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ABSTRACT
Destabilization of balanced immune cell numbers and frequencies is a common feature of viral infections. This occurs due
to, and further enhances, viral immune evasion and survival. Since the discovery of the Severe Acute Respiratory Syndrome
coronavirus 2 (SARS-CoV-2), which manifests in coronavirus disease 2019 (COVID-19), a great number of studies have de-
scribed the association between this virus and pathologically increased or decreased immune cell counts. In this review, we
consider the absolute and relative changes to innate and adaptive immune cell numbers, in COVID-19. In severe disease
particularly, neutrophils are increased, which can lead to inflammation and tissue damage. Dysregulation of other granulo-
cytes, basophils and eosinophils represents an unusual COVID-19 phenomenon. Contrastingly, the impact on the different
types of monocytes leans more strongly to an altered phenotype, e.g. HLA-DR expression, rather than numerical changes.
However, it is the adaptive immune response that bears the most profound impact of SARS-CoV-2 infection. T cell lympho-
penia correlates with increased risk of intensive care unit admission and death; therefore, this parameter is particularly im-
portant for clinical decision-making. Mild and severe diseases differ in the rate of immune cell counts returning to normal
levels post disease. Tracking the recovery trajectories of various immune cell counts may also have implications for long-
term COVID-19 monitoring. This review represents a snapshot of our current knowledge, showing that much has been
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achieved in a short period of time. Alterations in counts of distinct immune cells represent an accessible metric to inform
patient care decisions or predict disease outcomes.

Key words: SARS-CoV-2; lymphocytes; lymphopenia; neutrophils; neutrophilia; monocytes; B cells; severity; recovery; cell
counts; clinical; prognosis.

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a global pandemic
caused by infection with Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2). Since the outbreak, it has become
apparent that there is a broad spectrum of clinical symptoms in
people infected with SARS-CoV-2: from no obvious symptoms
in around 40% of infected individuals [1] to a need for intensive
care unit (ICU) hospitalization and use of ventilators in most se-
verely affected patients [2]. Additionally, the exacerbated im-
mune response contributes to ‘acute respiratory distress
syndrome’ (ARDS), which is a prominent feature of severe
COVID-19 [3, 4]. Many studies have reported singular and addi-
tive epidemiological and clinical risk factors associated with in-
creased COVID-19 severity and mortality, including age and
gender, and pre-existing conditions such as obesity, diabetes,

hypertension and cardiovascular disease [2, 5, 6]. Ethnicity is a
complex etiological feature when considering the impact of
COVID-19. In addition to some of the abovementioned co-
morbidities, ethnicity impacts socio-economic status, access to
healthcare and occupational hazard. Ethnicity was inconsis-
tently reported in the early stages of the pandemic [7], although
the weight of evidence recently identified a significantly in-
creased risk of COVID-19 infection in Black and Asian, compared
to White individuals [8]. Data from the USA show that the mor-
tality rate from COVID-19 is also higher in Black compared to
white ethnic groups [9].

In this review, we summarize the current knowledge of the
changes observed in absolute counts and phenotypic frequen-
cies of immune cells in SARS-CoV-2-infected individuals. We
try to understand the nature of the immune response that leads
to recovery over severe disease and how treatments can help to

Box 1: What is the consensus?

• Increased WBC counts occur in almost a quarter of COVID-19 patients and are associated with severe disease. However,
WBC within physiological reference ranges may ‘mask’ a combination of extreme increases and decreases in the counts of
different immune cells. Therefore, WBC count alone should not be used to stratify patients.

• An increase in neutrophils in the blood occurs in most COVID-19 patients. Both increased neutrophils and an increased
NLR positively correlate with disease severity. Therapeutic modulation of neutrophil activation signalling is being tested in
clinical trials, if approved this may provide a more targeted approach to reducing inflammation compared to
corticosteroids which must be administered with appropriate timing so as not to inhibit the adaptive immune response.

• Both conventional and pDCs are reduced, the latter in association with severe disease. Cell counts do not sufficiently reveal
the dysfunction of other monocytes; analysis of function is more likely to shed light on their contribution to COVID-19
pathology.

• Lymphopenia is the most widely reported immunopathological feature of COVID-19. This encompasses a reduction in NK
cells, conventional ab T cells and unconventional T cells including MAIT cells and iNKT cells. Total CD3þ T cell counts of
<800/ll are predictive of a requirement for ICU care.

