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ABSTRACT

COVID-19 is characterized by profound lymphopenia in the peripheral blood, and the remaining T cells display altered phe-
notypes, characterized by a spectrum of activation and exhaustion. However, antigen-specific T cell responses are emerging
as a crucial mechanism for both clearance of the virus and as the most likely route to long-lasting immune memory that
would protect against re-infection. Therefore, T cell responses are also of considerable interest in vaccine development.
Furthermore, persistent alterations in T cell subset composition and function post-infection have important implications
for patients’ long-term immune function. In this review, we examine T cell phenotypes, including those of innate T cells, in
both peripheral blood and lungs, and consider how key markers of activation and exhaustion correlate with, and may be
able to predict, disease severity. We focus on SARS-CoV-2-specific T cells to elucidate markers that may indicate formation
of antigen-specific T cell memory. We also examine peripheral T cell phenotypes in recovery and the likelihood of long-
lasting immune disruption. Finally, we discuss T cell phenotypes in the lung as important drivers of both virus clearance
and tissue damage. As our knowledge of the adaptive immune response to COVID-19 rapidly evolves, it has become clear
that while some areas of the T cell response have been investigated in some detail, others, such as the T cell response in
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children remain largely unexplored. Therefore, this review will also highlight areas where T cell phenotypes require urgent
characterisation.
Key words: T cells; COVID-19; phenotypes; antigen-specific; lung; peripheral blood.

INTRODUCTION

The T cell arm of the adaptive immune system is vital in the host
defence against viral pathogens and in long-lasting immune mem-
ory that prevents reinfection. Therefore, an understanding of T cell
phenotypes and functions is crucial to enable better treatment of
COVID-19, caused by the novel virus SARS-CoV-2. SARS-CoV-2
belongs to the coronavirus family which includes SARS-CoV-1,
MERS-CoV and ‘common cold’ coronaviruses (OC43, HKU1, 229E
and NL63) [1]. SARS-CoV-1 and MERS-CoV both cause severe dis-
ease with high fatality rates. SARS-CoV-1 infection is characterized
by lymphopenia and reduced activation of T cells [2], while in
MERS-CoV infection lymphopenia is less prevalent, T cells can be
directly infected by MERS-CoV and mount a Th17-driven response
[3]. In both cases, long-lived memory T cells are generated [4, 5].
The T cell response to SARS-CoV-2 is strikingly different from that
which occurs in response to influenza [6, 7]. Direct comparisons be-
tween patients with influenza and COVID-19 (including patients
from both groups with acute respiratory failure) demonstrate that
those with influenza had increased IFN pathway responses and re-
duced TNF and IL-1b responses compared to patients with COVID-
19 [6, 7]. COVID-19 is characterized by lymphopenia [8] and T cell
phenotypes are drastically altered (Box 1). Furthermore, it is be-
coming clear that these phenotypic changes may be important in
determining the course of disease [9] (Box 2). A pattern is emerging
of heterogeneous T cell phenotypes which display elements of ac-
tivation and proliferation but also exhaustion and lack of cytokine
production. This review examines this heterogeneity and how it
correlates with disease severity. SARS-CoV-2-specific T cell pheno-
types and T cell phenotypes in the lung and in recovery are also
discussed, along with indications of T cell memory formation.

T cell phenotypes in the peripheral blood

Most studies have examined the phenotype of all T cells in the
peripheral blood of COVID-19 patients, however, some studies
have used tetramers or in vitro activation assays to identify and
characterize SARS-CoV-2 specific T cells. The ‘T cell phenotypes
in the peripheral blood’ section of this review will examine the
gross phenotypic changes seen across T cells as a whole in the
peripheral blood (of which the majority will not be specific for
SARS-CoV-2), while the ‘SARS-CoV-2 antigen-specific T cells’
section will focus upon SARS-CoV-2 antigen-specific T cells.

