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Abstract 13 

In designing coastal and nearshore structures, the joint probability of the wave heights and storm 14 

surges is essential in determining the possible highest total water level. The key elements to 15 

accurately estimate the joint probability are the appropriate sampling of the extreme values and 16 

selection of probability functions for the analysis. This study is to provide a full assessment of the 17 

performance of the different methods employed in the joint probability analysis. The bivariate 18 

extreme wave height and surge samples are analysed using 2 different probability distributions and 19 

the performance of 4 copulas, namely: Gumbel–Hougaard copula, Clayton copula, Frank copula 20 

and Galambos copula, is assessed. The possible highest total water levels for 100-year return period 21 

along the coastline of the mainland China are estimated by the joint probability method with the 22 

Gumbel–Hougaard copula. The results show that the wave heights and surges are highly correlated 23 

in the areas of dense typhoon paths. The distributions of the possible highest total water levels show 24 

a higher value in the southeast coast and lower value in the north. The results also indicate that at 25 

the locations where the sea states are energetic, the joint probability approach can improve the 26 

accuracy of design. 27 

Key words: Coast of the mainland China; Joint probability; Copula; Extreme wave height; Extreme 28 

surge level 29 
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1. Introduction 30 

Designing the coastal and offshore structures requires the consideration of a broad range of ocean 31 

factors due to complexity of the environment surrounding them. Amongst them, extreme waves and 32 

storm surges are two main factors. Under severe meteorological conditions, such as those during 33 

typhoons or cold storms, the extreme waves and storm surges can be closely correlated due to their 34 

driving forces. Joint probability analysis commonly becomes essential in estimating the extreme 35 

water levels to ensure the effective and sustainable designs of coastal engineering structures as 36 

demonstrated in the studies of Serafin and Ruggiero (2014) and Wahl et al (2015). 37 

 38 

In joint probability analysis, a wide range of probability distributions of simultaneous 39 

environmental variables are obtained with the bivariate methods, as used by Ferreira and Guedes 40 

Soares (2002), Galiatsatou and Prinos (2007). Furthermore, Bruun and Tawn (1998) compared the 41 

properties of two extreme value methods: the univariate structure variable method and multivariate 42 

joint probability method, and found that the latter provided more useful and accurate design 43 

information when applied to several sites along Dutch coastlines. Based on a marginal distribution 44 

function fitted to the water level and wave height and their dependence, Hawkes et al. (2002) 45 

conducted a joint probability analysis, which was seen to perform better than the commonly used 46 

structure variable approach and joint exceedance approach.  47 

 48 

However, during the last few decades, the copula theory, which has been initially used in finance, 49 

insurance and other economic sectors, has been widely adopted for joint probability analysis in the 50 

fields of hydrology (Mikosch, 2006) and coastal engineering (Salvadori et al., 2015). A copula 51 

function can connect different environmental variables without any hypothesis about their marginal 52 

distributions, and provides a powerful tool for the joint analysis of multivariate data. Recent 53 

examples of adopting the copula theory in hydrology fields include the study of extreme rainfalls 54 

(Salvadori and De Michele, 2004; Zhang and Singh, 2007), flood frequency for rivers (Chen et al., 55 

2012; Sraj et al., 2015) and droughts (De Michele et al., 2013).  56 

 57 

In coastal engineering applications, the copula theory has been found to be useful in providing 58 
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increased flexibility in modelling the joint probabilities of ocean hydrodynamic variables. As stated 59 

in Coles et al (1999), quantifying dependence plays an importance role in the joint probability 60 

analysis. In dealing with the dependence between two variables, Wist and Myrhaug (2004) 61 

modelled two successive wave heights exceeding a certain threshold by a Gaussian copula and 62 

compared the results with field measurements and laboratory data. De Waal and van Gelder (2005) 63 

analysed the joint probability of extreme wave height and wave period using the Burr–Patero–64 

Logistic copula. Similar studies were also conducted by Montes–Iturrizaga and Heredia–Zavoni 65 

(2015), as well as Vanem and Erik (2016). Wahl et al. (2010) carried out a study between two storm 66 

surge parameters using the Gumbel–Hougaard (GH) copula. Chini and Stansby (2010) used an 67 

integrated modelling system to investigate the joint probability of the extreme wave heights and 68 

water levels at Walcott, on the eastern coast of UK for determining the changes in the overtopping 69 

rates. Gruhn et al. (2012) used the Frank copula to estimate the joint probability of the water level 70 

residuals and significant wave heights along the coast of the Baltic Sea. Wahl et al. (2012) applied 71 

Archimedean copula functions in the German Bight to determine the exceedance probabilities of 72 

storm surges and wind waves. Masina et al. (2015) used a copula-based approach to estimate the 73 

joint probability of the water levels and waves at the Ravenna coast in Italy. The probability of 74 

failure/inundation was estimated by the direct integration method, and the coastal flooding risks 75 

were calculated. Galiatsatou and Prinos (2016) applied the copula method to investigate the changes 76 

in the joint probabilities of extreme wave heights and corresponding storm surges with time in the 77 

Aegean Sea. Ward et al. (2018) used the copula models to analyse the dependence between sea level 78 

and river discharge as well as the probability of flooding events in global deltas and estuaries. 79 

Bevacqua et al. (2019) discovered a higher probability of compound flooding from precipitation and 80 

storm surge in Europe under climate change using a copula-based multivariate probability model. 81 

 82 

For extreme events, Gudendorf and Segers (2010) proposed the extreme value copulas for extreme 83 

multivariate analysis due to their capability of describing the upper tail dependence well. Mazas and 84 

Hamm (2017) used an event-based approach for determining extreme joint probabilities of waves 85 

and sea levels by focusing on the sampling of extreme events. In their study, three extreme value 86 

copulas (GH copula, Galambos copula, Husler–Reiss copula) were compared, and their results 87 

showed that different extreme value copulas would yield similar results, but the sampling methods 88 
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could cause a large difference in the joint probability results. The samples could be selected by 89 

different ways. For example, in the sampling of extreme wave heights and surges, some researchers 90 

sample the extreme wave heights (or surges) and the simultaneous surges (or wave heights) by the 91 

block maxima method (Li and Song, 2006). Others consider the “impact” of the events and select 92 

the samples according to a defined response function, i.e. total water levels, overtopping and run-up 93 