• While establishing the ‘starting point’ in COVID-19 is difficult (initial symptom onset vs. receipt of a positive test), the in-
hospital disease course appears to segregate into stages. The biggest changes in cell counts and worsening of the clinical
condition, including onset of ARDS, typically occur in the second week. Thereafter, cell numbers begin to recover, with cell
numbers in more severe cases returning to normal ranges more slowly. Thus far, the limited data on long-term responses
suggest B cell numbers are maintained for up to 3 months, while antigen-specific memory B and T cell responses following
in vitro stimulation have been detected up to 8 months post COVID-19.

Box 2: Why does your reviewed topic matter in the pandemic?

• Cell counts are routinely measured making this an easily accessible resource that can be leveraged to inform patient
prognosis and in-hospital care decisions.

• Changes in the number of immune cells in COVID-19 patients provide the first indicator of features of the immune
response to SARS-CoV-2, to inform more in-depth research. Increased cell numbers can indicate effective activation and
proliferation; however, in case of innate cells this is often delayed and, as a result, pathologically excessive in COVID-19.
Decreased cell numbers, e.g. T cells, can occur due to a failure to provide the required co-stimulation or activation followed
by apoptosis; these opposing responses could dictate a poor or effective immune response, respectively.
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promote an immune response that leads to recovery. For hospi-
talized COVID-19 patients, rapid measures to guide stratifica-
tion of care and resources are crucial, due to the burden of the
pandemic on healthcare systems. A single centre evaluation of
‘core’ (full blood counts, urea, electrolytes, liver function and C-
reactive protein) versus ‘extended’ (D-dimer, ferritin, high-
sensitivity troponin I, lactate dehydrogenase, procalcitonin)
clinical tests found the latter did not add sufficient cost-benefit
prognostic value [10]. As a routine readout, cell counts provide a
valuable overview of the main cell types involved in the im-
mune response to COVID-19. Cell counts are informative even
in the absence of mechanistic information explaining increased
or decreased numbers, and thus could be used to guide clinical
decision-making and signpost more in-depth, descriptive re-
search such as multi-dimensional phenotyping and biomarker
identification.

WHITE BLOOD CELL COUNT

As yet there is no clear trend in overall white blood cell (WBC)
count in individuals infected with SARS-CoV-2; a systematic re-
view found increased WBC in 24.26% and decreased WBC in
10.55% in 20 662 hospitalized COVID-19 patients [11]. However,
meta-analysis of 45 studies covering such patients showed a
trend between increased WBC count and disease severity [12].
This corroborates earlier observations of elevated WBC counts
in severe disease and deceased COVID-19 patients [13–16] and
ICU admission [17].

Recent studies might explain the lack of a strong correlation
between WBC count and disease severity, as an increase in the
neutrophil to lymphocyte ratio (NLR), characterized by reduced
lymphocytes and elevated neutrophils, has been found in patients
with normal WBC counts upon hospital admission [18–20]. These
non-convergent data demonstrate a variety of immune cell
perturbations across the spectrum of COVID-19 severity (Fig. 1),
necessitating the examination of specific immune cell subsets.

INNATE IMMUNE CELLS IN SARS-COV-2
INFECTION

Neutrophils are the most prominent innate cells in the response
to a viral infection and have been widely reported to be in-
creased in the blood in COVID-19 patients [15, 17, 21].
Neutrophil infiltration of pulmonary capillaries has also been
described, along with increased expression of neutrophil-asso-
ciated chemokines in lung epithelial cells [22, 23]. Neutrophilia
appears to be self-propelled by initial viral evasion of immune
detection, leading to poor viral clearance, resulting in inflam-
mation and cytokine storm [24–27]. There are limited data pro-
viding greater detail about neutrophil subsets in COVID-19,
although Kuri-Cervantes et al. and Wilk et al. describe character-
istics of neutrophils that may suggest impaired maturation (re-
duced CD15 expression and expression of developmental
markers specifically in ARDS patients, respectively) [28, 29].
Atypical neutrophil phenotypes have been associated with ex-
cessive Neutrophil Extracellular Trap (NET) production, which
can cause hyperinflammation and tissue damage [24, 30].

Increased numbers of peripheral neutrophils correlate with
COVID-19 disease severity and poor outcome [15, 17, 31–33]. The
contribution of dysfunctional neutrophil anti-viral responses to
COVID-19 pathology is discussed in further detail in the innate
immune response-focused article of our living review series [34].
The relationship between neutrophil and lymphocyte counts

(NLR) represents a more powerful prognostic measure, both in
COVID-19 and other acute disease settings [15, 35, 36] and is dis-
cussed in detail in the adaptive immunity section of this review.