T cell subsets.
In COVID-19, there is a striking loss of T cells, particularly of
naı̈ve CD4þ T cells [10, 11], but many effector and memory sub-
sets are proportionally increased (although due to lymphopenia
this may still represent a reduction in absolute numbers).
Changes in specific subsets and correlation with disease sever-
ity are summarized in Table 1. It is not clear whether naı̈ve cells
are converting to an effector/memory phenotype or lost from
the periphery altogether. Most likely, given the substantial
reductions in T cell counts, both mechanisms occur.

Proliferation.
Numbers of proliferating T cells have been reported to increase
in most COVID-19 patients [21, 22], although up to a third of

patients have no increase in the percentage of KI-67þ cells com-
pared to healthy donors [10]. Many T cells subsets proliferate
during COVID-19, including those that are usually quiescent,
such as TCM (central memory) and TEM (effector memory) sub-
sets [10] with 10-fold increases in the percentage of blood CD4þ

and CD8þ TEM cells in G1 or S-G2/M cell cycle phases [23].
Furthermore, subsets may be proliferating even though they are
decreased in frequency [10]. Proliferation rate is likely influ-
enced by disease stage and severity and enhanced in severe dis-
ease [13]. Proliferation of CD4þ T cells also correlates with anti-
SARS-CoV-2 IgG [23].

T cell phenotypic markers and cytokine production: activation and
exhaustion.
CD8þ T cells in COVID-19 patients have phenotypes associated
with activation, cytotoxicity and cytokine production [22]
(Figure 1A). There is an increased frequency of activated HLA-
DRþ CD38þ T cells [10, 13, 23, 24], particularly among memory T
cells and CD8þ T cells in patients who later progress to severe
disease [8, 13, 23]. Over the course of active infection there is a
decline in activated CD8þCD38þHLA-DRþ T cells [18]. Non-naı̈ve
CD8þ T cells are enriched for expression of CD39, CD27, PD1,
ICOS and CD95 (FAS) [10]. CD4þ and CD8þ T cells in infected
patients express high levels of activation markers such as CD25
[25] and CD69 [26] (although whether this increases [27] or
decreases [28] over time is unresolved) and effector markers
such as NKG7 [22], while overexpression of hypoxia-inducible
factor-1 (HIF-1) in T cells suggests an adaptation to hypoxic con-
ditions [23]. CD4þ TCM cells have increased expression of activa-
tion markers including PD-1 (used as both a marker of
activation and exhaustion), CD95 and ICOS [10]. TEM and circu-
lating T follicular helper cells (cTfh) show high levels of prolifer-
ation and HLA-DR/CD38 co-expression [10]. A good prognosis is
indicated by higher levels of CXCR3þ CD4þ T cells [12] and high
expression of CD69 [28] at the time of hospital admission. The
most severe disease is associated with decreased frequencies of
CD11aþ T cells and CD28þ CD4þ T cells [16] and increased HLA-
DRþ CD57þ T cells [26].

Most, but not all [21], studies have also reported an
exhausted [29] or senescent [30] T cell phenotype, particularly
in CD8þ T cells [29], and link disease severity with decreased
polyfunctionality and cytotoxicity [29, 31, 32]. Exhaustion
markers increase as disease progresses [31] and high levels of
exhaustion markers correlate with a poor prognosis at the time
of hospital admission [29]. PD-1 [23, 25, 31], Tim-3 [31, 33],
CTLA4 [23, 34], LAG-3 [23], BTLA (B and T lymphocyte attenua-
tor) [14] and the inhibitory receptor NKG2A [32] have been iden-
tified as markers of chronic activation, inhibition and an
exhaustion in both CD4þ and CD8þ T cells. CD4þ T cells upregu-
late PD-1 in all subsets except naı̈ve populations [10, 13, 14, 26]
and this is more pronounced in severe disease [13]. CD73 is also
downregulated [14], again suggesting exhaustion.
Overexpression of TRAIL-receptor and CASP3 suggested that
CD8þ TEM were more prone to apoptosis [23]. There are conflict-
ing reports of TIGIT expression being downregulated [23], or in-
creased [14] in T cells. It has also been suggested that TIGIT’s
ligand PVR may directly interact with SARS-CoV-2 [23].
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Polyfunctionality in viral infections is often related to a bet-
ter immune control of the infection [35]. In COVID-19, the loss of
cytokine production (IL-2, IFNc or TNFa) [29] and antiviral activ-
ity (CD107a and Granzyme B) [32] in both CD4þ and CD8þ T cells
may be an important contributing factor to disease severity [21,
30]. Elderly (>80 years old) patients in particular had an im-
paired CD8þ T cell cytotoxic response [36]. However, some
reports found that T cells in COVID-19 patients, including those
with severe disease, expressed substantial amounts of IFNc [9,
37], IL-17 [9], FASLG, Granzyme A and perforin [23]. In addition,
CD8þ TEF expressed PTGDR, a mediator of airway inflammation,
Granzyme K and XCL2 [37], while TEMRA-like populations
expressed CX3CR1, T-bet and Granzyme B [10]. Therefore, an al-
ternative possibility is that these functional responses exacer-
bate COVID-19 disease. Little is known about asymptomatic
disease, but one study suggests that these individuals have in-
creased IFNc, XCL2 and CD69 expression on T cells, and expan-
sion of a Th2-like subset expressing Tumor necrosis factor
receptor superfamily, member 19 (TNFRSF19) [38].

