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Abstract: Integrated energy systems (IES) can help achieve greater energy efficiency, and then 

ultimately promote a climate-neutral economy by utilizing local renewable resources. Demand-side 

energy-saving measures can reduce operational costs associated with energy usage. Most existing 

IES models, however, focus on supply-side optimization, while the demand-side energy-saving 

potential and its impacts on whole-system performance are still not clear. The increasing carbon tax 

makes it even more important to understand the interactions between supply and demand sides to 

achieve a sustainable system with a minimal carbon charge. Hence, this study proposes a co-

optimization model to simultaneously optimize the supply and demand sides of an IES considering 

the impact of the carbon tax. A selection tree is developed to describe various demand-side envelope 

upgrading technologies, and a binary tree is established by generating a set of supply-side scenarios 

with corresponding probabilities. Based on these results, an improved two-stage stochastic 

programming model is proposed. The robustness of the modeling results was further validated by a 

simulation-optimization-based uncertainty analysis addressing price uncertainties. A case study in 

Shanghai indicates that the proposed co-optimization model achieves more cost-efficient solutions 

than supply-side-only optimization considering carbon tax. Introducing carbon tax can reduce the 

installed capacity of fuel-based energy technologies by up to 24% and greatly accelerate the 

penetration of renewables. The increasing carbon tax also promotes the adoption of more advanced 

energy-saving technologies. Uncertainty analysis reveals acceptable robustness of the optimal 

demand-side scheme and supply-side configuration with a deviation of less than 5% and a 

coefficient of variation of 7%. Overall, the observations of the proposed model and case study 

provide valuable insights for IES design considering an emerging charge of carbon tax.  
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stochastic programming; uncertainty analysis. 
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Nomenclature 

Abbreviations CAT Carbon tax 

B Basic envelope upgrading L Energy demand (kW) 

CAPEX Capital cost NG Heating value of natural gas 

CEEX Carbon emission cost Obj Objective 

CHP Combined heat and power prob Scenario’s probability 

CRF Capital recovery factor Q Energy supply (kW) 

CV Coefficient of variation r Interest rate 

DF Discount factor y Project year 

FC Fuel cost Greek symbols 

FIT Feed-in tariff γ Startup time 

GC Electricity purchased cost ζ Binary variable 

IES Integrated energy system η Efficiency 

INV Investment cost λ Carbon emission factor 

MC Maintenance cost φ On/off status 

MILP Mixed-integer linear programming Subscripts/superscripts 

N None envelope upgrading ac Absorption chiller 

OPEX Operation cost b Gas boiler 

P Premium envelope upgrading ec Electrical chiller 

PV Photovoltaic panel ex Electricity export 

REP Replacement and maintenance cost h Time step (hour) 

S Standard envelope upgrading hp Air source heat pump 

SHGC Solar heat gain coefficient hs Heat storage 

SRI Solar radiation intensity hs-in Heat storage charge 

STD Standard deviation hs-out Heat storage discharge 

TAC Total annual cost im Electricity import 

TOU Time of use k Energy technology 

UC Unit cost max Maximum 

UPEX Upgrading cost maint Maintenance cost 

XPS Extruded polystyrene min Minimum 

Symbols s Supply-side scenario 

CAP Installed capacity (kW) t Demand-side scenario 
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1. Introduction 

By integrating clean energy options, such as solar energy, wind energy, biomass 

energy, and geothermal energy, integrated energy systems (IES) can effectively improve 

the whole-system efficiency and power a climate-neutral economy [1]. The European 

Commission has agreed that IES lays a pathway toward a more effective, affordable, 

and decarbonized European economy [2]. However, the integration of multiple energy 

carriers and technologies has led to significant challenges in coordinated planning and 

operation. Hence, researchers are increasingly focusing on optimal system design or 

dispatch strategies for IES. 

Owing to the improvement of computational resources and mathematical 

programming modeling techniques, the modeling of IES has become increasingly 

comprehensive in order to integrate all of the available energy techniques into IES 

models [3]. The optimal system configurations and dispatch strategies should not only 

be achieved on the supply side but also on the demand side, to integrate energy-saving 

technologies into IES models. This will further improve the performance of energy 

systems, especially considering the carbon tax. This study presents a co-optimization 

model to incorporate supply-side and demand-side energy technologies to achieve 

simultaneous optimization. An uncertainty analysis was then conducted to validate the 

robustness of the proposed model. 

1.1 Modeling integrated energy system from the supply side 

The application of optimization methods plays an influential role in helping 

decision-makers achieve the optimal design of an IES [4]. Among various optimization 

models, the indices describing economic performance are the most frequently used and 

fundamental objectives, such as the levelized cost of energy [5], total annual cost [6], 

operation cost (OPEX) [7], and total net present cost [8]. Mu et al. [9] proposed a 

decentralized optimization model for a small-sized IES to optimize its dispatch strategy, 

while the operation cost acted as the economic objective. The model was solved with 

good convergence performance using the alternating direction multiplier method 

(ADMM). Wu et al. [10] conducted a comparative study to optimize the operation 
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strategy for multi-scenario IES, including building and district scales. They presented 

a collaborative optimization method combining genetic algorithm and orthogonal 

experimental design to optimize the economic objective. The results showed that 

collaborative optimization performed better than non-collaborative optimization. 

Economic factors contributing to IES costs generally include capital, operation, 

fuel, and maintenance costs. The carbon tax can also describe the environmental 

performance by combining it with economic indices [11]. Dorotic et al. [12] introduced 

a carbon tax and an exergy destruction tax to conduct a multi-objective optimization 

for district heating systems. Their study analyzed the impact of exergy tax on the natural 

gas consumption of a single-technology heating system, with the results indicating that 

the system’s efficiency could be improved with an increase in the carbon tax. Martelli 

et al. [13] proposed a bi-level approach for multi-energy systems to mimic the actual 

bi-level decision process in order to optimize the renewable subsidy and carbon tax for 

IES. Based on four real-world case studies from the building scale to the district scale, 

their heuristic approach’s effectiveness was verified.  

Moreover, other studies considered some critical parameters as uncertain factors 

of IES and investigated their impacts on systems’ economic and environmental 

performance. Mavromatidis et al. [14] applied uncertainty and global sensitivity 

analysis to identify the most influential parameters for all potential uncertain parameters. 

The results highlighted that the energy carrier price and energy demands have obvious 

influences on other factors. Furthermore, they proposed a two-stage stochastic 

programming approach to capture uncertain factors and optimize the system design 

with an economic objective [15]. The epsilon constraints and Pareto optimization were 

combined with a two-stage stochastic programming approach to deal with the multi-

objective optimization problem of IES [16]. Their results in [15] and [16] both 

illustrated the significant influences of various prices on the system’s economic 

performance and the optimal conservativeness of the design considering uncertainties. 

