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Third generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star
binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected
to be challenging owing to both high signal-to-noise ratios and long-duration signals. We demonstrate that
current Bayesian inference paradigms can be extended to the analysis of binary neutron star signals without
breaking the computational bank. We construct reduced-order models for ∼90-min-long gravitational-wave
signals covering the observing band (5–2048 Hz), speeding up inference by a factor of ∼1.3 × 104

compared to the calculation times without reduced-order models. The reduced-order models incorporate
key physics including the effects of tidal deformability, amplitude modulation due to Earth’s rotation, and
spin-induced orbital precession. We show how reduced-order modeling can accelerate inference on data
containing multiple overlapping gravitational-wave signals, and determine the speedup as a function of the
number of overlapping signals. Thus, we conclude that Bayesian inference is computationally tractable for
the long-lived, overlapping, high signal-to-noise-ratio events present in 3G observatories.
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Introduction.—Third generation (3G) gravitational-
wave detectors such as Cosmic Explorer (CE) [1] and
the Einstein Telescope (ET) [2] will observe hundreds of
thousands to millions of binary neutron star (BNS)
mergers a year [3,4]. Many of the observed signals will
be extremely loud, with signal-to-noise ratios (SNRs)
∼Oð100–1000Þ. These signals will provide exquisite
measurements of neutron star masses, tidal deformability,
and spins, facilitating breakthroughs in cosmology and
fundamental physics [5,6]. Analyzing signals in the 3G era
will require scaling data analysis methods by orders of
magnitude beyond their current capabilities: Signals will
be in band up to around 40 times longer than in Advanced
LIGO and Virgo, the event rate will be thousands of times
higher, and multiple signals will be in band at any one
time [1,2].

Bayesian inference is the gold standard for measuring
the properties of gravitational-wave signals [7–10]. In
Bayesian inference, the posterior probability density of
source parameters Θ given experimental data d and a
hypothesis for the data H is

pðΘjd;HÞ ¼ πðΘjHÞLðdjΘ;HÞ
ZðdjHÞ ; ð1Þ

where πðΘjHÞ is the prior distribution, LðdjΘ;HÞ is the
likelihood function, and ZðdjHÞ is the evidence. The
posterior pðΘjd;HÞ is the target of parameter estimation,
and the evidence is the target for hypothesis testing or
model selection. As research and development of 3G
instruments ramps up, there is increasing interest in the
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posterior density of gravitational-wave source properties
because it is fundamental to answering interesting ques-
tions about the astrophysics capabilities of the detectors.
However, because of the high cost of computing the
posterior density for BNSs, approximate methods are often
used to study the capabilities of 3G detectors; see, e.g.,
Ref. [11]. Fisher-matrix analyses have been used to
approximate the width of pðΘjd;HÞ, assuming the like-
lihood is well approximated by a Gaussian distribution.
While this assumption is valid for some projections of the
posterior, it is not generally valid—even when the SNR is
in the thousands—and must be carefully vetted [9]. Hence,
a Bayesian treatment of parameter estimates is timely in
order to reliably study topics in neutron star astrophysics
with networks of 3G detectors.
In this Letter, we demonstrate how Bayesian inference

can be performed on BNS signals using reduced-order
models (ROMs) [12–14] of gravitational waveforms. Our
work extends previous applications of reduced-order mod-
eling to signals that are up to 90 min in duration from a low
frequency of 5 Hz, which is close to the expected low-
frequency cutoff for 3G detectors [1,2]. In addition, the
ROMs incorporate effects of Earth’s rotation on gravita-
tional-wave signals, tidal deformability of neutron stars,
and spin-induced orbital precession. We show that our
ROMs are accurate representations of the original wave-
forms at around the 10−12 level, ensuring that the ROM
approximation is valid up to SNR ≈ 106 [15]—good
enough for essentially all foreseeable 3G science.
The ROMs form highly efficient approximations of the

likelihood function—the most expensive part of inference.
This approximation is known as a reduced-order quadrature
(ROQ) [12,13,16]. We show that the ROQ can speed up the
evaluation of the likelihood function by a factor of around
13 000 on individual BNS signals. This makes inference
on these signals tractable. Additionally, we show that the
ROM and ROQ framework can be applied to accelerate
likelihood calculations on multiple overlapping in-band
signals. At any given time, there are likely to be hundreds
of BNSs in the Universe emitting gravitational waves in
the 3G observing band [17]. However, signals are suffi-
ciently separated in time that they can usually be analyzed
separately, though sometimes two or more signals
are sufficiently close that a simultaneous analysis is
required [4]. We determine the theoretical speedup factor
for multiple in-band signals and show that the ROM and
ROQ framework can speed up inference by a factor of
around 10 000 for several overlapping signals.
We perform Bayesian inference on a 90-min-long signal

