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In light of the successes of the Navier–Stokes equations in the study of fluid flows,
similar continuum treatment of granular materials is a long-standing ambition. This
is due to their wide-ranging applications in the pharmaceutical and engineering
industries as well as to geophysical phenomena such as avalanches and landslides.
Historically this has been attempted through modification of the dissipation terms
in the momentum balance equations, effectively introducing pressure and strain-rate
dependence into the viscosity. Originally, a popular model for this granular viscosity,
the Coulomb rheology, proposed rate-independent plastic behaviour scaled by a
constant friction coefficient µ. Unfortunately, the resultant equations are always
ill-posed. Mathematically ill-posed problems suffer from unbounded growth of
short-wavelength perturbations, which necessarily leads to grid-dependent numerical
results that do not converge as the spatial resolution is enhanced. This is unrealistic
as all physical systems are subject to noise and do not blow up catastrophically.
It is therefore vital to seek well-posed equations to make realistic predictions. The
recent µ(I)-rheology is a major step forward, which allows granular flows in chutes
and shear cells to be predicted. This is achieved by introducing a dependence on
the non-dimensional inertial number I in the friction coefficient µ. In this paper it
is shown that the µ(I)-rheology is well-posed for intermediate values of I, but that
it is ill-posed for both high and low inertial numbers. This result is not obvious
from casual inspection of the equations, and suggests that additional physics, such
as enduring force chains and binary collisions, becomes important in these limits.
The theoretical results are validated numerically using two implicit schemes for
non-Newtonian flows. In particular, it is shown explicitly that at a given resolution
a standard numerical scheme used to compute steady-uniform Bagnold flow is stable
in the well-posed region of parameter space, but is unstable to small perturbations,
which grow exponentially quickly, in the ill-posed domain.
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1. Introduction
The Groupement de Recherche Milieux Divisés collated experimental data and

discrete element simulations obtained in six different steady flow configurations
(GDR-MiDi 2004) and interpreted them with a view to determining the rheology
of granular materials. By considering the case of simple shear they argued that
the strain-rate tensor depended only on the shear rate γ̇ and that the stress tensor
was dependent on two parameters, the normal stress P and the shear stress τ . This
defined two independent non-dimensional parameters: the effective friction µeff = τ/P
and the rescaled shear rate I = γ̇ d/

√
P/ρ, where ρ is the intrinsic density of the

grains. They interpreted the inertial number I as the ratio of the typical time scale for
microscopic rearrangements of the grains Tp = d

√
ρ/P to the macroscopic time scale

of the deformation Tγ = 1/γ̇ . The inertial number is also the square of the Savage or
Coulomb number (Savage & Sayed 1984; Ancey, Coussot & Evesque 1999). In the
dense inertial regime GDR-MiDi (2004) used dimensional analysis to postulate a local
rheology in which µeff = τ/P was a function of I, i.e. the effective friction µ=µ(I).
This simple rheology predicted a linear velocity across a shear cell consistent with
discrete element simulations (GDR-MiDi 2004). In addition they showed that the
rheology predicted a Bagnold-like velocity profile varying with the depth to the
power 3/2 for a chute flow, which was consistent with experimental measurements
for glass beads (GDR-MiDi 2004). Jop, Forterre & Pouliquen (2005) (see their
appendix A) showed how to determine the function µ(I) from the expression for
the basal friction law obtained by Pouliquen & Forterre (2002), and Jop, Forterre &
Pouliquen (2006) generalized the scalar rheology of GDR-MiDi to a tensor relation.

The tensor form of the µ(I)-rheology has had a major impact on the field. Jop
et al. (2006) used it to successfully compute the steady downstream velocity profile
across a chute with rough sidewalls, and Forterre (2006) performed a linear stability
analysis to show that it correctly predicted the cutoff frequency of granular Kapitza
or roll waves, consistent with the experimental results of Forterre & Pouliquen (2003).
Considerable effort has therefore gone into developing numerical methods to solve
the full system of equations, which look very similar to the Navier–Stokes equations
of fluid mechanics except that the viscosity is dependent on strain rate and pressure.
Although these dependences look innocuous they add considerable complexity to
the problem and it has proved difficult to develop suitable methods to solve them
(Cawthorn 2010). Recent numerical results, however, look very promising. They
are able to predict both column collapses (Lagrée, Staron & Popinet 2011) and
silo flows (Kamrin 2010; Staron, Lagrée & Popinet 2012) although some ad hoc
regularization has had to be included for low strain rates and near the free surface of
the flows to avoid singularities. In addition, Gray & Edwards (2014) have developed
a depth-averaged version of the theory for shallow flows that is able to accurately
predict the formation and coarsening of granular roll waves (Razis et al. 2014), as
well as erosion–deposition waves, which have completely stationary regions between
the wave crests (Edwards & Gray 2015).

This weight of evidence provides strong support for the µ(I)-rheology in the
dense inertial flow regime. However, the equations also look similar to those of a
Coulomb material with a von Mises yield surface, which Schaeffer (1987) showed
were always ill-posed in two dimensions. Joseph & Saut (1990) characterize ill-posed
problems as ones which are catastrophically (Hadamard) unstable to short waves,
i.e. the growth rate of infinitesimally small perturbations tends to infinity as their
wavelength tends to zero. This is opposed to linearly unstable problems, which have
a positive, but bounded, growth rate. Ill-posed problems do not have a mathematical
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solution. Attempts to integrate the equations numerically produce results, but as
the grid is refined and higher wavenumbers are resolved (with higher growth rates)
the solutions continue to change. A simple example of this is the granular fingering
model of Woodhouse et al. (2012), where ill-posedness leads to the number of fingers
increasing as the grid resolution is enhanced. Such behaviour is not uncommon when
developing mathematical models, and it is a very useful indication that there is
some important missing physics (Fowler 1997). The crucial difference between the
µ(I)-rheology and the classic Coulomb rheology is that the function µ is constant in
the Coulomb case. In this paper it is shown that the µ(I)-rheology is well-posed in
the dense inertial regime, but the additional dependence of µ on I is not sufficient to
regularize the model for all inertial numbers.

2. Analysis of ill-posedness
2.1. Governing equations

In this paper, analysis is restricted to a two-dimensional Euclidean space, with a
position vector x, time t and velocity vector u(x, t). For brevity, spatial derivatives
∂/∂xi are written as ∂i, the temporal derivative ∂/∂t as ∂t and the vector components
ai(x, t) as ai. The strain rate is defined as

Dij = (∂iuj + ∂jui)/2 (2.1)

and its second invariant
‖D‖ =

√
1
2 DijDji, (2.2)

where summation over repeated indices is assumed. The density of the grains ρ and
the solids volume fraction φ are assumed to be constant and uniform throughout the
body, so mass balance implies that the granular material is incompressible

∂iui = 0. (2.3)

The momentum balance is

ρφ(∂tui + uj∂jui)= ∂j(σij)+ ρφgi, (2.4)

where σ is the Cauchy stress tensor and g is the gravitational acceleration vector. The
Cauchy stress tensor is decomposed into an isotropic contribution from the pressure
p(x, t) and a traceless deviatoric stress tensor τ , i.e.

