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Highlights– 

1. IL-6 controls tissue and immune homeostasis in both health and disease. 

2. The IL-6 signalling cassette is complex and regulated at multiple levels. 

3. IL-6 controls immune regulation, cell metabolism, neuroendocrine function, pain, tissue 

repair and regeneration, and psychological wellbeing. 

4. Specific genetic mutations identify important roles for IL-6 in human physiology.  

5. Biological drugs used to inhibit IL-6 in pathophysiology target disease processes and the 

wider aspects of IL-6 bioactivity. 

 

Abstract– 

The classification of interleukin-6 (IL-6) as a pro-inflammatory cytokine undervalues the biological 

impact of this cytokine in health and disease. With broad activities affecting the immune system, 

tissue homeostasis and metabolic processes, IL-6 displays complex biology. The significance of these 

involvements has become increasingly important in clinical settings where IL-6 is identified as a 

prominent target for therapy. Here, clinical experience with IL-6 antagonists emphasises the need 

to understand the context-dependent properties of IL-6 within an inflammatory environment and 

the anticipated or unexpected consequences of IL-6 blockade. In this review, we will describe the 

immunobiology of IL-6 and explore the gamut of IL-6 bioactivity affecting the clinical response to 

biological drugs targeting this cytokine pathway. 

Keywords: Cytokines, biological drugs, inhibition, inflammation, health, disease   
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1. Introduction– 

Initially described as a cytokine involved in the control of lymphocyte and hepatic responses, the 

activities of IL-6 now extend beyond these early definitions. Besides the involvement of IL-6 in innate 

and adaptive immunity, IL-6 elicits broad-reaching effects on various physiological processes. These 

include impacts on tissue homeostasis, metabolism, neuroendocrine function, fatigue, and mental 

wellbeing (Figure-1)1-8. Thus, IL-6 is a truly pleiotropic cytokine, and biological drugs inhibiting IL-6 

in pathophysiology often alters the physiological regulation of these processes9-15. In this review, we 

will explore the properties of IL-6 in health and disease by offering a perspective of IL-6 biology 

beyond its role in immune regulation.   

Characterisation of the IL-6-like cytokine system in Drosophila melanogaster identifies roles for this 

ancestral pathway in development, tissue homeostasis, metabolism, and innate immunity (Figure-

1)16-19. These functions echo those described for IL-6, and other members of the IL-6 cytokine family, 

in higher mammals and humans9,12,20. For example, studies of murine macrophages and Drosophila 

plasmacytes identify roles for IL-6 (unpaired-3 in Drosophila) in glucose metabolism, with mouse 

models evidencing the ability of IL-6 to promote glucose intolerance and resistance to obesity-

driven changes in insulin sensitivity21,22. Here, the capacity of IL-6 to engage a receptor system that 

signals via specific Janus-activated kinases (Jak) and members of the Signal Transducer and Activator 

of Transcription (STAT) family help explain how cells sense and interpret cytokine cues to elicit 

alternate functions or cell-specific responses20,23,24. In this regard, the expression and bioactivity of 

IL-6 are tightly regulated, ensuring both its physiological involvement in homeostasis and rapid 

induction following immune challenge. 

Almost all haematopoietic and non-haematopoietic cells express IL-6, with changes in gene 

regulation occurring in response to various inflammatory stimuli. These include cytokines (e.g., 

IL-1b, TNFa, IL-17), Toll-like receptor agonists, prostaglandins, adipokines and cellular stress12,20. 

Serum IL-6 levels in humans are typically low (1-5 pg/ml). However, physiological levels of IL-6 

rapidly increase following infection, trauma, or injury to reach quantities in the high ng/ml or µg/ml 

range25. The regulation of IL-6 gene expression occurring via a complex array of intracellular and 

extracellular factors, which help to limit IL-6 bioavailability or contain IL-6 bioactivity12. For example, 

microRNAs (e.g., let-7a), RNAases and RNA-binding proteins (e.g., regnase-1, Arid5a, Lin28B). IL-6 

expression is also subject to coordinated circadian rhythms, including seasonal variations in IL-6 

bioavailability between winter and summer months26-31. 
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Moreover, circulating IL-6 levels often provide an index of systemic inflammation in infection, 

autoimmunity, and cancer, and increases in IL-6 frequently contribute to cytokine response 

syndromes and associated patient mortality32,33. In this regard, IL-6 is often a better predictor of 

disease activity than C-reactive protein34-37. Consequently, is IL-6 a biomarker of systemic 

inflammatory or a primary driver of pathophysiology? The clinical benefits associated with biological 

drugs that target IL-6 or its receptor are significant and identify IL-6 as a keystone cytokine 

responsible for evolving or maintaining adverse inflammatory reactions11-13,38. However, these 

therapies are not always successful, and patients with the same underlying disease often show 

differing therapeutic responses, and IL-6 blockade is not suitable for all diseases39-41. Building on the 

narrative of several excellent reviews of IL-6 biology in disease6,9-13,20,38,42-44, we will now discuss the 

broader actions of IL-6 to offer some thoughts on the context-dependent properties of IL-6 in health 

and disease.  

2. The IL-6 signalling cassette– 

The composition and biological activities of the IL-6 receptor has been described elsewhere24,45-48. 