Basophils and eosinophils, which play a greater role in other
innate immune functions, such as allergic and anti-microbial
responses, are nevertheless also impacted in COVID-19. The rel-
atively limited data indicate depletion of basophils occurs in the
blood in COVID-19, showing some associations with severe dis-
ease [15, 37–40]. It has been suggested, however, that decreased
basophil counts in the blood could be attributed to migration to
the lungs [37, 41]. While the cause of basophil depletion is cur-
rently unknown, a basophil count of 25/ml in the blood may rep-
resent a threshold predictive of survival in ventilated patients
[42]. The directionality of eosinophil perturbation in COVID-19
is less clear; several studies report decreased or unchanged eo-
sinophil numbers in the blood [15, 37, 39, 40, 43, 44].
Contrastingly, however, Lucas et al. describe a sustained in-
crease in peripheral eosinophils in severe disease, along with
increased IL-5, which is a contributing signalling factor for eosi-
nopoiesis in the bone marrow [45, 46]. Increased IL-5 has been
reported in other studies, however, without eosinophil counts
[6, 47]. The limited data available on lung eosinophil infiltration
are also conflicted [48–50], although it is not clear if a distinction
was made for the detection of migratory or lung-resident eosi-
nophils. Whilst stratifying patients by peripheral blood eosino-
phil counts (> or < 0.02 � 109/L) has revealed differences in
severity and mortality [51, 52], overall, this suggests a need for
more in-depth investigation of IL-5 associated eosinophil
responses in the blood and potentially in the lungs.

In terms of absolute numbers, studies reported unchanged
[20, 28, 38, 39], increased [14, 33, 45, 53, 54] or decreased frequen-
cies of the monocytic cell lineage in peripheral blood during
COVID-19 [15, 29, 55, 56]. Some of this discrepancy is likely due
to the use of different markers and nomenclature in the studies:
reporting global increases or decreases in monocytes is unlikely
to capture their significance in the context of COVID-19 symp-
toms or clinical course, due to phenotypically and functionally
distinct monocyte subsets. However, some trends have
emerged. In peripheral blood, classical monocytes (M1; CD14þ

CD16�) were within the reference range in early disease [20] and
remained stable in severe or moderate disease [45]. Sánchez-
Cerrillo et al. found that the frequency (rather than absolute
count) of classical monocytes was reduced in the periphery, and
enriched, although relatively infrequent, in bronchoscopy sam-
ples of patients with severe COVID-19 [56]. Reduction in periph-
eral blood non-classical (M2; CD14� CD16þ) monocytes has been
reported in severe and moderate disease and in ARDS compared
to controls, although similarly this might be associated with a
migration to the lung, due to the observed enrichment in bron-
choscopy samples [45, 56, 57]. The most prominently reported
monocytic perturbation is the expansion of intermediate (Mm;
CD14þ CD16þ) monocytes in peripheral blood [37, 38, 57, 58].

The significance of these changes in monocyte numbers is
not yet clear. IL-6 production by intermediate monocytes in
COVID-19 has been described in association with cytokine
storm and severe disease [59], and in general, increased IL-6 lev-
els correlate with disease severity [2, 60]. However, since an in-
crease in intermediate monocytes in blood has been reported in
both mild and severe disease, it is likely that other immune cells
contribute to IL-6 production [28, 37, 38, 56, 57, 59]. The ability of
SARS-CoV-2 to infect monocytes has been demonstrated in vitro,
using primary monocytes and monocyte cell lines [5, 55], result-
ing in pro- and anti-inflammatory cytokine production, includ-
ing interferon (IFN) a, b and k, and tumour necrosis factor (TNF),
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Figure 1: Changes in innate and adaptive immune cell numbers in severe and mild/recovered COVID-19. (a) Altered immune cells in the peripheral blood. Top left, se-

vere disease: neutrophils, inflammatory intermediate monocytes (Mm) and the NLR are increased in severe COVID-19. Increased plasmablasts have been reported in

both severe and mild disease. Bottom left: Many cells of the innate and adaptive immune system are depleted in severe COVID-19: non-classical monocytes (M2), pDC

and basophils. Lymphopenia is widely reported in COVID-19, largely due to depletion of T cells; reductions in CD4þ and/or CD8þ T cells (CD4, CD8) have been reported

and innate lymphocytes and unconventional T cells are also decreased: NK cells, NKT cells, cd T cells and MAIT cells. Centre, unchanged: some studies suggest eosino-

phils are unchanged in COVID-19 disease but may increase in the course of recovery. Classical monocytes (M1) are largely unchanged in COVID-19, however, changes

in expression of certain phenotypic proteins are associated with severe disease. Top right, mild COVID-19/recovery: Increasing basophils and eosinophils are also asso-