σij =−pδij + τij, (2.5)

where δij is the Kronecker delta function. The constitutive assumption is that the
deviatoric stresses align with the strain rates, i.e.

τ

‖τ‖ =
D

‖D‖ , (2.6)

and during deformation the von Mises type yield condition sets the equality

‖τ‖ =µp, (2.7)
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Well-posed and ill-posed behaviour of the µ(I)-rheology for granular flow 797

where in general µ depends on the flow. If µ = µs, where µs is a constant static
friction coefficient, then (2.3)–(2.7) constitute the classical Coulomb equations for
granular flow. For the µ(I)-rheology (GDR-MiDi 2004; Jop et al. 2005, 2006) to be
studied in this paper, it is instead the case that

µ=µ(I)=µs + 1µ

I0/I + 1
, (2.8)

where the dependence on the inertial number I is scaled by a parameter I0 and a
friction constant 1µ=µd−µs with µd being known as the dynamic friction constant.
In the notation introduced in this paper the inertial number is

I = 2d‖D‖√
p/ρ

, (2.9)

which is equivalent to the definitions used by GDR-MiDi (2004) and Jop et al. (2006).
The factor two arises from the use of the classical definition of the strain-rate tensor
(2.1). The inertial number has the intuitive property that for higher values of I the bulk
shearing happens at a faster rate than the microscopic rearrangements and vice versa
for low values. In the limit as I→∞ the friction µ(I)→ µd, while µ(I)→ µs as
I→ 0. Substituting the constitutive law (2.5)–(2.9) into (2.4), the momentum balance
for the granular material can be written as

∂tui + uj∂jui = ∂j

[
µ(I)p̌
‖D‖ Dij

]
− ∂ip̌+ gi, (2.10)

where rescaled pressure p̌ is defined as p̌= p/(ρφ). Note that this scaling is motivated
purely as a way of simplifying the governing equations, rather than as a formal non-
dimensionalization of the variables. Dropping the superposed checks for simplicity, the
corresponding inertial number with this rescaled pressure is therefore

I = 2d‖D‖√
φp

. (2.11)

The mass and momentum balances, (2.3) and (2.10), have a strong resemblance to the
incompressible Navier–Stokes equations. Instead of having a constant viscosity, as in
a Newtonian fluid, the dissipative terms are dependent on both the pressure and local
deformation rate.

2.2. Expansion of the dissipative terms
In order to linearize the system of equations it is useful to expand the dissipative terms
in (2.10) using the product rule, i.e.

∂j

[
µp
‖D‖Dij

]
= µp
‖D‖∂jDij + µ

‖D‖Dij∂jp+ p
‖D‖Dij∂jµ+µpDij∂j‖D‖−1. (2.12)

Using incompressibility (2.3) the first term on the right-hand side reduces to

∂jDij = ∂jjui/2, (2.13)
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i.e. the Laplacian of ui. Due to the definition of the inertial number (2.11) it follows
that

∂jµ(I)=µ′(I)
[
∂jp∂pI + ∂j‖D‖∂‖D‖I

]
, (2.14)

where the derivative of the effective friction for the case of Jop et al.’s (2006) law
(2.8) is

µ′(I)= dµ
dI
= 1µI0

(I0 + I)2
. (2.15)

This captures the increasing nature of the µ(I) curve (since µ′ > 0). Using the
definition of the inertial parameter (2.11) it is then possible to calculate the derivative
with respect to the pressure

∂pI =−d‖D‖(φp)−3/2φ =− I
2p

(2.16)

and the second invariant of the strain rate

∂‖D‖I = 2d√
φp
= I
‖D‖ , (2.17)

which are needed to evaluate (2.14). Finally, the derivative of the strain-rate invariant
is expanded as

∂j‖D‖ = ∂j

√√√√1
2

2∑
k,l=1

(Dkl)2 = 1
2

[
1
2

2∑
k,l=1

(Dkl)
2

]−1/2 2∑
k,l=1

Dkl∂jDkl, (2.18)

where the summation has been written explicitly (cf. (2.2)). The expression can be
simplified by defining a normalized strain-rate tensor

Aij = Dij

‖D‖ , (2.19)

to show that ∂j‖D‖ = Akl∂jDkl/2. Substituting for the strain rate Dkl and using the
property that A is symmetric, the {1, 2} and {2, 1} components can be combined to
show that (2.18) reduces to

∂j‖D‖ = 1
2 Akl∂j∂luk, (2.20)

determining the derivative in (2.14). In addition, it follows that the last term in (2.12)
can be written as

µpDij∂j‖D‖−1 =− µp
2‖D‖AijAkl∂j∂luk. (2.21)

Substituting the expansions (2.13)–(2.21) into (2.12) implies that the dissipative term
is

∂j

[
µp
‖D‖Dij

]
= µp

2‖D‖∂jjui + µp
2‖D‖[ν − 1]AijAkl∂j∂luk +µ[1− ν/2]Aij∂jp, (2.22)

where

ν = Iµ′(I)
µ(I)

(2.23)

is a function of the inertial number.
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2.3. Linearization and taking the principal part

It is assumed that there is a base state solution (u0, p0) that exactly satisfies the mass
and momentum balance equations (2.3) and (2.10). The velocity and pressure are then
perturbed about the base state, i.e.

u= u0 + û, p= p0 + p̂, (2.24a,b)

where (û, p̂) are small perturbations. In order to show ill-posedness of the system of
equations, we are interested in the stability of the system in the high-wavenumber
limit. This can be determined by taking the principal part of the linearized equations
(Leray 1953), i.e. we retain only the highest order derivatives of each perturbed field
with respect to each variable. In particular, the viscous terms in (2.10) have already
been expanded in (2.22) to identify that the highest order spatial derivatives of û
are second-order, while the highest spatial derivatives of p̂ are first-order. It follows
that in (2.10) the momentum transport terms uj∂jui can be neglected compared to
the viscous terms, because they involve only first-order spatial derivatives. Similarly,
assuming that ∂j∂lu0

k and ∂jp0 are non-zero in the base state, the coefficients in (2.22)
will generate a large number of terms on linearization. Crucially, however, these terms
scale either with the pressure perturbations or with the first-order derivatives of the
perturbed velocity, both of which can be neglected compared to the largest derivative
terms in (2.22). Taking the principal part of the linearized equations therefore implies
that the mass and momentum balances (2.3) and (2.10) are

∂jûj = 0, (2.25)
∂tûi = η0

[
∂jjûi − rAijAkl∂j∂lûk

]+ [qAij∂j − ∂i
]

p̂, (2.26)

where the strain rate D, the normalized strain rate A, the inertial number I and the
coefficients

η0 = µp0

2‖D‖ , q=µ(1− ν/2), r= 1− ν, (2.27a−c)

are determined from the base state. Although the base state varies spatially, the
values of the coefficients are treated as being locally constant, because in the
high-wavenumber limit the base state appears frozen relative to the length scale
of variations of the perturbation (Schmid & Henningson 2001). Since the coefficients
in (2.26) are constant, the governing equations (2.25) and (2.26) admit normal mode
solutions of the form [

û(x, t)
p̂(x, t)

]
= exp(iξ · x+ λt)

[
ũ
p̃

]
, (2.28)

where ũ and p̃ are constants, ξ is a real wavevector, ‘·’ is the dot product and
the growth rate λ is anticipated to depend on the wavevector and flow properties.
Ill-posedness corresponds to the case in which the growth rate tends to infinity in
the high-wavenumber limit. Otherwise the equations are well-posed. Note that this
local temporal stability analysis in the high-wavenumber limit has the advantage that
it is not tied to a specific base state, and so the results are general. As such, the
analysis can be applied across a whole flow, with varying properties, and irrespective
of boundary effects, to determine regions of ill-posedness.