All these studies have made pioneering efforts in modeling the supply-side 

configuration without any upgrading of the demand side, which may further improve 

the performance of IES. 
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1.2 Integrated optimization of energy supply and demand 

Studies tend to apply various optimization methods to solve optimal solutions for 

the energy demand side, including building envelope upgrading and demand response, 

which can also be simplified as energy-saving [17] and load transfer technologies [18]. 

Liu et al. [19] conducted a cost-benefit analysis of building envelope upgrading through 

a real-world residential district project, which involved the upgrade of windows and 

external walls. The analysis of the measured data highlighted that selecting upgraded 

materials significantly impacts economic outcomes and energy-saving performance. 

For public buildings, Wang et al. [20] introduced a quantum genetic algorithm to 

optimize the office building envelope design, including the window area, glass curtain 

wall ratio, and external wall. The results showed the beneficial effects of the design 

optimization model on the building performance so that the total cost could be 

decreased by a third when compared to the original design. Chang et al. [21] applied a 

multi-objective optimization model to the selection of emerging materials and 

technologies for improving indoor thermal comfort, environmental emissions, and 

economic aspects, providing decision support for transforming the performance of 

existing buildings. 

Although many studies have made significant efforts to pursue the optimal 

decision of demand-side design, less attention has been paid to combining supply-side 

and demand-side models to implement simultaneous optimization. A few representative 

studies have attempted to bring the optimal selection of building energy-saving 

technologies into IES models from a centralized planning perspective, which could 

obtain better overall system performance. Zheng et al. [22] presented an optimization-

based planning model for urban energy systems integrating optimal supply- and 

demand-side technology portfolios. In their model, the demand-side model was 

developed as a simplified heat transfer process, and the results provided the optimal 

configuration, dispatch, and upgrading scheme (including exterior walls, windows, 

roofs, doors, and floors) for their case. Ferrara et al. [23] proposed a building-scale co-

optimization model to investigate a multi-family building case and provide optimal 

solutions for integrating measures for building envelopes and energy systems. The 
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results demonstrated that the co-optimization model could generate more possible 

combinations of energy technologies than sequential optimization. Moreover, other 

factors of the demand side can also be considered to be combined with supply-side 

modeling, as reported by Perera et al. [24] for integrating urban morphology and Liu et 

al. [25] for integrating demand response. Many studies have explored the feasibility 

and effectiveness of supply- and demand-side co-optimization via an integrated 

framework to simultaneously obtain optimal designs. The demand-side modules, 

however, were simple when compared with the corresponding supply-side module. 

Possible difficulties may lie in matching various modeling scales and coupling building 

energy formulas with mathematical programming models. 

1.3 Motivation and contribution 

The literature review highlights that existing studies tend to optimize the IES 

model from the supply and demand sides in a separate way. The potential of supply-

demand co-optimization to improve the whole-system performance, as well as the 

impact of carbon tax, has not been well explored. Meanwhile, the co-optimization 

model usually involves numerous scenarios with high dimensionality, and thus it is 

challenging to formulate a computationally traceable and robust model. 

This study develops a co-optimization IES model to optimize the decisions on 

envelope upgrading technologies, system configurations, and dispatch strategy 

simultaneously by coupling the supply-side and demand-side modules. The impact of 

carbon tax on optimal decisions was assessed, and the robustness of the optimal 

decisions was further validated by a simulation-optimization-based uncertainty analysis. 

The contributions of this study are as follows. 

➢ Explicitly simulate energy-saving effects for Basic, Standard, and Premium 

levels of envelope upgrading on external walls, roofs, and windows, and then 

develop a comprehensive tree for selecting optimal demand-side upgrading 

schemes.  

➢ Propose an improved two-stage stochastic co-optimization model to integrate 

the supply-side and demand-side modules, and then unlock the impact of carbon 
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tax on optimal design of IES. 

➢ Validate the robustness of optimal decisions obtained by the co-optimization 

model based on an uncertainty analysis addressing various prices. 

The rest of the paper is organized as follows: Section 2 illustrates the outline and 

methodology. Section 3 introduces a case study to apply the proposed co-optimization 

model, and the results are analyzed and discussed in Section 4. Several key conclusions 

are presented in Section 5. 

2. Methodology 

Fig. 1 illustrates the outline of the present study, which can be divided into four 

major parts: (A) demand-side scenario generation, (B) supply-side scenario generation, 

(C) IES design modeling, and (D) uncertainty analysis. In step (A), the building 

envelope upgrading scheme is considered as the decision variable to be optimized in 

the co-optimization model. Meanwhile, a demand-side selection tree is introduced to 

describe a series of alternative envelope upgrading technologies for external walls, 

roofs, and windows. In step (B), the clustering method is applied to generate the supply-

side binary tree in order to capture the variations in energy demands and renewable 

resources. Both the supply-side and demand-side scenario trees were constructed layer-

by-layer to consider each critical factor in the proposed model. In step (C), a mixed-

integer linear programming (MILP)-based IES planning model is developed to 

incorporate the supply-side and demand-side scenarios into one co-optimization model 

to simultaneously optimize the system design, including capacity configuration, 

dispatch strategy, and envelope upgrading scheme. In particular, the impact of the 

carbon tax on the system design is evaluated. In step (D), an uncertainty analysis 

method combining Monte Carlo simulation and operation optimization was adopted to 

validate the robustness of the modeling results considering different price uncertainties. 

The methods are described in the following subsections. 
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Fig. 1. Outline of the proposed work for co-optimization of IES. 

2.1 Demand-side scenario generation 

The hourly energy demands of the district are projected by building performance 

simulations according to local climate conditions. Local meteorological data were 

acquired from the China Integrated Meteorological Information Sharing System 

(CMISS) and fed to the EnergyPlus building energy simulation tool to obtain the whole-

year hourly resolution electrical, heating, and cooling demands. The window-wall ratio, 

ventilation, occupant behavior, occupant density, and internal disturbance are 

considered in the building energy simulation, which is based on the design standard for 

energy efficiency of residential buildings [26] and design standard for energy efficiency 

of public buildings [27].  

The building envelope upgrading scheme acts as an energy-saving technology in 

the present study by varying the thermal properties of external walls, roofs, and 

windows. Compared with the uncertainties of other factors affecting the energy 

demands of buildings, envelope construction can be designed and determined at the 

planning stage, and its properties are fairly stable during the planning period [28]. 

