB

for that domain. In the absence of any N/PN responses, if any questions are reported

as “no information” (NI), then the domain is taken to have “unclear” ROB. If instead all

questions were answered as “yes” or “probably yes” (Y/PY), then the domain is rated as

“low” ROB. Select situations where questions are rated NI or N/PN were allowed to be

rated “low” ROB overall. For predictors, if question 2.2 (“Were predictor assessments made

without knowledge of outcome data?”) was rated as NI or Y/PY, overall rating for ROB of

predictors was allowed to be “low”. Knowledge of the outcome can enable careful design of

cases and controls across arrays and batches, and exclusion by a more stringent threshold of

Hardy-Weinberg equilibrium in controls. These may allow for reduced ROB for predictors,

rather than increased. For outcome, question 3.5 (“Was the outcome determined without

knowledge of predictor information?”), if NI or Y/PY, was allowed to be rated “low” ROB

for outcome overall if it was considered that genotypes or other predictors would have been

extremely unlikely to influence the outcome of standard assessments, or that outcomes were

likely to have been assessed prior to genotyping. For question 4.1 (“Were there a reasonable

number of participants with the outcome?”), events per candidate predictors were assessed

against recommendations using machine learning methods with default hyperparameters, and

therefore represent the worst-case scenario. If EPV was determined to be near to the cut-off,

and all other modelling procedures indicated low ROB, including appropriate regularisation

and handling of predictors, analysis was allowed to be rated “low” overall. In practice, this

situation did not occur.

PROBAST requires a ROB assessment of each evaluation of each distinct model (Moons

et al., 2019). Development and validation are therefore both assessed for each model

and contribute separately to overall counts. Restricting counts to development-only does

not appreciably change results. ROB was assessed for all studies by the author, with the

exception of a single publication where co-authorship necessitated an additional assessor

(Vivian-Griffiths et al., 2019). Here two authors independently assessed ROB, the second

being uninvolved in the original study. Differences were overcome through consensus. A third

colleague not included in the original study was designated as arbiter should disagreements

be unable to be resolved. This situation did not occur.
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A.1.3 PROBAST questions

A list of the complete extraction form use for assessing PROBAST is given in the results

appendix.

1.1 Were appropriate data sources used, e.g. cohort, RCT, or nested case-control study

data? Studies may be made of multiple smaller studies, some of which are cohorts or where

cases are from cohorts but controls are from elsewhere. If cases and controls are sampled

from different sources to give a roughly balanced (equal events and non-events) combined

sample, denote the combined sample as case-control. If absolute risk cannot be estimated

from the combined sample, rate as N/PN.

1.2 Were all inclusions and exclusions of participants appropriate? If the target population

for the prediction model is undefined, rate as NI, as this cannot be assessed.

2.1 Were predictors defined and assessed in a similar way for all participants? If genotypes

measured on different arrays and there has been no effort to demonstrate similarity across

arrays or lack of batch effects, rate N/PN. If genotypes from different arrays have been

imputed to the same panel of reference genomes to infer untyped or missing variants, rate

Y/PY.

3.1 Was the outcome determined appropriately? Consensus best-estimate diagnosis using

medical records and structured interview is considered appropriate. Use of only a structured

interview is also considered appropriate, but use of only interviews with family members and

records is rated N/PN. Routine care registry data are appropriate only if studies confirming

comparability with standard diagnostic methods are available. If method is appropriate only

for cases, rate 3.1 as Y and 3.4 as N.

3.2 Was a prespecified or standard outcome definition used? Diagnostic and Statistical

Manual of Mental Disorders (DSM) or International Classification of Diseases (ICD)-based

outcomes are accepted.

3.4 Was the outcome defined and determined in a similar way for all participants? If the same

assessments tool was used for all participants, rate Y/PY. If cases were assessed differently

to controls, rate N/PN.

3.6 Was the time interval between predictor assessment and outcome determination appro-

priate? If predictors are genetics-only, rate Y/PY. If predictors include gene-expression data

sampled after diagnosis or onset, rate N/PN.

4.1 Were there a reasonable number of participants with the outcome? No recommendations

are available for assessing events per variable (EPV) in machine learning models. To our

knowledge, only one paper has attempted to assess EPV needed for machine learning models

across multiple datasets (Ploeg, Austin, and Steyerberg, 2014), which we use here as a

guide in lieu of a more rigorous alternative. For the purpose of assessing ROB in this review,

support vector machines are required to have greater than 200 EPV. Neural networks require
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at least 200 EPV, but a cut-off of at least 500 EPV should be imposed as architecture

can vary greatly. Random forests are also required to have greater than 500 EPV. For

other machine learning methods not specified above, 200 EPV is taken as the minimum

requirement. Everything below these cut-offs is rated as N/PN. It should be noted that

the models these estimates are based on were run using default (hyper)parameters [4] on

non-genetic data. Final assessment of ROB for “analysis” should therefore take into account

regularisation and model architecture, as models with an EPV of less than 200 may still be

rated as “low” ROB for the domain. However, given that all models had multiple aspects of

analysis which introduced ROB, changing these thresholds would not affect the final rating

for the ‘analysis’ domain in any models.

4.4 Were participants with missing data handled appropriately? For imputation using a

genetics-specific application or server, such as IMPUTE2, rate Y/PY. For imputation in the

sample using other methods, rate N/PN. For complete-case analysis, rate N/PN.

4.5 Was selection of predictors based on univariable analysis avoided? If any plink-based

univariable tests for association in the current dataset were used, rate N/PN. If informa-

tion from an external published genome-wide association study (GWAS) was used to select

predictors, rate Y/PY.

4.8 Were model overfitting, underfitting, and optimism in model performance accounted

for? If nested cross-validation was used, rate Y/PY, assuming other standard procedures

were followed. If any method of repeated cross-validation on the whole dataset where both

tuning and evaluation of models were done in the same k-fold cross-validation loop was

used, or where test data were observed during tuning of hyperparameters, rate N/PN.

4.9 Do predictors and their assigned weights in the final model correspond to the results

from the reported multivariable analysis? If no model coefficients or assigned weights clearly

reported, rate NI, as this cannot be assessed.
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A.2 Results

Where percentages are reported in any table, they are taken from the total number of

models, 77, and rounded to the nearest integer unless stated otherwise. Some aspects of

methodology differed between models within studies. Where this occurs, studies are counted

under each category that has been met unless stated otherwise, and total counts may not

sum to 13.

A.2.1 Literature search

Order Search Command

1 (schizophreni* or schizoaffective or schizotyp* or anxiety or depressi* or autis*

or adhd or anorexi* or bullimi* or psychos?s or psychotic or manic or mania

or hypomani* or tourette* or obsessive compulsive disorder or ocd).ti,ab. or

(exp SCHIZOPHRENIA/ or Bipolar Disorder/ or exp ANXIETY DISORDERS/

or exp Autism Spectrum Disorder/ or exp Depressive Disorder/ or Attention

Deficit Disorder with Hyperactivity/ or Anorexia Nervosa/ or Bulimia Nervosa/

or exp Obsessive-Compulsive Disorder/ or Tourette Syndrome/)

2 (machine learning or statistical learning or pattern analysis or pattern recogni-

tion or ensemble or Bayesian network* or relevance vector machine* or support

vector machine* or decision tree* or classification tree* or regression tree* or

elastic net or bagging or gradient boosting or neural network or perceptron or

nearest neighbo?r or gaussian process* or ridge or lasso or regulari#ed regres-

sion or penali#ed regression or naïve Bayes or (deep adj3 learning) or (boosted

adj2 trees) or (deep adj2 network) or (random adj2 forest) or (supervised adj2

learning)).ti,ab. or exp Machine Learning/

3 (rare variant* or rare variation or copy number variant* or copy number varia-

tion* or dna variant* or polygenic or genetic* or polymorphism* or genotype*

or genome* or genomic* or exome*).ti,ab. or exp Polymorphism, Genetic/

4 1 and 2 and 3

5 limit 4 to english language

6 limit 5 to journal article

7 remove duplicates from 6

Table A.1: example literature search from Medline (Ovid).