Note that in a usual linear stability analysis the governing equations are linearized
about a known base state and solutions are sought for the growth rate of the
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perturbation. For base states with spatial gradients, standard analysis (valid for all
wavenumbers) would usually require us to calculate the growth rates numerically, and
the boundary conditions would also filter the range of acceptable modes. This not only
significantly complicates the analysis, but, if it needs to be solved numerically, the
wavenumbers must be discretized, which makes it much more difficult to infer that
they tend to infinity in the high-wavenumber limit and hence ill-posedness (Joseph
& Saut 1990). In contrast, in the approach used here, gradients of the base state are
infinitely small compared to those of the perturbation, so they can be neglected. In
addition the perturbation boundary conditions can always be satisfied, because the
wavenumber can, if necessary, always be multiplied by an arbitrary factor and it is
still infinite. Our approach is therefore much simpler than a standard linear stability
analysis, but has the advantage that it yields a very clear and concise asymptotic
result.

2.4. The eigenvalue problem
Substitution of the normal mode solution (2.28) into the linearized equations (2.25)
and (2.26) results in the generalized eigenvalue problem

iξjũj = 0 (2.29)
λũi = η0

[−|ξ |2ũi + rAijξjAklξlũk
]+ ip̃[qAijξj − ξi]. (2.30)

Note that (2.29) is a statement of the orthogonality of the wavevector and the
velocity perturbation. This allows the pressure perturbation constant p̃ to be solved
for explicitly by taking the dot product of (2.30) with the wavevector ξ to give

p̃=−irη0

(
AijξjξiAklξlũk

|ξ |2 − qAijξjξi

)
. (2.31)

Since the numerator in this expression is third-order in wavenumber and the
denominator is second-order, the pressure perturbation constant scales linearly with
wavenumber. It follows that all the terms on the right-hand side of (2.30) are
second-order in wavenumber. Substituting the pressure constant (2.31) into (2.30)
yields the eigenvalue problem

Lũ= λũ, (2.32)

where the operator

L= η0

[
r
(

Aξ − (Aξ · ξ)(ξ − qAξ)

|ξ |2 − q(ξ · Aξ)

)
(Aξ)T − |ξ |21

]
. (2.33)

2.5. Determining the growth rate
The eigenvalue λ is recovered by finding a permissible eigenvector. Due to the
orthogonality of the wavevector and velocity (2.29), and the strict restriction to
two-dimensional flows, only eigenvectors proportional to ξ⊥ = (ξ2, −ξ1) can be
accepted. It is readily checked that ξ · Lξ⊥ = 0, so that ξ⊥ is indeed an eigenvector.
Substituting ξ⊥ for ũ in the eigenvalue (2.32) and taking the dot product with ξ⊥

yields

λ(ξ)= ξ⊥ · Lξ⊥

|ξ |2 . (2.34)
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Substitution of the operator L from (2.33) then gives the growth rate

λ(ξ)= η0

(
q |ξ |2 (ξ · Aξ)− |ξ |4 + r(ξ⊥ · Aξ)2

|ξ |2 − q(ξ · Aξ)

)
. (2.35)

It is important to note that this expression scales as |ξ |2. This means that if λ
is positive, there will be growth of perturbations with an ever larger rate for
higher wavenumbers (ill-posedness). Conversely, if the growth rate is negative, all
perturbations will decay exponentially and the system is well-posed.

Considering typical parameter values from the literature (Jop et al. 2005) along
with the physical argument that higher deformation implies more dissipation, it is
observed that 1µ > 0 and µd < 1. Such consideration gives q < 1, and as ‖A‖ = 1
the denominator in (2.35) is always positive. The sign of the growth rate is therefore
determined by the sign of the numerator

N = q |ξ |2 (ξ · Aξ)− |ξ |4 + r(ξ⊥ · Aξ)2. (2.36)

Determining the sign of (2.36) is greatly helped by the properties of A. In addition to
its normalization, it is also the case that tr A= 0 due to the definition of the strain-rate
tensor (2.1). These properties imply that any permissible A is orthogonally similar to

Ã=
[

1 0
0 −1

]
(2.37)

and so any result found with this is true for all systems given an appropriate
linear coordinate transformation. The choice of this particular form allows for some
convenient factorizations as will be demonstrated below. Assuming that the wavevector
in this system is ξ̃ , it follows that when (2.37) is substituted into (2.36) and divided
by ξ̃ 4

2 the condition on the numerator is

Ñ = (q− 1)

(
ξ̃1

ξ̃2

)4

+ (4r− 2)

(
ξ̃1

ξ̃2

)2

+ (−q− 1), (2.38)

i.e. a quartic of the perturbation direction, ξ̃1/ξ̃2. The sign of Ñ, and thus the growth
rate, is then dependent on the model parameters q and r, defined in (2.28), and the
perturbation direction. Considering first the neutral stability case Ñ=0 gives directions
for each of the four roots

ξ̃1

ξ̃2
=±

(
1− 2r
q− 1

±
√

4r2 − 4r+ q2

q− 1

)1/2

, (2.39)

where the four distinct combinations of ± are taken. The sign in the regions between
these determines the range of directions for which the perturbations grow or decay,
as shown in figure 1. The numerator Ñ is negative in the grey shaded regions,
indicating that the wavevectors oriented in these directions are well-posed. However,
in the unshaded regions Ñ is positive and the wavevectors will grow infinitely quickly
in the high-wavenumber limit (ill-posedness). In order for such ill-posed directions to
exist, the roots (2.39) must be real. This then sets the inequalities

4r2 − 4r+ q2 > 0, (2.40)
1− 2r< 0, (2.41)
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 0.5

 0

 –0.5

1.0

0 0.5 1.0–1.0 –0.5

FIGURE 1. A stability diagram showing the sign of the numerator Ñ for different
wavevectors ξ = (ξ1, ξ2) in the case Ã given by (2.37) and parameters I0 = 0.279,
1µ = 0.26 and µs = 0.383. The grey shaded regions correspond to negative Ñ, which
implies that these directions are well-posed. The white regions are where Ñ is positive
and the perturbation directions are ill-posed. The value of I = 100 is chosen to ensure
that ill-posed directions exist in this case.

