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1. Introduction

In this article, we develop a theme introduced by Brualdi, Kiernan, Meyer, and 
Schroeder in [1], by investigating a class of bipartite graphs related to alternating sign 
matrices. In general, we may associate to any matrix the bipartite graph whose vertices 
correspond to rows and columns, and where an edge between the vertices representing 
Row i and Column j encodes the information that the (i, j) entry is non-zero. Additional 
features of the non-zero entries (for example, sign) might be indicated by assigning 
colours to the edges. In the case of alternating sign matrices, the special matrix struc-
ture translates to particular combinatorial properties of the resulting bipartite graphs. 
We introduce the main objects of interest in this opening section.

1.1. Alternating sign matrices and alternating signed bipartite graphs

Definition 1.1.1. An alternating sign matrix (ASM) is a (0, 1,−1)-matrix in which all row 
and column sums are 1, and the non-zero elements in each row and column alternate in 
sign.

It is easily observed that permutation matrices are examples of ASMs, and there are 
contexts in which the concept of an ASM arises as a natural extension of a permutation. 
Alternating sign matrices were first investigated by Mills, Robbins, and Rumsey [2], who 
observed their connection to a variant of the ordinary determinant function related to the 
technique of Dodgson condensation [3]. In their construction, the role of ASMs is similar 
to that of permutations in the usual definition of the determinant. This motivated the 
problem of enumerating the ASMs of size n ×n, leading to the Alternating Sign Matrix 
Conjecture, namely that this number is

1!4!7! . . . (3n− 2)!
n!(n+ 1)! . . . (2n− 1)! .

Independent and very different proofs were published in 1996 by Zeilberger [4] and 
Kuperberg [5], respectively using techniques from enumerative combinatorics and from 
statistical mechanics. Zeilberger’s article establishes that the number of n × n ASMs 
is equal to the number of totally symmetric self-complementary plane partitions in a 
2n × 2n × 2n box, and the connection between these two classes of objects is further 
explored by Doran [6].

A connection to physics arises from the square ice model [7] for two-dimensional crystal 
structures; square patches of which correspond exactly to alternating sign matrices. 
Interest in alternating sign matrices intensified following the discovery of these deep 
connections between apparently disparate fields. A detailed and engaging account of the 
resolution of the alternating sign matrix conjecture can be found in the book by Bressoud 
[8].
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Recent developments in the study of ASMs include an investigation of their spectral 
properties in [9], an extension of the concept of Latin square arising from the replacement 
of permutation matrices by ASMs in [10], and a study of some graphs arising from ASMs 
in [1]. This latter article introduces the concept of the alternating signed bipartite graph 
(ASBG) of an ASM, which is constructed from an alternating sign matrix as follows. 
The graph has a vertex for each row and each column of the matrix. Edges in the graph 
represent non-zero entries; the vertices corresponding to Row i and Column j are adjacent 
if and only if the entry in the (i, j)-position of the matrix is non-zero. Edges are marked 
as positive or negative, respectively represented by blue and red edge colours, according 
to the sign of the corresponding matrix entry. (For interpretation of the colours in the 
graph(s), the reader is referred to the web version of this article.)

Example 1.1.2. All seven 3 ×3 ASMs and their corresponding ASBGs (up to isomorphism) 
are shown below:

Note: ASMs A and B correspond to the same ASBG if B = PAQ for permutation 
matrices P and Q.

From the viewpoint of bipartite graphs, we propose the following abstraction of the 
previous definition.

Definition 1.1.3. An alternating signed bipartite graph (ASBG) is a bipartite graph G
with no isolated vertices, and with edges coloured blue and red, for which there exists an 
ordering of the vertices of G such that, for each vertex u of G with neighbours ordered 
v1, v2, . . . , vk, the edges uv1, uv2, . . . , uvk alternate in colour, starting and ending with 
blue.

Suppose that G is an ASBG in the sense of Definition 1.1.3, with a bipartition (P1, P2)

of its vertex set. Let u1, . . . , uk be the vertices of P1 and let v1, . . . , vl be the vertices of 
P2. It is easily confirmed that the following assignment determines a k × l alternating 
sign matrix A(G).
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A(G)ij =

⎧⎪⎨
⎪⎩

1 if uivj is a blue edge in G

−1 if uivj is a red edge in G

0 if uivj is not an edge in G

Since every row and every column of A(G) has entries summing to 1, the sum of all 
entries of A(G) is equal both to k and l. Thus k = l and G is balanced (i.e. |P1| = |P2|).

Our main theme in this article is the problem of determining whether a given graph 
admits a 2-edge-colouring with respect to which it is an ASBG. The article is organised as 
follows. In Section 2, we introduce the concept of an ASBG-colouring, and a relaxation of 
this, which we refer to as a difference-1 colouring. We show that these two are equivalent 
in the case of a graph in which no edge belongs to multiple cycles. In Section 3, we 
establish general criteria for a graph to admit a difference-1 colouring, establishing a 
generalisation of Hall’s Matching Theorem in the process. In the final section, we consider 
when a bipartite graph may admit multiple difference-1 colourings, and introduce some 
variants of such colourings.

2. ASBG-colourings

In this section, we consider properties of edge-colourings compatible with an ASBG 
structure.

2.1. Obstacles to ASBG-colourability

We define a colouring c of a graph G to be a function c : E(G) → {r,b}, and denote the 
graph G endowed with the colouring c by Gc. If H is a subgraph of G, then c restricts 
to a colouring cH of H. We denote by Hc the graph H with edges coloured according to 
cH.

If Gc is an ASBG and v is a vertex of Gc, then the numbers degB(v) and degR(v)

of blue and red edges incident with v, respectively, satisfy the following relation for all 
vertices v:

degB(v) − degR(v) = 1. (1)

Definition 2.1.1. A 2-edge colouring c of a graph G is an ASBG-colouring of G if Gc is 
an ASBG. The graph G is ASBG-colourable if there exists an ASBG-colouring of G.

The following are some basic necessary (but not sufficient) criteria that a graph G
must meet for it to be ASBG-colourable:

• G must be bipartite and balanced.
• The degree of each vertex in G must be odd, from (1).
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Example 2.1.2. Let G be the following graph:

We attempt to colour the edges of G with a colouring c, so that (1) is satisfied at 
every vertex:

• All edges incident with vertices of degree 1 must be blue.
• Now 4 out of 5 edges incident with each of the vertices a and a are blue, so it is not 

possible for Gc to satisfy (1) at each vertex.

Therefore G is not ASBG-colourable.

Example 2.1.3. Now consider the following graph G with edge-colouring c.

We observe that c is the unique colouring of G that satisfies (1) at every vertex. 
However, we claim that there is no ordering of the vertices that satisfies the condition 
of Definition 1.1.3 for this colouring. The conditions of Definition 1.1.3, applied to the 
vertex a, require that y occurs between x and z in an ordering of the vertices of G. 
The same conditions applied to B require that x occurs between y and z. Since these 
requirements are incompatible, we conclude that G is not ASBG-colourable.

Examples 2.1.2 and 2.1.3 demonstrate two different ways in which a graph can fail 
to be ASBG-colourable. If a graph G has an edge colouring c that satisfies (1) at every 
vertex, we say that G has a difference-1 colouring, and if the vertices of Gc can be ordered 
such that the edges incident with each vertex alternate in colour, beginning and ending 
with blue, we say that Gc is configurable.