A.2.2 Extraction
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Domain Item

Background Reference

Disorder

Study design

Publication number

Model type (diagnostic/prognostic)

Participants Recruitment method

Study setting

Retrospective or Prospective?

Number of Centres

Inclusion/Exclusion criteria

Sample description

Study Dates

Dataset names or identifiers

Sample size Total number of observations before QC

Total number of observations after QC

Case:control ratio in final dataset

Number of cases in training set/fold

Events per variable in the training set/fold

Outcome Definition of outcome

Measurement

Same for all patients?

Type of outcome (single/combined)

Were assessors blinded to knowledge of predictors?

Predictors in outcome?

Predictors Genotyping/sequencing method

Imputation method and reference

Types of genetic data

Method of choice of variants to genotype/sequence

Genetic Predictor QC

Number of candidate predictors

Number predictors in final model

Coding of genetic data

Risk allele definition for coding at a single locus

Knowledge/annotation information included?

Knowledge/annotation inclusion method

Was measurement of predictors blinded to outcome/other

predictors?

Any other handling of predictors

Was leakage handled appropriately?
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Domain Item

Participant QC Genetic sample QC

Method for accounting for genetic ancestry

Method of accounting for plate/batch/site effects

Method for accounting for relatedness

Missing Data Number participants with any missing value1;2

Number of participants with missing data for each predictor1

Handling of missing data

Modelling method/representation

Model Develop-

ment

Model implementation (programming language)

Model modifications

Predictor selection types used

Method for selection of predictors prior to modelling (filter)

Method for selection of predictors during modelling

(wrapper)

Method for selection of predictors as part of model

(embedded)

Hyperparameter search method

Tuned Hyperparameters

Class imbalance method1

Model Perfor-

mance

Discrimination measures reported

Calibration measures reported

Classification measures reported

Other measures reported.

A-priori decision threshold cut-off used for classification?

Model Evaluation Method for testing model performance internally

Method for testing model performance externally

Model adjusted or updated after poor validation?3

Results Model AUC

Model Accuracy, sensitivity and specificity

Model calibration1

Comparison of distribution of predictors1

Data/code available (link)

Extra Resources

Notes

Table A.2: extraction form, modified from the checklist for critical appraisal and data
extraction for systematic reviews of prediction modelling studies (CHARMS) checklist
(Moons et al., 2014). Items which overlap heavily with prediction model risk of bias
assessment tool (PROBAST) signalling questions, such as participant information, are
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Table A.2: reported in risk of bias summaries. AUC: area under the receiver operating
characteristic curve, QC: quality control. 1Not reported in any publications. 2Number of
participants excluded above a threshold of missingness was reported in many studies. 3No
for all publications.

Step Domain Item/Questions

Classify

model type

Type of prediction model

Publication Reference

Models of Interest

Outcome of Interest

Assess ROB

& applicabil-

ity

Participants 1.1 Were appropriate data sources used, e.g. cohort, RCT,

or nested case-control study data?

1.2 Were all inclusions and exclusions of participants ap-

propriate?

Risk of bias introduced by selection of participants
Rational of bias rating

Describe included participants, setting and dates

Concern that the included participants and setting do
not match the review question
Rationale of applicability rating

Predictors List and describe predictors included in the final model, e.g.

definition and timing of assessment

2.1 Were predictors defined and assessed in a similar way

for all participants?

2.2 Were predictor assessments made without knowledge

of outcome data?

2.3 Are all predictors available at the time the model is

intended to be used?

Risk of bias introduced by predictors or their assess-
ment
Rationale of bias rating

Concern that the definition, assessment or timing of
predictors in the model do not match the review ques-
tion
Rationale of applicability rating

Outcome Describe the outcome, how it was defined and determined,

and the time interval between predictor assessment and

outcome determination
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Step Domain Item/Questions

3.1 Was the outcome determined appropriately?

3.2 Was a prespecified or standard outcome definition used?

3.3 Were predictors excluded from the outcome definition?

3.4 Was the outcome defined and determined in a similar

way for all participants?

3.5 Was the outcome determined without knowledge of pre-

dictor information

3.6 Was the time interval between predictor assessment and

outcome determination appropriate?

Risk of bias introduced by the outcome or its deter-
mination
Rationale of bias rating

At what time point was the outcome determined?

If a composite outcome was used, describe the relative fre-

quency/distribution of each contributing outcome

Concern that the outcome, its definition, timing or
determination do not match the review question
Rationale of applicability rating

Analysis Describe numbers of participants, number of candidate pre-

dictors (for DEV only), outcome events and events per can-

didate predictor (for DEV only)

Describe how the model was developed (predictor selection,

optimism, risk groups, model performance)

Describe whether and how the model was validated, ei-

ther internally (e.g. bootstrapping, cross validation, ran-

dom split sample) or externally (e.g. temporal validation,

geographical validation, different setting, different type of

participants)

Describe the performance measures of the model, e.g.

(re)calibration, discrimination, (re)classification, net ben-

efit

Describe any participants who were excluded from the anal-

ysis

Describe missing data on predictors and outcomes as well

as methods used for missing data

4.1 Were there a reasonable number of participants with

the outcome?

4.2 Were continuous and categorical predictors handled ap-

propriately?
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Step Domain Item/Questions

4.3 Were all enrolled participants included in the analysis?

4.4 Were participants with missing data handled appropri-

ately?

4.5 Was selection of predictors based on univariable analysis

avoided?

4.6 Were complexities in the data (e.g. censoring, com-

peting risks, samples of control participants) accounted for

appropriately?

4.7 Were relevant model performance measures evaluated

appropriately?

4.8 Were model overfitting, underfitting, and optimism in

model performance accounted for?

4.9 Do predictors and their assigned weights in the final

model correspond to the results from the reported multi-

variable analysis?

Risk of bias introduced by the analysis
Rationale of bias rating

Overall

judgement

Overall judgement of risk of bias

Summary of sources of potential bias

Overall judgement of applicability
Summary of applicability concerns

Table A.3: signalling questions in PROBAST.

A.2.3 Samples

Titles and descriptions of studies making up a dataset are recorded as given in the extracted

publication. Where references are supplied, these were given in the text, or clear from an

online repository, such as the database of Genotypes and Phenotypes (dbGaP) (Mailman

et al., 2007). Where datasets appear to overlap, this has been noted.

Study Disorder Dataset

Yang et al. (2010) Schizophrenia No name/reference given

Ghafouri-Fard et al. (2010) Autism No name/reference given

Aguiar-Pulido et al.