since q< 1. Using the definition of r, in (2.27), it follows that (2.41) is equivalent to
ν < 1/2, where ν is given by (2.8) and (2.23) as

ν = 1µ(I0/I)
(1+ I0/I)(µsI0/I +µd)

. (2.42)

This is equal to zero in the limits when I→0 and I→∞. For the parameters given in
table 1, the maximum value of ν ' 0.1288, so (2.41) is always satisfied. Using (2.27)
the remaining condition for ill-posedness (2.40) can be expressed as

4ν2 − 4ν +µ2(1− ν/2)2 > 0. (2.43)

Figure 2 shows a semi-logarithmic plot of this condition as a function of 1µ and
I/I0 for the value of µs given in table 1. The white region, outside the neutral
stability curve, is the set of flows for which there exist perturbation directions
with an unbounded positive growth rate (ill-posedness). Conversely, for flows with
parameters in the shaded region, all perturbations are guaranteed to decay, so the
system is well-posed. It is reassuring that the original result for a pure Coulomb
material (Schaeffer 1987) is recovered here, i.e. when 1µ = 0 the equations are
always ill-posed regardless of the local value of I. For values of 1µ above a critical
level the rate dependence of the µ(I)-rheology is sufficient to make the equations
well-posed over a large intermediate range of I/I0 that spans almost two orders of
magnitude. However, for sufficiently large or sufficiently small values of I/I0 the
equations are ill-posed. The fact that the µ(I)-rheology is ill-posed for high and low
inertial numbers is far from obvious from casual inspection of the equations, so the
ill-posedness criterion (2.43) is a very useful and important result.

Since (2.43) is not dependent on a specific base state, it provides a universal
criterion for ill-posedness of the µ(I)-rheology that can be applied to any two-
dimensional flow. For steady-uniform chute flows, the inertial number I is constant
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102

103

101

100

10–1

10–2

10–3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIGURE 2. The ill-posed region (white) and well-posed region (grey) with neutral stability
curve (black) for the general result (2.43) as a function of the inertial number I/I0 and the
friction constant 1µ. This diagram holds for all permissible base states A with µs= 0.383
and for all other material parameters.

µs = 0.383 1µ= 0.26 I = 5.3× 10−5

d/
√
φ = 5.3× 10−4 m p0 = 100 m2 s−2 (scaled pressure)

TABLE 1. Parameter values used in this paper unless specified otherwise.

through the depth of the avalanche. It varies with the slope inclination angle, from
zero at the minimum angle for steady-uniform flow to infinity as the maximum angle
for steady-uniform flow is approached (GDR-MiDi 2004; Jop et al. 2005; Gray &
Edwards 2014). It follows that chute flows can be modelled with the µ(I)-rheology
provided that the inclination angle is not too high or too low. However, many
commonly occurring practical granular flows, such as the column collapses (Lagrée
et al. 2011), formation of heaps, silo flow (Kamrin 2010; Staron et al. 2012) and
flows in rotating drums, are problematic, since they will have a large quasi-static body
of grains, where I/I0 → 0, and/or low-density collisional regions, where I/I0 →∞.
In these regions the governing equations will be ill-posed.

The implications of this type of ill-posedness are summarized for a selection of
typical problems by Joseph & Saut (1990). As the growth rate (2.35) is unbounded for
short wavelengths, numerical integration of these equations will lead to a catastrophic
blow-up of any perturbations if the parameters are in the ill-posed region. Furthermore,
due to the quadratic dependence on wavenumber, shorter wavelength disturbances
will be amplified more strongly and so calculations will fail more readily with
increased spatial resolution. A simple practical example of this is provided by the
segregation-induced fingering model of Woodhouse et al. (2012). The results at any
fixed grid resolution look reasonably good. However, on refining the grid resolution
the number of fingers increases, since their width is controlled by the numerical
viscosity. Continued refinement of the grid does not help, as the numerical results
do not converge to a well-defined solution with a fixed number of fingers. Similar
behaviour is also observed in a granular model for the breakup of sea-ice (Gray
1999).

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 8
2.

4.
10

6.
56

, o
n 

22
 S

ep
 2

02
1 

at
 1

4:
16

:5
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

5.
41

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.412


804 T. Barker, D. G. Schaeffer, P. Bohorquez and J. M. N. T. Gray

Knowing that a system of equations is ill-posed is very useful, because it is a clear
indication that important physics is missing in the mathematical model. In this case
it is likely that in the quasi-static elastic limit (Campbell 2002) force chains (Howell,
Behringer & Veje 1999), the contact fabric (Toiya, Stambaugh & Losert 2004; Sun
& Sundaresan 2011) and shear bands (Wu, Bauer & Kolymbas 1996; Ehlers & Volk
1998) play an important role. In contrast, for large inertial numbers there is a transition
to a low-density granular gas dominated by particle collisions (Jenkins & Savage 1983;
Goldhirsch 2003). It does not appear to be possible to include these effects by way of
a minor modification to the µ(I)-rheology. For instance, the extended friction law of
Pouliquen & Forterre (2002) suggests that the effective friction µ(I) is a decreasing
function of I for small inertial numbers below a certain threshold. A simplified version
of this can be achieved by assuming that µs > µd in the above analysis. It is again
the case that q< 1 and 1− 2r< 0, so the same ill-posedness criterion (2.43) applies.
In this case, however, µ′(I) is negative, because µ(I) is a decreasing function, and
hence ν is negative. Substituting this into (2.43) implies that the resulting model is
always ill-posed. More radical changes to the µ(I)-rheology are therefore necessary if
it is to be able to transition between flow regimes.

3. Numerical validation
Theoretical results on the ill-posedness of the equations might, perhaps understand-

ably, struggle to gain wide acceptance when there is such strong evidence pointing
towards the µ(I)-rheology being a good constitutive law for the dense inertial regime.
It is important to stress that our results do not contradict this, since we have shown
that the equations are well-posed for a large and precisely defined intermediate region
of parameter space. The model is, however, ill-posed outside this region, which will
now be demonstrated numerically for a specific case.

