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S1 Appendix 

 

The participants in the Tanzania cohort were not required to keep their eyes in the open position 

during the collection of 3D facial image. To understand the effect of this limitation of the data 

collection on our study we performed a sensitivity analysis as described in this Appendix.  

 

Unfortunately, we did not have access to any data on eye position (open vs. closed) other than what 

is available in the publicly released 3D facial images, so we can only determine open vs. closed 

position from the 3D images themselves. The 3D facial shape images, which are devoid of coloration 

and texture, cannot always be unambiguously scored by a human rater as to whether the eyes are 

open or closed. To illustrate this, below are a few example faces where the eyes appear to be closed 

(left), open (center), or undetermined based on visual inspection by a human rater. 

  

 

 

To more deeply explore this issue, we performed an approach that involved manually scoring facial 

images by a human rater to train a machine learning classifier. In brief, we manually scored the eyes 

of 1000 facial images and determined that 377 (37.7%) were open, 260 (26%) were closed, and 363 

(36.3%) could not be determined. We then built a classification model via linear support vector 

machines using the 637 human-rated open or closed eye images as input. Five-fold cross-validation 

showed this classifier had accuracy of approximately 98% (defined as concordance with eye 

positions scored by the human rater, which may not reflect the true state 100% of the time). Next, 

we applied this classifier to the entire dataset of 2,595 3D facial images. The distribution of the 

posterior probability of open eyes for the sample is provided, below. 



 
The distribution of the posterior probability of open eyes was bimodal with a majority of images 

having very high or very low probability. We assigned images with posterior probability >0.5 as open, 

and <0.5 as closed. Based on this threshold, 56% of participants had imaging with open eyes, and 44% 

of participants had imaging with closed eyes.   

 

We next explored what effect the incorporation of information about predicted eye position would 

have on our analyses. We included the “eyes open” or “eyes closed” states as an additional covariate 

to adjust for in our facial shape model. Eye state explained 4.2% of the residual facial variation (after 

adjustment for other covariates) and, as expected, had the largest effect in the eye region. This can 

be seen in the top row of the figure below, where the face model with the closed eye (left) and open 

eye (middle) states are depicted, as well as a heatmap (right) showing the effect of eye state on the 

face. After adjustment for open vs. closed eye state (bottom row), the eye state covariate explains 

essentially 0% of the residual facial variation, the face model for both closed and open eyes are 

indistinguishable, and the heatmap shows no lingering effect across the face, which all indicate that 

variation due to eye state was adequately captured in the model. 

 



 

 

Next, we repeated the segmentation of the face into modules and generated new multi-dimensional 

facial shape phenotypes. The segmentation was quite similar to the original, with the exception of 

the eye region. Indeed, across the 6 levels of the hierarchy, the overlap in modules defined as the 

normalized mutual information was quite high: 100% for module 1, 80.7% for modules 2-3, 87.6% 

for modules 4-7, 84.3% for modules 8-15, 82.8% for modules 16-31, and 80.0% for modules 32-63. 

The eye-adjusted and original segmentations are shown below (note, the arbitrary flip in positions in 

the rosette of the blue “nose” and green “lips” quadrants).  

 



 
 

 

We then repeated our genetic analysis on the new phenotypes. Association results for 18 of the 20 

top hits were similar, with exact p-values being a bit different. Two of the 20 hits, which were 

observed for the original modules 28 and 59, went away after adjustment for eye state. This makes 

sense because the new eye state-adjusted segmentation did not yield segments representing 

regions of the face comparable to the original modules 28 and 59, which are restricted to the eyes.   

 

 

Table comparing results for top SNPs between eye-adjusted and original analyses 

          original analysis eye-adjusted analysis  

Lead SNP Position Chr A1 A2 Best P Best 

module 

No. 

modules 

Best P Best 

module 

rs58409393 155025307 1 G A 1.6E-08 41 1 4.4E-09 41 

rs56063440 54731374 3 C G 9.7E-09 52 3 6.7E-08 59 

chr3:127963189 127963189 3 T TGC 1.5E-11 27 3 1.4E-11 28 

rs112643361 188438871 3 G A 1.8E-08 21 1 1.0E-08 21 

chr4:24163580 24163580 4 G GAT 8.9E-09 53 1 2.0E-08 58 

rs9995821 154828366 4 C T 2.5E-22 27 8 1.7E-21 28 

rs11959408 89964298 5 T C 1.1E-08 43 1 9.1E-06 42 

rs113199279 134806314 5 T G 2.1E-08 28 1 1.8E-03 45 

rs114777090 102901689 7 G A 8.2E-09 18 1 3.7E-08 18 

rs10122939 20300843 9 G A 3.3E-10 48 5 2.0E-08 46 

rs188502472 86936444 9 T C 2.0E-09 3 1 5.3E-06 1 

chr10:1582881 1582881 10 AC A 2.7E-09 4 1 4.2E-09 4 

rs242980 119281243 10 A G 1.5E-11 1 2 1.8E-11 1 

rs10878346 66320873 12 A G 5.5E-12 1 4 4.5E-12 1 

rs74112009 85808404 12 A T 1.8E-15 30 6 1.8E-13 12 



rs80243479 115356683 12 C T 2.1E-08 14 1 4.2E-06 46 

rs9603276 38481292 13 G A 1.5E-09 11 1 4.2E-09 11 

rs148390647 100542948 13 G C 1.4E-08 59 1 1.1E-04 5 

rs77926594 63466440 18 A G 1.6E-08 40 1 2.2E-07 40 

rs16983329 22035197 20 A G 1.5E-08 54 2 7.0E-09 57 

Chr: chromosome 

A1, A2: alleles 

Best P: the smallest p-value across the the 63 modules 

Best Module: the module number corresponding to the rosette with the smallest p-value 

No. Modules: the number of significantly associated modules 

Bold: large p-values indicating little evidence of association  

 

 