(Gouldby et al., 2014; Serafin et al., 2014; Rueda et al., 2016). Also, the extreme pairs of samples 94 

by defining the storm events using certain thresholds of variables are used (Li et al., 2014; Wahl et 95 

al., 2016).  96 

 97 

For multivariate cases, the dependence among a large range of extreme ocean elements like wave 98 

height, water level, wave period, storm duration, etc. was assessed. Corbella and Stretch (2012, 99 

2013) investigated the dependence between storm parameters: significant wave height, peak wave 100 

period, duration, inter-arrival time, and water level, by applying a copula-based statistical model 101 

under varying climatic conditions. Li et al. (2014) analysed the variates of extreme storm events 102 

(wave height, wave period, sea level, wave direction, and storm duration) under deep-water wave 103 

conditions, where the Monte Carlo method and four other methods to construct the dependency 104 

structures based on the copula functions, physical relationship, and extreme value theory were 105 

adopted. It was found that the Gaussian copula model was the most suitable wave climate 106 

simulation method for the Dutch coast. Rueda et al. (2016) used the generalized extreme value 107 

(GEV) distributions and Gaussian copula to model the dependence between multivariate extremes 108 

related to coastal floods for different weather patterns. Lin-Ye et al. (2016) applied a hierarchical 109 

Archimedean copula to characterize storm intensity based on the storm energy, unitary energy, peak 110 

wave period, and duration on the Catalan coast. Montes–Iturrizaga and Heredia–Zavoni (2016) 111 

developed a multivariate model for the joint distributions of environmental variables using vine 112 

copulas, which was applied to build trivariate environmental contours of the wave height, period, 113 

and wind velocity at the Gulf of Mexico. Zhang et al. (2018) modelled multivariate ocean data 114 

using asymmetric copulas and compared the results with those obtained by traditional copulas.  115 

 116 

The applications to the coastal waters of China are also seen rapidly emerging in recent years. Tao 117 

et al. (2013) developed a criterion to classify the intensity grade of a storm surge by the joint return 118 
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period of the extreme water levels and wave heights in Qingdao. Yang and Zhang (2013) applied the 119 

GH copula to analyse the joint probability of extreme winds and wave heights at the Bohai Bay. 120 

Dong et al. (2015) used the Clayton copula to clarify the relations between the group height and 121 

length of ocean waves based on laboratory data and field wave data near the coast of Zhejiang 122 

province. Dong et al. (2017) studied the joint return probability of the wind speed and rainfall 123 

intensity in a typhoon-affected sea area close to Shanghai using the Weibull distribution and GH 124 

copula. More recently, Yin et al. (2018) estimated the extreme sea levels in the Yangtze estuary 125 

using the quadrature joint probability optimal sampling method (JPM-OS) with consideration of the 126 

typhoon field, wave height, and sea level in the studied region. Yang and Qian (2019) analysed the 127 

joint probability of typhoon-induced surges and rainstorms at Shenzhen and derived trivariate joint 128 

distributions and conditional distributions of these variables based on the copula method. 129 

 130 

To estimate the desired design combination of wave height and surge accurately under extreme 131 

conditions can be rather challenging. Many studies have outlined that a univariate frequency 132 

analysis may not be capable of assessing the occurrence probability of extremes if the events are 133 

characterized by interrelated random variables (Chebana and Ouarda, 2011; Masina et al., 2015). 134 

According to Marcos et al. (2019), the return periods of extreme sea levels are underestimated in 30% 135 

of the coasts around the world if dependence is neglected. In particular, along the coasts of China, 136 

Li and Song (2006) analysed the correlations between the extreme wave heights and extreme water 137 

levels in the coastal waters of Hong Kong using the Gumbel–logistic model. The result proved that 138 

applying the commonly used empirical method to estimate the total water level (by directly adding 139 

the univariate extreme values) may not be sufficiently accurate to derive the coastal design criteria. 140 

On the other hand, because of the lack of long-term matched oceanic data, most of the previous 141 

studies only focused on a limited area or specific observation station. Therefore, it is necessary to 142 

carry out further research to clarify the relationships between extreme wave heights and storm 143 

surges and devise a realistic and safe design in coastal and offshore engineering.  144 

 145 

Built on the model results from the previous work of Chen et al. (2019), which used the GH copula 146 

in analysing the joint probability of the wave height and surge along the coast of the mainland 147 

China, this study is to fully examine the performance of four different types of copulas using the 148 
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existing model results from Chen et al. (2019) in estimating the joint probability. This study uses the 149 

annual N-largest sampling method with a detailed analysis of the predominance of joint extreme 150 

samples, in an attempt to effectively increase the available sample size compared to previous 151 

studies. Then a comprehensive analysis of the dependence between wave height and surge is 152 

conducted on the extreme samples obtained. The established joint probability model is subsequently 153 

applied to 87 selected locations representing the entire mainland China coast, to estimate the 154 

extreme combined water levels (CWLs) for flood risk assessment.  155 

 156 

2. Study area and data 157 

In this study, the model results of the significant wave heights (Hs) and surge levels (S) over a 158 

35-year (1979–2013) period as detailed in Li et al. (2018) are used. For the sake of completeness, 159 

the model setup and applications are briefly presented here. The computational domain covered an 160 

area from 105 °E to 140 °E and from 15° N to 41 °N, as shown in Fig. 1. A coupled wave 161 

(FVCOM-SWAVE) and hydrodynamic (FVCOM) model (Qi et al., 2009), which was well 162 

calibrated and validated in the nearshore and offshore area by Li et al. (2018), was used. The model 163 

used an unstructured mesh with a spatial resolution of 1 degree at the open boundaries and finer 164 

than 0.1 degree in the coastal areas. Along the open boundaries, the model was driven by the tide 165 

conditions obtained from TPXO database. The modified ECMWF re-analysis wind data with a 166 

parametric typhoon model in order to account for the effects of 862 typhoons during the simulation 167 

period was used as the sea surface forcing. Hourly wave height and surge data from the model at 168 

nine nearshore locations which are identical to those in Chen et al. (2019), as shown in Fig. 1, are 169 

extracted from the model results and used for the joint probability analysis in this study. The 170 

selection of those nearshore locations is mainly due to the availability of field measurements for 171 

validating the hydrodynamic model.  172 
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 173 