at a similar luminosity distance to GW170817, added into
synthetic data of a 3G network consisting of CE, ET, and
a Southern-Hemisphere CE-like detector which we call
CE-South. The signal has SNR ≈ 2400. We are able to
perform Bayesian inference in around 1600 CPU-hours.
Without the ROQ, the run-time of the analysis would be

around 107 CPU-hours. We overcome limitations of the
Fisher information matrix by accurately determining the
uncertainties of source parameters whose posterior den-
sities are highly non-Gaussian. Our results demonstrate that
even loud 3G signals can be analyzed with modest
computational resources. However, reduced-order methods
are essential for controlling the computational cost.
The likelihood function and reduced-order models.—

The most expensive part of evaluating the posterior
probability is the likelihood function because it involves
computing gravitational waveforms. The log-likelihood
function is [18]

lnL ∝ −
1

2
hd − h; d − hi ¼ hd; hi − 1

2
hh; hi − 1

2
Zn; ð2Þ

where the constant Zn ¼ hd; di is known as the “noise
evidence” and quantifies the likelihood of the data under
the hypothesis that they are Gaussian noise [19]. The angle
brackets ha; bi denote the usual noise-weighted inner
product [20].
In the frequency domain, the gravitational waveforms h

have the general form [11]

hðf;ΘÞ ¼ 1

DL
½Fþðf; ξÞhþðf; θ; ι;ϕc; tcÞ

þ F×ðf; ξÞh×ðf; θ; ι;ϕc; tcÞ�; ð3Þ

where hðþ;×Þðf; θ; ι;ϕc; tcÞ are the individual gravitational-
wave polarizations and are a function only of the intrinsic
parameters θ, orbital inclination ι, and phase and time at
coalescence ϕc and tc. DL is the luminosity distance to the
source. The quantities Fðþ;×Þ are the detector response
functions, which depend on the binary’s right ascension α,
declination δ, and polarization phase ψ , which define
ξ ¼ ðα; δ;ψÞ. The full set of parameters Θ which appears
on the left-hand side is the combined set of intrinsic
and extrinsic parameters, i.e., Θ ¼ ðθ; ξ; ι;ϕc; tc; DLÞ.
The detector response functions are also functions of time
and frequency due to Earth’s rotation, which cannot be
neglected for BNS signals starting from 5 Hz [11]. Since
the time evolution of the response functions is slow
compared to that of the gravitational-wave signal, we
can use the stationary phase approximation which allows
us to separate Fðþ;×Þ and hðþ;×Þ; see Ref. [11] for details and
the explicit form of the frequency-dependent Fðþ;×Þ.
In the frequency domain, the ROMs of h [Eq. (3)] have

the following general form [13]:

hROMðf;ΘÞ ¼
XN
J¼1

hðF J;ΘÞBJðfÞ: ð4Þ

The quantities BJðfÞ are a basis set which span the space of
the signal. The hðF J;ΘÞ which appear on the right-hand
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side of Eq. (4) are the unapproximated waveform [Eq. (3)]
evaluated at a frequency F J from a reduced set of N
frequencies fF JgNJ¼1. Previous work on reduced-order
modeling for gravitational-wave parameter estimation also
constructed ROMs for the waveform amplitude h�h which
is used to approximate the hh; hi term in the likelihood
[Eq. (2)] [13]. We find this unnecessary, and this term can
be computed at negligible cost, which we discuss below.
The ROM requires M=N fewer waveform evaluations

than the unapproximated expression for the waveform,
where M ¼ T × ½fmax − fmin� and T is the signal duration.
This is given by the Nyquist theorem, assuming a fixed
sampling rate. For 3G detectors, we assume fmax ¼
2048 Hz, fmin ¼ 5 Hz, T ¼ 90 min (5400 s). When
ROMs are substituted into the likelihood function, they
formacompressed inner product knownas aROQ.TheROQ
speeds up the likelihood function by a factor [12,13]