(2010;2013)

Schizophrenia External sample1

Wang et al. (2018) Schizophrenia

Bipolar disorder

Autism

PsychENCODE2
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Study Disorder Dataset

Pirooznia et al. (2012) Bipolar disorder BGSC3†‡ (DEV), WTCCC4∗

(VAL)

Laksshman et al. (2017) Bipolar disorder Not clearly reported5

Acikel et al. (2016) Bipolar disorder Whole-Genome Association

Study of Bipolar Disorder6†‡

Li et al. (2014) Bipolar disorder Whole-Genome Association

Study of Bipolar Disorder6†‡

Schizophrenia Genome-Wide Association Study

of Schizophrenia7†

Guo et al. (2016) Anorexia GCAN8, WTCCC4∗, CHOP9,

PFCG10

Trakadis et al. (2019) Schizophrenia Sweden-Schizophrenia

Population-Based Case-Control

Exome Sequencing11∗∗

Engchuan et al. (2015) Autism AGP12

Chen et al. (2018) Schizophrenia MGS13†, SSCCS14∗∗ (DEV),

CATIE15† (VAL)

Vivian-Griffiths et al. (2019) Schizophrenia CLOZUK16∗

Table A.4: sample overlap between studies. 1Galician sample described elsewhere
(Domínguez et al., 2007). 2PsychENCODE, made up of 8/9 studies, where only 6 are listed
in the supplementary as having genotype data - study 1 (BrainGVEX, consisting of the
Banner Sun Mental Research Institute, BSHRI (Beach et al., 2008), and Stanley Medical
Research Institute, SMRI); study 2 (BrainSpan), no genotype data; study 3 (CommonMind
(Fromer et al., 2016)); study 4 (Yale-ASD); no genotype data; study 5 (UCLA-ASD
(Parikshak et al., 2016)); study 6 (BipSeq); study 7 (CMC-HBCC); study 8 (LIBD-szControl
and BipSeq); study 9 (not reported). Information and data also available through an online
repository (PsychENCODE Integrative Analysis). 3Bipolar Genome Studies Consortium
(BGSC) (Mahon et al., 2009), made up of the Genetic Association Information Network
European American (GAIN) (Manolio et al., 2007), and the Translational Genomics
Research Institute (TGRI) samples. Controls obtained through Knowledge Networks (KN)
(Sanders et al., 2008), and recruitment described elsewhere (Dick et al., 2003; Kassem
et al., 2006). 4Wellcome Trust Case Control Consortium (WTCCC). Bipolar Disorder cases
are described in methods, with further information provided elsewhere (Green et al., 2005;
Green et al., 2006). Controls include the 1958 British Birth Cohort (58BC) (Power and
Elliott, 2006) and the UK Blood Service (UKBS) (Consortium et al., 2007). 5part of the
Critical Assessment of Genome Interpretation (CAGI)-4 challenge. Laksshman et al., 2017
reference Daneshjou et al., 2017, from which a third reference (Monson et al., 2017) gives
information on an exome dataset with only bipolar cases recruited for a suicide study, but
not controls. 6Whole-Genome Association
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Table A.4: Study of Bipolar Disorder, dbGaP study accession “phs000017.v3.p1”.
References on dbGaP provide further details on sample recruitment (Dick et al., 2003;
McInnis et al., 2003). Acikel et al., 2016. acquired Bipolar Disorder Only (BDO)
participants; Li et al. report using the Bipolar and Related Disorders (BARD) subset (Li
et al., 2014). Controls, obtained through KN, are described under “Clinical Procedures” of
the relevant dbGaP entry, and by other studies (Sanders et al., 2008). 7Genome-Wide
Association Study of Schizophrenia, dbGaP study accession “phs000021.v3.p2”. Cases
described on dbGaP, controls obtained through KN. 8the Genetic Consortium for Anorexia
Nervosa (GCAN). 9Price Foundation Collaborative Group and the Children’s Hospital of
Philadelphia (CHOP). Methodological details for Guo et al. are also referenced to a previous
study (Boraska et al., 2014). 10the Price Foundation Collaborative Group (PFCG).
11Sweden-Schizophrenia Population-Based Case-Control Exome Sequencing, dbGaP study
accession “phs000473.v1.p1”. Described in more detail elsewhere(Purcell et al., 2014).
12Autism Genome Project (AGP); three references supplied for methodology and
participants (Pinto et al., 2010; Pinto et al., 2011; Pinto et al., 2014). 13Molecular Genetics
of Schizophrenia (MGS) (Shi et al., 2009), with controls from KN. 14Swedish Schizophrenia
Case Control Study (SSCCS) (Bergen et al., 2012). 15Clinical Antipsychotic Trials of
Intervention Effectiveness (CATIE) (Stroup et al., 2003; Sullivan et al., 2008), with controls
from KN. Imputation for Chen et al. is also given elsewhere (Ware et al., 2016). 16CLOZUK
(Hamshere et al., 2013); controls from 58BC and UKBS. ∗Includes controls from the 1958
British Birth Cohort and the UK Blood Service. †Includes controls from Knowledge
Networks. ‡Publications do not all give the same dataset name or description, but do
include a common reference for recruitment or inclusion criteria. ∗∗Studies refer to a
Swedish population-based sample with the same outcome definition, but no clear statement
or reference describing sample overlap.

A.2.4 Missingness

Methods Studies Models

Reported 7 43 (56%)

Exclusion (complete-case analysis) 1 1

Code missingness as category in predictor 1 12

Imputation after excluding high missingness 5 30

Imputation using genetics server/application 3 16

Imputation in-sample from binomial distribution1 2 14

Unclear/unreported 6 34 (44%)

Only exclusion for high missingness reported2 4 28

Not reported 2 6

Table A.5: missingness. Handling of missing data differed between the development and
validation set for Pirooznia et al. (2012), where imputation is only reported for external
validation (Pirooznia et al., 2012); these models are counted under the method reported in
model development, “only exclusion for high missingness”. 1A study (Vivian-Griffiths et al.,
2019) reported using unspecified imputation prior to quality control filters, before a second
in-sample imputation and is recorded once as in-sample. 2Includes high missingness filters for
samples, predictors or both, with method for handling remaining missingness not reported.
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A.2.5 Software

Language/Implementation/Method Studies Models

R 4 11 (14%)

glmnet (LASSO) 1 1

randomForest (RF) 2 2

party (CIF) 1 1

e1071 (SVM, NB) 2 2

gbm (GBM) 1 1

XGBoost (Histogram-based GBM) 1 1

kNN (k-NN) 1 1

MDR (MDR) 1 2

Python 4 16 (21%)

scikit-learn 3 12

SVM 1 8

Data handling 1 1

Unspecified 1 3

Keras (NN)1 2 4

Tensorflow (NN) 1 4

Java (WEKA)2 2 28 (36%)

Matlab 2 11 (14%)

Matlab (NN) 2 10

libSVM (SVM) 1 1

Not reported 3 11 (14%)

Table A.6: software and packages used in machine learning. 1Backend to Keras not
specified. 2Methods used in WEKA: neural networks (linear, perceptron and radial basis
function), evolutionary computation, multifactor dimensionality reduction, Bayesian
networks, naïve Bayes, support vector machine, decision tables, decision tree-naïve Bayes,
best-first tree, AdaBoost. LASSO: least absolute shrinkage and selection operator, RF:
random forest, CIF: conditional inference forest, GBM: gradient boosting machine, XGBoost,
eXtreme Gradient Boosting, k-NN: k-nearest neighbours, MDR: multifactor dimensionality
reduction, SVM: support vector machine, NN: neural network, NB: naïve Bayes.

A.2.6 Bias

Methods Studies Models

Population substructure identified in current study but not ac-

counted for

2 14 (18%)

Visualised by PCs for subsample after restricting to European 1 9

Table of ancestry for European American and African American1 1 5

Unclear2 9 50 (65%)

Population structure identified in dataset reference(s) 7 42



202
Appendix A. Systematic Review of Machine Learning Methods for Genetic Prediction of

Psychiatric Disorders

Methods Studies Models

Exclusion of non-European ancestry through PCs/MDS 5 35

Visualised but observations not excluded 3 11

Reported as European/Caucasian-only, no details given 2 8

Not reported in publication or reference 2 13 (17%)

Table A.7: methodology for accounting for population structure. Where development or
validation sets are made-up of multiple datasets with separate ancestry filters, these are
counted separately. 1Method of establishing ancestry not specified. 2Ancestry not clearly
specified in current study. PCs: principal components, MDS: multi-dimensional scaling.