Fig. 1 Model area/mesh and the locations of the nine nearshore stations along the mainland China coast for 174 

applications (colour represents the water depth, m) 175 

 176 

3. Methodology 177 

3.1 Sampling method 178 

For extreme analysis, sampling of the extreme values from the time series is a key step. When the 179 

data length is sufficiently long, the annual maximum (AM) method is commonly used to select the 180 

joint extreme samples to ensure the independence of extreme samples (Sraj et al., 2015; Yang and 181 

Zhang, 2013). However, according to the studies of Bernardara et al. (2014) and Mazas and Hamm 182 

(2017), for effective bivariate analysis, the sample size should be normally more than 300. 183 

Therefore, in most cases, the AM method may only generate a small sample size of extreme events, 184 

insufficient to effectively capture the information of the dependence between the variables. To 185 

overcome this, the peak over threshold (POT) method can be the effective one for selecting 186 

multivariate samples (Li et al., 2014; Mazas et al, 2014). Compared to the block maxima approach, 187 

POT method is advantageous when selected peaks result from different storm events. However, the 188 

POT-based joint sampling methods can present with the major difficulty in determining the values 189 

of the thresholds, particularly in the cases of highly variable hydrodynamic conditions temporally 190 

and spatially over a large study area such as this study.  191 

 192 
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Based on the block maximum sampling method for univariate analysis (Galiatsatou, 2011), in this 193 

study, an annual N-largest (ANL) joint extreme sampling method is proposed. This method selects 194 

the top N samples in each year such that it can capture more information than the AM method. 195 

Unlike the POT methods, the number of samples selected per year can be pre-determined in the 196 

ANL method, so that the extreme conditions can be fairly represented over the study area. In 197 

addition, to ensure the independence of the extreme events selected, a standard storm length 198 

covering both sides of each peak is considered. The standard storm length generally ranges from 24 199 

to 72 hours in coastal storm analysis, following several previous studies (Basco and Walker, 2010; 200 

Martzikos at al., 2021; Marcos at al., 2019). It is set to be 48 hours in this study after conducting a 201 

sensitivity test suggested by Tawn (1988): provided the storm length is approximately correct the 202 

estimates of quantiles should not change too much by making small changes to this length. The 203 

simultaneous S is selected within the standard storm length along with the N-largest Hs to account 204 

for the possible time lag between extreme Hs and S. The number of samples per year (N) can be set 205 

accordingly to meet the required sampling size. Thus, in this study, by considering data length 206 

available over the 35-year period and the required sample size for joint probability analysis 207 

suggested by Mazas et al. (2014), N = 10 is used.  208 

3.2 Univariate probabilistic distributions 209 

Before establishing the dependence between wave height (Hs) and surge level (S), a frequency 210 

analysis would be required for each variable to define its marginal distribution. The two 211 

probabilistic distributions as shown in Table 1 are tested in this study for searching the best fit of the 212 

samples: 213 

 214 

Table 1 The cumulative distribution function (CDF) of two probabilistic distributions 215 

Distribution CDF 

Pearson-III (P3) 

2

2

0

4

4
1

2

2
[ ]

2 22
( ) ( ) exp( ( ))

4
( )

s

s

C

x C
v s v v

p
a

s v s s

s

xC C C C
F x x x x x x x dx

C xC C C

C

−

= − +  − − +



 

where,   is the gamma function; x  is the mean value of the samples; 
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v
C  and s

C  are the coefficients of variation and skewness. 

Generalized Extreme 

Value (GEV) 

1/( ) exp( (1 ) )k

gev

x
F x k




−−
= − +  

where,  ,   and k  are the location, scale and shape parameters 

respectively. 

 216 

3.3 Copulas 217 

According to the theory of Sklar (1959), there exists a copula, C, that can connect the marginal 218 

distributions, 1 ( )
X

u F x=  and 2 ( )
Y

u F y= , to form the CDF (Genest and Favre, 2003) expressed 219 

as: 220 

( , ) ( ( ), ( ))
X Y

F x y C F x F y=   (1) 221 

The commonly used copula families include Gaussian copula, t-copula, extreme value copula 222 

(EV-copula) and Archimedean copula. Among them, the Archimedean copula family has been 223 

frequently applied to the hydrologic fields. Meanwhile, Gudendorf and Segers (2010) suggested that 224 

EV-copula could also well describe the upper tail dependence for an extreme multivariate analysis. 225 

Thus, in this study, three commonly used copulas under the Archimedean family: Gumbel–226 

Hougaard (GH) copula, Frank copula, and Clayton copula, together with an EV-copula, Galambos 227 

copula, are examined. The EV-copula is a type of copula which not only satisfies all the definitions 228 

and properties of copulas, but also meets the max-stable property for fixed integer n , i.e. 229 

1/ 1/

1 1 1lim ( , , ) ( , , ), ( , , ) [0,1]n n n d

F d d d
n

C u u C u u u u
→

=  K K K  (2) 230 

In fact, GH copula fits the properties of both Archimedean copula and EV-copula groups.  231 

 232 

The generator function, CDF and probability density function (PDF) of these copulas are listed in 233 

Table 2, where 1u  and 2u  are the marginal distributions and   is the parameter of copula which 234 

describes the dependencies. The Galambos copula which belongs to EV-copulas does not have a 235 

generator function. 236 

Table 2 The generator function, CDF and PDF of four copulas 237 

Copula Function Functions 



10 

 

names names 

Gumbel–

Hougaard 

copula 

generator 

function 
( ) ( ln )t t

 = −  

CDF 
1/

1 2[( ln ) ( ln ) ]

1 2( , , )
u u

C u u e
  

 − − + −=
 

PDF 
1/

1 2

1/

1 2
1 2 [( ln ) ( ln ) ]

1 2

1 1 2 1/

1 2 1 2

{ 1 [( ln ) ( ln ) ] }
( , , )

                     ( ln ) ( ln ) [( ln ) ( ln ) ]

  

  

    


− + −

− + − + − +

− + + − + −
=

 −  − − + −

u u

u u
c u u

u u e

u u u u

 