ciated with recovery or mild COVID-19, along with higher numbers of cDCs, NK cells and T cells which are indicative of an effective anti-viral immune response con-

tributing to a milder form of COVID-19 and/or recovery. Bottom left: decreased neutrophils and recovery of lymphocyte numbers, resulting in a reduction of the NLR,

are associated with recovery from COVID-19. (b) Altered immune cells in the lungs. Top left: Severe disease is largely characterized by inflammation in the lungs in as-

sociation with increased neutrophils, M1 and Mm monocytes. NK cells, cDCs and M2 monocytes are also increased, whereas basophils are decreased. Despite decreases

in the blood, pDCs are rarely detected in the lung in severe COVID-19. In mild disease or recovery, neutrophils return to normal ranges. Increased T cells, in particular

CD8þ T cells, occur as part of the recovery from COVID-19, although some studies have reported delayed recovery trajectories based on disease severity. DCs also in-

crease with recovery. This figure was created using Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0 Unported License;

https://smart.servier.com.
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IL-1b, IL-6, IL-10 and transforming growth factor (TGF)b [5, 55].
Cytokine and chemokine production by monocytes in COVID-19
has recently been reviewed by our consortium [34]. Some stud-
ies have also identified upregulation and co-expression of M1
and M2 markers on monocytes [61], which further complicates
efforts to understand the contribution of functional monocyte
subsets in COVID-19. Boumaza et al. found that polarized mono-
cyte cell lines (M1 or M2) showed no difference in the propensity
for in vitro SARS-CoV-2 infection, however, infection led to the
general upregulation of M2 markers [55]. Further work is there-
fore required to establish a clear picture of the contributing role
of the various monocyte subsets in COVID-19.

Overall dendritic cell (DC) numbers are reduced in the periph-
eral blood in COVID-19 [3, 28, 29, 37, 62]. In humans, DCs are gener-
ally divided into conventional DC subsets (cDCs), specialized for
antigen presentation, and plasmacytoid DC (pDCs) which primarily
produce Type 1 IFN and are important for anti-viral response [63].
In COVID-19, pDCs appear preferentially depleted [38, 53, 64]. Lower
pDC numbers in the periphery are reported to correlate with severe
disease [20, 29]. Additionally, Sanchez-Cerillo et al. did not detect
pDCs in bronchiolar samples, although it is unclear if this was due
to impaired migration or depletion in the periphery [56].

In conclusion, the available data on the innate response to
SARS-CoV-2 infection indicate an association between the effi-
cacy of the early granulocyte (eosinophil, basophil and neutro-
phil) response and disease severity. It has been suggested that
SARS-CoV-2 can evade immune sensing and inhibit signalling
[34, 65–68], resulting in impaired activation of the innate re-
sponse. Quantifying monocytes in COVID-19 is particularly com-
plex as the classical, non-classical and intermediate subtypes
function at various stages of the immune response, including its
resolution. Conclusions thus far are largely reliant on data per-
taining to peripheral blood monocytes, which overlook, and could
underestimate, the impact of monocyte migration to the lungs.
While not reviewed here, it has also been suggested that altered
expression of certain markers, e.g. HLA-DR (decreased), on mono-
cytes and other cell types, is characteristic in COVID-19 [20, 28, 29,
37, 45, 55, 61, 69]. Laing et al. propose a COVID-19 innate and adap-
tive immune signature which is largely in agreement with the
quantitative data discussed here: depletion of pDCs and baso-
phils correlate with COVID-19 severity, while alterations in the
proportion of different monocyte lineages demarcate COVID-19
from other respiratory infections [37].

LYMPHOPENIA AND THE ADAPTIVE IMMUNE
RESPONSE TO SARS-COV-2

Reduction in lymphocytes, known as lymphopenia, is a com-
mon, although not exclusive, characteristic of COVID-19.
Lymphopenia also occurs in infections with Ebola virus, respira-
tory syncytial virus (RSV)—which most commonly affects chil-
dren, SARS-CoV-1, Middle Eastern Respiratory Virus (MERS) and
Human Immunodeficiency Virus (HIV). It has also been reported
for some strains of Influenza [70–74]. In COVID-19, lymphopenia
most prominently affects T cells, as discussed below; quantita-
tive changes to NK cells, and, less commonly, B cells, have also
been reported [15, 18, 20, 28, 37, 38, 57, 75–78].