A.2.7 Model Performance and Validation

Reported Measures Studies Models

Discrimination 8 45 (58%)

AUC 8 45

ROC Plot 4 7

Classification 9 41 (53%)

Accuracy 8 39

Sensitivity/Recall/Hit-rate/TPR 6 16

Specificity/TNR 4 10

F1-score (F -measure) 3 12

Precision/PPV 3 12

Confusion matrix 3 3

Other 5 29 (38%)

Variance explained on liability scale 1 9

p-value∗ 1 4

% correctly classified cases, averaged over repeats 1 4

Nagelkerke’s pseudo-R2 1 4

t-test comparisons between models 1 8

Table A.8: model performance. ∗The p-value "indicates that XGBoost algorithm is
performing better than a random predictor simply predicting the majority class" (Trakadis
et al., 2019). ROC: receiver operating characteristic, AUC: area under the ROC curve, TRP:
true positive rate, TNR: true negative rate, PPV: positive predictive value. As many studies
reported multiple measures, percentages do not combine to 100.
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Methods Studies Models

a-priori 1 9 (22%)

Unclear 3 6 (15%)

Unreported 5 26 (63%)

Table A.9: method for choosing decision threshold when reporting classification metrics.
Studies which were unclear either reported a general outline of how classification works for a
given method, without stating this was used in the current implementation, or reported the
use of 0.5 as the threshold but not how the number was chosen. Percentages are taken from
the total number of models which reported classification measures, 41, and rounded to the
nearest integer. Number of studies does not sum to 13 as not all studies reported
classification metrics.
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a AB SNP Y 20/40 150/367 1 0.0054 NR 0.7175 0.76 CV

a SVM SNP N 20/40 367/367 1 0.0054 NR 0.4 0.4 CV

b NN SNP Y 487/942 15/15 0.93 32.5 NR 0.8275 0.6395 CV

c NN SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

c NN SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

c EC SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

c NN SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

c MDR SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

c BN SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

c NB SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

c SVM SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

c DTb SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

c DTNB SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

c BFT SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

c AB SNP N 260/614 40-48/40-48∗ 1.36 5.42-6.5∗ NR NR NR CV

d NN SNP/GE N 355/710 NCR/NR 1 n/a NR NR NR CV

d NN SNP/GE Y 355/710 NCR/NR 1 n/a NR NR NR CV

d NN SNP/GE Y 355/710 NCR/NR 1 n/a NR NR NR CV

d NN SNP/GE N 94/188 NCR/NR 1 n/a NR NR NR CV
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d NN SNP/GE Y 94/188 NCR/NR 1 n/a NR NR NR CV

d NN SNP/GE Y 94/188 NCR/NR 1 n/a NR NR NR CV

d NN SNP/GE N 31/62 NCR/NR 1 n/a NR NR NR CV

d NN SNP/GE Y 31/62 NCR/NR 1 n/a NR NR NR CV

d NN SNP/GE Y 31/62 NCR/NR 1 n/a NR NR NR CV

e SVM SNP N 2191/3625 3514/NCR 0.65 n/a NR NR NR Ext

e SVM SNP N 2191/3625 14632/NCR 0.65 n/a NR NR NR Ext

e SVM SNP N 2191/3625 1252/NCR 0.65 n/a NR NR NR Ext

e SVM SNP N 2191/3625 5366/NCR 0.65 n/a NR NR NR Ext

e NN SNP N 2191/3625 3514/NCR 0.65 n/a NR NR NR Ext

e NN SNP N 2191/3625 14632/NCR 0.65 n/a NR NR NR Ext

e NN SNP N 2191/3625 1252/NCR 0.65 n/a NR NR NR Ext

e NN SNP N 2191/3625 5366/NCR 0.65 n/a NR NR NR Ext

e RF SNP N 2191/3625 3514/NCR 0.65 n/a NR NR NR Ext

e RF SNP N 2191/3625 14632/NCR 0.65 n/a NR NR NR Ext

e RF SNP N 2191/3625 1252/NCR 0.65 n/a NR NR NR Ext

e RF SNP N 2191/3625 5366/NCR 0.65 n/a NR NR NR Ext

e BN SNP N 2191/3625 3514/NCR 0.65 n/a NR NR NR Ext

e BN SNP N 2191/3625 14632/NCR 0.65 n/a NR NR NR Ext

e BN SNP N 2191/3625 1252/NCR 0.65 n/a NR NR NR Ext
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e BN SNP N 2191/3625 5366/NCR 0.65 n/a NR NR NR Ext

f NN Exome Y 200/400 ∼1000/>500000∗ 1 <0.0004∗ Ref/alt 0.64 NR Split

f RF Exome N 200/400 ∼1000/>500000∗ 1 <0.0004∗ Ref/alt 0.55 NR Split

f DT Exome N 200/400 ∼1000/>500000∗ 1 <0.0004∗ Ref/alt 0.54 NR Split

g RF SNP N 604/2371 693/761830 2.93 0.00079 NR 0.998 NR App.

g NB SNP N 483/1414 693/761830 1.93 0.00063 NR 0.734 NR Split

g k-NN SNP N 483/1414 693/761830 1.93 0.00063 NR 0.954 NR Split

g MDR SNP N 604/2371 693/761830 2.93 0.00079 NR 0.664 NR CV

g MDR SNP N 604/2371 693/761830 2.93 0.00079 NR 0.883 NR CV

h Ridge SNP N 653/1158 298604/298604 0.77 0.0022 NR NR NR CV

h SVM SNP N 653/1158 98604/298604 0.77 0.0022 NR NR NR CV

h LASSO SNP N 653/1158 98604/298604 0.77 0.0022 NR NR NR CV

h Ridge SNP N 1170/2068 98604/298604 0.77 0.0039 NR NR NR CV

h SVM SNP N 1170/2068 98604/298604 0.77 0.0039 NR NR NR CV

h LASSO SNP N 1170/2068 98604/298604 0.77 0.0039 NR NR NR CV

i LASSO SNP N 1341/4402 1486/317481∗ 2.28 >=0.0042∗ NR 0.11 0.97 Split†

i SVM SNP N 1341/4402 1486/317481∗ 2.28 >=0.0042∗ NR NR NR Split†

i GBM SNP N 1341/4402 1486/317481∗ 2.28 >=0.0042∗ NR NR NR Split†

j LASSO Exome N 1782∗/3564 1155/17138 1 0.1∗ NR 0.720 0.773 Split

j SVM Exome N 1782∗/3564 1155/17138 1 0.1∗ NR 0.708 0.706 Split
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j RF Exome N 1782∗/3564 1155/17138 1 0.1∗ NR 0.820 0.813 Split

j GBM Exome N 1782∗/3564 1155/17138 1 0.1∗ NR 0.849 0.866 Split

k CIF CNV N 1570/3486 21/21 1.22 74.6 NR NR NR CV

k RF CNV N 1570/3486 21/21 1.22 74.6 NR NR NR CV

k SVM CNV N 1570/3486 21/21 1.22 74.6 NR NR NR CV

k NN CNV N 1570/3486 21/21 1.22 74.6 NR NR NR CV

l NN PRS N 5018/10859 19/116 1.16 43.26 NR NR NR Split/Ext.

l NN PRS N 5018/10859 116/116 1.16 43.26 NR NR NR Split/Ext.

l NN PRS N 5018/10859 14/29-32∗ 1.16 156.81-173.03∗ NR NR NR Split/Ext.

l NN PRS N 5018/10859 26/29-32∗ 1.16 156.81-173.03∗ NR NR NR Split/Ext.