Frank copula 

generator 

function 

1
( ) ln

1

t
e

t
e




−

−

−
= −

−  

CDF 
1 2

1 2

1 ( 1)( 1)
( , , ) ln[1 ]

1

u u
e e

C u u
e

 




− −

−

− −
= − +

−  

PDF 
1 2

1 1 2 2

(1 )

1 2 2

(1 )
( , , )

( )

u u

u u u u

e e
c u u

e e e e

 

     


+ +

+ + +

 +
=

− + −  

Clayton 

copula 

generator 

function 

1
( ) ( 1)t t




−= −
 

CDF 
1/

1 2 1 2( , , ) ( 1)C u u u u
   − − −= + −

 

PDF 
1 2 1/

1 2 1 2 1 2( , , ) (1 )( ) ( 1)c u u u u u u
     − − − − − −= + + −

 

Galambos 

copula 

CDF 
1

1 2 1 2 1 2( , , ) exp{(( ln ) ( ln ) ) }C u u u u u u
  

−− −=   − + −
 

PDF 

1/
1 2[( ln ) ( ln ) ]

1 2

1 1 2/ 2

1 2 1 2

1/ 1/ 1

1 2 1 2

( , , )

                    {1 ( ln ) ( ln ) [( ln ) ( ln ) ]

                    [1 (1 )[( ln ) ( ln ) ] ] [( ln ) ( ln ) ]

      

  

    

     





− − −− + −

− − − − − − − −

− − − − − −

=

 + −  −  − + −

 + + − + − − − + −

u u
c u u e

u u u u

u u u u

1 1

1 2              [( ln ) ( ln ) ]} − − − − − + −u u  

 238 

3.4 Dependence 239 

Several methods are available to determine the dependence structure between two random variables 240 

X and Y. They are commonly used to calculate the correlation coefficients, for example, Pearson's r 241 

correlation coefficient, Spearman's ρ coefficient, or Kendall's τ coefficient. In this study, Kendall’s τ 242 

coefficient is chosen to quantify the dependence between the Hs and S samples. It describes the 243 

dependence between the samples by ranking the variables with the following expression: 244 
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 (3) 245 

where n  is the total number of pairs. Any pair of observations, ( , )
i i

x y  and ( , )
j j

x y , where 246 

i j , is reckoned to be concordant if the ranks for both the elements agree, i.e., both 
i j

x x  and 247 

i j
y y  holds or both 

i j
x x  and 

i j
y y  holds, and otherwise is regarded as the discordant pair. 248 

Therefore, 0 =  indicates the perfectly independent cases and 1 =  indicates perfectly 249 

dependent cases.  250 

 251 

Generally, in the extreme analysis, the dependency is determined for the extreme values. However, 252 

the correlation coefficients for the extreme values can be less capable of fully capturing the 253 

asymptotic dependency (Mazas et al., 2014). Thus, in this study, the chi-plots are used as graphical 254 

tools to assess the dependence between the extreme Hs and S. It supplements an ordinary scatterplot 255 

of the data by providing a graph that has characteristic patterns depending on whether the variates 256 

are independent, with some degree of monotone relationship or more complex dependence structure. 257 

Two variables ( )i iΛ ,X as suggested by Fisher and Switzer (1985, 2001) are used in the scatterplots 258 

as: 259 

2 2
1 1

4 max ,
2 2

i i i i
S F G

      = − −    
     

 (4) 260 

( )  
1

2X / (1 ) (1 )
i i i i i i i i

H FG F F G G= − − −  (5) 261 

where, 262 

1 1

2 2
i i iS sign F G

   = − −   
   

 (6) 263 

( ) / ( 1)
i j i

j i

F I x x n


=  −  (7) 264 

( ) / ( 1)
i j i

j i

G I y y n


=  −  (8)  265 

( , ) / ( 1)
i j i j i

j i

H I x x y y n


=   −  (9) 266 

and I is the indicator function. 267 

 268 

( ) ( )
( )

    -

-1 2

  

/

number of disconnumber of concordant pa cordant pairs

n n

irs
 =
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The relationships between Kendall's coefficient τ and the correlation index,  , for copulas 269 

introduced in Section 3.3 are listed in Table 3. 270 

 271 

Table 3 Relationships between Kendall's coefficient τ and parameter  for different copulas 272 

Copula Relationship 

Gumbel–Hougaard copula 1 1/ = −  

Clayton copula / ( 2)  = +  

Frank copula 
0

4 1
1 [ 1]

1t

t
dt

e




 
= + −

−
 

Galambos copula 
1

1

1/ 1/0

1 1 1
( 1)

(1 )
ds

s s
 




−+
= + −

−
 

3.5 Return period 273 

In joint probability analysis, the bivariate return period can be defined. The OR return period (To ) 274 

indicates that at least one of the variable exceeds a certain value, and the AND return period ( a
T ) 275 

indicates that both the variables exceed a certain value. They can be calculated using the following 276 

expressions: 277 

1
( , )

1 ( , )
o

T x y
F x y

=
−

 (10) 278 

and 279 

1
( , )

1 ( , ) - ( ) ( )
a

X Y

T x y
F x y F x F y

=
+ −

 (11) 

280 

where ( )
X

F x  and ( )
Y

F y  are the marginal distributions and ( , )F x y  is calculated by Eq. (1) by 281 

combining the CDF of the copula and corresponding marginal distributions. 282 

 283 

4. Results 284 

4.1 Dependence of extreme samples 285 

For the joint probability analysis, it is necessary first to examine the dependency between the 286 

extreme Hs and S. As an example, the extreme wave height (Hs) and surge (S) sampled at nine 287 
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nearshore stations are shown in Fig. 2. It indicates that those two variables are partly related as the 288 

data points present a clear linear relation at all stations, but with a high degree of scattering. 289 

Relatively stronger dependencies between the extreme Hs and S are found at Haikou, Zhapo, Hong 290 

Kong, Xiamen and Kanmen stations because the scatters show a more obvious linear trend, but at 291 

other stations, such dependency appears relatively weaker. It is also noticed that the stations with 292 

stronger dependencies are located in the coastal areas facing the open sea and are easily affected by 293 

typhoon events. Stations Beihai and Dongfang are to some extent sheltered by the land. Stations 294 