In this paper, we present necessary and sufficient conditions for a given bipartite graph 
to have a difference-1 colouring, as well as classes of graphs which are configurable for 
any difference-1 colouring. We also give a generalisation of Hall’s Matching Theorem, 
which is needed further in the paper.
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2.2. Difference-1 colourings

Definition 2.2.1. A 2-edge colouring c of a graph G is a difference-1 colouring of G if Gc

satisfies degB(v) − degR(v) = 1 at every vertex v.

Note: We have introduced the concept of a difference-1 colouring specifically to 
address the question of ASBG-colourability. Therefore, we consider the existence of 
difference-1 colourings only for bipartite graphs.

Definition 2.2.2. A difference-1 colouring c of a bipartite graph G is configurable if Gc

satisfies the conditions of Definition 1.1.3.

We remark that the property of configurability can be usefully visualised in terms of 
embedding the vertices in the plane along two parallel lines so that the edges incident 
with each vertex alternate in colour, as in the diagrams in Examples 1.1.2 and 2.1.3.

Lemma 2.2.3. Let G be a bipartite graph with a difference-1 colouring. Then G is balanced.

Proof. Let c be a difference-1 colouring of G, and let b and r be the number of blue 
and red edges in Gc, respectively. Let (P1,P2) be the bipartition of V(G). Each vertex v
of P1 satisfies degB(v) − degR(v) = 1. Summing this expression over all v ∈ P1, we have 
|P1| = b− r. Similarly, |P2| = b− r. Therefore |P1| = |P2|, so G is balanced. �

Note: A graph has a difference-1 colouring if and only if each of its connected com-
ponents has a difference-1 colouring. Similarly, a graph is an ASBG if and only if each 
of its connected components is. Therefore, we consider the existence of difference-1 and 
ASBG-colourings only for connected graphs, and so all graphs from now on are assumed 
to be connected, balanced, and bipartite, unless otherwise stated.

Definition 2.2.4. A leaf is a vertex of degree 1.

Definition 2.2.5. A twig is a configuration of three vertices, consisting of two leaves 
adjacent to the third vertex of the twig (called the base of the twig), which has degree 3.

One useful property of leaves and twigs is that the colouring of their incident edges 
in any difference-1 colouring is uniquely determined. All edges incident with leaves must 
be coloured blue, which means that the remaining edge incident with the base of a twig 
must be coloured red, to satisfy (1).

Definition 2.2.6. A leaf-twig configuration at a vertex v is a configuration of four vertices 
(distinct from v), consisting of a leaf and a twig, where the base of the twig and the leaf 
are both incident with v.
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Note: We refer to the operation of deleting the four vertices of a leaf-twig configu-
ration, and their four incident edges, as removing a leaf-twig configuration from G. We 
also refer to the operation of adding four vertices to G in such a configuration, with the 
leaf and the base incident with a vertex v of G, as adding a leaf-twig configuration to G
at v.

A leaf-twig configuration with its only difference-1 colouring.

Lemma 2.2.7. Let G and G ′ be graphs with the property that G ′ is obtained from G by 
the addition of a leaf-twig configuration. Then G ′ has a difference-1 colouring if and only 
if G has a difference-1 colouring.

Proof. Since the addition of a leaf-twig configuration involves one additional edge of 
each colour at a single vertex of G, it is easily observed that any difference-1 colouring 
of G extends in a unique way to a difference-1 colouring of G ′. On the other hand, any 
difference-1 colouring of G ′ restricts to a difference-1 colouring of G. �

A consequence of Lemma 2.2.7 is that repeated addition and/or removal of leaf-twig 
configurations does not affect the status of a graph with respect to the existence of a 
difference-1 colouring.

Note: For any graph with a difference-1 colouring that is not configurable, it is 
possible to add leaf-twig configurations so the resulting graph is configurable. Adding 
leaf-twig configurations to a configurable graph will always result in a configurable graph.

The following definition is motivated by Lemma 2.2.7.

Definition 2.2.8. Given a graph G, we define the reduced form of G to be the graph that 
results from deleting leaf-twig configurations from G until none remain. We also refer to 
a graph as reduced if it possesses no leaf-twig configuration.

Lemma 2.2.9. Let G be a graph with a leaf-twig configuration S attached to a vertex v. Let 
G ′ be the graph obtained by deleting S from G. Then every graph obtained as a reduced 
form of G is isomorphic to a reduced form of G ′.

Proof. Let H be a reduced form of G, obtained from G by the deletion of a sequence 
S1, . . . , Sm of leaf twig configurations. Since the leaf-twig configuration S does not occur 
in H, at least one edge of S is deleted at some point in the reduction to H. This must 
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occur either in the deletion of a leaf-twig configuration attached to v, or in the deletion 
of a leaf-twig configuration attached to a neighbour of v. However, the latter case can 
only occur at a step where no leaf-twig configuration remains attached to v. We conclude 
that some step in the reduction process from G to H entails the deletion of a leaf-twig 
configuration attached to v.

Let Sk be the first such leaf-twig configuration in the sequence, and denote by H ′ the 
graph that remains after the deletion of S1, . . . , Sk. Starting with G, we may reach a 
graph isomorphic to H ′ by the deletion of the following alternative sequence of leaf-twig 
configurations. We first delete the leaf-twig configuration S to obtain G ′. We then delete 
S1, . . . , Sk−1 in order, which is possible because none of these leaf-twig configurations 
are attached to v. The resulting graph is isomorphic to H ′, and differs from H ′ at most 
by the particular leaves and/or twigs at the vertex v. Continuing the original sequence 
to form H, we find that H is isomorphic to a reduced form of G ′. �

It follows from Lemma 2.2.9 that the reduced form of G is well defined, up to isomor-
phism. Suppose that H is a reduced graph obtained from G via the deletion of a specified 
sequence of leaf-twig configurations. Then repeated applications of Lemma 2.2.9 shows 
that every graph that can be obtained as a reduced form of G is isomorphic to a reduced 
form of each of the graphs arising in the reduction of G to H, in particular H itself. Thus, 
every reduced form of G is isomorphic to H, and the reference in the definition to the
reduced form is justified.

It is a consequence of Lemma 2.2.7 that G has a difference-1 colouring if and only if 
its reduced form has a difference-1 colouring. For this reason, it is sufficient to restrict 
attention to reduced graphs when considering the existence of difference-1 colourings.

2.3. Configurability for cactus graphs

In this section, we examine a class of graphs for which any graph with a difference-1 
colouring is configurable; namely cactus graphs.

Definition 2.3.1. A cactus graph is a connected graph in which any pair of cycles share 
at most one vertex.

Equivalently, a cactus graph is a connected graph in which any edge belongs to at 
most one cycle. Our main result in this section is Theorem 2.3.3, which asserts that 
for a cactus graph, the existence of a difference-1 colouring is a sufficient condition for 
ASBG-colourability. Lemma 2.3.2 provides the key technical ingredient in the proof of 
our main theorem in this section. Our proof of this statement makes use of a partition 
of the vertex set of a bipartite cactus graph, which is explained in the following lemma. 
We denote the minimum number of edges in a path between a pair of vertices v and u
in a graph by d(v, u).
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Lemma 2.3.2. Let v be a vertex of a bipartite cactus graph G. Write k = maxu∈V(G) d(v,
u), and for i = 0, . . . , k define

Vi = {u ∈ V(G) : d(v,u) = i}.

1. If 1 � i � k and x ∈ Vi, then x has at most two neighbours in Vi−1.
2. If 1 � i � k − 1 and x ∈ Vi, then there is at most one vertex y in Vi, distinct from 

x, for which x and y have a common neighbour in Vi+1. Moreover, if such a vertex 
y exists, then x has only one neighbour in Vi−1.