A picture emerges of initial T cell activation in response to in-
fection and cytokine-driven bystander activation—indeed, many
phenotypic changes correlate with levels of IL-6 or CXCL10 in the
serum [23]. T cell activation then progresses to exhaustion, al-
though it is clear that many individual cells simultaneously ex-
press markers of both activation and exhaustion [23]. This occurs
in the context of viral evasion [39] and impaired innate responses
including IFN Type I production [40], which results in reduced vi-
rus clearance. It has been proposed that the higher viral titre (due
to the reduced viral clearance) leads to further T cell priming [41].
In mild disease, appropriate activation is followed by exhaustion
whereas in severe disease excessive activation may be followed
by more profound exhaustion.

Innate and cd T cells.
Innate and cd T cells are activated and expanded by non-
peptidic antigens and aid elimination of viral and bacterial
infections [42]. In COVID-19, circulating and lung innate natural
killer T cells (NKT) and mucosal-associated invariant T cells
(MAIT cells) exhibit increased expression of both CD69 and PD-1
with reduced secretion of IFN-c, suggesting that they are both

activated and exhausted [28]. MAIT cell CD69high, PD-1high and
CXCR3low phenotypes associated with poor outcome [19]. In ad-
dition, MAIT cells show increased CD56 expression and
Granzyme B production [20]. A reduction in the proportion of
CD8þ MAIT cells [13] and cd T cells has been observed in the pe-
ripheral blood, with Vc9Vd2 cells nearly completely absent
[23, 43], particularly in patients with severe disease. The
remaining cd T cells are predominantly Vd1þ and highly prolif-
erative, with over 10-fold increases in the proportion of cd T
cells in early cell cycle and G1 [23], while many of the remaining
Vc9Vd2 cells transition to a memory phenotype over the course
of infection [43]. cd T cells in COVID-19 also express high levels
of CD25 [44]. NKT-like cells have increased production of
Granzyme B and perforin and their numbers are similar to
healthy controls in mild disease, expanded in moderate COVID-
19 [45], and decreased in severe disease [17].

T cell phenotypes in convalescent COVID-19 patients.
After SARS-CoV-2 has been cleared from the body, T cell counts
seem to recover to near-normal levels for most patients, al-
though the trajectory of this recovery is associated with the ex-
tent of depletion [10, 13, 46, 47]. Abnormalities in T cell
phenotypes also persist after the resolution of infection
(Figure 1B). During recovery, effector T cells convert to several
different memory subsets [16, 17], with a prolonged conversion
to TCM [37] and a stem-like memory phenotype [26]. In addition,
during early stages of recovery, CD4þ T cells express genes asso-
ciated with positive regulation of cell killing [37] while at later
stages they express genes associated with migration and adhe-
sion [37]. Th2-like ICOSþ Tfh cells are enriched in recovering
patients [37] and activated circulating Tfh (cTfh) frequencies are
higher in recovered patients than healthy donors [10], indicat-
ing support for B cell antibody production (although there are
reports of reduced Tfh in recovered patients [46] or at the level of
healthy controls [13]). However, there are indications that T cell
effector functions may remain impaired in recovered patients.
More than a month after hospital discharge, recovered patients
had higher levels of CD8þ TEF and TEM, increased levels of IL-7R
on naı̈ve CD8þ T cells compared to healthy controls [37], re-
duced production of IFNc, IL-4, IL-17 and Granzyme B by both