Briefly, the IL-6 receptor comprises an 80kDa type-1 cytokine receptor subunit (IL-6R, CD126) and a 

130kDa signal-transducing receptor subunit (gp130, CD130; encoded by IL6ST). The binding of IL-6 

to IL-6R facilitates a ligand-dependent interaction with gp130, with structure-function studies 

predicting that a signalling IL-6 receptor requires an IL-6-IL-6R-gp130 complex arranged in a dimer 

structure (termed classical IL-6 receptor signalling) (Figure-2A)45,46,48.  

Although initially characterised as the signalling subunit of the IL-6 receptor, gp130 also functions 

as the b-cytokine receptor for IL-11, IL-27, oncostatin-M, ciliary neurotrophic factor, leukaemia 

inhibitory factor, cardiotrophin-1, and cardiotrophin-like cytokine9,20,49. All cells of the body express 

gp130. While deletion of gp130 in mice results in embryonic lethality, the introduction of genetic 

mutations into the gp130 sequence identify essential roles in development, haematopoiesis, tissue 

homeostasis, cell survival and growth, and immune regulation9,20,49. In contrast, IL-6R is more 

restricted in its cellular expression. Cells expressing IL-6R include leukocytes, hepatocytes, 

megakaryocytes, and certain mesenchymal cells9,20,49. While Il6ra-/- and Il6-/- mice are viable50-52, 

these mice show differences in wound healing, susceptibility to colitis and alterations in glucose 

tolerance22,53-55. These phenotypic differences have raised questions about potential alternate 

ligands for IL-6R. Ligands that display a low affinity for IL-6R include ciliary neurotrophic factor, 

p28IL-27 (IL-30) and heterodimeric cytokine-like factors12,56-59. Conversely, IL-6 reportedly binds CD5 
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to amplify STAT3 signals in mouse tumour models60. The relevance or biological need for these 

additional interactions is not overtly obvious and requires further investigation. 

The cellular expression of a specific receptor system typically shapes the biological functions of a 

cytokine61. However, the discovery of a soluble IL-6R (sIL-6R) in human urine and plasma and the 

identification that IL-6 binding to sIL-6R creates an agonistic complex capable of triggering gp130 

signalling (termed IL-6 trans-signalling) has added to the mystic surrounding IL-6 biology (Figure-

2A)49,62-64. In this regard, the IL-6-sIL-6R complex resembles a heterodimeric cytokine (e.g., IL-12, 

IL-23, IL-27) and sIL-6R shares close sequence identity with IL-12p40 and EBI365,66. There is now a 

large body of research demonstrating the regulation of sIL-6R in inflammation. Investigations in 

various mouse models describe central roles for IL-6 trans-signalling in colitis, tissue fibrosis, allergy, 

infectious disease, arthritis, cancer-associated inflammation, neuroinflammation and vascular 

disease51,67-85. 

Beyond the characterisation of classical IL-6 receptor signalling and IL-6 trans-signalling, a recent 

report described a mode of IL-6 signalling termed IL-6 trans-presentation86. Mechanistically 

equivalent to a form of signalling described from IL-15, IL-6 trans-presentation may arise in immune 

privileged sites where the cellular presentation of IL-6 and IL-6R to a neighbouring gp130-positive 

cell type supports local immune reactions (Figure-2A)86,87. Further work is still required to identify 

the significance of IL-6 trans-presentation in health and disease. 

3. Contextualisation of IL-6 activities in disease– 

Cytokines quintessentially deliver cellular signals affecting proliferation, differentiation, survival, 

and cell type-specific effector functions61. These broad activities epitomise the contribution of IL-6 

to infectious disease, cancer, and immune-mediated inflammatory diseases. Interleukin-6 often 

receives bad press in these settings. Here, the benefits afforded by blocking IL-6 in clinical settings 

endorse the pro-inflammatory attributes of this cytokine. It is easy to forget that IL-6 contributes to 

protective immunity (e.g., B-cell antibody production) and control of inhibitory signals essential for 

the dampening of innate immunity (e.g., deactivation of macrophage responses). These activities 

are essential for anti-microbial host defense12,22,50,88,89. Thus, IL-6 involvement in disease 

progression typically arises through distortion or skewing of these processes, altering the course of 

innate and adaptive immunity and a transition towards inflammation-induced tissue damage. This 

level of complexity potentially explaining the mixed patient outcomes reported with IL-6 blocking 
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therapies in SARS-CoV2 infections32. Several excellent articles have recently reviewed the role of 

IL-6 in disease6,9-13,20,38,42-44. To support the narrative in the forthcoming sections, we will focus on 

some key features of IL-6 receptor signalling relevant to the subsequent discussion (Figure-2B). 