m SVM SNP N 3446/7731 125/125 1.24 27.57 Ref NR NR CV

m SVM SNP N 5554/11853 125/125 1.13 44.43 Ref NR NR CV

m SVM SNP N 3446/7731 4998/4998 1.24 0.69 Ref NR NR CV

m SVM SNP N 5554/11853 4998/4998 1.13 1.11 Ref NR NR CV

m SVM SNP N 3446/7731 125/125 1.24 27.57 Ref NR NR CV

m SVM SNP N 5554/11853 125/125 1.13 44.43 Ref NR NR CV

m SVM SNP N 3446/7731 4998/4998 1.24 0.69 Ref NR NR CV

m SVM SNP N 5554/11853 4998/4998 1.13 1.11 Ref NR NR CV

Table A.10: overview of prediction models. n: number of cases used in model development in final model, N: number of total observations in model
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Table A.10: development in final model, p: number of predictors in final model, P: number of candidate predictors, EPV: events per candidate
variable/predictor, NR: not reported, NCR: not clearly reported, Ref: risk allele coded as reference allele, Alt: coded as alternative allele, SNP: single
nucleotide polymorphism, CNV: copy number variant, PRS: polygenic risk score, GE: gene expression, AB: AdaBoost, SVM: support vector machine,
NN: neural network, EC: evolutionary computation, MDR: multifactor dimensionality reduction, BN: Bayesian networks, NB: naïve Bayes, DTb:
decision tables, DTNB: decision table naïve Bayes, BFT: best-first tree (BFTree), RF: random forest, DT: decision tree, k-NN: k-nearest neighbours,
LASSO: least absolute shrinkage and selection operator, GBM: gradient boosting machine, CIF: conditional inference forests, CV: cross-validation,
n/a: not applicable. †Study used a roughly equal 3-way split for predictor selection, training and testing, where 10-fold CV was used in the training
fold (Guo et al., 2015). Splits were repeated, but reported AUCs in the main text are for only one of the repeats; the study is recorded here as
split-sample. ∗Number reported is unclear; upper and lower bounds, or an approximation given by the authors in the text are used. Where insufficient
information is provided to give a reasonable approximation for predictors, NCR or NR is recorded. Imbalance refers to class imbalance, given here as
number of controls divided by number of cases in model development. Modification refers to whether a classifier was used “out-of-the-box”, N, or was
modified in some way, Y. Validation is k-fold CV, split-sample (Split), apparent (App.) or external (Ext.). A single study reported internal validation
(split-sample) and external validation (but with partial sample overlap) (Chen et al., 2018). Studies: a (Yang et al., 2010a), b (Ghafouri-Fard et al.,
2019), c (Aguiar-Pulido et al., 2010; Aguiar-Pulido et al., 2013), d (Wang et al., 2018), e (Pirooznia et al., 2012), f (Laksshman et al., 2017), g
(Acikel et al., 2016), h (Li et al., 2014), i (Guo et al., 2015), j (Trakadis et al., 2019), k (Engchuan et al., 2015), l (Chen et al., 2018), m
(Vivian-Griffiths et al., 2019).
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A.2.8 Predictors

Coding Studies Models

Reported 6 35 (45%)

Continuous (weighted average of additive SNPs; PRS) 1 4

Counts of genes per gene set (CNV) 1 4

Counts of variants per gene (Exome) 1 4

Additive model (0, 1, 2), missing coded as 3 (SNP) 1 12

Z-transformation of additive model (0, 1, 2; SNP) 1 8

One-hot encoded (SNP) 1 3

Unclear/unreported 7 42 (55%)

Unclear1 2 3

Not reported 5 39

Table A.11: coding of predictors. 1Coding implied through description as ‘ordinal’ or
through an abstract description of the type of classifier, but not clear.

Methods Studies Models

Additional knowledge used 9 49 (64%)

Predictors 8 43

Array not genome-wide 3 15

Predictors only from brain-expressed genes 1 8

Selection by p-value cut-off from external GWAS 1 8

Annotation of gene and variant-type 1 4

Annotation of gene and gene set 1 4

Choice of phenotypes and weights from GWAS for SZ-PRS 1 4

Modelling 1 6

Non-zero matrix weights in cRBM determined from GE data 1 6

Unclear/unreported 6 28 (36%)

Not clear 1 3

Not reported 5 25

Table A.12: explicit use of additional knowledge in selecting or weighting of predictors and
modelling. Implicit knowledge, such as choice of a linear machine learning method, or
additive encoding of genotyping data, are not included. GE: gene expression, cBRM:
conditional restricted Boltzmann machine.

Type Studies Models

Filter 8 48 (62%)

Association test in external dataset, clumping 1 8

Association test in current dataset, clumping 1 8
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Type Studies Models

Association test in current dataset for brain-expressed genes only,

clumping

1 8

Association test in split of current dataset, p-value cut-off 1 3

Pruning, association test in current dataset, p-value cut-off 1 5

Embedded (LASSO/RF/GBM combined)1 1 4

Embedded (LASSO) with p-value cut-off 1 2

Forward sequential feature selection (FSFS)2 1 1

Correlation with outcome or intermediate phenotype 1 9

Embedded 8 20 (26%)

Regression (LASSO) 3 4

Tree-based 7 13

RF (including CIF) 4 8

Boosting (GBM, AdaBoost) 3 3

DT 2 2

Other 2 3

DTb 1 1

DTNB 1 1

Feature-selective AdaBoost3 1 1

Unclear4 1 3 (4%)

None reported 6 18 (23%)

Table A.13: predictor selection technique. 1Trakadis et al. (2019) report predictors being
selected “in combination of” embedded methods, but do not state how such methods were
combined (Trakadis et al., 2019). 2FSFS is a wrapper on an embedded method, used as a
filter. 3Yang et al. (2010) modified AdaBoost to include univariable predictor selection
within each iteration before training each weak learner (Yang et al., 2010a); as the
modification is within each iteration it is listed as “embedded” here. This is counted once
under feature-selective AdaBoost, and is not counted under ‘Boosting’. dLaksshman et al.
(2017) report using “L1-based feature selection” but no indication about what method the
L1-norm was applied to (Laksshman et al., 2017). LASSO: least absolute shrinkage and
selection operator, RF: random forest, GBM: gradient-boosting machine, DTNB: decision
table-naïve Bayes, DTb: decision table, DT: decision tree, CIF: conditional inference forest.
Several models exploited both filter and embedded methods; these are counted in both
sections.

A.2.9 Hyperparameters

Methods Studies Models

Reported 6 26 (34%)

SVM (RBF)

C 2 9

Gamma 2 9

AdaBoost1
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Methods Studies Models

Iterations 1 1

Neural Networks

Epochs 2 12

Optimiser 1 4

Activation function 1 4

Layers 1 4

LASSO

Lambda 1 1

Unclear/unreported 9 51 (66%)

Not clearly reported 2 5

Not reported 8 46

Table A.14: hyperparameters tuned during model training. 1Feature-selective AdaBoost
(Yang et al., 2010a). Manual experiments with different hyperparameters are presented by
Engchuan et al. (2015) in the supplementary: these are included as “not reported”, as they
appear to be post-hoc experiments rather than a search as part of learning (Engchuan et al.,
2015). Several studies report either hyperparameter search method, or the hyperparameters
that were tuned, but not both (see Table 3.5). A study (16 models) used the default
hyperparameters (Table 3.5) and is counted here under ‘not reported’ (Pirooznia et al.,
2012).
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Appendix B

A Simulation Study of Binary
Classification of Complex Traits

B.1 Methods
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Figure B.1: Estimated probability density function (PDF) applied to genome-wide
significant odds ratios from (Pardiñas et al., 2018) by kernel density estimation. The
"gaussian_kde" class from SciPy’s "stats" module was used, with a closer fit achieved by
setting "bw_method" to 0.1. Odds ratios for simulations were drawn from the estimated
PDF using the class’s "resample" method.
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Figure B.2: Distribution of minor allele frequencies reported from psychiatric genetics
consortium (PGC)2 and CLOZUK data for genome-wide significant SNPs (Pardiñas et al.,
2018).
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Figure B.3: Example distributions of odds ratios with m ∈ {0:05; 0:25; 0:5; 0:75; 1} under
additive and independent simulations. For both simulation types, n = 5000 and p = 200.
Additive simulations set h2 = 0:2 and k = 0:0025. Independent simulations used odds ratios
drawn from an estimated PDF. Empirical odds ratios, rather than values set during
simulations, are calculated on the observed scale. Odds ratios are shown for a single
simulation for each scenario.
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B.2 Results
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Figure B.4: Replication of simulations increasing m when p < n for different values of h2

and k . p = 200, n = 1000. Relationships seen in Figure 4.10 and clearly repeated across
heritabilities and prevalences.