NK CELLS

NK cells are innate lymphocytes important in early viral infec-
tion control through direct killing of infected cells, by lysis or
antibody-directed cellular cytotoxicity, and production of

cytokines such as IFNc [79, 80]. NK cell depletion in peripheral
blood has been reported as a part of COVID-19-associated lym-
phopenia [20], although it has been noted that this is not as ex-
tensive as T cell lymphopenia [37]. Maucourant et al. further
found that the absolute counts of both CD56dim (cytotoxic and
IFNcþ) and CD56bright (cytokine-producing and IFNcþ) NK cells
were reduced [81]. This reduction positively correlates with
COVID-19 severity, ICU admission and increased hospital stay
[15, 38, 57, 75, 76, 78, 82–84]. Carsetti et al. and Odak et al. ob-
served that an increase in NK cells was associated with asymp-
tomatic infection, and mild COVID-19 patients had NK cell
numbers comparable to healthy controls, respectively [57, 83].
In addition to reduced NK cell numbers, Mazzoni et al. found
that IL-6 levels negatively correlate with NK cell cytotoxic ca-
pacity (granzyme production) [39], suggesting a mechanism for
poor infection control. Preservation of NK cell numbers and
function in the periphery is therefore an important factor in ef-
ficient COVID-19 infection control. The mechanisms by which
NK cells could control SARS-CoV-2 infection have recently been
discussed by our consortium [34]. It is not yet clear how the NK
cell depletion occurs; RNAseq studies suggest enrichment of NK
cells in the lungs [3, 85, 86], although in the absence of quantita-
tive data, it is not clear whether this is due to migration from
the periphery or in situ expansion of lung-resident NK cells.

B CELLS

Robust antibody production has been widely detected in
COVID-19 patients [87–91]. Accordingly, the percentage of anti-
body-producing plasmablasts has been reported to increase to
10–31% of circulating B cells [92, 93]. This can temporarily boost
the WBC count, although the concurrent depletion of many
other immune cell types, including CD19þ B cells [38, 57, 76, 78],
seems to have largely masked this effect. It should also be noted
that patients with severe COVID-19 can have high numbers of
plasmablasts, suggesting that counts of these cells cannot be
considered diagnostic without a qualitative analysis of the anti-
bodies produced [28, 57, 92]. In line with this, higher amounts of
IgM and IgG antibodies targeting SARS-CoV-2 nucleocapsid and
spike proteins were associated with disease severity and poor
clinical parameters [90, 94].

T CELLS

The best-documented change in immune cells numbers in
COVID-19 is in T cells, with 40–80% of patients showing T cell
lymphopenia on admission [18, 20, 95], and a growing number
of studies demonstrating a correlation between lymphopenia
and severe COVID-19 [15, 18, 20, 75, 77, 95, 96]. Wang et al. found
that T cell numbers are progressively reduced as the disease se-
verity increases [77]. Peripheral T cell loss is associated with an
increase in apoptotic cells and changes in the CXCR3 signalling
pathway, suggesting that both T cell apoptosis and their migra-
tion towards inflamed tissue might contribute to peripheral
lymphopenia [97]. Reduced lymphocyte count upon admission
was found to not only increase disease severity but also mortal-
ity [78, 95, 98]. In particular, T cell counts <800/ll identify
patients at risk of ICU admission and death [14, 78, 98]. Patients
with lymphopenia also have an increased incidence of multi-
organ injury, indicated by worse lung CT scores, reduced respi-
ratory function and elevated indicators of hepatic injury [95].

Depletion of both CD4þ and CD8þ T cells has been reported
in COVID-19 patients, in addition to phenotypic alterations in
specific T cell subsets, which have recently been extensively
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reviewed by our consortium [99]. While some studies report
preferential depletion of CD8þ T cells [92, 93], there is currently
a lack of consensus as to the prognostic significance of reduced
CD4þ and CD8þ T cell counts. Some studies have reported that
reduction of each of these subsets is associated with COVID-19
severity and the need for ICU care [14, 76–78, 98]. However, in
other reports, while both populations are decreased, only a re-
duction in one T cell subtype, CD4þ [15, 20, 100] or CD8þ [21, 101]
is associated with disease severity or mortality.

A small number of studies have investigated the impact of
SARS-CoV-2 infection on non-classical T cells. Mucosa-
associated invariant T (MAIT) cells respond to cytokines, bacte-
rial antigens and viruses [30, 102–104]. MAIT cells are depleted
in COVID-19 patients [105] and this decrease is associated with
disease severity [106, 108]. Flament et al. further suggest CD8þ

MAIT cells were most prominently reduced, however, in con-
trast, Parrot et al. found that double negative (DN) MAIT were
decreased to a greater degree than CD8þ MAIT [105, 106].
Invariant natural killer T (iNKT) cells are another innate T cell
type, with cytotoxic, cytokine-producing and immunoregula-
tory roles, restricted by the recognition of lipid antigens [108].
Functional roles for iNKT cells have been described in the re-
sponse to both chronic (HIV, hepatitis) and acute (influenza) vi-
ral infection [109], prompting their investigation in COVID-19.
iNKT cells are found to be depleted in severe COVID-19 disease
[28, 107].