Lvsi and Shijiusuo are located in the mid-north coast where fewer typhoon events occur. This result 295 

indicates that the dependencies between the extreme Hs and S at certain locations can be influenced 296 

by typhoon events. 297 

 298 

Fig. 2 Scatterplot of the N-Largest joint samples  299 

 300 

The chi-plots for all nine stations are shown in Fig. 3. In the chi-plot, 
i

 measures the distance of a 301 

pair of variables from their medians: a positive (negative) value implies that both variables are on 302 

the same (opposite) side of their respective medians and a value close to 1 (0) implies they are 303 

  

Beihai Dongfang Haikou 

Hong Kong Xiamen 

Kanmen Lvsi Shijiusuo 

Zhapo  Hong Kong Xiamen 

Kanmen Lvsi Shijiusuo 

Zhapo 
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larger or smaller relative to (close to) their respective medians, and Xi measures the dependence: a 304 

positive (negative) value describes a positive (negative) dependence, while a value close to zero 305 

suggests independence (Mazas et al., 2014). From Fig. 3, it can be seen that there is a clear positive 306 

dependence between the extreme Hs and S at all the stations. However, for the events where 
i

 is 307 

negative, there is only one population at all stations, whilst for positive 
i

 , two different 308 

populations are observed, namely, the upper and lower “lobes” as suggested by Fisher and Switzer 309 

(2001). The upper “lobe” corresponds to pairs where both the Hs and S are larger than their median, 310 

exhibiting a relatively strong dependence. This is because higher Hs and S are generally caused by 311 

the same extreme atmospheric event. In contrast, the lower “lobe” corresponds to a pair where both 312 

the Hs and S are smaller than their medians, exhibiting weak dependence. At most stations, there 313 

are two distinct upper and lower lobes, which indicates the bimodal dependence of wave height and 314 

surge due to relatively large events (such as typhoons) or weaker events. In other words, this 315 

bimodal dependence could be caused by two extreme situations: typhoon related extremes and 316 

non-typhoon related extremes. At the Shijiusuo station, however, the boundaries of the two “lobes” 317 

are obscure, which may be attributed to the low frequency of typhoon events at this location.  318 
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 319 
Fig. 3 Chi-plots of the N-Largest joint samples  320 

 321 

Furthermore, the distribution of Kendall’s coefficient τ over the computational domain is also 322 

calculated, as shown in Fig. 4a. The results clearly show that the coefficients in the southeast area of 323 

the computational domain are remarkably larger than those at other locations, which coincides well 324 

with the areas along the paths of frequent typhoons during the 35-year (1979–2013) period (Fig. 4b). 325 

Specifically, the dependence between the extreme Hs and S increases in the areas where the sea 326 

states are more energetic, which was also reported in Hawkes et al. (2002). It is found that this 327 

character could not be fully revealed with the AM sampling method as used in Chen et al. (2019), 328 

which also serves as an indication of the improvement when the ANL sampling method is used.  329 
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 330 

Fig. 4 Distribution of (a) Kendall’s coefficient τ and (b) the typhoon tracks from 1979 to 2013 in the study area 331 

 332 

More specifically, the Kendall’s coefficient τ at the nine nearshore locations is shown in Fig. 5. The 333 

results indicate that at Beihai, Dongfang, Lvsi, and Shijiusuo stations, values of τ are generally 334 

smaller compared to other stations, just below 0.35, suggesting relatively weak dependence between 335 

the extreme Hs and S at these stations. At other stations, particularly Zhapo and Hong Kong, the 336 

dependence between the extreme Hs and S is strong. According to Fig. 4 and Fig. 5, it seems that 337 

the stations in the areas frequently affected by typhoons tend to have large τ coefficients, as 338 

expected since typhoon events can be a significant cause for the extreme Hs and S.  339 

 340 
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 341 

Fig. 5 Kendall’s coefficient τ between Hs and S at the nine nearshore stations 342 

 343 

4.2 Marginal distributions 344 

An advantage of applying the copula theory to bivariate or multivariate probability analysis is that 345 

copulas allow different types of marginal distributions to be used for different variables. To examine 346 

 

(a) (b) 
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the performance and fitness of copulas, in this study both Hs and S in the joint extreme samples at 347 

the nine nearshore locations are fitted with two univariate distributions as introduced previously. 348 

Since the study area is observed to be wave-predominated (discussed further in Section 6), extreme 349 

Hs data is sampled by the ANL method, and extreme S data is sampled based on the sampled Hs. 350 

By subsampling the N-largest data to annual maxima, two probability distributions introduced in 351 

Section 3.2 are used to fit the samples. The parameters in GEV are estimated by the maximum 352 

likelihood estimation method. In Fig. 6, the fittings of the Hs and S in the joint extreme samples 353 

with different distributions at the Kanmen station are plotted. Fig. 6 (a) shows that the P3 354 

distribution fits better the extreme Hs samples at Kanmen than GEV distribution, whereas in Fig. 6 355 

(b) the GEV distribution can comparatively better fit the extreme S samples.  356 

 357 

To quantify the fitting results, Pearson’s coefficient r (Pearson, 1895) between the samples (dot in 358 

Fig. 6) and theoretical values (line in Fig. 6) are calculated at Kanmen station and listed in Table 4. 359 

The Pearson’s coefficient r could be calculated by, 360 

1

2 2

1 1

( )( )

( ) ( )

n

i i

i

n n

i i

i i

X X Y Y

r

X X Y Y

=

= =

− −
=

− −



 
. (12) 361 

where, 
i

X  and 
i

Y  are the sample values and the theoretical values; X  and Y  are the averaged 362 

values of 
i

X  and 
i

Y . The largest correlation coefficients coincide with the best fit distribution 363 

chosen by Fig. 6.  364 
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 365 
Fig. 6 Fitting of the samples with different distributions at Kanmen station: (a) wave height; (b) surge level  366 