Hence, this study introduced four upgrading levels for each alternative envelope 

upgrading: None, Basic, Standard, and Premium. For the construction of external walls 

and roofs, None indicates that the external wall (from outside to inside) has polymer 

mortar, cement mortar, perforated concrete brick, mixed mortar for external wall, 
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aggregate concrete, waterproof modified asphalt, cement mortar, and steel-reinforced 

concrete, but without an insulation layer [29][30]. Other upgrading levels (i.e., Basic, 

Standard, and Premium) refer to the extruded polystyrene (XPS) insulation layer with 

different thicknesses [31]. Meanwhile, energy-saving technologies of windows, for 

example, low-e, filling noble gas, and increasing layers, are introduced to generate the 

four window-upgrading scenarios [32]. The sketch diagrams for the external walls, 

roofs, and windows are shown in Fig. 2. 

 
Fig. 2. Construction of external walls (a), roofs (b), and external windows (c) with their 

corresponding upgrading scenarios including None, Basic, Standard, and Premium. 

The upgrading cost (UPEX), including investment (INV) and replacement and 

maintenance (REP), is accounted for in the co-optimization model [19]. The Basic, 

Standard, and Premium levels are associated with upgrade costs, while zero upgrade 

costs are associated with the None level. The investment cost of upgrading external 

walls and roofs can be calculated proportionally to the thickness of the insulation layers 

as an independent variable [23] defined in Eq. (1). 
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where DF is the discount factor, CRF is the capital recovery factor, UC is the unit cost 

of envelope upgrading, and the subscripts e and t indicate the envelope and demand-

side scenario, respectively. The superscript init represents initial cost. Note that the 

initial cost includes the cost of a basic 25 mm insulation layer. The Ratioreplace indicates 

the ratio of the replacement cost to its corresponding investment cost. 

Table 1 reports the details of each envelope upgrading scenario, including the 

economic parameters and calculated thermal properties. 

Table 1 Detailed information on envelope upgrading technologies.  

Item Unit 
External wall Roof Window 

Basic Standard Premium Basic Standard Premium Basic Standard Premium 

Initial cost $/m2 25.25 26.77 
42.43 55.08 121.22 

Insulation cost $/m2 1.85 (per 5 mm thickness) 2.08 (per 5 mm thickness) 

Ratioreplace - 0.2 0.2 0.2 

δinit mm 25 25 - 

δinsulation mm 25 45 100 25 55 100 - - - 

U-value W/m2K 0.91 0.56 0.28 1.02 0.51 0.29 1.9 1.2 0.43 

SHGC - - - - - - - 0.46 0.46 0.37 

Life cycle year 30 

Replacement year 15 

Finally, the demand-side scenarios are organized according to the various 

upgrading schemes of envelopes, including four levels for external walls, four levels 

for roofs, and four levels for windows. Therefore, 64 demand-side scenarios were 

generated as a selection tree. These demand-side scenarios are mutually exclusive, and 

only one scenario can be selected from the structure, as expressed in Eq. (2). If needed 

(e.g., for optimizing operation only), decision-makers can predefine the binary variable 



11 

ζ to control the implementation of envelope upgrading technologies of the demand-side 

module. 

 
demand 1t

t

 =  
(2) 

where the subscript t denotes the demand-side scenarios. 

2.2 Supply-side scenario generation 

Introducing whole-year hourly data, including renewable resources and energy 

demands, into the optimization model may generate a considerable number of variables 

and constraints, which may lead to a high-dimensional problem and an unacceptable 

computational cost. The global optimum is hardly guaranteed even if the high-

dimensional optimization model can be solved. Hence, for ensuring computational 

traceability, this work proposed a scenario generation method to generate a series of 

stochastic scenarios for capturing the whole-year variations and then introduced them, 

rather than the whole-year hourly data, into the proposed co-optimization model. Fig. 

3 illustrates the stochastic-scenario-based binary tree developed by using clustering-

based classification methods. The K-medoids algorithm is applied, which has better 

performance on time-series energy consumption data [33]. The probability of each 

cluster is equal to the ratio of the number of individuals belonging to it to the total 

number of individuals [16]. 
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Fig. 3. Diagrammatic sketch of stochastic-scenario-based binary tree for supply side. 

Before the clustering layers, two classification layers were constructed considering 

different seasons as well as the work/off-work duality. Moreover, two additional 

scenarios were introduced to describe the peak load scenarios with maximum heating 

demand and maximum cooling demand. Overall, the entire scenario tree has 22 

stochastic scenarios to represent the whole-year demand and solar radiation fluctuations. 

For each scenario, the probability is assigned as the product of the probabilities of their 

corresponding intermediate scenarios in each layer, and the summation of each 

scenario’s probability should be equal to one, as shown in Eq. (3). 
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where Probs indicates the probability of s supply-side scenario. 

2.3 Stochastic programming based co-optimization for supply and demand sides  

This study proposes the co-optimization model for IES from a whole-system 

perspective, where the IES planner could make decisions on the design for both supply 

side and demand side, aiming to find the two-side global optimum solution taking the 

whole-system profit into account. Hence, the supply side and demand side are 

coordinated and represented by corresponding decision variables in one programming 
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model and optimized simultaneously. 

Meanwhile, according to the scenarios developed above, the two-stage stochastic 

programming method was introduced to integrate them into one co-optimization model. 

Eq. (4) illustrates the general formulations for the energy-planning problem. The first-

stage decision variables describe the system design, whereas the second-stage decision 

variables represent the time-series operation decisions. The total objective is equal to 

the summation of the expected values of the design and operation parts [34]. 

 Dispatch & Operation

First-stage decision

Design variable

Second-stage decision

Operation variable

t t+1 t+2 …Capacity-determing

total design operation

1

N

s s

s

Obj obj prob obj s
=

= +  

 

(4) 

Hence, the objective’s expression needs to be modified to incorporate both the 

demand-side and supply-side scenarios into an integrated objective function, as shown 

in Eq. (5). 

 
design supply upgrade demand operation

t t s s

t s

Obj obj obj prob obj= +  +    
(5) 

2.4 Model description of IES 

Fig. 4 illustrates the proposed IES superstructure considering a series of energy-

supply technologies and demand-side envelope upgrading technologies to fulfill 

electricity, cooling, and heating demands simultaneously, modified from the previous 

study [28]. Moreover, the stochastic programming based co-optimization model, 

including various supply and demand-side scenarios, could cause high-dimensional 

problems with overlong solving time [35]. By contrast, meta-heuristic algorithms 

perform well in solving stochastic programming models, whereas the global optimum 

cannot be guaranteed [36]. Hence, all the objectives and constraints of the proposed co-

optimization model are formulated in linear form with continuous and integer variables, 

i.e., a mixed-integer linear programming (MILP) model, which can be solved by calling 

state-of-the-art commercial solvers. The objective function and constraints are given in 

the following subsections and in Appendix A. 
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Fig. 4. Superstructure of the proposed IES with state-of-the-art technologies. 