S ≈M=N; ð5Þ

and in general S ≫ 1. This speedup assumes that the
waveforms have a closed-form expression, which
frequency-domain waveforms typically do.
ROM construction.—The ROMs are constructed in three

steps: (i) make a representative “training space” of gravi-
tational waveforms which span the parameter range of
interest, (ii) select basis elements from the training set, and
(iii) determine the reduced set of frequency nodes. All steps
are achieved using a greedy algorithm [21–23]. We con-
struct ROMs of 90-min-long gravitational-wave signals
including spin precession and tidal deformability. That we
can build ROMs for 90-min-long BNS signals should not
be taken for granted. Previous studies [12,13,24] have not
established whether ROMs for such signals can be made in
practice or if they would be practical for data analysis. In
Refs. [12,13,24], various scalings for ROM basis sizes are
given as a function of the low frequency of the signals or
parameter-space ranges. However, there has been no
systematic study of the size of ROM bases on both low
frequency and parameter-space size. The fundamental issue
is whether the parameter space can be made small enough
to be both effective and efficient for long-duration signals.
Below, we show that it is indeed the case.
We focus on individual signals and target a small

region of intrinsic parameter space on which we build a
training set. The parameters are the chirp mass Mc,
symmetric mass ratio η, tidal deformabilities ðλ1; λ2Þ, spin
components projected along the orbital angular momen-
tum axis ðχz1; χz2Þ, effective-precession spin and the initial
value of the azimuthal precession angle ðχp; α0Þ, and
orbital inclination ι. We use the waveform model
IMRPHENOMPV2-NRTIDALV2 [25–27], which is parame-
trized by the vector θ ¼ fM; η; χz1; χ

z
2; χp;α0; ι; λ1; λ2g.

Inclination appears here because it evolves during the
inspiral due to spin-induced orbital precession.

The size of the ROM basis is sensitive to the range in
chirp mass. We pick a fiducial chirp-mass value of M� ¼
1.385 M⊙ and restrict the width of the chirp mass of the
training set to be �5 × 10−4 M⊙. This mass range is
approximately 1 × 103ΔM, where ΔM is the Fisher-
matrix error estimated using GWBENCH [28]. Following
the Fisher-matrix error treatment in Ref. [29], we find that
signals with SNRs of around 10 have Fisher errors
ΔM ∼ 10−4 M⊙. Hence, our chirp-mass range ensures
that we can analyze signals with SNRs around 10 without
artificially railing against prior bounds in mass. In practice,
we may want to use broader priors in mass than are possible
with a single parameter-space patch. Broader prior ranges
can be employed simply by utilizing multiple ROM bases
that individually span small parameter-space ranges.
Around 1000 such patches in M − η would be needed
to cover the full BNS mass space, assuming BNSs have
chirp masses approximately in the range 1 M⊙–2 M⊙.
All other intrinsic parameters are chosen to have physi-

cally motivated ranges. The symmetric mass ratio is
restricted to 0.2 ≤ η ≤ 0.25. Assuming a minimum neutron
star mass of 1 M⊙, this range ensures we describe neutron
stars with masses up to 2.6 M⊙ (around the maximum
plausible nonrotating neutron star mass [30–32]). For
all other parameters, we consider the following ranges:
0<χp≤0.1, −0.1≤ χz1;2≤0.1, 0≤ λ1;2≤5000. Additionally,
the ROM is constructed to be valid for all values of sky
location parameters ξ ¼ ðα; δ;ψÞ, luminosity distance DL,
phase at coalescence ϕc, ι, and α. We consider three starting
frequencies fmin ¼ 5; 10; 20 Hz, maximum frequency
fmax ¼ 2048 Hz, and signal duration of T ¼ 90 min.
These values of fmin test how the size of the ROM bases
scales with the low-frequency cutoff.
We construct a training set of waveforms for the param-

eter space defined above. The basis and reduced frequency
nodes are selected using a greedy algorithm. Details about
the training set and greedy algorithm are described in the
Supplemental Material [33]. For signals starting in band
from 5, 10, 20 Hz, the ROMs haveN ¼ 522, 291, 179 basis
elements. The basis size only increases by a factor of 3 when
going from 20 to 5 Hz, despite the signals being over 40
times longer in duration. Bases of around 500 elements
should be typical for ROMs of BNS signals starting from
5 Hz with parameter ranges similar to those used here.
Reducing the chirp mass to that of a 1 M⊙ þ 1 M⊙ binary
will change the signal duration only by a factor of 2, much
less than the difference in the duration of signals starting
from 20 vs 5 Hz. Hence, the basis size should be roughly
constant for lower-mass systems.
The computational cost of building the ROM is relatively

small. We require 160 16-core 2.20 GHz Intel Xeon
E5-2660 CPUs running for around 7 min, and then a
single CPU running for around 2 h to complete the basis
construction; see step (ii) of the ROM building strategy in
the Supplemental Material [33]. The memory footprint of
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the basis is around 90 GB. Thus, it would be feasible to
build reduced-order models covering the full chirp-mass
range of BNSs.
Likelihood speedup.—The most efficient use of ROMs in