 367 

Table 4 Correlation coefficients between the samples and different distributions at Kanmen station (the best fit 368 

distributions are indicated in bold) 369 
 GEV P3 

Wave height 0.9876 0.9877 

Surge level 0.9921 0.9833 

 370 

By combining the results in Fig. 6 and Table 4, the best fit distributions for the nine nearshore 371 

stations are summarized in Table 5. It can be seen that GEV distributions fit the extreme Hs samples 372 

better than P3 at 6 out of 9 stations, and the GEV distribution fits the extreme S samples better at all 373 

stations in the study area. Although not shown here, the 95% confidence intervals of the selected 374 

marginal are also examined to ensure a proper fit. It is reasonable to see that the confidence 375 

intervals increase from the lower tail to the upper tail. Therefore, the distributions of the Hs and S 376 

are determined by the selected probability distributions in this study. 377 

 378 

Table 5 Chosen distributions for the Hs and S in the joint samples at the nine nearshore stations 379 

Station Beihai Dongfang Haikou Zhapo 
Hong 

Kong 
Xiamen Kanmen Lvsi Shijiusuo 

Hs  GEV GEV GEV P3 P3 GEV P3 GEV GEV 

(a) (b) 
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S  GEV GEV GEV GEV GEV GEV GEV GEV GEV 

 380 

4.3 Selection of copulas  381 

To determine the best fit copulas for the data sets in this study with the chosen marginal 382 

distributions of the extreme Hs and S as described previously, it is essential to examine the 383 

characteristics of each copula. Fig. 7 shows the probability density distributions of the GH copula, 384 

Clayton copula, Frank copula, and Galambos copula. It is clear that both GH and Galambos copulas 385 

have a pronounced upper tail density, suggesting that they are capable of describing the dependence 386 

in the upper tail of the distribution, i.e. upper tail dependence. However, the density distribution of 387 

the Clayton copula has a thick lower tail density, suggesting that it can better describe the 388 

dependence in the lower tail of the distribution, i.e. lower tail dependence. The Frank copula has a 389 

symmetric tail, i.e. no tail dependence, which can only be suitable for the symmetrical distributed 390 

samples.  391 

 392 

Fig. 7 Probability density distributions of (a) GH copula, (b) Clayton copula, (c) Frank copula, and (d) Galambos 393 

copula 394 

 395 

To achieve the best match of the characteristics of the copulas shown in Fig. 7 with the samples in 396 

 

(a) (b) 

(c) (d) 
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this study, the extreme samples at all nine stations are examined with the binary frequency 397 

histograms of the Hs and S. As shown in Fig. 8, at all stations, a thick upper tail density can be 398 

observed, although the frequency distributions are slightly different at different stations. In general, 399 

there is a clear suggestion that the GH copula and Galambos copula can be chosen in the probability 400 

analysis as they match well with all density distributions at those stations.  401 

 402 

 403 

Fig. 8 Binary frequency histograms of Hs and S in the joint samples  404 

 405 

However, for the completeness of analysis, all four copulas are also used to fit the joint extreme 406 

samples using Kendall’s coefficient as introduced in Section 3.5. Fig. 9 shows their joint cumulative 407 

probabilities in comparison with those of the empirical copula at all nine stations. As the probability 408 

of the empirical copula is directly calculated based on the samples, any copula in the test that has 409 

the best fit with the empirical copula will be regarded as the optimal copula for the samples. It can 410 

be seen from the comparisons that the contours of four copulas provide a very similar fit in the 411 

mid-range of probabilities. However, Clayton and Frank copula perform poorly with tendency of 412 

underestimating the probability in the upper tail region while overestimate the probability in the 413 
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lower tail region. This is related to the density distribution of those tested copulas. The results 414 

clearly show a general trend of good match of the GH and Galambos copulas with the empirical 415 

copula, better than the other two copulas, while Frank copula has the worst fit.  416 

 417 

Fig. 9 Comparison of joint probability of four copulas with that of empirical copula 418 

 419 

In addition, the Cramér-von Mises (CVM) test is carried out to compare the performance of the four 420 

copulas with that of the empirical copula quantitatively, using the following equation (Mazas and 421 

Hamm, 2017; Genest and Rivest, 1993): 422 

2

ˆ
1

[ ( , ) - ( , ) ]
N

n n i i i i
i

S C U V C U V


=

=  ,  (13) 423 

where, N is the sample size, ( , )
i i

U V  is the sample of the normalized ranks, n
C  is the copula in 424 

test, and ˆC
  is the empirical copula. The CVM statistics at all stations are shown in Fig. 10. It is 425 

clear that CVM values for the Galambos and GH copulas are the lowest amongst all 4 copulas, 426 

while GH copula preforms slightly better than Galambos copula. The results again confirm the 427 
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outcomes of the probability density analysis of these copulas as shown in Fig. 7 and Fig. 8.  428 

 429 

Fig. 10 CVM statistics at the nine nearshore stations 430 

 431 

From the results presented in Fig. 10, it can be concluded that both GH and Galambos copulas, 432 

which have the lowest CVM values amongst all, are deemed to be the optimal ones for studying the 433 

joint probability of the extreme Hs and S along the east coast of the mainland China. It also 434 

highlights the necessity of using an EV-copula to conduct the joint probability analysis of extreme 435 

values. Considering that the GH copula has a simpler function than the Galambos copula, therefore 436 

it is decided that the GH copula is adopted in this study. 437 

4.4 Joint probability 438 

For the joint probability, both AND and OR return periods are assessed at all station. As an example, 439 

the isolines of the joint events with both return periods at the Kanmen station are shown in Fig. 11. 440 

In general, for the same joint event, the AND return period is found to be larger than the OR return 441 

period. Specifically, when calculating the joint probability of the variables, the selection of the 442 

different types of return period should be according to the aim of the study. In the following 443 

analysis in this study, the AND return period is applied. Concurrently, according to a previous study 444 

(Chen et al., 2019), the shapes of the isolines are diverse at different locations because the joint 445 

probability is location-specific, particularly in the nearshore areas. Because the distributions of the 446 

joint events at different locations are discussed in detail in a previous study (Chen et al., 2019), the 447 

isolines of the joint events at other stations are not provided here. 448 
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 449 

Fig. 11 Isolines of (a) the AND return period and (b) the OR return period at the Kanmen station 450 