3.1. Governing equations and the base state
The incompressible constraint (2.3) and the momentum balance equation (2.10) can
be written in strong-conservation, compact form as

∇ · u= 0, (3.1)
∂tu+∇ · (u⊗ u)=−∇p+∇ · (2 ηD)+ g, (3.2)

where the effective viscosity η is given by

η≡ µ(I) p
2 ‖D‖ , (3.3)

and is not evaluated in the base state as in (2.27). This is equivalent to the definition
of Andreotti, Forterre & Pouliquen (2013) except they formulated it in terms of the
second invariant of the shear-rate tensor, |γ̇ | = 2‖D‖. Note that the density has been
completely eliminated from the problem by scaling the pressure just after (2.10). The
fully nonlinear evolution of the equations is calculated relative to simple shear, i.e. it
is assumed that the base state is

u0 = (x2, 0), p0 = const., and g= 0, (3.4a−c)

where the coordinate x= (x1, x2). A positive non-zero value of p0 is used to avoid non-
physical negative pressures and the inherent singularity in the inertial parameter (2.11)
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in the limit of zero pressure. The exact solution (3.4) has a linear shear profile with
strain-rate invariant ‖D‖ = 1/2 and an inertial number I that is constant and uniform
throughout the flow. The normalized strain-rate tensor

A=
[

0 1
1 0

]
(3.5)

is also constant. The wavevector ξ and the normalized strain-rate A can be mapped
to ξ̃ and Ã, defined in (2.37), by applying an orthogonal transformation of the form

ξ̃ =Qξ and Ã=QAQT. (3.6a,b)

In this case the orthogonal matrix

Q= 1√
2

[
1 1
1 −1

]
, (3.7)

which implies that the ξ and ξ̃ coordinates are related by

ξ =QTξ̃ =
[
ξ1
ξ2

]
= 1√

2

[
ξ̃1 + ξ̃2

ξ̃1 − ξ̃2

]
. (3.8)

Substituting the normalized strain-rate tensor (3.5) together with the wavevector
(3.8) into the growth rate (2.35) yields precisely the same numerator (2.38) and
ill-posedness condition (2.43) as in ξ̃ coordinates. Since the growth rate λ will be
compared directly with that in the numerical simulations, the above analysis shows
that it does not matter whether it is evaluated using ξ and A, or simply mapped back
to ξ̃ and Ã.

3.2. The numerical scheme
The system (3.1) and (3.2) is solved numerically using the finite volume method (see
Ferziger & Perić 2002) implemented in OpenFOAMr, an open-source computational
fluid dynamics software package. The high-quality performance of this library has
been demonstrated in the context of incompressible-flow stability analysis by several
authors (e.g. Bohorquez et al. 2011). Here a specific solver is detailed that computes
the temporal evolution of nonlinear perturbations, adopting the approach proposed
by Favero et al. (2010) for the direct numerical simulation of viscoelastic flows.
Substituting for the velocity and pressure from (2.24), the nonlinear perturbation
equations for (û, p̂) become

∇ · û= 0, (3.9)
∂tû−∇ · (η∇û)=−∇p̂+∇ · (η∇u0)+ (∇û+∇u0) · ∇η, (3.10)

where incompressibility has been used to simplify ∇ · (η∇T) and yield the last term
on the right-hand side of (3.10). Recall that η denotes the nonlinear viscosity defined
in (3.3) and is evaluated with the full nonlinear pressure and velocity fields p= p̂+ p0
and u= û+ u0, respectively. In order to compare the results with the linear stability
analysis in § 2 the convective terms have been neglected. It has, however, been
confirmed that these do not affect the results for the problem presented here. The
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main difference with respect to the Newtonian case with constant viscosity is that the
last two terms on the right-hand side of (3.10) do not vanish, because the perturbed
viscosity η is not uniform during the development of the instabilities. These terms
introduce additional numerical difficulties due to the coupling between components of
the momentum balance equations. This is overcome by evaluating them as part of the
correction term τcorr in Favero et al. (2010) owing to a decoupled approach in the
inner PISO loop. At every time step, the outer loop was iterated whilst updating η
and τcorr until convergence; this eventually leads to a fully implicit scheme. Note that
the present method differs from Lagrée et al. (2011), who adopted an explicit scheme
for the coupling terms. For further details on the numerical method, the reader is
referred to Favero et al. (2010).

The discretization of the differential operators is implemented in OpenFOAM on
a per-operator basis (Weller et al. 1998). A second-order backward scheme is found
to be preferable for the temporal derivative, and the Gauss theorem was employed
to discretize the divergence, gradient and Laplacian operators, interpolating linearly
the variables at the cell faces from the cell centroids; see Jasak (1996) for details.
As such, the method is second-order accurate in space and time. Periodic boundary
conditions are then imposed at the geometrical level in a rectangular mesh. The
pressure perturbation p̂ is set to the constant value of zero at one cell in accordance
with the initial conditions described below.

3.3. Initial and boundary conditions
The initial perturbations are taken to be combinations of sines and cosines. It is
therefore useful to define a scaled wavevector k, where

ξ = 2πk. (3.11)

In order to satisfy the condition that the velocity perturbation is perpendicular to the
wavevector (2.29) the initial velocity vector is chosen to be proportional to k⊥. Its
maximum initial magnitude is small and is taken to be equal to ε = 1× 10−7 m s−1.
Sinusoidal dependence is achieved by taking the imaginary part of (2.28) to give

û(x, 0)= ε sin(2πk · x)
k⊥

|k| . (3.12)

The corresponding initial pressure perturbation is calculated directly from (2.31) and
is exactly out of phase with the velocity, i.e.

p̂(x, 0)=−4πεrµp0 k1k2(k2
2 − k2

1)

k2
1 + k2

2 − 2qk1k2

(
cos (2πk · x)√

k2
1 + k2

2

)
. (3.13)

When ill-posed directions exist, they exist for very low and very high values of k1/k2.
A typical initial velocity perturbation that might lead to ill-posed results is illustrated
in figure 3 for k1/k2=1/10. This also shows why the factor of 2π has been introduced
in (3.11). By ensuring that the components of k are integer values, and with a fixed
integer ratio, the simulation domain can be rectangular and have doubly periodic
boundaries. Wrapping of the x1 and x2 axes makes this domain representative of a
region in the bulk of a flow for which the variation of the perturbation is dominant.
Note that despite the base state velocity (3.4) not being periodic, periodic boundaries
are still permissible as only its gradient appears in the simulated (3.9) and (3.10),
which is a constant across the domain.
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FIGURE 3. A typical initial velocity perturbation, û(x, 0) given by (3.12). Here, the
x1 component of the velocity field is shown for the parameters k = (2, 20) and ε =
1× 10−7 m s−1.

3.4. Results
The perturbation equations (3.9) and (3.10) are solved numerically subject to the
initial conditions (3.12) and (3.13) on a doubly periodic rectangular domain using the
parameter values specified in table 1. Due to the assumed exponential form of the
perturbations (2.28) the simulated growth rate can be recovered by taking the log of
the perturbation and differentiating with respect to time, i.e.

λ= d
dt
(ln û|xp), (3.14)

where xp is a fixed computation cell that is chosen such that the velocity perturbation
(3.12) is maximal. This is equivalent to calculating the growth rate of the envelope of
the perturbation, which is the most common method (see e.g. Theofilis 2003, 2011;
Bohorquez et al. 2011). The variance of this fitting is very low for early simulation
times (while the magnitude of the perturbations is small) and the exponential growth is
therefore confirmed. To ensure that the results are invariant, convergence studies were
performed. Such studies consist of refinement of the time step 1t and computation
cell size 1xi until values of the growth rate were constant. As it is readily shown that
the product pt is an invariant of the governing equations, the time step was written
in terms of the base state pressure. It is found that a sufficiently small time step is
1t= 10−8/p0.