There is little information as to the direct cause of T cell de-
pletion in COVID-19. Reduction in CD4þ and CD8þ T cells also
occurs in SARS-CoV-1 and MERS-CoV infections [110], however,
only the latter has been shown to infect T cells and directly
cause apoptosis [111]. Thus far there are no peer-reviewed data
demonstrating SARS-CoV-2 infection of T cells. A study that
used immortalized T cell lines to suggest cytotoxic SARS-CoV-2
infection of T cells has since been retracted [112]. Two studies
have identified potential mechanisms by which T cells could be
infected by SARS-CoV-2 [113, 114]. Pontelli et al. show that
PBMCs, including CD4þ and CD8þ T cells, are susceptible to
SARS-CoV-2 infection in vitro, as assessed by immunostaining of
viral antigens and viral replication (dsRNA) [113]. The infection
correlated with the expression of apoptotic markers, which may
suggest a mechanism for lymphopenia in severe COVID-19
patients [113]. Wang et al. having previously demonstrated a role
for CD147 in facilitating SARS-CoV-1 infection of target cells [115],
showed that antibody blocking of CD147 inhibited SARS-CoV-2
infection of model cell lines (Vero E6 and BEAS-2B), and SARS-
CoV-2 Spike gene expressing pseudovirus [116] infected CD4þ and
CD8þ T cells [114]. However, more robust investigation of this in-
teraction is required, since data of SARS-CoV-2 infection of T cells
in vivo or in-situ is currently sparse. In post-mortem analysis of
lung tissue, Carsana et al. found infected inflammatory mono-
cytes, B and T cells, while SARS-CoV-2 infected macrophages
have been identified in post-mortem spleen samples [31, 41].
Therefore, further investigation of SARS-CoV-2 infecting lym-
phoid organs is warranted.

Indirect factors are also likely to contribute to the T cell
number reduction in COVID-19. Inflammation, particularly in
severe patients, is well described [14, 15, 21, 40, 117] and levels
of cytokines TNF, IL-6 and IL-10, and biochemical markers of in-
flammation negatively correlate with counts of CD4þ and CD8þ

T cells [99, 101]. Increased TNF inflammation was observed
post-mortem in secondary lymphoid organs and positively cor-
related with a loss in Bcl-6þ follicular helper T cells [118]. T cell
numbers are also indirectly impacted by depletion and func-
tional impairment of other immune cells. While more profound

reduction in pDCs compared to cDCs is reported in COVID-19,
cDCs from acute patients failed to respond to a maturation
cocktail and did not simulate T cell proliferation [64]. Lack of
cDC-mediated antigen presentation and co-stimulatory signals
could therefore underlie low T cell counts. Depletion of NK cells
negatively impacts signalling for DC maturation; additionally,
NK cell cytokine production and co-stimulatory marker expres-
sion play a direct role in T cell differentiation [119]. Therefore,
SARS-CoV-2 impairment of T cell responses involves multi-
faceted disruption of the immune response. Furthermore, since
enumeration of CD4þ and CD8þ T cell subsets in COVID-19
patients is not consistently accompanied by further in-depth
phenotypic information, it is not clear whether reduced num-
bers of specific populations are due to conversions between par-
ticular phenotypes in the respective subset, or outright loss of
cells [99, 120]. Reduced numbers of CD4þ and CD8þ T cells in
COVID-19 patients may be due to failed activation/anergy, or
hyperactivation, followed by apoptosis, each of which could
contribute to severe COVID-19 [121].

NEUTROPHILS AND THE NLR

As mentioned above, the decline in lymphocyte numbers com-
bined with an increased neutrophil count, or NLR, has proven to
be a strong predictor of disease severity and outcome [10, 18, 40,
122–124]. The NLR is indicative of a state of inflammation; neu-
trophils also impair T cell activation and proliferation [125, 126].
The NLR is prognostic in a large number of conditions including
cancers, cardiovascular disease and infections [36, 127–133].
Meta-analysis has shown that the pooled risk ratio for mortality
in COVID-19 patients with elevated NLR was 2.75 [124].
Rodriguez et al. additionally found that the NLR decreased with
recovery [40].