 451 

From Fig. 11, it can be seen that different combinations of the Hs and S can have the same return 452 

period along an isoline when calculating the joint events by using a cumulative probability. Thus, to 453 

search for the most probable joint event for a certain return period, the joint probability density is 454 

the best function to be used. The combined water level (CWL) which is the sum of the Hs and S is 455 

analysed in this study for engineering application. To determine the most probable CWL, the joint 456 

probability density is calculated to obtain the failure probability by integration over the failure 457 

region (Masina et al., 2015; Chen et al., 2019). Along the isoline of the failure probability, the point 458 

corresponding to the highest probability density is the most probable extreme event, which is the 459 

tangential point between the isoline of the failure probability (indicated by straight lines in Fig. 12) 460 

and a particular isoline of the probability density (indicated by curves in Fig. 12). Then the extreme 461 

CWL is calculated by adding the Hs and S of the most probable extreme event. Fig. 12 shows the 462 

isolines of the joint probability density and failure probability at the nine representative nearshore 463 

stations. The most probable joint events with a 50-year and 100-year return period at the nine 464 

nearshore stations are then determined according to Fig. 12, as shown in Table 6. 465 

 466 

 

(a) (b) 
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 467 

Fig. 12 Isolines of the joint probability density and failure probability  468 

 469 

Table 6 Most probable 50-year and 100-year return level joint events  470 

Station 
50-year 100-year 

Hs(m) S(m) CWL(m) Hs(m) S(m) CWL(m) 
Beihai 1.55 0.95 2.50 1.70 1.00 2.70 

Dongfang 3.30 0.60 3.90 3.55 0.65 4.20 

Haikou 4.25 0.95 5.20 4.65 1.35 6.00 

Zhapo 5.25 1.65 6.90 5.65 1.85 7.50 

Hong Kong 3.00 1.20 4.20 3.40 1.60 5.00 

Xiamen 1.95 1.95 3.90 2.20 2.20 4.40 

Kanmen 2.90 1.90 4.80 3.05 2.35 5.40 

Lvsi 1.35 1.45 2.80 1.40 1.60 3.00 

Shijiusuo 3.55 0.95 4.50 4.30 1.20 5.50 

 471 

In engineering practice, when lacking the analysis of joint probability, the joint event for a certain 472 

period is typically estimated by an addition of the single event with specified return period. For 473 

example, a 100-year return level joint event is sometimes approximated by the sum of a 100-year 474 
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Hs (100Hs) and 10-year S (10S), the sum of a 10-year Hs (10Hs) and 100-year S (100S), or the sum 475 

of a 50-year Hs (50Hs) and 50-year S (50S) (Li and Song, 2006), or an addition of 100-year Hs and 476 

S (Code of Hydrology for Harhour and Waterway, JTS 145-2015, China). To compare the outcome 477 

of these combinations and the joint probability results, the Hs and S sampled by the univariate 478 

method without considering their dependence are used to calculate the Hs and S with 100-year, 479 

50-year and 10-year return periods at all nine locations. The CWLs calculated by four empirical 480 

combinations described above are compared with those calculated by the joint probability method 481 

with the 50-year and 100-year return periods at the nine nearshore stations, as shown in Fig. 13, 482 

where the ranges of the CWLs from the 50-year to 100-year return levels calculated by joint 483 

probability method are presented for the sake of clarity. It can be seen from the figure that the 484 

100-year CWLs calculated by joint probability method are larger than the “100Hs+10S,” 485 

“50Hs+50S,” and “10Hs+100S” combinations but are smaller than the “100Hs+100S” combination. 486 

In general, the “100Hs+10S” and “50Hs+50S” combinations are close to the 50-year return level 487 

CWLs calculated by joint probability which could be recommended to estimate the 50-year return 488 

level situation when the joint probability data is unavailable. Meanwhile, “50Hs+50S” combination 489 

is always within the range of the 50-year and the 100-year return levels calculated by joint 490 

probability method which could be a meaningful indicator for joint events between 50-year and 491 

100-year return levels. The “10Hs+100S” combination is relatively smaller than other combinations, 492 

especially at Beihai, Dongfang, Haikou, Zhapo, and Shijiusuo stations, which indicates a strong 493 

wave predominant property. 494 

 495 

The result suggests that three of the empirical combinations may lead to an unsafe design, with only 496 

the “100Hs+100S” combination being safe for an engineering design at all nine locations. However, 497 

the method of using the “100Hs+100S” combination to estimate a 100-year joint event is proposed 498 

based on the assumption that the Hs and S are independent random variables. This assumption may 499 

be unrealistic because it has been proved that the Hs and S are partly dependent in this study, as 500 

described in Section 4. Thus, it is necessary to conduct a joint probability analysis when designing 501 

engineering structures. 502 
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 503 

Fig. 13 The ranges of the CWL calculated by the joint probability method with GH copula for 50-year and 504 

100-year return periods (shown as a box) in comparison with the CWLs calculated by the empirical combinations  505 

 506 

5. Discussion 507 

From the detailed comparison of the CWLs calculated by the empirical combination and joint 508 

probability method along the east coast of the mainland China, it is clear that the “100Hs+100S” 509 

combination is the only method which can lead to a safe design among the four empirical 510 

combinations. If this approach is adopted for the entire coastline, the extreme CWLs can be 511 

estimated for wide engineering applications. For the purposes of inter-comparison, Fig. 14 shows 512 

the distributions of the 100-year return level Hs and S at the studied coastline with 87 uniformly 513 

distributed locations. It can be seen from Fig. 14 (a) that the 100-year Hs along the southeast coast 514 

of the mainland China are remarkably larger than those at the other sites. However, in Fig. 14 (b), 515 

the distributions of the extreme S are rather uniform along the entire coast, with S being generally 516 

larger than 2 m from the mid-east to the south coast.  517 

 518 
Fig. 14 Distributions of the 100-year return level: (a) wave height and (b) surge level along the coasts of the 519 

mainland China without considering their dependence 520 
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 521 

To investigate the hydrodynamic conditions for different areas in detail, a response coefficient (D) 522 

is defined as: 523 

D Hs S Hs= +( ) /  (14) 524 

where Hs is the 100-year return level wave height and S is the 100-year return level surge.  525 