For the spatial discretization it was found that scaling the grid resolution with the
perturbation wavenumber gives computational domains for which the dynamics can
be most consistently compared. This scaling avoids issues caused by the inherent
numerical viscosity due to digital truncation. For the simulations presented here, the
perturbation is fixed in a direction (k1/k2 = 1/10) predicted to lie in the ill-posed
region, when it exists, and then the wavelength and parameter values are changed
about this. It is therefore convenient to write the perturbations in the form k= (k, 10k),
where k is a positive integer. It was found from the convergence studies that
setting 1xi = 10−3/k was sufficient to make the results invariant, whilst avoiding
the truncation issue. The benefit of scaling the resolution in this way is that it
ensures that the variation of the perturbation between adjacent cells does not change
when the wavenumber is increased.
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FIGURE 4. A comparison of the numerical growth rate λ (points) for perturbations of
a fixed direction but differing wavenumber magnitudes 2πk, with the theoretical growth
rate predicted by the asymptotic formula (2.35) for large wavenumbers shown by the lines.
The three symbols represent values of I0 taken to be representative of the distinct stability
regions with I0 = 1 × 10−6 (E) being a high strain-rate case, I0 = 1 × 10−4 (A) being
intermediate and I0 = 1 (@) representing a low strain rate.

Figure 4 shows a comparison between the simulated growth rate for different
values of the wavenumber parameterized by k and that predicted theoretically using
(2.35). Although the theoretical growth rate is an asymptotic result derived in the
high-wavenumber limit, the numerical results lie very close to the quadratic curves
predicted by the theory. Since the inertial number is fixed at a value of I= 5.3× 10−5

in these simulations by having a constant strain rate across the domain, the values
of I−1

0 can be taken to be indicative of the deformation rate. The red line and the
triangular symbols show an intermediate strain-rate case, with I0 = 1 × 10−4, that
lies in the well-posed region of parameter space and the perturbation decays for
all wavenumbers k. However, for both high and low strain rates indicated by the
green circles and the blue squares, respectively, the growth rates are positive for all
wavenumbers and the rate increases quadratically with increasing wavenumber. The
numerical results therefore provide a finite-wavenumber confirmation of ill-posedness
in the high-wavenumber limit.

The numerical scheme is also tested for a fixed wavenumber (k= 5) with variation
in both I0 and 1µ as shown in figure 5. Figure 5(a) shows the theoretical growth
rate λ predicted by (2.35) with fixed I = 5.3 × 10−5, while figure 5(b) shows the
numerically measured growth rate. The black neutral stability curve, shown in both
plots, is equivalent to that shown in figure 2. The black circles in figure 5(b) show
the numerically predicted neutral stability curve, which lies in very close agreement
with the theory. This indicates that, provided 1µ is sufficiently large, there are a
wide range of intermediate values of I0 where the growth is negative, perturbations
decay and the equations are well-posed. Conversely when 1µ is sufficiently small or
when I0 is large, or small, the growth rate is positive and perturbations will grow. At
the fixed wavenumber k = 5 the growth rates are finite, but as the wavenumber is
increased the growth rate becomes ever stronger, which implies ill-posedness in the
high-wavenumber limit.
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FIGURE 5. A comparison of the theoretical (a) and numerical (b) growth rates for the
system (3.5). Here, the solid black line is the theoretical neutral stability curve whereas
the black circles are zero points interpolated from the numerical data set.

4. Application to unsteady Bagnold flow
It is also useful to demonstrate that our analysis of ill-posedness works for

systems with non-constant base states in practical flow configurations. Consider
the two-dimensional steady-uniform-depth Bagnold flow down a plane inclined at
an angle ζ to the horizontal (e.g. GDR-MiDi 2004; Gray & Edwards 2014). The x
coordinate is assumed to point down the plane and the z coordinate is the upwards
pointing normal. Mass balance (2.3) is automatically satisfied if the normal velocity
w is equal to zero everywhere and the downslope velocity u is a function of z only.
In this situation the normal momentum balance can be integrated, subject to the
condition that the pressure is zero at the free surface at z= h, to show that the scaled
pressure is lithostatic, i.e.

pζ = g(h− z) cos ζ , (4.1)

where g is the constant of gravitational acceleration. Note that the factor ρφ is missing
in (4.1) because the pressure was scaled just after (2.10) to simplify the governing
equations. The downslope momentum balance reduces to µ= tan ζ , so µ is equal to
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FIGURE 6. The value of the ill-posedness condition C=4ν2−4ν+µ2(1− ν/2)2 (2.43) for
the Bagnold flow solution with material parameters given in table 1 and with I0 = 0.279.
Note that µs= tan ζs and µd = tan ζd. Here the range of well-posed angles is shaded grey.

a constant on a slope of fixed inclination. It follows from (2.8) that at a given slope
angle the inertial number is also equal to a constant Iζ , where

Iζ = I0

(
tan ζ −µs

µd − tan ζ

)
. (4.2)

Since the inertial number is constant, (2.11) becomes an ordinary differential equation
for the Bagnold velocity profile, which can be solved subject to the no-slip condition
at the base to show that

u= 2Iζ
3d

√
φg cos ζ

(
h3/2 − (h− z)3/2

)
. (4.3)

Figure 6 shows a plot of the values of the ill-posedness condition (2.43) for Bagnold
flow using the material parameters in table 1 and I0 = 0.279. Note that ζs and ζd
are the angles whose tangent is equal to µs and µd, respectively, i.e. µs = tan ζs
and µd = tan ζd. These angles are the minimum and maximum angles for which
steady-uniform flows develop. In the shaded area the function is negative and the
equations are well-posed, whereas in the unshaded regions the function is positive and
ill-posedness is anticipated. Note that our results are consistent with the linear stability
analysis of Forterre (2006), who also used the same parameters as in table 1 and
I0=0.279. For an imposed forcing frequency, Forterre (2006) experimentally measured
the spatial growth rate of Kapiza or roll waves for a range of inclination angles and
Froude numbers and was able to convincingly match the measured growth rates by
performing a two-dimensional linear stability analysis with the µ(I)-rheology and
Bagnold flow as a base state. For inclination angles in the range 24–29◦ he showed
that there was a well-defined cutoff frequency above which higher frequencies decayed
increasingly rapidly. All of these angles lie within the well-posed range, which is
from approximately 22◦ to 30◦, as shown in figure 6. For this range of angles the
flow is linearly unstable for a finite range of wavenumbers or frequencies, but in the
high-wavenumber or high-frequency limit the perturbations decay and the system is
well-posed.

The range of angles that are well-posed for the full µ(I)-rheology is smaller than
the range for the depth-averaged µ(I)-rheology (Gray & Edwards 2014), which has

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 8
2.

4.
10

6.
56

, o
n 

22
 S

ep
 2

02
1 

at
 1

4:
16

:5
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

5.
41

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.412


Well-posed and ill-posed behaviour of the µ(I)-rheology for granular flow 811

negative viscosities and is hence ill-posed, for angles ζ 6 ζs and ζ > ζd outside the
region where steady-uniform flows develop. It is therefore possible to push the depth-
averaged µ(I)-rheology somewhat further than the full rheology. This has allowed
the coarsening of roll waves and erosion–deposition waves to be calculated using the
depth-averaged theory, without getting into issues of ill-posedness (Gray & Edwards
2014; Razis et al. 2014; Edwards & Gray 2015).