Proof. We note that V(G) is the disjoint union of the sets Vi, and that, since G is 
bipartite, the neighbours of any vertex in Vi belong to Vi−1 ∪ Vi+1, for 1 � i < k.

For item 1, suppose that x has distinct neighbours u1, u2, u3 in Vi−1. Each of the 
edges xu1, xu2, xu3 is the initial edge of a path in G from x to v. It follows that xu2
belongs to two distinct cycles, one including the edge xu1 and one including the edge 
xu3, contrary to the hypothesis that G is a cactus graph.

For item 2, suppose that y1 and y2 are two vertices of Vi, distinct from x, with 
the property that z1 is a common neighbour of y1 and x in Vi+1, and z2 is a common 
neighbour of y2 and x in Vi+1. Let u be a neighbour of x in Vi−1. Then the edge xu
belongs to two distinct cycles in G, one including the edges z1x and z1y1, and the other 
including the edges z2x and z2y2.

Thus at most one element of Vi\{x} shares a neighbour z with x in Vi+1. Suppose that 
y is such a vertex, and that x has two neighbours u1 and u2 in Vi−1. Then the edge u1x

belongs to a cycle in G that includes the edges xz and zy, and also to a cycle in G that 
includes the edge xu2 and no vertex of Vi+1. From this contradiction we conclude that 
if x shares a neighbour in Vi+1 with another vertex of Vi, then x has only one neighbour 
in Vi−1. �
Theorem 2.3.3. Let G be a cactus graph with difference-1 colouring c. Then Gc is con-
figurable.

Proof. We choose a vertex v of G and partition the vertex set of G into non-empty 
subsets V0 = {v}, V1, . . . , Vk as in the statement of Lemma 2.3.2. We note that (P1, P2)

is a bipartition of the vertex set of G, where P1 = ∪i evenVi and P2 = ∪i oddVi. We let L
and M be parallel lines embedded on the plane and position the vertex v on the line L. 
We configure G by positioning the vertices of P1 and P2 at distinct locations on L and 
M respectively, so that the order in which the vertices are positioned along the two lines 
satisfies the requirements of Definition 2.2.2. For 1 � i � k, the ith step in the process 
involves the positioning of the vertices of Vi on L or M, according to whether i is even 
or odd.

Suppose that r steps have been completed and that every vertex of ∪r−1
i=0Vi has the 

property that its neighbours are positioned in a manner consistent with an ASBG-
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colouring. Let x1, . . . , xt be the vertices of Vr. We position the vertices of Vr+1 (on L
or M) in t steps, the first of which is to position the neighbours of x1. At most two 
neighbours of x1 (in Vr−1) are already positioned; all further neighbours of x1 belong 
to Vr+1 and may be positioned in a manner that satisfies the alternating condition on 
colours of edges incident with x1. At step j we position the neighbours of xj in Vr+1. From 
Lemma 2.3.2 it follows that at most two neighbours of xj in G have already been assigned 
positions at this stage, potentially two from Vr−1 or one each from Vr−1 and Vr+1. In any 
case we may position the remaining neighbours of xj to satisfy the alternating condition 
on coloured edges.

This iterative process results in a configuration of G. �
Example 2.3.4. The diagram below demonstrates how the construction of Theorem 2.3.3
might apply to a particular cactus graph with a difference-1 colouring, for a choice of 
initial vertex v.

3. Deciding the existence of a difference-1 colouring

In this section, we develop methods of determining whether a given bipartite graph 
admits a difference-1 colouring. We consider this question first for trees and unicyclic 
graphs, where the analysis is considerably easier.

3.1. Trees

We now consider necessary and sufficient conditions for a tree to have a difference-
1 colouring. As we have seen in Section 2.3, this will resolve the question of ASBG-
colourability for trees, as every difference-1 colouring of a tree is configurable. We first 
note that the only connected ASBG that contains no red edges is K2, the complete graph 
on two vertices (with its edge coloured blue).

Theorem 3.1.1. Let T be a tree. Then T has a difference-1 colouring if and only if its 
reduced form is K2.
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Proof. Suppose the reduced form of T is K2. Then T can be constructed by repeat-
edly adding leaf-twig configurations to K2. Hence, by Lemma 2.2.7, T has a difference-1 
colouring.

Now suppose that T has a difference-1 colouring c and is not K2. Choose any vertex r
of T . Let u be a leaf of T which is furthest from r, and let b be the unique neighbour of 
u. Note that b �= r, as that would mean that T is a star graph, and the only star graph 
with a difference-1 colouring is K2. As T has a difference-1 colouring, every vertex of T
has odd degree. Therefore u shares its neighbour b with at least one other vertex u1
that is further from r than b. As u is a furthest leaf from r, this means that u1 is also 
a leaf. As u and u1 are both leaves, it follows that the edges ub and u1b must be blue 
in Tc. This means that a third edge incident with b and another vertex v must be red. 
If v is not on the unique path from b to r, then v has a neighbour which is a leaf that is 
further from r than u, which is contrary to the choice of u. Therefore deg(b) = 3, and v
is on the unique path from b to r. As c is a difference-1 colouring and bv is red in Tc, v
must be incident with at least two blue edges. Let l be a neighbour of v which is not on 
the unique path from v to r, such that the edge lv is blue. As d(r, u) = d(r, l) + 1, this 
means that l must be a leaf, otherwise it would be incident with at least one red edge 
leading to a leaf further from r than u. This means that u, u1, b, and l make a leaf-twig 
configuration, with b being the base of the twig, and l the leaf. Removing this results in 
another tree with a difference-1 colouring (Lemma 2.2.7). Inductively, this means that 
leaf-twig configurations can be removed until there are no more red edges. As K2 is the 
only connected ASBG with no red edges, this process will reduce T to K2. �

We note that because of Theorem 2.3.3, Theorem 3.1.1 is equivalent to Theorem 3.1
of [1], which is presented there in a slightly different formulation.

Corollary 3.1.2. A tree has an ASBG-colouring if and only if its reduced form is K2, and 
this colouring is unique.

Note that the process outlined in the proof of Theorem 3.1.1 not only gives an existence 
condition for an ASBG-colouring of a tree, it gives the (unique) colouring. The following 
observation will be needed later, for the proof of Lemma 3.2.6.

Corollary 3.1.3. Let T be an ASBG-colourable tree and let r be a vertex of T . Then there 
is a sequence of leaf-twig removals that reduces T to a subgraph that consists of only 
leaves and twigs attached to r, with one more leaf than twig.

Proof. In the proof of Theorem 3.1.1, it was shown that a furthest vertex from r is 
always part of a removable leaf-twig configuration. So we successively remove a furthest 
leaf-twig configuration from r until any remaining leaf-twig configurations are attached 
to r. We call the resulting tree T ′. Theorem 3.1.1 tells us that it is possible to remove 
leaf-twig configurations from T until only K2 remains, where r is one of the vertices of this 
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K2. Therefore T ′ must be isomorphic to a copy of K2 with extra leaf-twig configurations 
at r, which means that T ′ consists only of leaves and twigs attached to r, with one more 
leaf than twig. �
3.2. Unicyclic graphs

Definition 3.2.1. A graph is unicyclic if it is connected and contains exactly one cycle.

When analysing the ASBG-colourability of graphs which are not trees, it is useful to 
define the skeleton of a graph.