 526 

Although partly related, wave and surge are characterized by different dynamic, and have different 527 

magnitudes and spatial scales. As a coastal environment is usually defined as wave-predominated or 528 

surge-predominated based on the relative contributions of the wave and surge on coastal processes 529 

studied, as well as on coastal morphodynamics, the coefficient D could give a first impression on 530 

the relative significance of these two variables.  531 

 532 

With the response coefficient (D) presenting the relative contributions of the Hs and S for the same 533 

return period at different locations, the hydrodynamic conditions there can then be described as 534 

wave-predominated or surge-predominated. D is generally larger than 1. If D is between 1 and 2, 535 

the location could be described as wave-predominated since the Hs has larger impact than S; 536 

otherwise, if over 2, it is surge-predominated. The value of D could reflect the relative value of Hs 537 

and S. Higher values indicate a larger impact of S. Fig. 15 shows the distribution of coefficient D 538 

along the mainland China coast. It can be seen that coefficient D at most of the sites along the 539 

mainland China coast is between 1 and 2, which suggests that most of the areas along the mainland 540 

China coast are wave-predominated. The extreme wave height is obviously larger than surge level, 541 

which indicates a larger wave impact at these locations. This justifies the way that the joint extreme 542 

samples were selected in a wave-predominated manner in Section 3.1. For the southeast coast, the 543 

coefficient D is a little bit larger than 1, as these areas are facing open seas and are found in deep 544 

waters, which enhance the wave energy and mitigate the surge. However, in a few sites, D 545 

coefficients are far larger than 2, for example, the points in the Yangtze River estuary and Hangzhou 546 

bay. The water depths are small at these locations, and the shape of the estuary coastline may have 547 

caused surge to concentrate, resulting in those sites becoming surge-predominated.  548 

 549 
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  550 
Fig. 15 Distribution of the response coefficient (D) along the coasts of the mainland China 551 

 552 

Furthermore, Fig. 16 shows the distributions of the 100-year return level CWLs, calculated by the 553 

empirical method (100Hs+100S) and joint probability method. The distributions of the extreme 554 

CWLs calculated by the joint probability method show a relatively higher value in the southeast 555 

coast and lower value in the north. Although with the similar distribution patter, it is clear that using 556 

the empirical method by assuming Hs and S being independent random variables can yield a higher 557 

water level, but using the joint probability method can yield relatively more economical design 558 

conditions.  559 

 560 

Fig. 16 Distribution of 100-year return level CWL calculated by the (a) empirical method (100Hs+100S) and (b) 561 

joint probability method along the coasts of the mainland China 562 

 563 

As an indication of the improvement made between the 100-year CWLs calculated by the empirical 564 

and joint probability methods, a parameter, Q, is introduced and defined as:  565 

-
100%

e j

e

CWL CWL
Q

CWL
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where, 
e

CWL  is the water level calculated by the empirical method, and 
j

CWL  is the water level 567 

calculated by the joint probability method. 568 

 569 

The distribution of the Q parameter shown in Fig. 17 indicates that the improvements in the joint 570 

probability method compared with the empirical method are not notable in the north coast (Bohai 571 

Sea coast) and south coast with a Q of under 6%, which means that the use of empirical 572 

combinations at these locations is relatively reasonable. However, for the mid-east mainland coast 573 

and southeast mainland coast, Q is relative larger, over 25% at its maximum. Thus, using the design 574 

water level calculated by the empirical method at these locations may be inaccurate. In other words, 575 

the joint probability method can yield better results at the sites where the hydrodynamic conditions 576 

are generally complex or energetic. For example, two major estuaries (Yangtze and Hangzhou Bay) 577 

are located the mid-east coast. The southeast coast is frequently affected by typhoon events, 578 

particularly near the Taiwan Strait, which can incur stronger hydrodynamic processes and cause 579 

larger diversity between water levels calculated by empirical and joint probability methods.  580 

 581 

 582 

Fig. 17 Distribution of the improvement coefficient along the mainland China coast 583 

 584 

6. Conclusions 585 

This study uses long-term (35 years) model results to examine the suitability and performance of 4 586 

copulas in the joint probability analysis of the extreme wave height (Hs) and surge (S) along the 587 

coasts of the mainland China. The extreme data is extracted with the annual N-largest sampling 588 
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method and the dependencies between the Hs and S in the joint extreme samples at the nine selected 589 

nearshore stations are fully analysed. The performance of the four commonly used copulas, i.e. 590 

Gumbel-Hougaard, Clayton, Frank and Galambos copulas, in estimating the joint probability of 591 

extreme samples are assessed. The optimal copula identified is used for predicting combined water 592 

levels (CWLs, sum of Hs and S) in the study area with 50- and 100-year return periods and the 593 

accuracy is quantified.  594 

 595 

Two theoretical univariate probabilistic distributions, i.e. GEV and P3, are used to fit the marginal 596 

of Hs and S samples. The results show that either GEV or P3 distributions could appropriately fit 597 

the extreme wave samples which depends on their location, while the GEV distribution provides the 598 

best fit to the extreme surge samples for all the selected locations along the mainland China coast. 599 

After assessing the performance of the copulas, the extreme value copula group is found to be the 600 

optimal copula group to describe the joint probability of extreme Hs and S. The Gumbel–Hougaard 601 

copula that belongs to the extreme value copula group is finally chosen to conduct the joint 602 

probability analysis of the Hs and S along the mainland China coast owing to its precision and 603 

conciseness. 604 

 605 

By adopting the GEV/P3 distribution and applying the copula theory, the joint exceedance 606 

probabilities and joint probability densities at the nine representative nearshore stations are 607 

calculated. The results at these locations show that there are no uniform distribution patterns of joint 608 

distributions at different locations. The failure probability analysis is applied to calculate the most 609 

probable CWLs. The analysis is also extended to the entire coastline of the study site at 87 610 

uniformly distributed locations, where the coastline is clearly identified with the predominance of 611 

the waves and surges. The empirical value of “100Hs+10S” and “50Hs+50S” combinations is 612 

recommended to estimate the 50-year return level situation when the joint probability data is 613 

unavailable and the “50Hs+50S” combination could be a meaningful indicator for events between 614 

50-year and 100-year return levels. In comparison with the commonly used empirical design 615 

approaches, the improvement coefficient (Q) is introduced and calculated, which suggests that 616 

applying the joint probability approaches to the mid-east coast and southeast coast can improve the 617 

accuracy in predicting extreme combined water levels with the given return period. The results from 618 
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this study provide reliable and realistic design guidelines for coastal engineering applications.  619 
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