Bayesian inference is to compress the large inner products
in the likelihood function. The compressed inner products
are known as a ROQ integration rule. We obtain the ROQ
likelihood by substituting the ROM [Eq. (4)] into the
likelihood [Eq. (2)]. The ROQ likelihood is

lnLROQ ∝ LðΘÞ − 1

2
QðΘÞ − 1

2
Zn; ð6Þ

where the functions LðΘÞ and QðΘÞ are given by

LðΘÞ ¼ ℜ
XN
J¼1

hðFJ;ΘÞωJðtcÞ; ð7Þ

QðΘÞ ¼
XN
I¼1

XN
J¼1

h�ðFI;ΘÞhðFJ;ΘÞψ IJ: ð8Þ

The quantities ωJðtcÞ and ψ IJ are integration weights
that depend only on the basis functions, data, and noise
power spectral density, and are defined in the Supplemental
Material [33].
The computational cost of the ROQ likelihood scales as

lnL ∼OðN ×WÞ; ð9Þ

where W is the number of operations required to evaluate
the waveform at a given frequency. Unlike previous work
[13], we have chosen to write theQ term without the use of
an explicit basis for the waveform amplitude h�h. The
scaling of Eq. (8) is independent of W because waveforms
at the reduced frequencies have already been computed as
part of L [Eq. (7)]. Thus, Eq. (8) scales like ∼OðN2Þ, and
we find that N is small enough such that N2 ≪ N ×W. For
our basis starting from 5 Hz (which contains N ¼ 522
basis elements), the theoretical speedup [Eq. (5)] is
S ¼ 5400 s × ð2048–5Þ Hz=522 ≈ 21 000. Empirically,
we find a speedup of around 13 000. The degradation in
performance is due to fixed overheads, such as allocating
data structures for the waveforms. The integration weights
ωIJðtcÞ and ψ IJ are dependent on the data and noise power
spectral density and have to be computed before data
analysis can take place. The cost of computing both is
negligible in practice.
Validation and accuracy.—The accuracy of the ROQ

likelihood [Eq. (6)] is limited by the accuracy of the ROM.
We validate the accuracy by computing the mismatch M
between the ROM representation of h [Eq. (4)] and its
unapproximated form [Eq. (3)]:

MðhÞ ¼ 1 −
hhROM; hiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhROM; hROMihh; hi
p : ð10Þ

In the noise-weighted inner products, we assume a flat
power spectrum, meaning our mismatches are more
conservative than if one used a gravitational-wave detector
noise power spectral density. In Fig. 1, we show the
mismatch MðhÞ for 2 × 106 random parameter values Θ
that were not included in the training space. We include
random sky locations, inclinations, luminosity distances,
and phases at coalescence. We also include the
frequency-dependent response functions in the mismatch
calculations, demonstrating that the ROM is accurate
describing signals with amplitudes modulated by Earth’s
rotation. The mismatch is strongly peaked around 10−12,
ensuring that parameter estimation will be unbiased up to
SNR ≈ 106 (so that twice the mismatch multiplied by the
SNR squared is less than unity [15,34]).
Inference with a high-SNR signal.—As an illustrative

example, we consider inference on a signal, which we
nickname GW370817. The parameters are Θ370817 ¼
fM ¼ 1.3854 M⊙; η ¼ 0.24925; χz1 ¼ −0.0113; χz2 ¼
0.01070; χp ¼ 0.03; α0 ¼ 1.1; ι ¼ 0.785; λ1 ¼ 422.5; λ2 ¼
839.4; DL ¼ 38.77 Mpc; α ¼ 1h57 min 20.5 s; δ ¼ −14.9
deg;ψ ¼ 2.012;ϕc ¼ 0g. This signal has a luminosity
distance consistent with GW170817. We add the signal
into synthetic data of a three-detector network consisting of
CE, ET, and CE-South. We use a “zero-noise” realization of
Gaussian noise [35], which (statistically) is the most likely
realization. This noise realization has the added conven-
ience that if we use flat priors, the posterior peaks at exactly
the true parameter values which serves as a useful diag-
nostic check. The signal has SNR ¼ 2400. We use flat
priors on all parameters, and the ranges are given by the
range of validity of the ROM. In addition, we impose a
physically motivated prior constraint on the component
tidal deformability: λ2 > λ1. Lastly, we use a uniform prior
over a 0.2 s interval centered on the true trigger time. In