Definition 3.2.2. For a graph G (containing at least one cycle), we refer to the subgraph 
that results from repeatedly removing leaves and their incident edges, until none remain, 
as the skeleton Sk(G) of G.

Note: Under the conditions of Definition 3.2.2, Sk(G) is well defined as a subgraph 
of G. In the process of repeatedly deleting leaves until none remain, the set of all deleted 
edges does not depend on the choice of which leaf to delete at each step. For a graph 
containing at least one cycle, this process results in a unique subgraph consisting of all 
cycles of the graph and all paths between those cycles. The process of repeatedly deleting 
leaves from a tree terminates with a single vertex, but which vertex remains depends on 
the order in which leaves are deleted. For this reason, we do not define the skeleton of a 
tree.

We also note that if G ′ is the reduced form of G, then Sk(G ′) = Sk(G).

Definition 3.2.3. A junction in a graph G is a vertex v with degSk(G)(v) � 3.

Note: If G is unicyclic, then the skeleton Sk(G) is the graph consisting of the cycle 
in G, and G has no junctions.

Definition 3.2.4. For any graph G that contains a cycle, let v be a vertex in Sk(G). We 
define the local tree at v, denoted by Tv, to be the connected component containing v
that remains when all edges of Sk(G) are deleted from G.

Example 3.2.5.
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Lemma 3.2.6. Let G be a graph with a difference-1 colouring c and with reduced form H. 
Then for each vertex v ∈ Sk(H), the local tree Tv consists either only of v, or of v with 
only leaves or only twigs incident with it.

Proof. The number of blue edges at v in Hc is one greater than the number of red edges 
at v in Hc. This also is the case for every vertex in Tc

v except possibly for v itself.
Let d = degTv

B(v) − degTv

R(v). If d > 1, we attach d− 1 twigs to v. If d < 1, we 
attach 1 − d leaves to v. We call the resulting coloured tree T ′

v.
T ′
v is an ASBG, which means that leaf-twig configurations can be removed from T ′

v

until only leaf-twig configurations attached to v remain (Corollary 3.1.3). If there are any 
leaf-twig configurations attached to v that are also in Tv, we remove them. We have now 
removed all leaf-twig configurations in T ′

v that are also in G, and the remaining graph 
consists of a copy of K2 containing v with |d − 1| leaf-twig configurations attached to v. 
We now delete the extra |d − 1| twigs or leaves in T ′

v that are not in Tv. We are now left 
with the reduced form of Tv; a subgraph of Tv that consists either only of v, or of v with 
only leaves or only twigs incident with it. �

Example 3.2.7.

Corollary 3.2.8. Let G be a graph with a difference-1 colouring c and let H be the reduced 
form of G. Then any vertex of degree 2 in Sk(G) is of one of the following types.

• Leaf-Type: A vertex of degree 3 in H, with a leaf incident with it. If a blue and red 
edge meet at a vertex v of degree 2 in Sk(Gc), then v must be a leaf-type vertex in 
G.

• Twig-Type: A vertex of degree 3 in H, with the base of a twig incident with it. If two 
blue edges meet at a vertex v of degree 2 in Sk(Gc), then v must be a twig-type vertex 
in G.

• Triple-Type: A vertex of degree 5 in H, with three leaves incident with it. If two red 
edges meet at a vertex v of degree 2 in Sk(Gc), then v must be a triple-type vertex in 
G.
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Note: These three types of vertex were identified in [1] as the only types of vertices 
present in the cycle of a unicyclic ASBG. In this paper, we use the terms leaf-type, twig-
type, and triple-type to classify vertices of degree 2 in Sk(G). Vertices of higher degree 
in Sk(G) will be discussed later. We consider twig-type and triple-type vertices to be of 
opposite type to one another.

Definition 3.2.9. Let G be a graph whose skeleton contains at least one vertex that is 
not of leaf-type. A limb of G is a subgraph H of Sk(G) such that the edges of H form a 
trail whose only non-leaf-type vertices are its (not necessarily distinct) endpoints.

We observe that every edge of Sk(G) belongs to exactly one limb, and that the skeleton 
of a graph is the edge-disjoint union of its limbs.

Lemma 3.2.10. Let G be a graph with a difference-1 colouring and let P = v1 . . . vk be the 
trail spanning a limb in Sk(G) which does not contain any junctions. Then P has odd 
length if v1 and vk are both of twig-type or triple-type, and even length if v1 and vk are 
of opposite type.

Proof. Let v1 and vk be vertices of the same or opposite type to one another. This means 
that each is a twig-type or triple-type vertex. As v1 is either a twig-type or triple-type 
vertex, both edges incident with v1 are the same colour. The same is true for vk. As 
v2, . . . , vk−1 are all leaf-type vertices, they are each incident with an edge of each colour, 
which means that edge colours alternate along P. Therefore, if k − 1 is odd, the colours 
of the edges incident with v1 are the same as those incident with vk, meaning that v1
and vk are of the same vertex type. If k −1 is even, then the colours of the edges incident 
with v1 are different to those incident with vk, meaning that v1 and vk are of opposite 
vertex type. �

We refer to the length of the trail spanning a limb L as the length of L.

Proposition 3.2.11. Let G be a bipartite unicyclic graph. Then G is ASBG-colourable if 
and only if G satisfies the following:

• Each vertex in Sk(G) is either a leaf-type, twig-type, or triple-type vertex;
• Each limb has odd (even) length if its endpoints are of the same (opposite) type.

Proof. Suppose G satisfies the above conditions. We now give G a colouring c, as follows. 
At any twig-type vertex v of Sk(G), we colour the edges of Sk(G) incident with v blue, 
we colour the edge between v and the base of the twig red, and the other two edges 
of the twig blue. So v is incident with one more blue edge than red. At any triple-type 
vertex v of Sk(G), we colour the edges of Sk(G) incident with v red, and we colour the 
edges between v and the three leaves blue. So v is incident with one more blue edge 
than red. As all vertices of Sk(G) that are of opposite type are an even distance apart, 
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vertices of opposite type cannot be neighbours, and so it is possible to colour G in this 
way. Along each limb of Sk(G), the first edge is now coloured red or blue according to 
the type of vertex it is incident with. If the other vertex incident with this edge is of 
leaf-type, we colour the next edge along the limb the opposite colour to the previous 
edge. We continue to do this until we reach the other end of the limb. As the limb has 
odd (even) length if the vertices are of the same (opposite) type, the colour of the last 
two edges of the limb are the opposite to one another, and the vertex incident with these 
two edges are of leaf-type. Finally, we colour all edges between all leaf-type vertices and 
leaves blue. Now all leaf-type vertices are incident with one more blue edge than red, 
and c is a difference-1 colouring of G. As G is unicyclic, we know that Gc is configurable 
(Theorem 2.3.3). So G is ASBG-colourable.

On the other hand, suppose G has an ASBG-colouring c. From Corollary 3.2.8 and 
Lemma 3.2.10, we have that each vertex in Sk(G) is of leaf, twig, or triple-type, and that 
each limb has odd (even) length if its endpoints are the same (opposite) type. �
3.3. Graphs with junctions

We now turn our attention to bipartite graphs possessing junctions, where the prob-
lems of determining the existence of a difference-1 colouring and configurability are both 
considerably more complicated.