2.4.1 Objective function 

Based on the formulation of Eqs. (4) and (5), the total annual cost (TAC) is defined 

by Eq. (6) to represent the life-cycle cost of a system that considers the carbon tax. Thus, 

TAC consists of four main parts: capital cost (CAPEX), upgrade cost (UPEX), 

operation cost (OPEX), and carbon emission cost (CEEX). The expressions of UPEX 

are described in Section 2.1. CAPEX represents the amortization of supply-side 

technologies’ investment, while the OPEX is equal to the sum of the fuel cost (FC), 

maintenance cost (MC), and cost of electricity purchased from the bulk grid (GC), 

minus the income of the feed-in tariff (FIT). CEEX includes the capacity and operation 

parts [37]. The capacity part is equal to the summation of all energy-supply technologies’ 

life-cycle carbon emissions (including raw material, manufacturing, installation, and 

disposal) [38], while OPCE denotes the carbon emissions of fuel consumption and 

electricity purchased for the bulk grid during the operation period. 
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(6i) 

where CAT is the carbon tax per unit emission, and the subscript k denotes the energy 

conversion technologies. 

2.4.2 Model constraints 

The energy balance expresses the energy demand of the district for electricity, 

cooling, and heating must be fulfilled for each time step h of each supply-side scenario 

s, as shown in Eq. (7). The constant efficiency of the designed network is introduced to 

express the transfer loss of heating energy in Eq. (7b). Moreover, the binary variable ζ 

is used to ensure that only one demand-side scenario can be selected. The remaining 

model constraints are presented in Appendix A. 

 
demand ele ele ele ele ele ele ele

, pv, , chp, , im, , ec, , hp, , ex, ,t s h s h s h s h s h s h s h

t

L Q Q Q Q Q Q  = + + − − −  
(7a) 

 ( )demand heat heat heat heat heat heat heat

, net chp, , b, , hs-out, , hp, , hs-in, , ac, ,t s h s h s h s h s h s h s h

t

L Q Q Q Q Q Q  =  + + + − −  
(7b) 

 
demand cool cool cool

, ac, , ec, ,t s h s h s h

t

L Q Q  = +  
(7c) 

2.5 Uncertainty analysis 

Because the prices of energy carriers have a significant influence on the system 

economic performance [14], this study performs a Monte Carlo-based robustness 

analysis to investigate the system performance under various price uncertainties [16]. 

Six prices are considered as uncertain factors, including the ratio of the replacement 

cost to its corresponding investment cost for each envelope upgrading technology, the 

energy carriers’ prices (i.e., natural gas and bulk grid), and the ratio of the FIT to 

purchased price from bulk grid. The uniform distribution is utilized to represent each 

uncertain factor’s variation [34], as detailed in Table 2. Moreover, the Sobol sequence 

generator is used to obtain a well-distributed and high-quality sampling matrix with a 

lower computational cost, and all uncertain factors are assumed to be mutually 

independent [39]. More details of the Sobol sequence and Monte Carlo simulation can 

be found in Ref. [40]. 

Table 2 Price parameters of the deterministic condition and uncertain condition 
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Items Deterministic condition Uncertain condition 

TOU electricity price 

Peak: 0.203 $/kWh 

U[0.9, 1.1]  Deterministic Valley: 0.059 $/kWh 

Flat: 0.129 $/kWh 

Natural gas price 0.049 $/kWh U[0.039, 0.059] $/kWh 

Feed-in tariff ratio 0.83 U[0.66, 1]  Deterministic 

Replacement cost ratio 0.2 U[0.1, 0.3] 

2.6 Modeling environment 

A computing server with Intel Xeon E31230 and 32 GB of RAM was used in this 

study. The building energy simulation was performed in EnergyPlus9.2 with its Python-

based scripting language ‘Eppy’. The clustering process and Monte Carlo simulation 

were both conducted in Python, while a Python toolbox, named ‘Pyomo’, was used to 

develop the two-stage MILP model. The MILP model in this work has approximately 

1.5  105 continuous variables and 1.1  105 integer variables, which may take 15-40 

minutes of computing time with an optimality gap of lower than 1%. The Gurobi 

commercial solver is applied to solve the co-optimization model, which is widely 

adopted to solve MILP problems with proven robustness and efficiency [41]. The 

branch-and-cut algorithm, embedded in Gurobi [36], makes it efficient for solving 

various integer programming problems with guaranteed optimality [42]. The 

description and flowchart of the branch-and-cut algorithm are given in Appendix C, 

while Refs. [43] and [44] provide more details regarding this algorithm and its 

applications to optimization problems. 

3. Case study 

A real-world case study was conducted in a multifunctional district in Shanghai, 

China. The selected district has 18 residential buildings, two shopping malls, one hotel, 

and two office buildings in which the energy station is built underground. The total 

floorage of the district is 128,500 m2, including 51,700 m2 residential buildings, 25,500 

m2 shopping malls, 32,000 m2 hotels, and 19,300 m2 office buildings. The layout of 

each building is shown in Fig. 5(a). The IES and layout of the heating and cooling 

networks are shown in Fig. 5(b). The 3D models of the buildings are shown in Fig. 5(c). 
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Fig. 5. Birds-eye view of the district with four categories of buildings (a), all buildings clustered 

into four functional zones and cooling/heating network layout (b), 3D model of the district (c). 

3.1 Demand-side energy-saving effect quantification 

Each demand-side scenario denotes a combination of external walls, roofs, and 

window upgrades. The scenario without implementing any upgrades is numbered as No. 

1, and scenario No. 64 represents implementing the Premium upgrading of external 

walls, roofs, and windows. Fig. 6(a) presents the normalized annual energy demands of 

each demand-side scenario. It is evident that the annual cooling and heating demands 

would decrease further when implementing higher levels of upgrading on external walls, 

roofs, and windows. Meanwhile, the savings in annual cooling and heating demand 

could reach 20% and 30%, respectively. The upgrades of windows and roofs contribute 

to the more energy-saving effect of cooling demands, while the upgrades of the roof 

and external wall have a greater impact on heating demands. Fig. 6(b) illustrates the 

hourly electrical, cooling, and heating demands for one scenario. Detailed values of 

energy savings for each demand-side scenario are given in Appendix B. 
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(a)                                   (b) 

Fig. 6. Radar plot of cooling and heating saving effect when implementing 64 demand-side 

scenarios individually (a), illustrative hourly electrical, cooling and heating demands for scenario 

No. 1 (b). 

3.2 Supply-side techno-economic parameterization  

The supply-side module is parameterized by state-of-the-art inputs based on a 

conservative estimation of the technology lifetime of 15 years [45], and an assumed 

interest rate of 6% [46]. The carbon emission factors of natural gas and bulk grid are 

set as 0.18 kg/kWh and 0.77 kg/kWh based on the East China grid’s power supply. 