The NLR also correlates with other immunological features
of COVID-19. High NLR and anti-SARS-CoV-2 IgG antibody levels
positively correlate with disease severity and negatively corre-
late with numbers of CD4þ T cells [134]. Depletion and
functional impairment of NK cells may also exacerbate the NLR:
IL-6-, IL-8- and IL-10-induced upregulation of the NKG2A inhibi-
tory NK cell receptor inhibits the production of IFNc, which con-
trols neutrophil accumulation in the lung [135]. IL-6, which is
widely reported to be increased in COVID-19 [17, 39], also
directly regulates neutrophil trafficking [136]. In light of this, di-
rect targeting of neutrophil associated COVID-19 pathology is
under investigation in a number of clinical trials; blockade of
neutrophil-driven complement signalling (Avdoralimab block-
age of complement C5a: NCT04371367) and antibody inhibition
of GM-CSF (Gimsilumab: NCT04351243), for which signalling is
associated with neutrophilia [126]. These strategies are dis-
cussed in more detail in a complementary instalment of our re-
view series [34]. Blockade of IL-6 signalling, using Tocilizumab,
has also been investigated in COVID-19, and demonstrated pa-
tient discharge from the hospital within 28 days [137, 138].

RESOLUTION OF THE IMMUNE
PERTURBATIONS AND ASSOCIATED CLINICAL
COURSE OF COVID-19

COVID-19 symptoms present at a median of 5.1 days from infec-
tion by SARS-CoV-2 [139], with a ‘tipping point’ towards worsen-
ing of the clinical condition and onset of ARDS occurring at 9–12
days from onset of symptoms [6, 43, 100, 140, 141]. Payen et al.
describe a ‘V’ shaped curve of lymphocyte cell numbers, with
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the lowest point 11–14 days from symptom onset, i.e. overlap-
ping with the point of symptomatic exacerbation [58].

Recovery of cell numbers to a normal range is generally associ-
ated with improvement in COVID-19. Longitudinal studies report a
decrease in neutrophils and increase in basophils and eosinophils
in the blood, prior to hospital discharge and in recovered patients;
Mann et al. also noted that neutrophils increased from the first to
final measures in n¼ 2 fatal COVID-19 cases [38, 40]. As neutro-
philia is associated with COVID-19 severity, it is crucial to collect
more longitudinal data to aid in-hospital treatment allocation and
patient stratification. NK cell counts increased over the second to
third week of observation in patients who had a favourable out-
come, although higher NK cells at baseline were most commonly
observed in mild cases [57]. DC numbers also increased between
the symptom onset and recovery [40]. In individuals who experi-
enced mild COVID-19, frequencies of monocytes and pDCs were
comparable to healthy controls a median of 35 days after symptom
onset; however, comparing frequencies may overlook a persistent
overall reduction in absolute cell counts [142]. Inflammatory classi-
cal macrophages persist in the early recovery stage (ERS; <7 days
since negative PCR test) [54], however, phenotypic rather than
quantitative changes appear to be more relevant over the clinical
course with regard to the different subsets of monocytes. Mann
et al. report an increase in proliferating Ki67þ monocytes prior to
ICU admission, suggesting that monocyte expansion contributes
to disease exacerbation, potentially identifying a therapeutic target
[38]. Payen et al. note that HLA-DR expression by monocytes was
below the threshold defined for immunosuppression throughout
the monitoring period, only recovering >24 days after initial symp-
toms. HLA-DR expression also positively correlated with absolute
numbers of CD4þ and CD8þ T cells [58].

Immune modulating treatment is also likely to contribute to
the improved numbers of innate immune cells and, by reducing
innate immune-associated inflammation, clinical improvement
observed in COVID-19 patients. However, the timing of treat-
ment is crucial to avoid inhibition of the adaptive immune re-
sponse, which is instrumental in resolving SARS-COV-2
infection [143]. For example, glucocorticoids induce neutrophil
apoptosis but also inhibit DC function and T cell development
[144]. Corticosteroid therapy has been administered to almost
half of hospitalized COVID-19 patients (22–44.9%) [6, 21, 43, 54,
140, 145]. However, the rapidly evolving nature of the pandemic
largely precludes in-depth longitudinal study of the effects of
these treatments on quantitative immune cell recovery. The
RECOVERY consortium concluded that dexamethasone and
tocilizumab (an anti-IL-6 receptor antibody that increases IL-6
levels [45]), alone, or in combination, reduced mortality and
hospital stay. However, this trial did not collect data pertaining
to laboratory measures and therefore the effects on immune
cell subsets cannot be ascertained [138, 146]. Additionally, a
number of studies describe the improvement of innate cells,
such as reduction in neutrophils and increase in non-classical
and intermediate monocytes and DCs, in the absence of immu-
nomodulatory treatment [40, 58].