Our analysis predicts that the µ(I)-rheology will be ill-posed for slow flows
close to the minimum angle for steady-uniform flow and for fast flows close to
the maximum angle for steady-uniform flow. As a validation of ill-posedness of
the Bagnold flow in this regime, figures 7 and 8 show the results of a transient
two-dimensional computation using the Gerris package, which has previously been
used by Lagrée et al. (2011) and Staron et al. (2012) for granular column collapse
and silos. The simulations are initialized with the Bagnold solution (4.1)–(4.3) and
a no-slip boundary condition is applied at the base of the flow. In contrast to the
computations performed in § 3 no perturbation is applied directly to the flow here.
Instead, numerical noise is found to be sufficient to trigger the ill-posedness. To
maintain a constant inertial number in the exact solution (4.1)–(4.3), the shear rate
and the square root of the pressure both have to tend to zero at the same rate as the
free surface is approached. This is difficult to achieve numerically in time-dependent
and spatially dependent solutions. Gerris therefore takes the absolute value of the
pressure to prevent complex inertial numbers from developing. In order to avoid this,
computations are limited to a subset of the domain z∈ [0, s]= [0, 0.01] m by choosing
a height s< h at which the pressure pζ (s)= ps is constant. This allows the Bagnold
base state to be maintained without encountering singular or undefined limits. Note
that a complementary shear stress is applied at z = s, so that the classical Bagnold
solution is maintained, and there is no free surface deformation, so roll waves are
suppressed.

For angles in the well-posed (shaded) region of parameter space in figure 6, the
simulations yield a pressure that is very close to the exact solution. A specific example
of this is shown by the decay in the relative pressure error Ep = max(|1 − p/pζ |)
in figure 8 for the case of ζ = 26◦. However, for an angle of ζ = 32◦, which lies
in the ill-posed region of parameter space, small pressure perturbations develop
(see figure 7) close to the free surface, which grow in size as shown in figure 8
and the supplementary movie available at http://dx.doi.org/10.1017/jfm.2015.412. This
simulation therefore gives a specific example in which the fully nonlinear system with
physically realistic boundary conditions breaks down due to ill-posedness, and further,
demonstrates the importance of the condition (2.43) to systems with non-constant
base states. It is interesting that numerical noise is sufficient to seed the ill-posedness,
rather than having to impose a small perturbation. The perturbations are at the grid
scale and grow rapidly in time, which indicates that the ill-posedness is a very strong
effect that is not regularized at this resolution (here comparable to the grain size, d).
Figure 8 shows a semi-log plot of the relative pressure error Ep = max(|1 − p/pζ |)
which implies catastrophic exponential growth at this resolution. It should be noted,
however, that at lower resolutions numerical viscosity may be sufficient to suppress
the ill-posedness.

It could be argued that the instability shown in figures 7 and 8 is related to
the roll-wave instability (Forterre 2006; Gray & Edwards 2014; Razis et al. 2014)
since the flow is significantly above the critical Froude number Frc ' 0.519 for
the full µ(I)-rheology (Forterre 2006). To eliminate this possibility we have also
conducted numerical simulations below the critical Froude number, which show
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FIGURE 7. A snapshot at t= 0.06 s of the pressure p relative to the lithostatic pressure
pζ , given by (4.1), for the ill-posed angle ζ = 32◦. The material parameters are given
in table 1 and I0 = 0.279. An animation showing the complete time-dependent evolution
of the solution is available in the online supplementary material. The simulation uses a
Cartesian grid of 128× 128 cells with a time step of 1× 10−5 s and ps = 1× 10−3. Note
that for this flow the Froude number Fr= (2/5)Iζh√φ/d' 28.1.
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FIGURE 8. A semi-log plot of the temporal behaviour of the error Ep =max(|1− p/pζ |)
between the hydrostatic and transient pressure for the Bagnold base state. The upper red
points are computed for the ill-posed inclination angle ζ = 32◦ and the lower blue ones
are for a well-posed angle of ζ = 26◦.

the same behaviour. In addition, we have used Lagrée et al.’s (2011) two-fluid
implementation to allow the free surface to deform. Figure 9 shows a snapshot
of the non-dimensional pressure field, just before the simulation fails, in which
the same oblique pressure perturbations are seen to develop before any significant
deformation of the free surface. In these simulations the granular material initially
occupies the region 0 < z < 1.5 mm, the passive low-viscosity fluid occupies the
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z (m) p

FIGURE 9. A snapshot at t = 0.04 s of the non-dimensional pressure p (i.e. scaled by
the basal lithostatic pressure) for a simulation with a deformable free surface indicated by
the solid red line and at the ill-posed angle ζ = 32◦. The granular material parameters are
given in table 1 and I0 = 0.279. Lagrée et al.’s (2011) two-fluid implementation is used
with a passive low-viscosity fluid of density ratio ρf /(ρφ)= 1× 10−3. The simulation uses
a Cartesian grid of 256× 256 cells with a time step of 1× 10−5 s. Note that for this flow
the Froude number Fr= (2/5)Iζh√φ/d' 0.42.

region 1.5 < z < 3 mm and a slightly modified Bagnold solution (that accounts for
the pressure and the shear stress applied by the fluid above) is used as an initial
condition. Since this configuration is stable to roll waves, this problem provides a
simple example of an instability whose most likely cause is the ill-posedness of
the equations in the high-wavenumber limit. Note that although both the problems
illustrated in figures 7 and 9 have a strictly positive initial pressure distribution the
oblique pressure perturbations are sufficient to produce zero pressure at some point
in the domain, which causes the code to fail.

5. Conclusions and discussion
This paper shows that in two dimensions the µ(I)-rheology (GDR-MiDi 2004; Jop

et al. 2005, 2006) is well-posed for a large intermediate range of inertial numbers,
provided 1µ is sufficiently large, but that for both high and low inertial numbers
the equations are ill-posed. This is a significant improvement over the classical
Coulomb rheology with a von Mises yield criterion, which is always ill-posed in
two dimensions (Schaeffer 1987). Our analysis yields a simple inequality (2.43) to
determine whether a problem is locally ill-posed or not. Knowing that a problem
is ill-posed is very important, because it is telling you that there is some important
missing physics (Fowler 1997). If the problem is ill-posed, small perturbations grow at
an unbounded rate in the high-wavenumber limit, i.e. a catastrophic short-wavelength
(Hadamard) instability (Joseph & Saut 1990). As a result, as the grid resolution
of a numerical scheme is refined, higher wavenumbers will be resolved and the
instability will grow progressively stronger, leading to grid-dependent results. The
two-dimensional time-dependent numerical simulations of steady-uniform Bagnold
flow down an inclined plane using Gerris (Lagrée et al. 2011; Staron et al. 2012),
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shown in figures 7 and 9 (and the supplementary movie), indicate that strong pressure
and velocity fluctuations develop that eventually break the computation for slopes
outside the well-posed range of angles that are shown in figure 6.