„ MAF P (AABB|case) P (AABB|control) N case N control

0.1 0.1 0.00015 0.0001 0.29 0.2

0.1 0.2 0.0023 0.0016 4.7 3.2

0.1 0.3 0.012 0.0081 24 16

0.1 0.4 0.037 0.026 75 51
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„ MAF P (AABB|case) P (AABB|control) N case N control

0.1 0.5 0.092 0.062 1.8e+02 1.2e+02

0.2 0.1 0.00021 0.0001 0.41 0.2

0.2 0.2 0.0033 0.0016 6.6 3.2

0.2 0.3 0.017 0.0081 34 16

0.2 0.4 0.053 0.026 1.1e+02 51

0.2 0.5 0.13 0.062 2.6e+02 1.2e+02

0.3 0.1 0.00029 0.0001 0.57 0.2

0.3 0.2 0.0046 0.0016 9.1 3.2

0.3 0.3 0.023 0.0081 46 16

0.3 0.4 0.073 0.026 1.5e+02 51

0.3 0.5 0.18 0.062 3.6e+02 1.2e+02

0.4 0.1 0.00038 0.0001 0.77 0.2

0.4 0.2 0.0061 0.0016 12 3.2

0.4 0.3 0.031 0.0081 62 16

0.4 0.4 0.098 0.026 2e+02 51

0.4 0.5 0.24 0.062 4.8e+02 1.2e+02

0.5 0.1 0.00051 0.0001 1 0.2

0.5 0.2 0.0081 0.0016 16 3.2

0.5 0.3 0.041 0.0081 82 16

0.5 0.4 0.13 0.026 2.6e+02 51

0.5 0.5 0.32 0.062 6.3e+02 1.2e+02

Table B.1: Probability of observing the double homozygote, AABB, under a multiplicative
model for „ ∈ {0:1; 0:2; 0:3; 0:4; 0:5} and MAF ∈ {0:1; 0:2; 0:3; 0:4; 0:5}, where A and B are
the risk alleles. N case and N control give the expected number of cases and controls when
n = 2000.

„ MAF P (AABB|case) P (AABB|control) N case N control

0.1 0.1 0.00011 0.0001 0.22 0.2

0.1 0.2 0.0018 0.0016 3.5 3.2

0.1 0.3 0.0089 0.0081 18 16

0.1 0.4 0.028 0.026 56 51

0.1 0.5 0.069 0.062 1.4e+02 1.2e+02

0.2 0.1 0.00012 0.0001 0.24 0.2

0.2 0.2 0.0019 0.0016 3.8 3.2

0.2 0.3 0.0097 0.0081 19 16

0.2 0.4 0.031 0.026 61 51

0.2 0.5 0.075 0.062 1.5e+02 1.2e+02

0.3 0.1 0.00013 0.0001 0.26 0.2

0.3 0.2 0.0021 0.0016 4.2 3.2
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„ MAF P (AABB|case) P (AABB|control) N case N control

0.3 0.3 0.011 0.0081 21 16

0.3 0.4 0.033 0.026 67 51

0.3 0.5 0.081 0.062 1.6e+02 1.2e+02

0.4 0.1 0.00014 0.0001 0.28 0.2

0.4 0.2 0.0022 0.0016 4.5 3.2

0.4 0.3 0.011 0.0081 23 16

0.4 0.4 0.036 0.026 72 51

0.4 0.5 0.087 0.062 1.8e+02 1.2e+02

0.5 0.1 0.00015 0.0001 0.3 0.2

0.5 0.2 0.0024 0.0016 4.8 3.2

0.5 0.3 0.012 0.0081 24 16

0.5 0.4 0.038 0.026 77 51

0.5 0.5 0.094 0.062 1.9e+02 1.2e+02

Table B.2: Probability of observing the double homozygote, AABB, under a threshold
model for „ ∈ {0:1; 0:2; 0:3; 0:4; 0:5} and MAF ∈ {0:1; 0:2; 0:3; 0:4; 0:5}, where A and B are
the risk alleles.

„ MAF P (AABB|case) P (AABB|control) N case N control

0.1 0.1 0.0001 0.0001 0.2 0.2

0.1 0.2 0.0016 0.0016 3.2 3.2

0.1 0.3 0.0081 0.0081 16 16

0.1 0.4 0.026 0.026 51 51

0.1 0.5 0.062 0.062 1.2e+02 1.2e+02

0.2 0.1 0.0001 0.0001 0.2 0.2

0.2 0.2 0.0016 0.0016 3.2 3.2

0.2 0.3 0.0081 0.0081 16 16

0.2 0.4 0.026 0.026 51 51

0.2 0.5 0.062 0.062 1.2e+02 1.2e+02

0.3 0.1 0.0001 0.0001 0.2 0.2

0.3 0.2 0.0016 0.0016 3.2 3.2

0.3 0.3 0.0081 0.0081 16 16

0.3 0.4 0.026 0.026 51 51

0.3 0.5 0.062 0.062 1.2e+02 1.2e+02

0.4 0.1 0.0001 0.0001 0.2 0.2

0.4 0.2 0.0016 0.0016 3.2 3.2

0.4 0.3 0.0081 0.0081 16 16

0.4 0.4 0.026 0.026 51 51

0.4 0.5 0.062 0.062 1.2e+02 1.2e+02
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„ MAF P (AABB|case) P (AABB|control) N case N control

0.5 0.1 0.0001 0.0001 0.2 0.2

0.5 0.2 0.0016 0.0016 3.2 3.2

0.5 0.3 0.0081 0.0081 16 16

0.5 0.4 0.026 0.026 51 51

0.5 0.5 0.062 0.062 1.2e+02 1.2e+02

Table B.3: Probability of observing the double homozygote, AABB, under M170 XOR,
M78 XOR and M68 interference models for „ ∈ {0:1; 0:2; 0:3; 0:4; 0:5} and
MAF ∈ {0:1; 0:2; 0:3; 0:4; 0:5}, where A and B are the risk alleles. Expected counts when
n = 2000 are unaffected by „ as AABB genotype combinations do not increase risk under
XOR and interference models.
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Figure B.5: AUC for classifiers trained on 2-SNP interaction models for decreasing size of
the test set. To ensure any decrease in discrimination was observed, simulations set „ = 0:5
and MAF = 0:5. However, predictive performance appears stable, suggesting the chosen test
set sizes are reasonable and have not unduly influenced reported results. Interaction
simulations are shown here with a two-SNP causal interaction and no noise SNPs.
Independent and additive simulations use p = 200 and m = 0.5, with independent
simulations using odds ratios drawn from a KDE fit to values in Pardiñas et al., 2018, and
additive simulations setting h2 = 0.2.
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Figure B.6: Examination of different neural network architectures on the decision boundary
for M170 XOR models for a single simulation. Contour plots of the decision boundary, and a
plot of the loss function against epochs is given for each combination of ReLU or tanh and
small or large architectures.
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Figure B.7: An additional run of M170 XOR models showing differences between neural
network architectures.
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Figure B.8: A further run of M170 XOR models showing differences between neural network
architectures.