We have identified necessary and sufficient conditions for trees and unicyclic graphs 
to admit difference-1 colourings. In this section, we extend our analysis to the situation 
of graphs whose skeletons include junctions. We note that Lemma 3.2.6, Corollary 3.2.8, 
and Lemma 3.2.10 provide a partial test for difference-1 colourability, in the sense that 
a bipartite graph whose reduced form fails to satisfy the conditions of these results does 
not have a difference-1 colouring. The main content of this section is an algorithm whose 
purpose is to detect obstacles to a graph that passes these conditions having a difference-
1 colouring, or to confirm the existence of a difference-1 colouring. We may restrict our 
attention to reduced graphs satisfying these conditions.

We now describe the operation of the algorithm on a reduced graph G satisfying the 
conditions of Lemma 3.2.6, Corollary 3.2.8, and Lemma 3.2.10. The algorithm initializes 
a vertex set J to be the empty set and then iterates the following step. Each iteration 
involves at least one addition of a new element to J.

A junction j with j /∈ J is chosen, and added to the set J. Integer weights are assigned 
in turn to each edge e incident with j as follows.

• If e is not in Sk(G), either e is incident with a leaf and is assigned the weight 1
(indicating that e must be blue in any difference-1 colouring of G), or e is incident 
with the base of a twig and is assigned the weight −1 (indicating red).

• If e is in Sk(G), and the limb to which e belongs ends in a vertex of twig/triple-type, 
then the colour of e in any difference-1 colouring is determined by this limb, and e
is assigned the weight 1 or −1 accordingly.
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• The remaining possibility is that the non-leaf type vertex on the other end of the limb 
starting at j along e is a junction j1. In this case, the algorithm proceeds as follows:
– If j1 ∈ J, then the weight 0 is assigned to e.
– If j1 /∈ J (which means, in particular, that j1 �= j), then j1 is adjoined to the set J, 

and the assignment procedure is applied recursively to all edges of G incident with 
j1, with the exception of the edge e1 that belongs to the same limb as e. An integer 
weight is then assigned to e1 by the requirement that the sum of weights on all 
edges incident with j1 must be 1. Then xe, the weight assigned to e is assigned by 
xe = ±xe1 , according to whether the limb containing e and e1 requires that these 
two edges have the same or opposite colours.

This iteration of the algorithm concludes when weights have been assigned to all 
edges incident with junctions that can be reached from j via limbs of Sk(G) that do not 
include twig or triple-type vertices. No more iterations of the algorithm are run when all 
junctions of G are included in J.

If the algorithm identifies a junction for which the sum of the incident weights is 
not 1, then the algorithm returns False to indicate that G does not admit a difference-1
colouring. Otherwise, it returns True, and the algorithm proceeds to assign weights to all 
edges of the graph that are not incident with junctions, so that all edges of G have now 
been assigned a weight. If all assigned weights are 1, −1, or 0, then G admits a difference-1
colouring, which we can easily determine from the output of the algorithm. Otherwise, the 
algorithm has assigned some surplus weights; weights which have magnitude greater than 
1. In this case, the existence or not of a difference-1 colouring depends on properties of 
the graph consisting of those limbs of Sk(G) that include edges that have been assigned 
surplus or zero weights. This theme is developed in Section 3.4. We now present the 
details of the algorithm in a pseudocode format.

Algorithm 1 Difference-1 Colouring Algorithm.
J ← {}

function assign(j)
for e in j.edges do � j.edges is the set of edges incident with j

if e.next = “leaf” then � if e /∈ Sk(G), e.next is the type of the other vertex incident with e
e.weight ← 1

else if e.next = “base_of_twig” then
e.weight ← −1

else if e.next = “twig-type” then � e.next is type of last vertex of limb L from j along e
e.weight ← (−1)e.distance+1 � e.distance returns the length of L

else if e.next = “triple-type” then
e.weight ← (−1)e.distance

else if e.next = “junction” then
j1 ← e.next_junction � We must first calculate the weights of edges incident with j1
if j1 ∈ J then

e.weight ← 0
else

e1 ← e.last_edge � Label the last edge on L
J.append(j1)
e1.next ← “null” � In the recursive step, the weight of e1 should not be calculated
assign(j1)
e1.weight ← 1− sum(f.weight for f in (j1.edges \{e1}))
e.weight ← (−1)e.distance−1e1.weight
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while |J| < |junctions| do
junct ← (junctions \J) [0]
J.append(junct)
assign(junct)

function w(j) return sum(e.weight for e in j.edges)
result ← True
for j in junctions do

if w(j) �= 1 then
result ← False � If there is a junction with w(j) �= 1, then the algorithm returns False

if result then
for e in edges do

if e.weight = “null” then � If e is not incident with a junction, it has no weight
e.weight ← (−1)e.distancee.next_weight � We now assign e a weight

return result

For a vertex v of a graph G, let w(v) denote the sum of the weights assigned by 
Algorithm 1 to the edges incident with v.

Lemma 3.3.1. Let G be a graph with a difference-1 colouring. Then Algorithm 1 assigns 
w(j) = 1 for all junctions j in G.

Proof. G has a difference-1 colouring, which means that there is some function c1 :

E(G) → {1, −1} that assigns weights of ±1 to all edges e of G such that for each vertex 
v of G, the sum w ′(v) of weights incident with v is 1. Algorithm 1 implies a function 
c2 : E(G) → Z of integer weight assignments to each edge e in G. If we remove the edges 
e for which c1(e) = c2(e), and any vertices which are now isolated, the resulting graph 
H consists of connected components which are all subgraphs of Sk(G) and are composed 
of limbs whose ends are both junctions. On each iteration of the algorithm, a junction 
j is chosen, and any other junction j ′ encountered while trying to assign weights to j
is assigned weights first such that w(j ′) = 1. This process partitions the junctions in 
the same way as the connected components of H. For a component K of H, because 
w ′(v) = w(v) = 1 in G for any vertex v �= j, the fact that H results from removing only 
the edges e with c2(e) = ±1 from G means that w ′(v) = w(v) in H for any vertex v �= j. 
We also know that w ′(j) = 1 in G. If (P1, P2) is the bipartition of K such that j ∈ P1, 
because each edge is incident with one vertex in each part of the bipartition, we have

∑
v∈P1

w ′(v) =
∑
v∈P2

w ′(v) and
∑
v∈P2

w(v) =
∑
v∈P1

w(v).

And because w ′(v) = w(v) for all vertices in P2, we have
∑
v∈P2

w ′(v) =
∑
v∈P2

w(v).

Which therefore gives us
∑

w ′(v) =
∑

w(v).

v∈P1 v∈P1
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And because w ′(v) = w(v) for all v �= j, this implies that w ′(j) = w(j). Therefore the 
algorithm has assigned w(j) = 1 for all junctions j in G. �

Note that the weights assigned to each edge incident with a junction can vary de-
pending on the order in which the algorithm deals with the junctions and edges, but the 
result (whether or not the algorithm concludes that G has a difference-1 colouring) is 
independent of such choices.

It is possible that a graph will have only junctions whose incident weights sum to 1
but have no difference-1 colouring. This is because Algorithm 1 can assign weights to 
edges x(e) that have magnitude greater than 1. We call these weights surplus weights, 
and they (as well as zero weights) arise in the case of edges whose colour may differ in 
distinct difference-1 colourings of a graph, if any such colourings exist. In order to assign 
a particular colouring to a graph, these surplus weights must be redistributed so that 
every edge has weight 1 or −1, while maintaining w(j) = 1 for each junction j. If this is 
possible, we say that the surplus weights are redistributable, and we have a criterion for 
exactly when the surplus weights of any graph are redistributable, which will be outlined 
in Section 3.4.

The definition of redistributability will be given in Section 3.4, but the following 
example demonstrates the key concepts involved.