Other technical and economic parameters for supply-side technologies are listed in 

Table 3. The carbon tax in China is set within 0-70 $/ton with a 10 $/ton interval [47]. 

Table 3 Supply-side technical and economic parameters of the IES model. [16][34][48]  

Technologies Technical parameters Economic parameters 

CHP 

Power efficiency 0.42 Capital cost 1,200 $/kW 

Heating efficiency 0.45 Maintenance cost 0.005 $/kWh 

Maximum capacity 5,000 kWe   
     

Gas boiler 
Efficiency 0.85 Capital cost 80 $/kW 

Maximum capacity 6,000 kWh Maintenance cost 0.0003 $/kWh 
     

Absorption chiller 
Efficiency 0.9 Capital cost 180 $/kW 

Maximum capacity 6,000 kWc Maintenance cost 0.002 $/kWh 
     

Electrical chiller 
COP 4 Capital cost 120 $/kW 

Maximum capacity 9,000 kWc Maintenance cost 0.002 $/kWh 
     

Heat pump 
COP (Winter) 1.81 Capital cost 180 $/kW 

COP (Others) 3 Maintenance cost 0.002 $/kWh 
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Maximum capacity 5,000 kWh   
     

PV panels 
Efficiency 0.15 Capital cost 1,650 $/kW 

Total roof area 31,600 m2 Maintenance cost 0.002 $/kWh 
     

Heat storage 

Stored efficiency 0.9 Capital cost 75 $/kW 

Charge efficiency 0.9 Maintenance cost 0.001 $/kWh 

Discharge efficiency 0.9   

Maximum capacity 5,000 kWh   

4. Results and discussions 

This section discusses the obtained results from four aspects: the economic benefit 

of co-optimization, impacts of the carbon tax on the optimal solution for demand and 

supply-sides, and uncertainty analysis results. 

4.1 Economic benefit of co-optimization 

Taking the supply-side-only optimization of IES as the baseline condition, the 

proposed co-optimization model could achieve more cost-efficient solutions, as shown 

by the cost breakdown in Fig. 7. The computational time of supply-side-only 

optimization model range from 5-10 minutes for one optimization, which is much lower 

than that of the co-optimization model. Meanwhile, with the increase of carbon level, 

the computational time of co-optimization model increases and reaches approximately 

40 minutes when the carbon tax is 70 $/ton. The lowest carbon tax (0 $/ton) contributes 

to the least computational time of 15 minutes for the co-optimization model. 

When the carbon tax is not considered, co-optimization and supply-side-only 

optimization achieve the same TACs as no demand-side upgrading is implemented. 

Once the carbon tax reaches 10 $/ton, the optimal solutions of the co-optimization are 

better than those of the baseline model, and the differences increase with a higher 

carbon tax. The maximum difference is approximately 2.5% when the carbon tax is 70 

$/ton. This is because the co-optimization model significantly modified the structure of 

TAC by spending more on demand-side upgrading, leading to lower operation costs 

and carbon tax costs. Hence, the carbon tax, considered as the bridge, significantly 

influences the equilibrium between supply and demand-side decisions, while the 

optimal solutions show that the more carbon tax level contributes to the better 
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equilibrium. 

When using the co-optimization model, the CAPEX values are generally higher 

than those of the baseline model because of the increasing capacity of renewable 

technologies. The OPEX values are reduced by 6 %–20% by introducing demand-side 

upgrading technologies, whereas additional cost of installation and replacement (i.e., 

UPEX) is required. Similarly, the energy-saving effect of co-optimization contributes 

to a 5%–15% reduction in CEEX. Generally, the increments of CAPEX and UPEX can 

be completely covered by the decrease in OPEX and CEEX in the co-optimization 

model, and economic benefits can be achieved. 

 

Fig. 7. Cost comparison between baseline model and co-optimization models considering various 

carbon tax. Abbreviation: TAC - total annual cost, CAPEX - capital cost, UPEX – upgrading cost, 

OPEX – operation cost, and CEEX – carbon tax. 

The impacts of carbon tax on the TACs are further revealed in Fig. 8. For each 

carbon tax interval, OPEX is always the largest contributor, accounting for 72% to 42%. 

It also declines rapidly with the increase in carbon tax, corresponding decreased usage 

of fossil fuels, and the increasingly significant energy-saving effect. CAPEX ranged 

from 28% to 35%. Although several energy-supply technology capacities are reduced 

to some extent due to the demand-side upgrades, they cannot offset the significant 

increase in installing PV panels. Furthermore, the increasing carbon tax leads to an 

increase in the carbon tax cost (up to 8%), envelope upgrading cost (up to 15%), and 
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capital cost, while these additional costs can be fully covered by significant drops in 

operation costs. 

 
Fig. 8. Co-optimization models’ cost breakdown considering various carbon tax. Abbreviation: 

TAC - total annual cost, CAPEX - capital cost, UPEX – upgrading cost, OPEX – operation cost, 

and CEEX – carbon tax. 

4.2 Impacts of carbon tax on demand-side scheme 

Table 4 indicates that a higher carbon tax would lead to the implementation of 

more improved envelope upgrading technologies to achieve more energy-saving effects. 

Without considering the carbon tax, none of the envelope upgrading technologies is 

selected so that the supply-side optimization and co-optimization obtain an identical 

result. Once the carbon tax is larger than zero, Basic roof upgrading would be 

immediately implemented. The Basic roof upgrading scheme is stable regardless of the 

carbon tax due to the higher upgrading cost of more improved alternatives. Meanwhile, 

the optimal demand-side scheme tends to select the Basic and Standard levels for the 

upgrades of windows and external walls. The Premium level for any envelope 

upgrading technology is not selected because of its huge investment expense. The 

maximum energy-saving amounts of cooling and heating demands could both reach 

18.6%, and the more improved upgrading levels were not cost-efficient. In addition, the 
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specific, depending on the building shape, window-wall ratio, and material prices. 

Table 4 Optimal demand-side scheme with cost breakdown and energy-saving effect. 

Carbon tax 

($/ton) 

Upgrading scheme  Upgrading cost breakdown  Energy-saving effect 

Window Extwall* Roof  Window Extwall* Roof  Cooling Heating 

0 None None None  0 0 0  0 0 

10 None None Basic  0 0 100%  3.2% 9.7% 

20 None None Basic  0 0 100%  3.2% 9.7% 

30 Standard Basic Basic  44.2% 23.9% 31.9%  17.6% 18.6% 

40 Standard Basic Basic  44.2% 23.9% 31.9%  17.6% 18.6% 

50 Standard Basic Basic  44.2% 23.9% 31.9%  17.6% 18.6% 

60 Basic Standard Basic  35.1% 32.2% 32.7%  18.4% 16.9% 

70 Standard Basic Basic  44.2% 23.9% 31.9%  17.6% 18.6% 

*Extwall is the external wall 

4.3 Impacts of carbon tax on supply-side design 

The overall system performance and supply-side design are significantly affected 

by the carbon tax, as discussed in the following subsections. 