Cells sense and interpret IL-6 signals through receptor-associated cytoplasmic tyrosine kinases 

(Jak-1, Jak-2, and non-receptor tyrosine-protein kinase 2 [Tyk2]) and signalling intermediates 

downstream of the tyrosine-protein phosphatase SHP2. The activation of Jak-1, Jak-2 and Tyk2 

affecting distinct patterns of tyrosine and serine phosphorylation linked with control of the 

activation of latent transcription factors (namely, STAT1, STAT3 and to a lesser extent STAT5)20,24. In 

contrast, SHP2 promotes activation of the Ras-Raf pathway and the Src-YAP-Notch pathway, 

regulating transcriptional activators including NF-IL-6 (a CAAT-enhancer binding protein; C/EBP), 

activator protein 1 (AP-1) and mitogen-activated protein kinases (MAPKs)34,44,90. Receptor activation 

of the Ras-Raf pathway primarily controls IL-6 responses affecting proliferation, differentiation, and 

tissue regeneration (Figure-2B)20,47,91. However, most of the biological activities assigned to IL-6 

occur through activation of Jak-STAT signalling and the transcriptional properties of STAT1 and 

STAT3. Genetic ablation studies emphasising the importance of these transcription factors in 

determining haematopoiesis, immune cell recruitment, activation and survival, and stromal cell 

responses affecting tissue remodelling and chronic disease progression (Figure-2B)20. In this regard, 

the transcriptional output of STAT1 and STAT3 often provides valuable insights into the role of IL-6 

in autoimmunity and cancer, and their activities serve as clinical predictors of patient outcomes.  

4. IL-6 in tissue homeostasis, regeneration, and repair– 

Experience with IL-6 antagonists in the clinic illustrates that these therapies are less successful in 

indications affecting barrier surfaces12,20,39. Patients with IL-6 autoantibodies or genetic mutations 

affecting the IL-6 receptor cassette or associated Jak-STAT pathway also develop complications at 

barrier surfaces. These include subcutaneous abscesses, staphylococcal cellulitis, and eczematoid 

dermatitis92-98. Some of these mutations also promote connective tissue abnormalities and 

immunedeficiencies96-99. For patients receiving IL-6 blocking drugs, infections typically occur at 

epithelial surfaces and mucosal barriers, and gastric perforations and the associated incidence of 

diverticulitis are significant clinical considerations when applying these therapies20,38,39. These 

clinical phenotypes evidence the importance of IL-6 in maintaining barrier immunity and tissue 

homeostasis.  
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Various studies identify roles for IL-6 in maintaining tissue homeostasis. These include activities that 

affect adipose tissues, bone turnover, liver regeneration, haematopoiesis, neurones, and epithelial 

barriers. Most of these involvements originate from the capacity of IL-6 to control cellular 

proliferation, differentiation, or survival. The ability of IL-6 to promote hepatocyte proliferation 

epitomises these activities, contributing to liver regeneration following hepatic injury100,101. A similar 

scenario exists in the bone. Here, IL-6 promotes osteoclastogenesis through the regulation of RANK 

ligand and osteoprotegerin essential for bone formation102. Indeed, IL-6 levels and IL6 

polymorphisms often impact bone mineral density during inflammatory disease103. Similar changes 

occur in mice where Il6 deficiency results in impaired bone remodelling104-106. Il6-/- mice display 

marked protection from osteopenia and postmenopausal bone loss following oestrogen 

depletion104. Extending these findings to mucosal barrier surfaces, IL-6 maintains the functional 

integrity of epithelial surfaces107-109. These latter observations explain the increased susceptibility 

of gastric perforations seen in patients on IL-6 therapy110. It is, therefore, apparent that IL-6 plays a 

pivotal role in governing stromal tissue physiology essential for immune homeostasis and barrier 

immunity. For example, through influences on the cell properties and effector characteristics of 

resident tissue and inflammatory infiltrating immune cells. These functions illustrate how IL-6 

activities encourage communication between the stromal tissue compartment and the immune 

system. In this regard, IL-6 supports a transition from innate to adaptive immunity12,44,68,111,112. Thus, 

the impact of IL-6 on tissue homeostasis and barrier immunity often appears intrinsically connected. 

In wound healing and fibrosis, IL-6 coordinates inflammation, proliferative signals, and the 

remodelling of extracellular matrix77,113-118. Compromised IL-6 signalling frequently contributing to 

aberrant healing and tissue scaring in patients119-121. A similar scenario occurs in atopic dermatitis. 

Here, IL-6 affects the expansion of IL-4 and IL-13-secreting Th2 CD4+ T cells and changes in IL-22Ra 

on keratinocytes122,123. The mechanistic involvement of IL-6 in atopic dermatitis is not fully 

understood. Clinical trials of atopic dermatitis show that tocilizumab improved erythema, 

induration, excoriation and lichenenifcation124. However, the study also noted an increase in 

bacterial skin infections in the treatment group. Thus, supporting a role for IL-6 in both barrier 

immunity and the maintenance of tissue integrity.  