Example 3.3.2. Here, some edges of G have been assigned surplus weights. These surplus 
weights are redistributable, as the sum of the weights at each junction in Sk(G) before 
and after redistribution remain constant.
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3.4. Redistributability

We now consider the situation where Algorithm 1 cannot decide on the existence of 
a difference-1 colouring for a graph G. This means that the algorithm assigns weights 
to the edges of G such that w(j) = 1 for each junction j in G, but some of the weights 
assigned to the edges are surplus weights.

Definition 3.4.1. Let G be a graph for which Algorithm 1 cannot determine the existence 
of a difference-1 colouring, and let e be an edge of G that has been assigned a surplus 
weight by Algorithm 1. A redistribution of the weight of e is a redefining of the weight 
of e and of some set S of the other edges of G such that every weight that has been 
redefined now has a value of 1 or −1, the sum of the weights of all edges incident with 
each vertex remains 1, and there is no proper subset of S for which this is possible. We 
say the surplus weights of a graph are redistributable if it is possible to redistribute all 
surplus weights in G successively, until none remain.

In order to determine whether or not the surplus weights of a graph are redistributable, 
we can partition the edge set of the graph into equivalence classes and consider each 
equivalence class separately, as follows.

Definition 3.4.2. Let E ′(G) be the set of all edges of G that belong to a cycle. For 
e1, e2 ∈ E ′(G), e1 ∼ e2 if and only if e1 and e2 occur together in a cycle of G.

Lemma 3.4.3. ∼ is an equivalence relation on E ′(G).

Proof. It is immediate that ∼ is reflexive and symmetric. For transitivity, let e1 = u1v1, 
e2 = u2v2, and e3 = u3v3 be edges of G with e1 ∼ e2 and e2 ∼ e3. Let C1 be a cycle 
containing both e1 and e2, and C2 be a cycle containing both e2 and e3. If C1 = C2, 
then e1 ∼ e3. Assume e1 does not belong to C2.

Let Pu1 be the path in C1 starting at u1 and ending at a vertex u in C2, that does 
not include e1 and contains no edge in C2. Let Pv1 be the path in C1 starting at u1 and 
ending at a vertex v in C2 that does include e1 and contains no edge in C2. We know 
that u and v are distinct, because e2 is common to both C1 and C2. Let Pu3 be the path 
in C2 starting at u and ending at u3 which does not include e2, and let Pv3 be the path 
in C2 starting at v and ending at u3 which does not include e2. Pu1 , Pv1 , Pu3 , and Pv3

form a cycle which contains e1 and e3.
Therefore e1 ∼ e2, e2 ∼ e3 =⇒ e1 ∼ e3; the relation is transitive. �
Note: We refer to the equivalence classes of ∼ as the common cycle classes of E ′(G).

Lemma 3.4.4. Let G be a graph with a difference-1 colouring whose edges have been 
assigned weights by Algorithm 1. Then all distinct difference-1 colourings of G can be 
obtained by redistributing any surplus and zero weights of G within common cycle classes.
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Proof. Define x : E(G) → Z to be a function that sends edges of G to the weights that 
they were assigned by Algorithm 1, and x ′ : E(G) → {1, −1} to be a redistribution of the 
surplus weights of G. We know that at any junction j, the sum of the values assigned by 
each of these functions to the edges incident with j is 1. Let us consider the subgraph D
of G, consisting of all edges e for which x(e) �= x ′(e), and their incident vertices. Define 
the δ-weight δ : E(D) → Z by δ(e) = x(e) − x ′(e). Note that for all edges in D, the 
δ-weight is a non-zero integer, and the sum of the δ-weights of all edges incident with 
a vertex in D is 0. Thus each vertex of D is incident with at least one edge of positive 
δ-weight and one of negative δ-weight.

Choose any neighbouring vertices u0 and u1 in D and then repeat the following step; 
on step i, choose a vertex ui+1 such that δ(uiui+1) is of the opposite sign to δ(ui−1ui). 
This process terminates at some step j when we choose a vertex uj+1 = uk, where 
0 � k � j. Because G is bipartite, the cycle ukuk+1 . . .ujuk that results from this 
process is of length at least 4 and each vertex of the cycle has incident edges with δ-
weight of opposite sign. We now define the graph D ′ to be the graph D with the δ-weight 
of each edge in this cycle reduced in magnitude by 1 while retaining its sign, and any 
edge that now has weight 0 is deleted. Note that all δ-weights in D ′ are non-zero integers 
and the sum of all δ-weights incident with a vertex of D ′ is 0, and thus we can repeat 
this process until we are left with an empty graph. Therefore D can be decomposed into 
cycles, which implies that surplus weights can be redistributed to other edges in the 
same common cycle class. �

We now consider when it is possible to redistribute surplus weights in a cactus graph.

Lemma 3.4.5. Let G be a cactus graph that passes Algorithm 1 and whose edges have 
been assigned weights. For a cycle C in G, let wC(v) denote the sum of the weights 
assigned to the edges of C incident with a vertex v in C. Then the surplus weights of G
are redistributable if and only if wC(v) ∈ {−2, 0, 2} for all cycles C in G and vertices v in 
C, and for every path P = v1v2 . . . vk in C with wC(v1), wC(vk) = ±2 and wC(vi) = 0
for all 1 < i < k − 1, k is even if wC(v1) = wC(vk) and odd if wC(v1) = −wC(vk).

Proof. First, assume that the surplus weights of G are redistributable. By Lemma 3.4.4, 
the surplus weights of G can be redistributed within the common cycle classes of G. Since 
G is a cactus graph, this means that the common cycle classes of G are the cycles of G. 
Let C be a cycle of G. As any redistribution of the surplus weights involves all edges 
being assigned weights of ±1, this means that wC(v) ∈ {−2, 0, 2} for any vertex v in C. If 
there is a path P = v1v2 . . . vk in C such that wC(v1), wC(vk) = ±2 and wC(vi) = 0 for 
all 1 < i < k −1, this means that each interior vi is incident with one edge of each colour 
in any difference-1 colouring, while v1 and vk are incident with two edges of the same 
colour. If v1v2 is the same colour as vk−1vk, then k must be even and wC(v1) = wC(vk). 
If v1v2 is the opposite colour to vk−1vk, then k must be odd and wC(v1) = −wC(vk).
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Now assume wC(v) ∈ {−2, 0, 2} for all cycles C in G and vertices v in C, and for every 
path P = v1v2 . . . vk in C with wC(v1), wC(vk) = ±2 and wC(vi) = 0 for all 1 < i < k −1, 
k is even if wC(v1) = wC(vk) and odd if wC(v1) = −wC(vk). We can redistribute the 
weights incident with v1 and vk by assigning a weight of x = wC(v1)

2 to v1v2, a weight 
of −x to v2v3, . . . , a weight of (−1)kx to vk. As k is even if wC(v1) = wC(vk) and odd 
if wC(v1) = −wC(vk), this means that wC(vk) = (−1)kx. Therefore the surplus weights 
of G are redistributable. �

To determine in general when surplus weights can be redistributed in a graph G that 
passes Algorithm 1 and whose edges have been assigned weights, let G ′ be a subgraph of 
G consisting of all edges from one common cycle class of G and their incident vertices. 
For each vertex v of G ′, let r(v) denote the number of edges of G ′ incident with v which 
are required to be red in any difference-1 colouring of G (as determined by Algorithm 1). 
Therefore r(v) is 0, 1, or 2, if v is a twig-type, leaf-type, or triple-type vertex, respectively, 
and using Lemma 3.4.4

r(v) =
1
2
(
degG′(v) −

∑
uv∈E(G′)

x(uv)
)
,

if v is a junction. If we can find a subgraph H of G ′ for which degH(v) = r(v) for each 
vertex v in G ′, then an edge colouring of G ′ where all edges of H are coloured red and the 
remaining edges are coloured blue is consistent with a difference-1 colouring of G. There-
fore, in order to determine if all surplus weights of a graph are redistributable, we need 
to find a subgraph H of G ′, for each common cycle class G ′, such that degH(v) = r(v)

for all vertices of H. The following theorem tells us when this is possible.