4.3.1 Energy carrier shares 

Fig. 9 shows the entire system’s energy carrier shares of natural gas use, electricity 

from the bulk grid, and renewable resources. In general, carbon taxes increase 

renewable power generation and reduce onsite natural gas usage. The bulk grid shares 

are relatively steady to ensure system reliability. The dots representing the supply-side 

scenarios of the transition seasons are distributed on the renewable axis due to no 

heating and cooling demands, while the electrical demands are fulfilled by PV panels 

and the bulk grid (CHP is off). With the increase in carbon tax, the renewable share 

increases significantly, with a maximum value of up to 58%. Meanwhile, because the 

emission factor of the bulk power grid is much higher than that in Europe [15] and 

subsidies on CHP in China, low-cost natural gas would be increasingly utilized to 

generate onsite power. Consequently, the dots representing winter and summer supply-

side scenarios are distributed around the bottom-right region with natural gas shares of 

more than 50% and bulk grid shares of less than 25%. With the increase in carbon tax, 

the natural gas share decreased from 85% to 57%, while the bulk grid share reduced 

significantly from 14% to 6%. In addition, a comparison between Fig. 9(a) and Fig. 9(b) 
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reveals that the higher carbon tax intervals push the distribution’s region toward lower 

natural gas shares and higher renewable shares more powerfully than the lower carbon 

tax intervals, and then obtain more disperse distributions, meaning diversified 

combinations of energy carrier shares. Furthermore, the energy carrier shares are 

closely related to the system configurations and dispatch strategy, as reported in the 

following subsections. 

 
Fig. 9. Energy carrier shares’ variations with carbon tax, 0-30 $/ton (a) and 40-70 $/ton (b). The 

energy carrier shares for each supply-side scenario are shown as a series of dots with various 

colors for representing corresponding carbon tax. 

4.3.2 Capacity configuration 

Fig. 10 presents the optimal supply-side designs with eight carbon tax intervals. 

Generally, the carbon tax boosts the supply-side design and demand-side scheme 

towards a more renewable and energy-saving manner. PV panels were not installed 

when the carbon tax was zero. With the increase in carbon tax from 10 to 30 $/ton, the 

installed capacity of PV panels increases gradually, and its installed area increases from 

2,692 m2 to 9,212 m2, which is equivalent to approximately 10% to 30% of the overall 

available roofs. Hence, this carbon tax can be considered as the reference value to 

decide upon the massive introduction of renewable energy technologies in district-level 

IES with an economic objective. Although the carbon tax reaches the upper bound of 

70 $/ton, the proportion of the total area of PV-installed roofs to that of all roofs is no 

more than 50% (15,800 m2) due to the higher cost of installation and maintenance when 

compared to other fuel-based technologies. As various envelope upgrading schemes are 
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adopted on the demand side, the increasing carbon tax lowers the installed capacities of 

the natural gas-based technologies - that is, the capacities of CHP, HP, and AC reduce 

by more than 20%, while the capacities of Boiler and EC are reduced by approximately 

15% and 18%, respectively. Interestingly, the capacity of HS initially decreases and 

then increases as a larger capacity of heat storage could contribute to lower carbon 

emissions during the operation stage. 

 

Fig. 10. Optimal supply-side design of capacity configuration with various levels of carbon tax. 

4.3.3 Dispatch strategy 

The hourly cooling and heating balances for the two representative supply-side 

scenarios with the highest probabilities are shown in Fig. 11. 

Summer cooling balances for 0 $/ton and 70 $/ton carbon taxes are illustrated in 

Fig. 11(a-d). When the carbon tax is not charged, the absorption chiller provides more 

cooling energy than the electrical chiller, along with a larger capacity of CHP and 

available heating. However, the opposite is true for the 70 $/ton carbon tax – the 

majority of electricity consumed by the electrical chiller is fed from renewable rather 

than CHP or bulk grid, which is in line with observations for the energy carrier shares. 

Because the fluctuation of cooling demand is coincident with the variation of the peak-

valley electricity price, the impact of TOU price on optimal dispatch strategies for 

summer is insignificant in this case. 

Figure 11(e-h) illustrates the heating balances of several representative supply-side 

scenarios during winter. There is an obvious difference in the scheduling of CHP 

between the 0 $/ton carbon tax and 70 $/ton carbon tax. When the carbon tax is 0 $/ton, 

CHP tends to be shut down during the valley period of the TOU electricity price. 

However, CHP operates all the time when the carbon tax is 70 $/ton. This is because 
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the optimal solution with a high carbon tax would have to choose the CHP-generated 

electricity instead of the bulk grid electricity with a high emission factor, even if the 

bulk grid electricity price is lower. Similarly, the heat pump tends to provide more 

heating when the carbon tax is 0 $/ton. Meanwhile, heat storage can provide flexibility 

in the scheduling of heating balances.  

The hourly electrical balances of the scenarios with the highest probabilities in 

each season considering 0 $/ton and 70 $/ton carbon tax are shown in Fig. 12(a) and (d) 

for summer, Fig. 12(b) and (e) for winter, and Fig. 12(c) and (f) for the transition 

seasons, respectively. In general, the optimal dispatch strategy is comprehensively 

affected by the energy carrier prices, technical parameters, carbon emission factors, 

upgrading prices, and carbon tax. Unlike the heating and cooling balances, there is no 

difference in the electrical demand between the low and high carbon taxes, while their 

optimal dispatch strategies vary greatly. For the 0 $/ton carbon tax, the CHP is usually 

in full-load operation and feeds a relatively greater amount of surplus electricity back 

to the grid during the daytime peak. Meanwhile, the PV panels play a more important 

role when the carbon tax is 70 $/ton.
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Fig. 11. Representative supply-side scenarios’ cooling balances for scenarios 1 and 3, and heating balances for scenarios 11 and 12, with the carbon tax of 0 $/ton (a-d) and 70 

$/ton (e-h).
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Fig. 12. Representative supply-side scenarios’ electrical balances of scenarios 3, 11, and 17 for 0 $/ton carbon tax (a-c), and for 70 $/ton carbon tax (d-f).
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4.4 Uncertainty analysis results 

Uncertainties exist from parameter assumptions, and this work investigates the 

uncertainty of the most influential uncertain factor, prices, by combining Monte Carlo 

simulation with optimization of the operation variables only while fixing the design 

variables. The number of simulations was set to 5000. Owing to the computational 

resource limits, the uncertainty analysis was performed on the optimal results of five 

representative values of carbon tax, as shown by the violin plot in Fig. 13 and reported 

in Table 5. 