In this regard, IL-6 antagonists typically fail in disease settings where IL-6 controls the physiological 

maintenance of tissue homeostasis. IL-6 blockade occasionally exacerbating the symptoms of any 

pre-existing condition. These include diseases of the skin (e.g., psoriasis), gut (e.g., Crohn’s disease), 

and ankylosing spondylitis39,125-128. However, in these inflammatory settings, IL-6 still contributes to 
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the underlining pathology. For example, IL-6 activities in the gut lamina propria control the 

infiltration and maintenance of effector T-cells. Thus, contributing to diseases such as Crohn’s 

disease, inflammatory bowel disease, ulcerative colitis, and diverticulitis52,67,129-131. Thus, IL-6 

maintains the local inflammatory reaction by supporting the activities of other cytokines (e.g., TNFa, 

IL-4, IL-5, IL-13, IL-17, and IL-23), including those targeted for the treatment of diseases affecting 

the skin, gut, and lung. Currently, it is unclear how IL-6 coordinates the balance between tissue and 

immune homeostasis and the transition towards tissue injury and chronic disease within these 

clinical settings. Additional research addressing the balance of classical IL-6 receptor signalling 

versus IL-6 trans-signalling is anticipated51,132-134. A further consideration is also required to 

understand how IL-6 transmits signals via the Jak-STAT pathway23. Control of the intracellular 

cytokine signalling is complex, and subtle alternations in the delivery of STAT1 and STAT3 signals 

profoundly alters the transcriptional output of IL-6 in target cells23,135,136. Similar, chronic disease 

progression is often associated with episodic bouts of inflammation. These are likely to modify the 

way IL-6 contributes to pathology. Studies assessing the impact of recurrent inflammation show that 

IL-6 compromises tissue repair and drives fibrosis through the expansion of pro-fibrotic Th1 cells as 

a response to repeated inflammatory activation77. 

Investigations of IL-6 trans-signalling in vitro and in vivo first described activities responsible for 

leukocyte recruitment and adhesion44,68,69,111,112. Whilst these reports commonly identify 

mechanisms affecting the control of local tissue inflammation, the impact of IL-6 trans-signalling in 

endothelial cells, fibroblasts, and smooth muscle cells emphasises the importance of IL-6 in 

regulating vascular function83,137-143. Such activities impact endothelial dysfunction, complement 

activation and deposition, vascular calcification, coagulation, plaque formation, and the expression 

of inflammatory chemokines (e.g., CCL2) affecting atherosclerosis112,143-148. In this regard, 

genome-wide association studies and related Mendelian randomisation studies commonly identify 

genetic determinants of the IL-6 receptor cassette linked with cardiovascular risk149-155. These 

hallmarks may explain the systemic consequences of IL-6 bioactivity in chronic disease and 

associated multimorbidity156-158. For example, cardiovascular complications in COVID-19 patients32.  

5. Metabolism–  

The pleiotropic functions of IL-6 include effects on lipids, glucose, iron, and mitochondrial 

bioactivity12,20,159. Patients receiving IL-6 antagonists often show clinical signs and symptoms 
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attributed to the disruption of these biochemical processes. For example, IL-6 reduces appetite, 

delays gastric emptying, decreases postprandial glycemia and regulates adiposity160,161.  

Interestingly, IL-6 activities are often enhanced by exercise or as a consequence of an active 

lifestyle162-164. Systemic changes in IL-6 following physical exercise affects glucose disposal and 

insulin sensitivity165-167. Patients on IL-6 antagonists frequently experience hyperlipidaemia and 

increased body mass168-171. Studies of maturity-onset obesity, hyperlipidaemia and insulin resistance 

in animal models highlight the importance of IL-6 in regulating these metabolic processes172-174. The 

administration of IL-6 in mouse models of obesity (e.g., high-fat diet) or type-2 diabetes led to 

reduced body mass, suppressed appetite, and improved insulin sensitivity via the production of 

glucagon-like peptide175-178. While the precise mechanisms involved require further investigation, 

changes in appetite and increases in energy expenditure may occur via IL-6 trans-signalling in the 

paraventricular nucleus of the hypothalamus173,177. Here, studies in cell type-specific Il6-\- or Il6ra-\- 

mouse models of obesity reveal the complexity of these cell and tissue-dependent mechanisms. 

Adipocyte-specific Il6-\- mice demonstrate decreased adipose tissue inflammation and increased 

energy expenditure, with no effect on glucose tolerance or insulin sensitivity179,180. In comparison, 

myeloid-specific Il6-\- or Il6ra-\- mice develop increased insulin resistance, reduced energy 

expenditure, hepatic steatosis, and enhanced macrophage-driven inflammation of adipose 

tissues22,179. Moreover, T-cell specific Il6ra-\- mice initially display improved insulin sensitivity and 

reduced adipose tissue inflammation that reverses over time, potentially due to compensatory IL-6 

trans-signalling mechanisms181. 

IL-6 also regulates the master switch of iron homeostasis, hepcidin (Figure-3). Hepatic changes in 

hepcidin expression in response to IL-6 promote iron-restricted erythropoiesis and inflammatory 

anaemia during infection, autoimmune disease, and cancer3,182,183. IL-6 antagonism improves 

inflammatory anaemia in patients with rheumatoid arthritis, multicentric Castleman disease or 

undergoing haemodialysis2,184,185. These activities reflect the role of IL-6 as a hepatocyte stimulating 

factor that accounts for the control of acute phase reactants and serum lipids186,187. Studies in 

rheumatoid arthritis or patients with a high risk of atherothrombosis demonstrate that IL-6 

inhibitors reduce various biomarkers of systemic inflammation or thrombosis. These include C-

reactive protein, serum amyloid-A, haptoglobin, fibrinogen, secretory phospholipase A2, and 

lipoprotein-a188,189. Focussing more specifically on lipid metabolism, patients on tocilizumab 

typically display enhanced levels of low-density and high-density lipoprotein C186. Tocilizumab 
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intervention alters the lipid composition to lower cholesterol-associated biomarkers of 

cardiovascular risk189. These studies emphasise the potential benefit of IL-6 or IL-6R inhibition in 

cardiovascular disease and pulmonary arterial hypertension. However, reports of stroke, myocardial 

infarction and aneurysms following tocilizumab treatment in patients with Kawasaki disease or 

serious infections suggest that the underlining health status of a patient may ultimately influence 

the clinical outcome190-192.   