Theorem 3.4.6. Let G be a bipartite graph with bipartition (P1,P2), and for each vertex 
v of G, let r(v) be an integer value in the range 0 to degG(v) such that∑

v∈P1

r(v) �
∑
v∈P2

r(v).

Then G has a subgraph H with degH(v) = r(v) for every v ∈ P1 and degH(v) � r(v) for 
every v ∈ P2 if and only if every subset S of P1 in G satisfies∑

v∈S

r(v) �
∑

n∈Γ(S)

min{r(n), |Γ(n) ∩ S|},

where Γ(S) is the set of neighbours of elements of S in G, and Γ(n) is the set of neighbours 
of n.

Note that the problem of redistributability is precisely the case where∑
r(v) =

∑
r(v),
v∈P1 v∈P2
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as we require all vertices v in P2 to satisfy degH(v) = r(v) as well as all v in P1. 
Therefore the surplus weights in a common cycle class G ′ with bipartition (P1, P2) are 
redistributable if and only if every subset S of P1 in G ′ satisfies

∑
v∈S

r(v) �
∑

n∈Γ(S)

min{r(n), |Γ(n) ∩ S|},

where r(v) = 0 if v is a twig-type vertex, r(v) = 1 if v is a leaf-type vertex, r(v) = 2 if v
is a triple-type vertex and

r(v) =
1
2
(
degG′(v) −

∑
uv∈E(G′)

x(uv)
)

if v is a junction.
Before we prove Theorem 3.4.6, we recall some concepts relating to flow networks. 

For our purposes, a flow network is a directed graph G in which every arc is assigned 
a positive integer weight, called its capacity. The network has exactly one vertex s of 
indegree zero and positive outdegree, called the source, and exactly one vertex t of 
outdegree zero and positive indegree, called the sink. A flow is an assignment to every 
arc of a non-negative integer at most equal to its capacity, with the property that for 
every vertex v /∈ {s, t}, the total of the flows on arcs directed into v is equal to the total 
of the flows on arcs directed out of v. The total flow is the sum of the flows on all arcs 
directed out of s. The maximum flow of G is the maximum possible total flow over all 
flows that can be assigned to G (for a fixed assignment of capacity).

A cut of a flow network G is a partition (X, Y) of the vertex set of G, such that s ∈ X

and t ∈ Y. The cut capacity of a cut (X, Y) is the sum of the capacities of all arcs (u, v)
from a vertex u to a vertex v such that u ∈ X, v ∈ Y. We now prove Theorem 3.4.6 by 
interpreting G as a flow network, and applying the Max-Flow Min-Cut Theorem [11], 
which states that the maximum flow in a flow network is bounded above by all cut 
capacities and is equal to the minimum cut capacity.

Proof. We construct a directed graph G∗, with V(G∗) = V(G) ∪ {s, t}. The arc set of G∗

consists of

• Arcs (s, u), for all u ∈ P1;
• Arcs (u, v), where u ∈ P1 and v ∈ P2, for all uv ∈ E(G);
• Arcs (v, t), for all v ∈ P2.

We define a flow network structure on G∗ by assigning the capacity r(u) to each arc of 
the form (s, u), 1 to each arc from P1 to P2, and r(v) to each arc of the form (v, t). The 
assignment of a flow to G∗ determines a subgraph H of G whose edges are the pairs u, v
for which the arc (u, v) of G∗ has flow 1.
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For a vertex u ∈ P1, the degree of u in H is equal to the flow assigned to su in G∗. 
Therefore we can find a subgraph H of G where every vertex v of H has degree equal 
to r(v) if and only if we can assign a flow to G∗ such that the total flow is equal to ∑

v∈P1
r(v). As this desired total flow is equal to the sum of the capacities of all the arcs 

out of s, this is the maximum flow that we could possibly achieve. Therefore G has a 
subgraph H with the required properties if and only if, for G∗,

max flow =
∑
v∈P1

r(v).

From the Max-Flow Min-Cut Theorem, this is equivalent to the condition that, for 
every cut,

cut capacity �
∑
v∈P1

r(v). (2)

To complete the proof of Theorem 3.4.6, we need to show that (2) is equivalent to
∑
v∈S

r(v) �
∑

n∈Γ(S)

min{r(n), |Γ(n) ∩ S|},

for every subset S of P1.
Let S be a subset of P1, and choose a cut (X, Y) such that S = P1 ∩ X. We now consider 

the arcs that contribute to the cut capacity:

• If a vertex v in P1 is in Y, then the arc (s, v) is from X to Y and has capacity r(v).
• If a vertex v in P2 is in Y, then any arc (u, v) where u ∈ S is from X to Y. Each such 

arc has capacity 1, and therefore the sum of these capacities for a given v is equal to 
the number of neighbours of v in S.

• If a vertex v in P2 is in X, then the arc (v, t) is from X to Y and has capacity r(v).

We therefore have the following:

cut capacity =
∑

v∈P1∩Y

r(v) +
∑
v∈P2

f(v), where f(v) =

{
r(v) if v ∈ P2 ∩ X

|Γ(v) ∩ S| if v ∈ P2 ∩ Y

Using this and (2), our condition for the existence of the required subgraph H becomes
∑
v∈P1

r(v) �
∑

v∈P1∩Y

r(v) +
∑
v∈P2

f(v),

or equivalently,
∑

r(v) �
∑

f(v),

v∈S v∈P2
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for every proper subset S of P1, and every choice of cut (X, Y) with S = P1 ∩ X.
The function f depends on the choice of cut, and 

∑
v∈P2

f(v) is minimized by the cut 
(X ′, Y ′) where

X ′ = S ∪ {v ∈ P2 : r(v) � |Γ(v) ∩ S|}.

Therefore the condition for the existence of H becomes the following. For all S ⊂ P1,

∑
v∈S

r(v) �
∑

n∈Γ(S)

min{r(n), |Γ(n) ∩ S|}. �

Note that an algorithm to implement the result of Theorem 3.4.6 would result in the 
number of constraints growing exponentially as the number of vertices increases. How-
ever, an algorithm to determine whether or not the surplus weights of a given graph are 
redistributable may be implemented in polynomial time by instead solving the maximum 
flow problem in the flow network described in the proof of this theorem. There exist im-
plementations of the Max-Flow Min-Cut Theorem which run in polynomial time, such 
as the Edmonds-Karp algorithm [12].

Theorem 3.4.6 connects to several topics of classical and current interest in combi-
natorics and combinatorial optimisation. If r(v) = 1 for each vertex v, the statement 
reduces to that of Hall’s Matching Theorem [13], which states that G has a match-
ing (in the setting of Theorem 3.4.6, a matching is a subgraph in which every vertex 
of P1 has degree equal to 1 and every vertex of P2 has degree at most 1) if and only 
if |S| � |Γ(S)| for every subset S of P1. In the case where G is a complete bipartite 
graph, the statement of Theorem 3.4.6 specializes to the Gale-Ryser Theorem [14,15], 
which gives a necessary and sufficient condition for a pair of partitions of a particu-
lar integer to occur as the degree sequences of vertices in the two parts of a bipartite 
graph. If the degree sequences are given in nonincreasing order by the entries of vectors 
r and s, then the condition is that s∗ majorizes r, where s∗ is the vector describing 
the conjugate partition to s. Questions about the realizability of degree sequences in 
bipartite graphs have equivalent formulations in terms of row and column sums in (0, 1)-
matrices [16].