Note that a simple method of suppressing the ill-posedness is to solve a steady-state
problem in which the time derivative is eliminated. This was done by Jop et al.
(2005) in order to calculate the downslope velocity as a function of cross-slope
position and depth. This is not always a practicable approach, but it necessarily
leads to a well-posed two-dimensional elliptic problem, which may provide a
useful solution in certain instances. When time dependence and an extra spatial
dimension are reintroduced we suspect that the µ(I)-rheology will still develop zones
of ill-posedness. It is noteworthy that Schaeffer (1987) showed that the Coulomb
rheology with a von Mises yield criterion was sometimes well-posed in three
dimensions. It follows that the µ(I)-rheology is likely to be somewhat better posed
in three dimensions, but zones of ill-posedness are still expected, although we have
not proved this.

The fact that the µ(I)-rheology is well-posed in the dense inertial regime and can
be used to model complex flows in chutes (Forterre 2006; Jop et al. 2006; Gray &
Edwards 2014; Edwards & Gray 2015) provides strong evidence that it is a good
constitutive law for liquid-like granular flows. The challenge for the future is to
include new physics, so that the rheology can transition seamlessly between the
quasi-static, dense inertial and collisional flow regimes. Most problems of practical
interest will span the complete range of the inertial number I, and even the simplest
of flows, such as a sand clock, the formation of heaps or the rotation of grains
in a drum, will span all three regimes. This is therefore a major challenge. There
is, however, some hope as Lagrée et al. (2011) and Staron et al. (2012) have had
some success at modelling granular column collapse and flow in silos using the
µ(I)-rheology, even though there are significant regions within their domain that lie
outside the well-posed region of parameter space. Their success may in part be due
to the ad hoc regularizations that they have introduced to eliminate the singularity
in the viscosity at low strain rate (2.10) and the finite pressure imposed at the free
surface, which reduces the range of the inertial parameter. It may also be possible
that, by using a coarse mesh (large grid spacing), such simulations avoid the effects
of the ill-posedness by suppressing the faster growing, high-wavenumber modes.

One might then naively ask why not always solve the equations numerically at a
finite resolution that is representative of the grain scale? This would provide a means
of truncating the allowable range of wavenumbers and hence avoid the singularity
in an ill-posed problem for the high-wavenumber limit. While this approach may
be appealing, it is ultimately unsatisfactory. This is because this ad hoc form of
regularization relies on the numerical viscosity inherent in the specific numerical
scheme, rather than a rational and physically motivated regularization of the equations.
Above a specific resolution the numerical viscosity alone may not even be sufficient
to prevent the code from breaking, as evidenced by the simulations in § 4. Even
if the algorithm does converge, different numerical methods may produce different
results, even though the same continuum equations are claimed to be being solved.
This would be a retrogressive step that would lead to great confusion. Besides,
understanding what the right physics is, is an important scientific journey in itself.

Based on the discrete particle simulations of da Cruz et al. (2005), Pouliquen
et al. (2006) extended the µ(I)-rheology to include a dependence of the solids
volume fraction on the inertial number, i.e. φ = φmax − (φmax − φmin)I, where typically
φmax = 0.6 and φmin = 0.5. This is a slightly odd relation, because the solids volume
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fraction will become negative for I > φmax/(φmax − φmin), which is clearly incorrect
for high inertial numbers. While this is easy to fix, it is not clear whether the
inclusion of an additional φ(I) dependence will be sufficient to prevent ill-posedness.
Pitman & Schaeffer (1987) and Schaeffer & Pitman (1988) showed that in three
dimensions Critical State Soil Mechanics is well-posed provided that each of the
principal strain rates does not tend to zero anywhere in the flow. It follows that
even a small amount of dilation/compaction can have an important regularizing
influence. An important extension of this work will therefore be to include the φ(I)
dependence. Rather intriguingly, the rheology of dense suspensions is closely related
to that of granular flow, with two functions µ=µ(Iν) and φ=φ(Iν) that depend on a
dimensionless viscous number Iν instead of I (Boyer, Guazzelli & Pouliquen 2011a;
Boyer, Pouliquen & Guazzelli 2011b; Couturier et al. 2011). Such an extension of
our analysis may therefore have important implications for dense suspensions as well.

At very high inertial number (I > 10−1) the flow becomes so dilute that it turns
into a granular gas. Models in this area are very well developed (see e.g. Jenkins &
Savage 1983; Goldhirsch 2003) and Jenkins (2006) has made progress in analysing
the transition from dilute to dense regimes using a phenomenological modification of
the theory. Such a transition may need to be incorporated close to the free surface
to prevent singularities and undefined values from arising with the µ(I)-rheology. The
transition to quasi-static flows for I< 10−3 is also problematic. Here the flow becomes
rate-independent and deformation may become localized in shear bands (Vardoulakis,
Goldscheider & Gudehus 1978) whose width is dependent on the grain size. The
soil mechanics community have developed many models for shear banding, including
higher gradient theories (Vardoulakis & Aifantis 1991), Cosserat theories (Tejchman &
Gudehus 2001) and Hypoplastic models (Wu et al. 1996). Kamrin (2010) combined
the µ(I)-rheology with Jiang & Liu’s (2003) model for granular elasticity and was
able to compute steady-state solutions for rough-walled chute flow and an annular
Couette cell as well as time-dependent solutions for a flat-bottomed silo. More recently
it has been recognized that force chains (Howell et al. 1999) provide a mechanism of
rapidly transmitting stress fluctuations through the material in the quasi-static regime.
One example of this apparently non-local behaviour is the ability of a finite thickness
of granular material to remain stationary on an inclined plane between the angles ζ1
and ζ2, which is not predicted by the local nature of the µ(I)-rheology. Pouliquen
& Forterre (2009) formulated a non-local model based on the idea of a self-activated
process. This produced an integral equation linking the pressure, the shear stress and
the shear rate, which was able to predict a minimum thickness for flow to occur at
a given inclination angle, i.e. hstop(ζ ). However, the experimentally observed collapse
of h/hstop as a function of Froude number was no longer reproduced. An alternative
non-local approach uses an order parameter called the ‘fluidity’ to diffuse fluctuations
away from the point where they are generated (Bocquet, Colin & Ajdari 2009; Kamrin
& Koval 2012; Bouzid et al. 2013) and hence allow material to flow even though
it is below the yield stress. This promising approach has been used by Henann &
Kamrin (2013) to accurately compute the two-dimensional steady-state flow in a split-
bottom cell. It remains to be seen whether these theories are able to reproduce the
experimental observations of Toiya et al. (2004), where flow reversal destroyed the
anisotropy of the contact fabric and induced flow far from the shear surface, where
one might anticipate that microstructural theories (e.g. Sun & Sundaresan 2011) will
be required. In all of these approaches it is unclear whether the additional physics
is sufficient to regularize the models, but there is certainly considerable hope that
continuum theories will be able to compute fully time-dependent flows in practical
configurations, such as heaps, drums and silos, in the foreseeable future.
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