222 Appendix B. A Simulation Study of Binary Classification of Complex Traits

0 1 2

0

1

2

Re
LU

, s
m

al
l

0.53
Decision boundary

2 4 6 8 10 12 14

0.70

0.72

0.74

0.76

Loss

0 1 2

0

1

2

Re
LU

, l
ar

ge

0.55

2 4 6 8 10 12 14
0.685

0.690

0.695

0.700

0 1 2

0

1

2

ta
nh

, s
m

al
l

0.53

2 4 6 8 10 12 14

0.6925

0.6950

0.6975

0.7000

0 1 2

0

1

2

ta
nh

, l
ar

ge

0.55

2 4 6 8 10 12 14
0.685

0.690

0.695

0.700

Figure B.9: An additional run of M78 XOR models showing differences between neural
network architectures.
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Appendix C

Multivariable machine learning models
of schizophrenia in UK Biobank

C.1 Methods

C.1.1 Hyperparameters

Hyperparameters were searched using a Monte Carlo randomised search. All distributions

were defined using SciPy and NumPy.
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Figure C.1: Probability density functions (PDFs) and probability mass functions (PMFs) of
hyperparameters for machine learning methods. Distributions were used as above for all
models, with the exception of neural networks. While large networks of SNPs used 1-3 layers
and p

2 -
3
2p neurons per hidden layer, networks with 2 ≤ p < 20 used 2-6 hidden layers and

p-2p hidden neurons, and networks with p = 1 used 2-8 hidden neurons per 3-6 hidden layers.
Lower limits on search for learning rate and weight decay were also decreased (from
10−4to10−7) for more narrow datasets to account for the stronger predictors available when
using the 0.05-threshold ePRS or demographic predictors.

C.1.2 Generalisable model associations

C.1.2.1 Cognitive tests

Cognitive tests (category 100026) were evaluated for their ability to predict machine learning

risk scores in controls. A cognitive battery was completed by participants in UK Biobank



224 Appendix C. Multivariable machine learning models of schizophrenia in UK Biobank

on request. Here, tests were restricted to those completed by at least 20% of participants.

Missingness varies between tests; differing numbers of participants were requested to com-

plete each test by UK Biobank. Reaction time and pairs matching tests were completed

by a large number of participants at the initial visit to assessment centres. Subsequent

tests were performed at home in follow-up assessments. All tests were z-transformed within

cross-validation.

Fluid intelligence score

The fluid intelligence score (field 20016) aims to measure fluid intelligence via a sum of the

answers from 13 questions, coded as 1 for correct and 0 for incorrect, performed as part of

touchscreen assessments. Questions assess ability to reason through tasks such as summing

numbers together, identifying family relationships from descriptions and identifying the next

word or number in a sequence. Values run from 0 to 13, with 0 assigned where questions

were not completed.

Digit span

Numeric short term memory was assessed through touchscreen questions which showed

participants a number, removed it and asked participants to recall it. The longest number

which participants could recall was established by increasing the number appearing on the

screen by 1 each round. Only the length of the number (digit span, field 4282) is used.

Values range from 2 to 12. Abandoned tests were counted as missing.

Pairs matching

Pairs matching was assessed using another electronic card game, wherein participants were

shown multiple pairs of cards and asked to recall the matching sets after cards had been

turned over. The test evaluates episodic memory. Number of errors made by participants

that completed the task were used after a log + 1 transformation. 338,132 complete entries

were used in analysis.

Reaction time

Reaction time was assessed using an electronic form of the game Snap, where participants

were asked to click as soon as a matching set of cards appeared. The test evaluates process-

ing speed. 336,003 completed reaction time tests were retained for analysis in unsubsampled

controls.

Symbol digit substitution

Symbol digit substitution was assessed using an online number-symbol matching game. The

number of correct substitutions was restricted to the between 3 and 36. The test assesses

complex processing speed. 82,747 completed assessments were used in analysis.

Trail making test A and B

Trail making tests were assessed using an online circle connecting task, where participants

had to follow a numerical or numerical and alphabetical order for trail making tests A and
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B respectively. This evaluated visual attention. Log-transformed completion time was used

for 73,228 participants trail making test A and 73,226 in trail making test B in analysis.

C.1.2.2 Demographic variables

Demographic factors of interest which were completed by a large fraction of the cohort were

selected for analysis. Variables were not included in the initial machine learning models as

their value may be influenced by schizophrenia or its treatment.

Age

Age at recruitment was included as a common stratifier of risk (field 21022).

BMI

BMI (field 21001) is elevated in schizophrenia, which may be due to disease-associated

lifestyle factors or side-effects of antipsychotic medication (Wirshing, 2004). Body mass

index (BMI) was calculated by UK Biobank using height and weight measurements from

initial visits to assessment centres. Values were log transformed.

Deprivation

Elevated deprivation has repeatedly been associated with schizophrenia (Allardyce and Boy-

dell, 2006). Deprivation is measured using the Townsend deprivation index (TDI) (Townsend,

Phillimore, and Beattie, 1988). TDI (field 189) was calculated by UK Biobank before par-

ticipants joined the study using the most recent census prior to commencement. Scores are

calculated for each individual using unemployment, non-home ownership, non-car ownership

and household overcrowding. A higher scores implies higher deprivation. Values were log

transformed.

Ever smoked

Individuals with schizophrenia consistently show greater likelihood of having smoked (De

Leon and Diaz, 2005). Smoking status (field 20116) was given by participants at first

assessment centre visits during touch screen questionnaires. Previously smoked and currently

smoke categories were combined to give a single variables of 1 for ever smoked and 0 for

never smoked.

Height

Standing height at baseline (field 50) was included as a negative control for genetic risk and

a positive control for environmental risk (as demographic and combined models include sex

as a predictor, and so assign a higher risk of schizophrenia in males).

C.1.2.3 Diseases and disorders

Neurological diseases and psychiatric disorders were derived using hospital, death and self-

report records, where available. Codes used for each outcome are given in Table C.1.

For all derived outcomes, including schizophrenia status, hospital records were searched in

fields 41202.0.0 - 41202.0.65 for primary records, and 41204.0.0 - 41204.0.183 for secondary
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records. Death records were searched in 40001.0.0 for primary cause of death, and 40002.0.0

- 40002.0.13 for secondary. All outcomes were coded as 1 if a code was present for a

participant and 0 if not. Hospital and death records were search for partial matches beginning

with the provided code, such that a search for F20 would match F201, F202 and all other

codes under this heading. Self-report codes were checked in fields 20002.0.0 - 20002.2.33.

All self-report codes were checked for an exact match only. Code for extraction of outcomes

was defined in an R package, and prevalence of outcomes was checked against levels reported

in the Biobank showcase for veracity. Code was also unit-tested against manually-annotated

outcomes, using small subsets of UK Biobank data and synthetic tables of possible codes

and fields, to ensure output was consistently correct.