Table 1: Summary of T cell subset perturbation in peripheral blood in COVID-19

Subset Change in COVID-19
(as percentage of all T cells)

Higher proportions of
this subset correlate with:

References

Naı̈ve T cells Decrease [10]
Naı̈ve CD4þ T cells More severe disease [12]
Activated Tfh Increased More severe disease [13, 14]
Th17 Increased [14]
Non-conventional (CCR6þCCR4þ

CD161þIL-1RIþ) Th1 (Th1*)
Increased [14]

Tregs Increased in some More severe disease [12, 14, 15]
Activated CD4 TCM-like Increased [10]
CD4þ TEMRA Increased Milder disease [10, 16, 17]
TCM Milder disease [16]
CD4þmemory cells Milder disease [12]
Th2 More severe disease [8, 12]
CD8þ TEMRA Increased Milder disease [10, 16]
CD8þCD27�CCR7þ TEM Increased [10]
CD8þCD27þCCR7� TEM Decreased [10]
CD4þCD8þ double-positive T cells Increased [18]
MAIT Decreased (in periphery) Milder disease [19, 20]
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Figure 1: An overview of T cell phenotypes in COVID-19. (A) T cell phenotypes in the peripheral blood are characterized by a loss of naı̈ve T cells and an increase in

many memory T cell subsets. T cells are activated upon recognition of virus, or in response to cytokines, for example, IL-6 or IFNc. Activation and antiviral activity are

followed by exhaustion and reduction in cytokine production, although the balance between activation and exhaustion correlates with, and may contribute to, disease

severity. Decreased effector functions (particularly in CD8þ T cells), and reduced cytokine production result in a reduced ability to clear virus from body. (B) In recovery,

while some phenotypic changes return to normal, others persist (over the timescale currently available to investigators). This includes a persistent elevation of Tfh

cells, an increased percentage of TEM that over time are replaced by TCM or TEMRA, persistent exhaustion of effectors, and increased activation of naı̈ve cells. (C) SARS-

CoV-2-specific T cells have a range of effector, memory and follicular helper phenotypes and display a range of activation markers and cytokine production, with rela-

tively little evidence of exhaustion. In the recovery phase of COVID-19, these antigen-specific cells convert to long-lived TCM and TSCM phenotypes, with antigen-spe-

cific Tfh cells also persisting. (D) In the lungs, the T cell response is dominated by clonal expansions of CD8þTRM (resident memory) cells, although in severe disease,

CD4þ TEM and Tregs are also found. Exhaustion of CD8þ T cells in the lungs appears less pronounced than in the periphery.
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CD4þ and CD8þ T cells, and increased Treg frequencies com-
pared to uninfected individuals [46]. There are conflicting
reports of PD-1 expression in recovered patients being similar to
healthy controls [34, 46] or remaining elevated [10], while TIM3
expression on T cells remains high [46]. MAIT cell levels normal-
ized in the convalescent phase [19], while NKT cell numbers
remained low 2 months after infection had resolved [46].

It is possible that these T cell perturbations may recover
over a longer period than is currently available to assess.
However, if persistent, these phenotypes could bring an in-
creased susceptibility to infections and autoimmune diseases.