Integral to the IL-6 regulation of metabolic processes is its ability to regulate mitochondria 

bioactivity. These include influences affecting changes in oxidative capacity, reactive oxygen species 

production, calcium mobilisation and mitochondrial remodelling in response to obesity, type-2 

diabetes, and cancer cachexia172,193-197. Again, we see interesting links with studies performed 

during exercise. Acute administration of IL-6 to trained athletes impairs performance and promotes 

chronic fatigue198. Here, IL-6 regulates glucose metabolism and hypothalamic neuropeptides 

involved in energy homeostasis160. Whilst much of this work has been conducted in healthy 

volunteers during normal physiology or exercise, the relevance of these discoveries to chronic 

diseases where patients suffering from debilitating fatigue requires further consideration. Future 

studies will establish how pathophysiology distorts the metabolic properties of IL-6. 

6. Psychoneuroimmunology–  

Patients with chronic disease or cancer suffer from complex clinical symptoms and comorbidities 

that influence their clinical management and long-term treatment. For a significant proportion of 

patients, chronic illness has a profound impact on their psychological wellbeing. Approximately 30-

40% of patients display symptoms of depression, and patients with chronic illness frequently suffer 

with mental fatigue, anxiety, alterations in mood and insomnia199,200. These symptoms dramatically 

affect the quality of life of patients and significantly impact their long-term clinical outcomes. For 

example, medical outpatients with depression show almost twice as many days of restricted activity 

or missed work due to illness than patients without depression. Here, data from clinical trials and 

patient recorded outcomes support the view that inflammatory mediators activate processes 

affecting psychopathology and behaviour199-207. Studies in humans and rodents show that endotoxin 

administration promotes changes in cognitive function, social behaviour and anhedonia199. Patients 

with anxiety, major depressive disorders, schizophrenia, or neurodegenerative disease show similar 

behaviours207. Here, signs of acute psychosocial stress and depression, and feelings of fatigue, 

insomnia, and anger (or hostility) often correlate with systemic markers of inflammation199-201,208. 
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These include cytokines, acute phase reactants, prostaglandins, and changes in lipid peroxidation 

and mitochondrial activity199,201-206. While these and other studies have identified new and exciting 

ideas on the development of psychopathology (e.g., alterations in endothelial blood-brain barrier 

function or metabolic dysfunction), the underpinning biology remains unclear199-201. 

Cytokines, including IL-6, control various hormone-like activities that are subject to tight circadian 

regulation during health12,209. These include seasonal variations and daily oscillations in circulating 

IL-6 and sIL-6R levels, which reflect physiological sleep patterns. Chronic illness and heightened 

systemic inflammation will distort these circadian processes to impact physical and mental 

wellbeing. These would be akin to the effects seen in shift workers and frequent flyers experiencing 

jet lag. Gross changes in sleep behaviours often contribute to non-communicable diseases210,211. 

These include systemic arterial hypertension, dyslipidaemia, and type-2 diabetes. Here, biological 

drugs, including adalimumab, etanercept and tocilizumab, often improve patient wellbeing in 

chronic disease12,15,209,212,213. For example, treatment of rheumatoid arthritis with IL-6 antagonists 

reduces symptoms of depression, fatigue, and anhedonia214-216. While the mode-of-action of these 

drugs and how they improve these patient outcomes remain unknown, parallel studies in Il6-/- mice 

emphasise their resistance to depression-like symptoms and show behaviours reflecting enhanced 

hedonic motivation8,217-219. Treatment of mice with MR16-1 (a mouse surrogate antibody for 

tocilizumab) demonstrates a rapid and long-lasting anti-depressive action in susceptible mice220. 

Genetic studies further identify various risk alleles in IL6 and IL6R associated with major depressive 

disorders221-226. For example, the IL-6R single polymorphism rs228145 variant226. This mutation 

encodes an Asp358Ala amino acid substitution, which affects the proteolytic cleavage of IL-6R and 

increases circulating sIL-6R227. Emphasising a link between inflammation, stress, and depression, 

this polymorphism increases the risk of cardiovascular disease and enhances susceptibility for 

insulin resistance and type-2 diabetes, but a more favourable outcome in COVID-19153,226-228. 

Current models used to study depression in patients include treatment with type-1 interferon (e.g., 

IFNa), commonly prescribed in viral hepatitis and malignant melanoma229. Clinical depression is a 

significant adverse outcome of IFNa therapy and typically occurs in 30-50% of patients230. 