While the data are still relatively limited, short-term (<30
days) monitoring of T cell counts in convalescent individuals
suggests cell number recovery occurs on a trajectory dictated by
disease severity. In two studies, T cell numbers began to recover
in most mild patients within 10–15 days, while the duration of T
cell recovery in moderate and severe patients lasted 5–20 days
[38, 40]. Another study found that in severe patients, T cells re-
covered to numbers comparable to mild cases at 16 days after
disease onset, although this was after a further depletion on
Days 4–6 [21]. From the lowest point at 11–14 days, CD4þ and

CD8þ T cell recovery in a cohort of ICU patients reached signifi-
cance 19–23 days after ICU admission, although it was not clear
if this time point took place under continued critical care [58]. T
cell frequencies remained lower than in healthy controls in
both early and late recovery stages, although these data were
not stratified based on disease severity prior to the recovery
stage [54]. However, impairment of polyfunctional responses,
persistent activation and delayed quantitative recovery of IFNcþ

CD8þ T cells has also been identified [58, 147, 148].
It is not unexpected that recovery of T cell numbers takes

longer in patients with more drastically depleted cell counts.
Nevertheless, these trajectory data, along with the prognostic
cell counts discussed in the previous sections, could be useful
to predict the duration of patient’s critical care requirements.
More information is also warranted on the recovery of T cells
and other immune cell numbers, in comparison to healthy con-
trols, to determine if this has any impact on the so-called ‘Long
COVID’ syndrome of persistent, erratic symptoms which seem
to occur irrespective of initial disease severity, and is currently
largely characterized based on symptoms, without interroga-
tion of the underlying physiology [149].

At the time of writing, two studies that have examined the
recovery of adaptive immune cells up to 1, 3 and 8 months, re-
port antigen-specific responses [142, 150]. Dan et al. report that
40–50% of their cohort had detectable SARS-CoV-2-specific
CD4þ and CD8þ T cell responses at >6 months, although these
were not enumerated [150]. Higher numbers of functional,
Spike-specific memory B and CD4þ T cells were detected in re-
sponse to in vitro stimulation at 1 and 3 months in recovered
individuals [142]. Memory B cell increased, while memory CD4þ

T cell remained similar (measured as counts or frequencies),
from 1 to 3 months [142, 150]. Although lacking reinfection data,
these studies encouragingly identify the capacity for reactiva-
tion of adaptive immunity against SARS-CoV-2, inviting further
studies to determine if this response is protective.

DISCUSSION

There are many factors not yet well understood in SARS-CoV-2
disease. Limitations of the available data include variation in
study sizes, unevenly distributed or absent ethnicity data. In
longitudinal studies, it is difficult to control for different num-
bers of data points per patient and the real-time nature of stud-
ies precludes uniform data collection time points. There is also
an uneven distribution of data obtained from peripheral blood
compared to BALF/lung tissue, leading to a lack of understand-
ing of cell migration over the disease course, and the potential
for under-reporting of an effective lung-resident immune re-
sponse. Relative cell recovery from these different types of sam-
ples may also confound attempts to correlate cell numbers with
clinical parameters.

Impairment of the immune response also goes beyond a
simple depletion or expansion of immune cells. These metrics
do however inform decision-making in the clinical setting based
on patient stratification, particularly in the case of T cell lym-
phopenia, where counts can be used to stratify patients accord-
ing to their need of intensive care facilities [14, 78, 98, 151].
Further analysis is required to determine at-risk lower limit cut-
offs for NK cells, and more studies are required to reach a con-
sensus upper limit of neutrophil counts and NLR. The prognos-
tic value of other innate immune cells requires wider
exploration of signalling, cytokine production and migration to
the infection site, to determine the relationship between tim-
ing and efficacy in fighting SARS-CoV-2 infection. In
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particular, monocyte differentiation and phenotype propor-
tions appear to correlate with disease severity, although this
may prove ineffective as a prognostic indicator due to the
complexity of monocyte characterization.

Due to the global impact of the SARS-CoV-2 pandemic, it is
also important to consider the application of such metrics
across the ‘normal ranges’ for diverse populations; for example,
many of the studies reviewed here have a bias of sex or age
range, due to the disproportionate impact of COVID-19 in some
populations. Furthermore, it has been hypothesized that the
worse survival rates reported in Black, Asian and minority eth-
nic backgrounds compared to white populations may be partly
attributed to ‘underlying genetic factors’ [152]. However, most
research papers, including many of the studies outlined here,
have not specified the ethnicity of patients, or have analysed a
relatively homogenous population, further limiting our under-
standing of why some people are at higher risk of adverse out-
comes from COVID-19 infection [7].
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