SARS-CoV-2 antigen-specific T cells

Most studies have examined the phenotype of all cells in the pe-
ripheral blood, however, some studies have used tetramers or
in vitro activation assays to identify and characterize SARS-CoV-
2 specific cells. Antigen-specific CD8þ T cells, particularly in the
early stages of infection, express CD38, HLA-DR, KI-67 and PD-1
[26] (Figure 1C). They also have effector functions, expressing
IFNc, CD107a, FasL, CCL3, CCL4, Granzyme B [32] and TNF [26],
although T cells from patients with severe disease are less likely
to be polyfunctional [34]. Expression of many of these, along
with clonal expansion, is associated with severe disease [48].
SARS-CoV-2-specific CD4þ T cells predominantly had a central
memory (CD45RA�CCR7þ) phenotype [27], with spike
glycoprotein (S) reactive CD4þ T cells displaying an activated/
proliferating phenotype (CD38þHLA-DRþKI-67þPD-1þ) [26].
SARS-CoV-2-specific T cells from recovered patients were able
to express IL-2, IFNc, TNFa [4, 26, 34] and Granzyme B [32].

Intriguingly, T cells with different SARS-CoV-2 epitope spe-
cificities have different phenotypes, with spike-specific CD4þ

T cells skewed towards cTfh, whereas membrane (M) protein-
specific and nucleocapsid (N) specific CD4þ T cells were pre-
dominantly Th1/Th17 [26]. Similarly, M/NP-specific CD8þ T cells
showed wider functionality than T cells targeting the Spike pro-
tein [49]. SARS-CoV-2–specific CD8þ T cells include large propor-
tions of both central memory (CD45RA�CCR7þ) and terminally
differentiated cells (CD45RAþCCR7�) [27].

In recovered patients, SARS-CoV-2-specific CD4þ cells also
have a TCM/Th1 phenotype with high levels of CXCR5, ICOS and
CD127 [50] and higher levels of CTLA4 than patients with active
disease [32]. During recovery, CD8þ T cells have an early stem
cell memory phenotype (CCR7þCD127þCD45RAþTCF-1þ) [26].
Others have described the SARS-CoV-2-specific CD8þ T cells in
recovery as atypical CD27þCD28þ TEMRA cells (terminally differ-
entiated effector memory cells re-expressing CD45RA) [50], TCM

or TEM [49]. Another study found that CD95þCD45RAþ TEMRA,
CCR7þ CD45ROþ CD27þ CD28þ CD95þ TCM and CD45ROþ CD95þ

TEM SARS-CoV-2 –specific CD8þ T cells corresponded to ‘high
prevalence’ peptide responses, which were detected in >35% of
donors of each allele group [51]. Comparatively, ‘low prevalence’
responses i.e. those occurring in fewer individuals, comprised
mainly CCR7þCD45ROþCD27þCD28þCD95þ TCM and
CCR7þCD27þCD28þCD95þCD45RAþ TSCM (central memory and
stem cell memory, respectively) cells [51]. The high prevalence
was also more differentiated (CD57þ and CD161þ) compared to
the low prevalence (CCR7þCD28þCCR7þ) SARS-CoV-2-specific
CD8þ T cells [51]. Spike-specific cTfh cells were abundant in re-
covered patients, (indicating support for B cell responses and
antibody production), biased towards cTfh17 (CCR6þCXCR3�),
and correlated with neutralizing antibody titres [52]. It is sug-
gested that people with asymptomatic COVID-19 may have
expansions of SARS-CoV-2-specific CD4þ, but not CD8þ T cells

[38]. Reassuringly, functional, antigen-specific T cells were
found in people who had recovered from asymptomatic COVID-
19 [26]. Another study of recovered patients found broad SARS-
CoV-2-specific CD4þ and CD8þ T cell responses, with strength
and breadth of target peptides correlated to disease severity
[49]. In addition, T cell responses correlated with antibody titres
[49].

Many reports have found that previous common cold coro-
navirus infections result in the generation of memory T cells
that can cross-react with SARS-CoV-2 [4, 26, 48, 53–56].
Furthermore, in a case study of the T cell repertoire of one donor
characterized both prior to and in recovery from COVID-19 in-
fection, it was found that pre-existing TCM cells had TCRs that
recognized SARS-CoV-2 epitopes. However, after SARS-CoV-2
infection, these SARS-CoV-2 reactive TCRs were now found in
the TEM population, with a small fraction in the TSCM [57].
Overall, SARS-CoV-2-specific cells appear to retain a more acti-
vated and less exhausted profile [48, 58].