 

Fig. 13. Violin plot of TAC distributions obtained by uncertainty analysis in terms of various 

carbon tax. 

As shown in Fig. 13, each violin plot demonstrates the robustness of the optimal 

designs for the demand and supply-sides under the uncertainties of prices. The box 

indicates the range of the lower quartile to the upper quartile, the white dot represents 

the distribution’s mean value, and the whisker shows the range of the 5th percentile to 

the 95th percentile. The coefficient of variation (CV), standard deviation (STD), and 

mean value are listed in Table 5 for quantification purposes, and the deterministic values 

discussed in Section 4.1. The CV indicator characterizes the dispersion degree of 

distributions, which is defined as the ratio of the STD to the mean value. Intuitively, the 

mean values are slightly greater than the deterministic values, indicating that the 
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optimal performance deteriorates with the introduction of uncertainties. With an 

increase in the carbon tax, the deviations gradually decrease because of a higher 

proportion of carbon emission cost, whose relative value ranges from 5% to 2%. 

Consequently, the CV value varies from 6.9% to 4.5%, which means that the 

distribution becomes more concentrated with a higher carbon tax. In general, the 

robustness of the proposed co-optimization model was validated by uncertainty analysis. 

The optimal demand-side scheme and supply-side capacity configuration are capable 

of addressing the uncertainties from prices at the operation stage, including the ratio of 

replacement and maintenance costs of envelopes (i.e., window, external wall, and roof), 

the energy carrier prices (i.e., natural gas and bulk grid), and the ratio of the FIT to 

purchased price from the bulk grid. 

Table 5 Mean and standard deviation of TAC for various carbon tax 

System 

performance 

Carbon tax 

($/ton) 

Deterministic 

(106 $/year) 

Mean 

(106 $/year) 

STD 

(106 $/year) 

CV 

(%) 

TAC 

0 1.873 1.964 0.137 6.98 

10 1.958 2.045 0.126 6.19 

30 2.109 2.165 0.117 5.42 

50 2.229 2.287 0.115 5.01 

70 2.343 2.393 0.108 4.52 

4.5 Model scalability and adoptability 

The proposed co-optimization model is featured by scalability and adoptability. 

The designers can flexibly modify the supply and demand-side scenario trees according 

to their specific needs and computational resources. The model adoptability is reflected 

by covering the typical energy technologies widely used in IES system. The co-

optimization modeling concept could be adapted to other districts in various climate 

zones and scaled to large-scale case studies such as urban areas including dozens of 

multi-functional buildings. In addition, the proposed study unlocked the impacts of 

carbon tax on IES from a whole-system decision-maker perspective and is expected to 

benefit the supply and demand-side stakeholders to achieve a low-carbon and economic 

design. Beyond the district studied in present work, the proposed co-optimization 

model could be implemented in other countries or climate zones by considering the 
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local technical-economic-environmental characteristics and renewable resources. 

5. Conclusions 

To unlock the impacts of the emerging carbon tax on integrated energy systems 

(IES), this study develops an IES co-optimization model incorporating supply-side and 

demand-side energy technologies. A selection tree and a binary tree were introduced to 

represent various demand-side and supply-side scenarios, respectively. The demand-

side module considers four envelope upgrading levels (i.e., None, Basic, Standard, and 

Premium) for external walls, roofs, and windows, respectively, and the EnergyPlus 

building energy simulation tool is adopted to explicitly quantify the saving effects. The 

supply-side module consists of various supply-side scenarios using clustering-based 

methods that describe the variations from seasons, occupant behaviors, and renewable 

resources. The two modules are integrated into an improved stochastic programming 

model to capture the impact of the carbon tax. Furthermore, an uncertainty analysis 

combining Monte Carlo simulation and operation optimization was conducted to 

validate the robustness of the proposed co-optimization model when considering price 

uncertainties at the operation stage. The major conclusions are summarized as follows: 

(1) The case study at a multifunctional district in Shanghai, China, reveals that the 

co-optimization model can achieve a 2.5% more cost-efficient IES design than the 

supply-side-only optimization model when up to 70 $/ton of carbon tax is considered. 

(2) Carbon tax will promote the implementation of demand-side upgrading 

schemes. The Basic upgrading for roofs and external walls and the Standard upgrading 

for windows are preferred, while the Premium is not cost-efficient even when the 

carbon tax is up to 70 $/ton. 

(3) Introducing the carbon tax leads to a capacity drop of 15–24% for fuel-based 

technologies and a significant increase in the installed area of PV panels. A relatively 

steady share of the bulk grid is observed, which can contribute to system reliability. 

(4) The uncertainty analysis validates the robustness of the optimal solutions 

considering the uncertainties of various prices. The relative difference between 

deterministic values and mean values is less than 5%, and the distributions are 
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concentrated acceptably with CV values of no more than 7%. 

In general, this study unlocks the emerging impacts of carbon tax on IES by 

proposing a supply and demand co-optimization model. The optimal results were 

validated against the uncertainties. The observations could inform the future design of 

IES and assist in preparation for the forthcoming carbon tax. This work can be 

extending in the future by introducing more demand-side energy-saving technologies, 

e.g., demand response and EV charging, and adopting advanced supply-side modeling 

methods, including multi-energy hub approach and intelligence-based techniques. 

Meanwhile, a multi-objective optimization approach can also be considered to achieve 

Pareto optimality so that the energy planning model provides more optimal alternatives 

for stakeholders and decision-makers. 
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Appendix A 

The model’s mathematical constraints of each component are developed based on 

previous research and presented below. 

A.1 Capacity constraints 

An upper bound must exist, which provides the maximum installed capacity for 

each energy conversion technology, while the total roof area of buildings limits the 

maximum capacity of PV panels [49]. 

 
max

k kCAP CAP  (A1a) 

 
roof

pvAREA AREA  (A1b) 

Considering the complexity of the proposed co-optimization model, constant 

efficiency is used to describe the performance of each energy conversion technology to 

ensure the linearity of the model; the output of each technology cannot exceed its 

installed capacity. 
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hp,s, hphQ CAP  (A2c) 
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hs, , hss hQ CAP  (A2d) 

 
cool

ec, , ecs hQ CAP  (A2e) 

 
cool

ac, , acs hQ CAP  (A2f) 

where CAP indicates the installed capacity of the energy technologies. 