Neuroimaging of patients treated with IFNa shows that type-1 interferons promote hyperactivity of 

the basal ganglia and controls dopamine metabolism and dopamine receptor signalling through 

induction of several interferon target genes231,232. Thus, cytokine therapy may activate localised 

transcriptional events within the brain. It is, however, uncertain whether this accounts for the 
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clinical impact biological drugs have on patient wellbeing and psychopathology in the treatment of 

chronic disease8. For example, patients typically receive large quantities of tocilizumab (infusion of 

4-8mg/kg). However, only small amounts of the drug are detectable within the central nervous 

system233. Thus, IL-6 antagonists may improve depression, fatigue, and anhedonia by inhibiting 

physiological processes under systemic control. Examples would include the blockade of cytokine 

actions on the liver, vasculature, or neuroendocrine system8. As reflected by the impact on the 

blood-brain barrier, organs of the hypothalamus-pituitary-adrenal cortex (HPA) axis, or biochemical 

pathways linked with lipid peroxidation, and amino acid catabolism (Figure-3)234-239. Studies with 

tocilizumab support links between IL-6 activity, changes in hepcidin regulated iron metabolism, 

anaemia, and fatigue11,12,15. Advancing this concept, mouse studies of depressive behaviours show 

that the anti-depressive effect of IL-6 inhibition only occurs when drugs are administered 

intravenously but not intracerebroventricularly14,240. Thus, a sustained or heightened change in 

systemic inflammation may negatively impact psychological wellbeing and mental health commonly 

associated with infectious disease, immune-mediated inflammatory disorders, and cancer. 

However, translating IL-6 discoveries from mouse to human remains challenging and currently 

limited to patient recorded outcomes in defined patient groups on IL-6 antagonists216,241-244.  

7. Pain perception– 

Early papers describing the biological properties of IL-6 identified IL-6 as a neurotrophic factor245. 

With wide-ranging effects on neuronal survival and differentiation, neurons, astrocytes, microglia, 

and endothelial cells provide a cellular source of IL-6 within the central nervous system246. The cell 

targets for IL-6 are mainly astrocytes and microglia, which express the cognate IL-6R. However, 

many studies evidence the importance of IL-6 trans-signalling and potentially IL-6 trans-

presentation. For example, in nerve regeneration and remyelination in normal physiology and 

deleterious outcomes associated with neurodegeneration246,247. These include the formation of 

sympathetic and sensory neurons from neonatal superior cervical ganglia and the embryonic dorsal 

root ganglia and the expansion of Schwann cell progenitors expressing myelin basic protein248-250. 

The neurotrophic properties of neurotrophins often becoming augmented by IL-6 signalling. Here, 

IL-6 signals acting via the Jak-STAT pathway work in combination with nerve growth factor251. How 

IL-6 signalling determines the balance between neurodegeneration and regeneration is unclear. So, 

how do IL-6 responses become distorted in neuroinflammation? To address this question, it is now 

essential to understand how the epigenetic and transcriptional landscape changes to bring out 

alternate cell functions or fates. 
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The contribution of IL-6 to neuronal biology also depends on the location of IL-6 involvement within 

the periphery or central nervous system. Cytokine signalling affecting the generation of neuronal 

precursors such as acetylcholine from noradrenaline or 5-hydroxytryptamine. Similar involvements 

include a dampening of neuron excitation and synaptic transmission within the central system (e.g., 

via metabotropic glutamate receptors and TRPM7) and enabling neuron excitation and sensitivity 

within the periphery (e.g., via TRPV1, TRPA1)252-260. Thus, IL-6 elicits responses affecting higher 

central nervous system processing and includes activities linked with sensory (nociceptive) and 

neuropathic pain4. In this regard, Il6-/- mice often show signs of sensory impairment, and intrathecal 

administration of IL-6 in rats promotes animal behaviours indicative of pain perception261,262.  

Pain is a major factor affecting the quality of life for patients with debilitating chronic diseases. 

Recent advances in experimental medicine and fundamental discovery science have strived to 

distinguish the IL-6 control of pain from inhibition of inflammatory processes following therapeutic 

intervention with IL-6 blocking strategies4,263,264. Observational studies in patients with wounds 

show that the degree of injury correlates with increases in IL-6 and the magnitude of the pain 

response265. Moreover, rats administered with IL-6 show hypersensitivity to mechanical and thermal 

stimuli266. During inflammation, changes in systemic and local IL-6 concentrations affect distinct 

processes affecting pain perception264. Here, systemic changes in IL-6 activity drives an amplification 

of pain signalling, which includes increased dorsal root ganglia activity and inhibition of feedback 

mechanisms that would curtail pain conduction4,263,264. These activities are augmented by IL-6 locally 

generated within inflamed tissues, which increases nociceptive plasticity and nerve fibre regrowth 

and the persistence of pain signals from sensitized peripheral neurons263,264. 

The involvement of IL-6 in pain is a rapidly evolving area of research with highly complex biology. 

However, extensive evidence from literature clearly defines the role of IL-6 in both inflammatory 

and neuropathic pain246,263,267-269. Future research is now needed to understand the neuronal cell 

targets for IL-6, the mode of cellular activation adopted (e.g., classical IL-6 receptor signalling vs IL-6 

trans-signalling vs IL-6 trans-presentation), and their relevance to human physiology and disease.   