T cell phenotypes in the lung

In the airways of moderately severe COVID-19 patients, CD8þ T
cells display an anti-viral phenotype, with high expression of
CCL5 and cytotoxic receptors [58] (Figure 1D). In severe COVID-
19, CD8þ T cells in the airways show increased proliferation but
are decreased in number overall [59], implying that peripheral
lymphopenia is not solely due to recruitment of T cells to the
lungs. T cells from bronchoalveolar lavage (BAL) of patients
with mild disease are differentiated and express Granzyme A,
Granzyme K, FASLG and CCL5 as well as XCL1, XCL2 [59],
whereas T cells from patients with severe disease appear
exhausted, lack Th17 and resident memory markers and effec-
tor functions [60]. Tregs were increased in the pleural fluid of a
COVID-19 patient, compared to the peripheral blood [61]. CD8þ

T cells expressing CCL3, CCL4, CCL5 and CXCR4, and CD4þ T
cells expressing CCR4, CD38, HLA-DR and PD-1 were enriched in
the pleural fluid while both CD4þ and CD8þ T cells expressed
LAG-3, TIM-3 and PRDM1, indicating exhaustion, and cytokine
production was decreased [62]. MAIT cells are enriched in the
lungs [19]. These findings highlight the aberrant responses of T
cells in the lung, which appear similar to those in the peripheral
blood, with over-activation and exhaustion, as a factor in severe
disease.

CONCLUSIONS

Many questions remain regarding the T cell phenotypes in
SARS-CoV-2 infection, in particular as stratified by early/late
stages and disease severity. Some patients manage to mount an
effective anti-viral response, although most of the data show a
dysregulated and inefficient response with T cell over-
activation followed by exhaustion in both the periphery and the
lungs. T cell profile at the point of hospital admission can give
useful indication as to the disease prognosis and stratification
of patients at this point could enable use of effective immuno-
modulating drugs [11]. Evidence of T cell apoptosis is limited,
and the causes of lymphopenia remain unknown. The available
data are mostly from advanced infection in hospitalized
patients and there is a need to characterize the T cell response
in the early stages of severe disease, and over the whole time
course of mild and asymptomatic infections [63] and in children
[64]. In other settings, such as the treatment of multiple sclero-
sis with alemtuzumab, rapid reduction in lymphocyte numbers
is followed by uneven repopulation of T and B cell subsets,
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leading to a variety of autoimmune diseases due to a lack of T
cell regulation of B cell responses [65] and the homeostatic ex-
pansion of autoreactive T cells [66]. Therefore, COVID-19 recov-
ery, where lymphocyte repopulation is accompanied by high
levels of T cell activation and increased numbers of activated
cTfh harbours a heightened risk of autoimmunity. It is already
known that a variety of autoimmune conditions can be induced
during COVID-19 infection [67], and that rate of onset of type 1
diabetes appears increased following COVID-19 [68]. Future re-
search will undoubtedly focus on characterizing T cell func-
tional deficits and consequences of a persistent phenotypic
perturbation following COVID-19.
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48.Kusnadi A, Ramı́rez-Suástegui C, Fajardo V et al. Severely ill
COVID-19 patients display augmented functional properties in
SARS-CoV-2-reactive CD8þ T cells. bioRxiv 2020:2020.07.09.194027.

49.Peng Y, Mentzer AJ, Liu G et al. Broad and strong memory
CD4þ and CD8þ T cells induced by SARS-CoV-2 in UK conva-
lescent individuals following COVID-19. Nat Immunol 2020.
doi:10.1038/s41590-020-0782-6.

50.Neidleman J, Luo X, Frouard J et al. SARS-CoV-2-specific T cells
exhibit phenotypic features of helper function, lack of termi-
nal differentiation, and high proliferation potential. Cell Rep
Med 2020;1:100081.