C.2 Results

C.2.1 Outcome

Derived schizophrenia status consisted of both schizophrenia and schizoaffective disorder,

with some participants having only self-report, only hospital records, or both (Figure C.2).
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Figure C.2: Schizophrenia outcome subgroups. ICD-10 subtypes, shown in light blue, are
present with the hospital definitions for schizophrenia and schizoaffective disorder. Categories
are not exclusive.
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Code Outcome Type
I69 Stroke ICD-10
I68 Stroke ICD-10
I67 Stroke ICD-10
I66 Stroke ICD-10
I64 Stroke ICD-10
I63 Stroke ICD-10
I62 Stroke ICD-10
I61 Stroke ICD-10
I60 Stroke ICD-10
G46 Stroke ICD-10
G45 Stroke ICD-10
1583 Stroke Self-report
1491 Stroke Self-report
1086 Stroke Self-report
1083 Stroke Self-report
1082 Stroke Self-report
1081 Stroke Self-report
G22 Parkinson’s ICD-10
G21 Parkinson’s ICD-10
G20 Parkinson’s ICD-10
1262 Parkinson’s Self-report
G41 Epilepsy ICD-10
G40 Epilepsy ICD-10
1264 Epilepsy Self-report
G30 Alzheimer’s ICD-10
1 Seen GP Field 2090
1 Seen psychiatrist Field 2100
F42 OCD ICD-10
1615 OCD Self-report
F50 Eating disorder ICD-10
1470 Eating disorder Self-report
F33 Depression ICD-10
F32 Depression ICD-10
1286 Depression Self-report
F43 Anxiety ICD-10
1287 Anxiety Self-report
F90 ADHD ICD-10

Table C.1: Search codes used for all psychiatric and neurological outcomes used in . Seen
GP is participants answer to the question "Have you ever seen a general practitioner (GP)
for nerves, anxiety, tension or depression?", for which answers are coded as 1 if true, and 0
otherwise. Similarly, seen psychiatrist is the touchscreen answer to the question "Have you
ever seen a psychiatrist for nerves, anxiety, tension or depression?", where answers are coded
in the same way. OCD: obsessive-compulsive disorder, ADHD: attention-deficit hyperactivity
disorder, ICD-10: international classification of diseases 10.
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C.2.2 Predictors
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al. (2018)

Schizophrenia-associated SNPs
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83,045 SNPs removed in clumping for PRS
A/T and G/C SNPs removed
r2 <= 0.2
distance threshold 1Mb

Figure C.3: Genetic predictor quality control pipeline. All imputed SNPs from UK Biobank
were processed to derive two sets of SNPs for prediction models.

C.2.3 Missingness

Figure C.4: Sample characteristics in cases with or without participants with missing values
excluded. Distributions and proportions show extremely high similarity between groups.
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Figure C.5: Sample characteristics in controls with or without exclusion by missingness.
Distributions and proportions show strong overlap groups. Distributions are shown for
observations before subsampling.

Figure C.6: Sample characteristics in controls with missingness removed, before and after
subsampling. High similarity between the full and subsampled controls is shown.
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Predictor Test Test-statistic P-value (uncorrected)
Winter birth None
Handedness Fisher’s exact 0 1
Sex None
Number of siblings Chi-squared 17.33 0.000031
Parental depression Chi-squared 8.80 0.0030
Qualifications Chi-squared 2.04 0.15

Table C.2: Tests of differential missingness for all non-genetic predictors. Tests were not
run for sex or winter birth as all observations are non-missing. Fisher’s exact test was used
where cell counts were too low

Figure C.7: Sample characteristics comparison between cases and controls. Age, BMI,
deprivation and sex show strong differences, while genotyping aray and first two principal
components are similar.
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Figure C.8: Per-predictor missingness split by case-control status. Proportion not missing
(x-axis) and total number not-missing (bar annotations) are shown.
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Figure C.9: Predictor missingness correlation. Binary-coded missingness is used to derive
correlation between predictors.
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Figure C.10: Discrimination with and without qualifications as a demographic predictor.
Mean AUC and outer-fold nested CV results are shown for all models.
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Figure C.11: Correlation between model predictions across nested CV folds for all models
and datasets. Correlation is calculated for all corresponding test folds between model pairs
and averaged over cross-validation.

Classifier Comparison W p Adjusted p Reject H0

XGBoost ePRS vs. iPRS 0 0.0051 0.081 True

Random Forest ePRS vs. iPRS 7 0.037 0.099 True

Logistic Regression ePRS vs. SNPs 8 0.047 0.099 True

Ridge ePRS vs. SNPs 8 0.047 0.099 True

RBF SVM ePRS vs. SNPs 8 0.047 0.099 True

XGBoost ePRS vs. SNPs 8 0.047 0.099 True

LASSO ePRS vs. SNPs 9 0.059 0.099 True

Linear SVM ePRS vs. SNPs 9 0.059 0.099 True

Logistic Regression ePRS vs. iPRS 10 0.074 0.099 True

Ridge ePRS vs. iPRS 10 0.074 0.099 True

LASSO ePRS vs. iPRS 10 0.074 0.099 True

Linear SVM ePRS vs. iPRS 10 0.074 0.099 True

RBF SVM ePRS vs. iPRS 11 0.093 0.11 False

Neural Network ePRS vs. iPRS 13 0.14 0.16 False

Neural Network ePRS vs. SNPs 14 0.17 0.18 False
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Classifier Comparison W p Adjusted p Reject H0

Random Forest ePRS vs. SNPs 16 0.24 0.24 False

Table C.3: Per-model comparison of ePRS versus iPRS or SNP models of genome-wide
significant SNPs only using the Wilcoxon signed-rank test in the larger sample of 807 cases
before exclusion by misingness. Adjusted p-values were produced using FDR-correction at
0.1. iPRS: internal polygenic risk score, ePRS: external polygenic risk score, SNPs: single
nucleotide polymorphisms.

C.2.5 Model rankings

Type Classifier Mean Rank Mean AUC

Non-linear RBF SVM 1.778 0.6301

Non-linear Neural Network 2.333 0.6239

Non-linear Random Forest 2.778 0.6241

Non-linear XGBoost 3.111 0.6212

Linear LASSO 2.056 0.633

Linear Linear SVM 2.278 0.631

Linear Logistic Regression 2.778 0.6317

Linear Ridge 2.889 0.6314

Table C.4: Linear and non-linear models rankings across all models. Approaches are
grouped by type, and sorted by mean ranking and median AUC across datasets

C.2.6 Calibration
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Figure C.12: Calibration for all models in the nested case-control sample, split by fold of
cross-validation. Calibration is similar for all models across folds; variation in the upper right
tail is with the expected range (Austin and Steyerberg, 2014)
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Figure C.13: Calibration in the whole UK Biobank sample before and after adjusting for
prevalence. Due to in-memory limits in computation of loess curves in python, a subsample of
30,000 participants was used to show calibration in Figure 5.8). Here, calibration for 10
random samples of 30,000 participants is shown. Variation across samples is reasonable and
demonstrates results in Figure 5.8 are representative of the whole UK Biobank sample.
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Figure C.14: Validation plots demonstrate calibration by handedness in the nested
case-control sample.
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Figure C.15: Validation plots demonstrate calibration by sex in the nested case-control
sample.
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Figure C.16: Validation plots demonstrate calibration by educational attainment in the
nested case-control sample.
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Figure C.17: Validation plots demonstrate calibration by season of birth in the nested
case-control sample.
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Figure C.18: Validation plots demonstrate calibration by severe parental depression in the
nested case-control sample.
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Figure C.19: Verification of importance score method. A logistic regression model was
trained in 10-fold cross-validation using the combined set of demographic and 0.05 ePRS
predictors. Either a binary random variable or a normally-distributed random variable with
mean 0 and unit variance were added as noise to the dataset to assess whether permutation
importance correctly identified it as the least important predictor. 100 repeats of each
cross-validation were performed were both types of noise, each with a different random
variable drawn. Noise variables were correctly identified as the least important predictors
using the same permutation importance as for all model evaluations.
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Figure C.20: Standard errors for prediction of risk scores using cognitive tests and
widely-available demographic information in UK Biobank controls. LASSO and RBF SVM
models are shown for genetic (0.05 ePRS), demographic or combined models.
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Figure C.21: Standard errors for prediction of risk scores using neurological and psychiatric
outcomes in UK Biobank controls. LASSO and RBF SVM models are shown for genetic (0.05
ePRS), demographic or combined models.

C.2.9 Deconfounding

Figure C.22: Plots of the first 3 principal components. Plots are shown for the full UK
Biobank cohort, those restricted to self-report white British or Irish, and those selected by UK
Biobank as part of a more homogeneous principal components cluster.
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