8. Complexities of IL-6 antagonism– 

Early studies of IL-6 characterised the biological activities of IL-6 as a lymphokine. The original 

cytokine nomenclature classified its activity as interferon-b2, cytotoxic T-cell differentiation factor, 

B-cell differentiation factor and B-cell stimulatory factor-2. Thus, IL-6 was highly associated with the 

proliferative expansion, survival and activation of T-cells and the differentiation of B-cells12. 
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Simultaneous investigations performed by researchers working on liver regeneration and the acute 

phase response identified IL-6 as a hepatocyte stimulating factor. For example, with impacts on 

C-reactive protein, haptoglobin, hepcidin and fibrinogen100. Thus, identifying the relevance of IL-6 

to the control of infectious disease, immune-mediated diseases, and cancer10,50. These initial studies 

pioneered rapid advances in biological drug development, leading to the clinical approval of 

tocilizumab in 2009. The spectrum of drugs that target this cytokine now includes inhibitors of IL-6, 

the IL-6R or IL-6 trans-signalling. These are in various stages of clinical development, whilst others 

are in routine clinical practice. Most are monoclonal antibodies. These include clazakizumab, 

olokizumab, sirukumab, siltuximab and ziltivekimab, which bind IL-6 and tocilizumab and sarilumab 

targeting IL-6R. These drugs display subtle differences in pharmacodynamics or pharmacokinetics 

and clinical efficacy against several diseases9-15. IL-6 antagonists are now routinely prescribed for 

rheumatoid arthritis, other rheumatic-like disorders (e.g., juvenile idiopathic arthritis, adult-onset 

Still’s disease, giant cell arteritis, Takayasu arteritis), Castleman disease, and cytokine release 

syndromes11. While experimental medicine continues to identify other indications tractable to IL-6 

inhibition (e.g., uveitis, neuromyelitis optica, systemic sclerosis-associated interstitial lung disease), 

patients often display differences in therapeutic response with clinical trials evidencing scenarios in 

which IL-6 inhibition fails11,12,20,32,39,270. For example, tocilizumab is less effective in conditions where 

IL-6 orchestrates barrier immunity or the maintenance of epithelial homeostasis12,20,32,39,40. Notable 

examples include psoriasis, atopic dermatitis and systemic sclerosis-associated skin fibrosis, and 

gastrointestinal diseases (e.g., Crohn’s disease, inflammatory bowel disease, colitis). These features 

of IL-6 inhibition also reflect contraindications associated with drug intervention. For example, 

gastrointestinal perforations and associated diverticulitis are recognised complications in 

rheumatoid arthritis patients on IL-6 antagonsts12,39. However, this view of IL-6 involvement in 

disease processes comes from biological drugs targeting the IL-6 receptor. Clinical trials with 

tocilizumab remain the most widely studied mechanism of IL-6 inhibition11. There is now a need to 

understand whether therapies targeting IL-6 offer different clinical outcomes to biological drugs 

against IL-6R. Clazakizumab, olokizumab, siltuximab, and ziltivekimab potentially managing any 

inflammatory flare in IL-6 production12. In stark contrast, IL-6 receptor inhibitors require more 

sustained concentrations to maintain a blockade of both membrane and soluble forms of the 

IL-6R12. Thus, in clinical indications where IL-6 maintains tissue homeostasis, IL-6R inhibition may 

negatively impact physiological processes essential for more tissue function. Here, the publication 

of clinical data for olamkicept (an engineered variant of sgp130) in patients with active inflammatory 
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bowel disease showcases how the blockade of IL-6 trans-signalling, representing the major pathway 

for IL-6 involvement in disease, adds a degree of selectivity to the clinical inhibition of IL-6132. Further 

clinical investigations are required to advance this therapeutic application of olamkicept as a 

selective IL-6 antagonist. However, these promising data open possibilities to entrap inflammatory 

IL-6 in a complex with sIL-6R, leaving classical membrane-bound IL-6R signalling intact49. 

Biological drugs that target IL-6 possess different pharmacodynamics and pharmacokinetics. They 

should not be considered like-for-like substitutes and often show differing behaviours when 

administered to patients. There is complexity here that highlights the need to differentiate the 

biological properties of these drugs. For example, the inhibition of IL-6 by clazakizumab and 

olokizumab are mechanistically very different, targeting functional epitopes within Site-1 and Site-3 

of the IL-6 sequence12,24,46. Clazakizumab inhibits IL-6 binding to IL-6R (Site-1), while olokizumab 

blocks the docking of IL-6 to gp130 (Site-3) and the formation of a signalling IL-6 receptor 

complex12,46,271. This fundamental difference affects the bioavailability of circulating IL-6, with 

antibodies targeting Site-1 causing sustained increases in systemic IL-6 levels when administered to 

patients272. Whilst increases in IL-6 are also seen with other IL-6 blockers, this effect appears less 

prominent with Site-3 IL-6 blockers or anti-IL-6R monoclonal antibodies such as tocilizumab273,274. It 

is currently unclear whether these changes impact the control of physiological processes governed 

by IL-6. Current studies evaluating the impact of IL-6 antagonists on conditions such as depression 

and anxiety have focussed on diseases where IL-6 inhibition improves clinical symptoms and 

promotes disease remission (e.g., rheumatoid arthritis)214-216. Clinical improvements were not, 

however, seen in hematopoietic cell transplantation patients. Here, tocilizumab contributed to a 

worsening of depressive symptoms275. Thus, there is a need to reflect on the clinical context and the 

mode of IL-6 inhibition when reviewing biological drugs that target IL-6.  