51.Kared H, Redd AD, Bloch EM et al. CD8þ T cell responses in
convalescent COVID-19 individuals target epitopes from the
entire SARS-CoV-2 proteome and show kinetics of early dif-
ferentiation. bioRxiv 2020:2020.10.08.330688.

52. Juno JA, Tan H-X, Lee WS et al. Humoral and circulating follic-
ular helper T cell responses in recovered patients with
COVID-19. Nat Med 2020;26:1428–34.

53.Grifoni A, Weiskopf D, Ramirez SI et al. Targets of T cell responses
to SARS-CoV-2 coronavirus in humans with COVID-19 disease
and unexposed individuals. Cell 2020;181:1489-1501.e15.

54.Mateus J, Grifoni A, Tarke A et al. Selective and cross-reactive
SARS-CoV-2 T cell epitopes in unexposed humans. Science
2020;370:89–94.

55.Braun J, Loyal L, Frentsch M et al. SARS-CoV-2-reactive T cells
in healthy donors and patients with COVID-19. Nature 2020;
587:270–4.

56.Nelde A, Bilich T, Heitmann JS et al. SARS-CoV-2-derived pep-
tides define heterologous and COVID-19-induced T cell recog-
nition. Nat Immunol 2020;22:74–85.

57.Minervina AA, Komech EA, Titov A et al. Longitudinal high-
throughput TCR repertoire profiling reveals the dynamics of
T cell memory formation after mild COVID-19 infection.
bioRxiv 2020:2020.05.18.100545.

58.Chua RL, Lukassen S, Trump S et al. COVID-19 severity corre-
lates with airway epithelium–immune cell interactions iden-
tified by single-cell analysis. Nat Biotechnol 2020;38:970–9.

59.Liao M, Liu Y, Yuan J et al. Single-cell landscape of bronchoal-
veolar immune cells in patients with COVID-19. Nat Med 2020;
26:842–4.

60.Wauters E, Mol PV, Garg AD et al. Discriminating mild from criti-
cal COVID-19 by innate and adaptive immune single-cell profil-
ing of bronchoalveolar lavages. bioRxiv 2020:2020.07.09.196519.

61.He J, Cai S, Feng H et al. Single-cell analysis reveals bronchoal-
veolar epithelial dysfunction in COVID-19 patients. Protein
Cell 2020;11:680–7.

62.Liu X, Zhu A, J He et al. Single-cell analysis reveals
macrophage-driven T cell dysfunction in severe COVID-19
patients. medRxiv 2020:2020.05.23.20100024.

8 | Oxford Open Immunology, 2021, Vol. 2, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/ooim

/article/2/1/iqaa007/6054811 by C
ardiff U

niversity user on 13 Septem
ber 2021



63.Long Q-X, Tang X-J, Shi Q-L et al. Clinical and immunological
assessment of asymptomatic SARS-CoV-2 infections. Nat Med
2020;26:1200–4.

64.Molloy EJ, Bearer CF. COVID-19 in children and altered inflam-
matory responses. Pediatr Res 2020;88:340–1.

65.Baker D, Herrod SS, Alvarez-Gonzalez C et al. Interpreting
lymphocyte reconstitution data from the pivotal Phase 3 tri-
als of alemtuzumab. JAMA Neurol 2017;74:961.

66. Jones JL, Thompson SAJ, Loh P et al. Human autoimmunity af-
ter lymphocyte depletion is caused by homeostatic T-cell
proliferation. Proc Natl Acad Sci USA 2013;110:20200–5.

67.Galeotti C, Bayry J. Autoimmune and inflammatory diseases
following COVID-19. Nat Rev Rheumatol 2020;16:413–4.

68.Unsworth R, Wallace S, Oliver NS et al. New-onset type 1 dia-
betes in children during COVID-19: multicenter regional find-
ings in the U.K. Diabetes Care 2020:dc201551.

Hanna et al. | 9

D
ow

nloaded from
 https://academ

ic.oup.com
/ooim

/article/2/1/iqaa007/6054811 by C
ardiff U

niversity user on 13 Septem
ber 2021