A.2 Operation constraints 

A.2.1 CHP 

The CHP operation is constrained by Eq. (A3). This constraint set includes load-

ratio constraints to avoid operation at a low load ratio in Eq. (A3c–A3d), the ramping 

constraint, which avoids drastic variations in Eq. (A3e), and the maximum startup 

constraint that avoids frequent start-ups in Eq. (A3f–A3i), such that its efficiency is 

stable and life can be extended [50]. 

 
ele ele

chp, , chp chp, ,s h s hQ NG=   (A3a) 

 
heat heat

chp, , chp chp, ,s h s hQ NG=   (A3b) 
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ele

chp, , chp, , chps h s hQ CAP   (A3c) 

 
ele

chp, , chp, , chp0.2s h s hQ CAP    (A3d) 

 
ele ele

chp chp, , 1 chp, , chp0.5 0.5s h s hCAP Q Q CAP+−   −    (A3e) 

 chp, , 1s h

h

   
(A3f) 

 chp, , chp, , chp, , 1s h s h s h   − −  (A3g) 

 chp, , chp, , 11s h s h  − −  (A3h) 

 chp, , chp, ,s h s h   (A3i) 

where the binary variables φ and γ denote the on/off status and startup time, respectively.  

A.2.2 Heat storage tank and grid interaction 

The IES model also introduces a heat storage tank owing to its economic 

attractiveness and maturity, while off-grid IES systems cannot ensure robustness. The 

modules of heat storage and grid interaction both need to avoid inputting and outputting 

concurrently, and the binary variables φ are then introduced. For the heat storage 

module in Eq. (A4), the efficiencies of the intertemporal loss, charging, and discharging 

are introduced to describe the intertemporal balance [51]. 

 

heat

hs-out, ,heat heat heat

hs, , hs hs, , 1 hs-in hs-in, ,
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heat

hs-out, , hs-out, , hss h s hQ CAP   (A4c) 

 hs-in, , hs-out, , 1s h s h +   (A4d) 

The expressions for grid interaction, including electricity purchasing and feedback, 

are listed in Eq. (A5). 

 
ele

im, , im, , grid0 s h s hQ CAP    (A5a) 

 
ele

ex, , ex, , grid0 s h s hQ CAP    (A5b) 

 ex, , im, , 1s h s h +   (A5c) 

where CAPgrid is the maximum capacity of grid purchasing based on the on-grid 

agreement. 

A.2.3 Other constraints 

In addition to the above energy technologies with special operation constraints, the 

modules of electrical chillers, absorption chillers, gas boilers, air-source heat pumps, 

and PV panels have a linear relationship between their outputs and the energy or energy 
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carriers consumed, as shown in Eq. (A6). Note that the heat pumps have different 

efficiencies in summer and winter owing to the ambient temperature [52]. 

 
cool ele

ec, , ec ec, ,s h s hQ Q=   (A6a) 

 
heat ele

hp, , hp-win/hp-sum hp, ,s h s hQ Q=   (A6b) 

 
cool heat

ac, , ac ac, ,s h s hQ Q=   (A6c) 

 
cool

b, , b b, ,s h s hQ NG=   (A6d) 

 
ele

pv, , pv , pvs h s hQ SRI AREA=    (A6e) 

Appendix B 

See Table B1. 
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Table B1 Energy demands and envelope upgrading scheme for each demand-side scenario 

Scenario 
Envelope upgrading scheme Annual energy demand (106 kWh) 

Scenario 
Envelope upgrading scheme Annual demand (106 kWh) 

Window Extwall Roof Cooling Heating Window Extwall Roof Cooling Heating 

1 None None None 9.975  6.935  33 Standard None None 8.724  6.824  

2 None None Basic 9.661  6.265  34 Standard None Basic 8.361  6.131  

3 None None Standard 9.535  6.021  35 Standard None Standard 8.215  5.879  

4 None None Premium 9.469  5.903  36 Standard None Premium 8.138  5.756  

5 None Basic None 9.868  6.476  37 Standard Basic None 8.586  6.355  

6 None Basic Basic 9.549  5.790  38 Standard Basic Basic 8.216  5.645  

7 None Basic Standard 9.420  5.539  39 Standard Basic Standard 8.065  5.385  

8 None Basic Premium 9.352  5.416  40 Standard Basic Premium 7.986  5.257  

9 None Standard None 9.833  6.322  41 Standard Standard None 8.541  6.197  

10 None Standard Basic 9.513  5.629  42 Standard Standard Basic 8.168  5.480  

11 None Standard Standard 9.383  5.375  43 Standard Standard Standard 8.016  5.218  

12 None Standard Premium 9.315  5.252  44 Standard Standard Premium 7.935  5.088  

13 None Premium None 9.800  6.171  45 Standard Premium None 8.497  6.043  

14 None Premium Basic 9.478  5.472  46 Standard Premium Basic 8.122  5.319  

15 None Premium Standard 9.347  5.216  47 Standard Premium Standard 7.968  5.054  

16 None Premium Premium 9.279  5.091  48 Standard Premium Premium 7.886  4.924  

17 Basic None None 8.701  7.089  49 Premium None None 8.624  6.545  

18 Basic None Basic 8.338  6.405  50 Premium None Basic 8.252  5.846  

19 Basic None Standard 8.192  6.156  51 Premium None Standard 8.102  5.589  

20 Basic None Premium 8.114  6.034  52 Premium None Premium 8.023  5.464  

21 Basic Basic None 8.561  6.626  53 Premium Basic None 8.483  6.073  

22 Basic Basic Basic 8.190  5.925  54 Premium Basic Basic 8.104  5.356  

23 Basic Basic Standard 8.038  5.667  55 Premium Basic Standard 7.948  5.092  

24 Basic Basic Premium 7.959  5.541  56 Premium Basic Premium 7.867  4.963  

25 Basic Standard None 8.514  6.470  57 Premium Standard None 8.437  5.913  

26 Basic Standard Basic 8.140  5.762  58 Premium Standard Basic 8.055  5.190  

27 Basic Standard Standard 7.988  5.501  59 Premium Standard Standard 7.897  4.923  

28 Basic Standard Premium 7.907  5.374  60 Premium Standard Premium 7.815  4.794  

29 Basic Premium None 8.470  6.318  61 Premium Premium None 8.392  5.759  

30 Basic Premium Basic 8.093  5.604  62 Premium Premium Basic 8.007  5.029  

31 Basic Premium Standard 7.939  5.341  63 Premium Premium Standard 7.848  4.758  

32 Basic Premium Premium 7.857  5.212  64 Premium Premium Premium 7.765  4.628  
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Appendix C 

The branch-and-cut algorithm is derived from the branch-and-bound algorithm 

combined with the cutting plane method [53], whose flowchart is presented in Fig. C1. 

 

Fig. C1. Flowchart of the branch-and-cut algorithm used in this study. 
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