9. Concluding remarks– 

Research involving animals have significantly enhanced our understanding of IL-6 biology in health 

and disease. Here, cytokine and cytokine receptor-deficient mice, genetic knock-in strains and 

pharmaceutical agents including antibodies, soluble receptors, engineered fusion proteins have 

contributed to studies of classical IL-6 receptor signalling, IL-6 trans-signalling and the 

characterisation of receptor signalling mechanisms. These discoveries explain how IL-6 drives 

pathology and pioneering the development of biological drugs and small molecule inhibitors. Many 

of these agents are in routine clinical practice, and the real-world experiences obtained with these 
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agents continue to broaden our appreciation of IL-6 biology. For example, tissue regeneration, 

metabolism (e.g., glucose, lipid, iron), neuroendocrine activity, sleep, and psychological 

wellbeing15,237,238. Clinical correlates often place IL-6 at the centre of these conditions. These include 

involvements in associated comorbidities and patient multimorbidity in chronic disease. Here, IL-6 

contributes to increased cardiovascular risk (e.g., alterations in endothelial dysfunction, cellular 

adhesion, clot formation, and vascular tone), and processes affecting anaemia, fatigue, acute 

psychosocial stress, and depression. So, what does the future hold for IL-6 research? 

In clinical studies, the measurement of IL-6 provides a blunt marker of inflammation. However, 

interpretations often ignore the contribution of sIL-6R, the impact of sgp130, circadian differences 

in IL-6 expression, and genetic traits that affect IL-6 bioactivity and bioavailability12,32,43,78,276. When 

considering the physiological role of IL-6 in health and disease, it is essential to gain as much 

information as possible about the biology of the cytokine.  Such insights will determine whether IL-6 

is simply a biomarker of inflammation (akin to measures of C reactive protein) or a keystone cytokine 

supporting the architecture of the disease process12. Here, the complex nature of human diseases 

emphasises the need to consider at least two interconnecting inflammatory reactions. One that 

drives tissue-specific pathology and, a second, affecting the systemic features of chronic disease. 

For instance, available data from COVID-19 patients treated with IL-6 antagonists often made it 

difficult to understand whether IL-6 drives immune pathology or the containment of viral infection 

and anti-microbial immunity32,78,276. Thus, we need to become less fixated on defining IL-6 as a pro-

inflammatory cytokine. Current investigator-led studies are exploring the benefits of IL-6 

antagonists in various conditions. Examples include diseases of the eyes, schizophrenia, Schnitzler 

syndrome, graft-versus-host disease, erosive osteoarthritis, familial Mediterranean fever, and 

myocardial infarction. The primary endpoint of these studies is an improvement in disease activity. 

However, extending these outcome measures to identify the impact of IL-6 inhibition on common 

comorbidities within these conditions may provide additional insights into the physiological 

properties of IL-6 in health and disease. Here, advances in clinical trial design (e.g., bucket or 

umbrella trials) provide new and exciting opportunities to explore new features of cytokine biology 

that reflect changes in systemic inflammation or altered normal physiology.  
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Figure Legends– 

Figure-1. IL-6 activities beyond the control of immune regulation. 

(A) The ancestral IL-6-like system in Drosophila melanogaster comprising Unpaired (IL-6-like), 

Domeless (gp130-like), hopscotch (Janus-activated kinase) and STAT92E (STAT transcription factor) 

coordinates cytokine-like responses relevant to human physiology. (B) Summary of the 

contributions of IL-6 biology to human health and disease.  

Figure-2. The receptor mechanisms coordinating IL-6 activity. 

(A) Cartoons depicting the three modes of IL-6 receptor signalling. Classical IL-6 receptor signalling 

occurs in cells expressing the cognate IL-6 receptor (IL-6R) and the signal-transducing receptor 

subunit gp130. Circulating sIL-6R retains the capacity to bind IL-6, forming a cytokine-cytokine 

receptor complex that can activate cells expressing gp130, but lacking IL-6R (e.g., endothelial cells, 

fibroblasts, mesothelial cells, and smooth muscle cells). This mode of IL-6 signalling is termed IL-6 

trans-signalling. Finally, IL-6 trans-presentation represents a juxtracrine-form of cellular activation. 

Here, IL-6 presented in complex with IL-6R activates cell responses in adjacent cells expressing 

gp130. (B) Focussing on the intracellular pathways coordinated by gp130 activation, the cartoon 

shows the various signalling intermediates controlled by IL-6 and the cellular responses elicited by 

their activation. 

Figure-3. IL-6 activities relevant to physiology and pathophysiology. 

The biological properties of IL-6 are summarised and colour-coded to identify involvements in 

metabolic processes (blue), links to functional processes (orange) and clinical outcomes (white). 

Activities are focussed on the IL-6 responses in the liver, brain, bone, muscle, and organs of the HPA 

axis (hypothalamus, H; pituitary gland, P; adrenal cortex, A). The connecting red lines identify how 

IL-6 activities coordinated within these organs potentially link to deliver wholesale physiological 

changes. 
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