Under the hypotheses of Theorem 3.4.6, the edge sets of subgraphs of G in which 
deg(v) � r(v) for every vertex v of P1 form the independent sets of a partition ma-
troid. The analogous subgraphs for P2 determine another partition matroid, and the 
existence of a subgraph H of G satisfying the required degree conditions depends on 
maximal independent sets common to both matroids. The general problem of identify-
ing such sets is a subject of interest in combinatorial optimisation and its applications 
[17,18]. Another topic related to Theorem 3.4.6 is the bipartite b-matching problem
[19], which seeks to identify a subgraph of maximal total weight in an edge-weighted
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bipartite graph, subject to specified upper bounds on the admissible degree of each 
vertex.

We now have the following full set of necessary and sufficient conditions for when 
a graph has a difference-1 colouring, which follows from Lemma 3.2.6, Lemma 3.2.10, 
Lemma 3.3.1, Lemma 3.4.4, and Theorem 3.4.6.

Theorem 3.4.7. Let G be a bipartite graph containing at least one cycle. Then G has a 
difference-1 colouring if and only if G satisfies the following conditions:

• Each vertex in Sk(G) is either a leaf-type, twig-type, triple-type vertex, or a junction 
j for which the local tree at j in the reduced form of G consists of only leaves or twigs 
attached to j and which is assigned w(j) = 1 by Algorithm 1;

• Each limb that does not contain a junction has odd (even) length if its endpoints are 
the same (opposite) type;

• Surplus weights in each common cycle class of G are redistributable.

Recall from Theorem 2.3.3 that if a cactus graph G has a difference-1 colouring c, 
then Gc is configurable. Therefore the Theorem 3.4.7 determines when a cactus graph 
is ASBG-colourable. The problem of determining necessary and sufficient conditions for 
configurability of difference-1 colourings for wider classes of graphs is an ongoing topic 
of investigation.

4. Uniqueness and difference-k colourings

In this last section, we examine what it means for one graph to have more than one 
difference-1 colouring, and how these difference-1 colourings can differ from one another. 
We also explore generalising the concept of a difference-1 colouring to a difference-k
colouring.

4.1. Uniqueness of difference-1 colourings

Definition 4.1.1. We say that a graph G has a unique colouring if there is only one 
difference-1 colouring of G.

It is possible that a graph can have multiple difference-1 colourings, some of which 
are configurable and some of which are not.

Example 4.1.2. The following graph has two distinct difference-1 colourings, only one of 
which is configurable:
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Definition 4.1.3. An alternating cycle is a cycle in a graph which has been coloured such 
that each vertex of the cycle is incident with two edges in the cycle of opposite colour.

Definition 4.1.4. The switch of an alternating cycle Cc is the coloured cycle Cd where 
every edge of Cd is the opposite colour of the corresponding edge in Cc.

Theorem 4.1.5. Any distinct colourings of a graph G differ only by edge-disjoint alter-
nating cycle switches.

Proof. Let G be a graph with two distinct colourings c and d, and let H be the subgraph 
of Gc containing only the edges which differ in colour from those in Gd and only vertices 
which are incident with these edges. Since both c and d are difference-1 colourings, every 
vertex of H is incident with the same number of red and blue edges, and so every vertex 
of H has even degree. We may start at any edge of H, and construct a trail consisting of 
edges of alternating colours until a repeated vertex v is encountered for the first time. 
This completes an alternating cycle from v to itself, since every cycle in G has even 
length. Removal of this cycle from H results in another graph in which every vertex 
is incident with an equal number of blue and red edges. So we can remove alternating 
cycles until no edges remain, and therefore two distinct colourings of a graph G differ 
only by alternating cycle switches. �
Corollary 4.1.6. A difference-1 colouring of a tree T is the unique ASBG-colouring of T .
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We remark that this was already clear from the discussion of building trees from 
leaf-twig configurations, nevertheless it is an immediate consequence of Theorem 4.1.5. 
We also note the following immediate consequence of Theorem 4.1.5, since a cycle that 
includes a twig-type or triple-type vertex cannot be an alternating cycle in any difference-
1 colouring.

Corollary 4.1.7. A difference-1 colouring of a graph G is the unique difference-1 colouring 
of G if each cycle of G contains at least one twig-type or triple-type vertex.

4.2. Difference-k colourings

The definition and exploration of difference-1 colourings leads very naturally to the 
more general definition of a difference-k colouring.

Definition 4.2.1. For k ∈ N0, a 2-edge colouring c of a graph G is a difference-k colouring
of G if Gc satisfies degB(v) − degR(v) = k at every vertex v.

We propose the problem of determining when a graph admits a difference-k colour-
ing, and note some preliminary observations in the bipartite case. The following is a 
characterisation of bipartite graphs with a difference-0 colouring.

Theorem 4.2.2. A bipartite graph G has a difference-0 colouring if and only if every 
vertex of G has even degree.

Proof. First, assume that G has a difference-0 colouring. Then degB(v) − degR(v) =
0 =⇒ degB(v) = degR(v) =⇒ deg(v) = 2degB(v). So every vertex of G has even 
degree.

Now assume that every vertex of G has even degree. As G is Eulerian, the edges of 
G can be decomposed into edge-disjoint cycles. As all cycles in G have even length, we 
now colour the edges of G so that each of these cycles is an alternating cycle. Therefore 
degB(v) = degR(v) at each vertex v. So G has a difference-0 colouring. �

We can use Theorem 3.4.6 to give a general characterisation for all bipartite graphs 
with difference-k colourings, for a given k as follows.

Theorem 4.2.3. A bipartite graph G with bipartition (P1, P2) has a difference-k colouring 
if and only if every S ⊂ P1 satisfies

∑
v∈S

deg(v) − k

2 �
∑

n∈Γ(S)

min
{deg(n) − k

2 , |Γ(n) ∩ S|
}
,

where Γ(S) is the set of neighbours of elements of S in G, and Γ(n) is the set of neighbours 
of n.
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Proof. A bipartite graph G having a difference-k colouring is equivalent to G having a 
subgraph H where every vertex v of H satisfies degH(v) = degG(v)−k

2 . This is because 
if we find such a subgraph H, the colouring c of the edges of G such that all edges of 
Hc are red and all edges of (G \ H)c are blue is a difference-k colouring of G. From 
Theorem 3.4.6, we know that this is equivalent to every strict subset S of one part of the 
bipartition the vertex set of G satisfying

∑
v∈S

deg(v) − k

2 �
∑

n∈Γ(S)

min
{deg(n) − k

2 , |Γ(n) ∩ S|
}

. �

While Theorem 4.2.3 arises directly from Theorem 3.4.6, and can be applied to the 
case of difference-1 colourings, its practical utility is limited. Algorithm 1 and partitioning 
the edge set into common cycle classes simplifies the analysis considerably in the case 
k = 1. At present, we have no version of these approaches for difference-k colourings in 
general. The problem of determining when a non-bipartite graph admits a difference-k 
colouring remains largely unexplored, even in the case k = 1.
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