FIG. 1. Accuracy of the ROM approximation for 90-min-long
BNS signals starting from 5 Hz. The signals include amplitude
modulation due to Earth’s rotation.
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general, it is not necessary to restrict the chirp mass prior to
such a narrow range. Provided that ROMs exist in local
patches covering an extended chirp-mass region, a wide
prior can be utilized by building ROQ weights from
multiple ROM bases.
We use the DYNESTY nested sampling package to infer

the posterior density. In order to obtain well-converged
posteriors, we set the number of live points to 5000, and use
a random-walk proposal from the BILBY [10,36] inference
library, which takes a number of steps equal to 70 times the
running estimate of the autocorrelation length. The analysis
is parallelized over 160 cores. The analysis takes 10 h
(1600 CPU-hours) on a cluster of 16-core 2.20 GHz Intel
Xeon E5-2660 CPUs. The large CPU time occurs because
the implementation of the nested sampling algorithm in
Refs. [10,36] is extremely slow to converge when the SNR
is in the thousands. However, only a handful of events are
likely to be detected at these SNRs, with the vast majority
of signals having “moderate” SNRs less than 100. Analysis
of signals with moderate SNRs takes on the order of a day
using a single CPU using ROM or ROQ techniques [13]. In
contrast, the CPU time without ROM or ROQ methods
would be on the order of 20 × 106h, i.e., prohibitively
expensive. This analysis highlights the need for improve-
ments to the convergence of stochastic-sampling-based
approaches to inference.
In Fig. 2, we show the one- and two-dimensional

posterior densities for the component masses and tidal

deformabilities. The component masses can be constrained
to the ∼5 × 10−3 M⊙ level at the 90% credible intervals,
which is consistent with Fisher information estimates.
The tidal deformabilities have broad uncertainty and are
highly non-Gaussian, demonstrating the importance of
full Bayesian inference for understanding how well tidal
effects—and hence, nuclear physics—can be constrained
by 3G observatories.
Overlapping signals.—When multiple signals are

present simultaneously, the log-likelihood function is

lnL ∝ −
1

2

��
d −

Xn
i¼1

hi

�
;

�
d −

Xn
j¼1

hj

��

¼
�
d;
Xn
i¼1

hi

�
−
1

2

X
ij

hhi; hji −
1

2
Zn; ð11Þ

where the sums run over the independent gravitational-
wave signals. The double sum

P
ij runs over all pairs ði; jÞ.

In the multiple-signal case, the ROQ likelihood and its
scaling are

lnLROQ ¼
Xn
i¼1

LðΘiÞ −
Xn
i¼1

1

2
QðθiÞ

þ
Xn2=2
fj;kg

RjkðΘj;Θk;ΔtjkÞ −
1

2
Zn

∼OðN × n ×W þ N2 × ðnþ n2=2ÞÞ; ð12Þ

where L and Q are given by Eqs. (7) and (8). The Rjk term
sums over products of all pairs of waveforms fj; kg, with
j > k, and is also a function of the relative time offset
between two signals,Δtjk. The functionRjkðΘj;Θk;ΔtjkÞ is

hhðΘjÞ;hðΘkÞi≈RjkðΘj;Θk;ΔtjkÞ

¼ℜ
XN
K¼1

XN
L¼1

h�ðFK;ΘjÞhðFL;ΘkÞΓKLðΔtjkÞ;

ð13Þ

where the matrix ΓKLðΔtjkÞ is a set of integration weights
given in theSupplementalMaterial [33].Theoverall speedup
of the multiple-signal ROQ likelihood Eq. (12) with respect
to non-ROQ likelihood [Eq. (11)] is

S ≈
MnW þMn2=2
NnW þ Nn2=2

; with n > 1; ð14Þ

where we have kept terms at OðWÞ and Oðn2Þ. The N2n2

scaling is potentially problematic if the number of in-band
signals is large. However, most overlapping signals—
roughly between 96% and 99.5%—are well separated in
time so that they can be analyzed separately (Tables I and IV

FIG. 2. One- and two-dimensional posterior densities for
component masses and component tidal deformabilities. Dark
and light shading indicates the one-sigma and two-sigma credible
interval, respectively. True parameter values are indicated by
dashed lines.
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of Ref. [4]). Thus, we only consider the speedup for the
simultaneous analysis of a few in-band signals. We empiri-
cally determine a speedup of ∼Oð104Þ compared to the
calculation time without ROM for up to ten in-band signals.
We show the speedup as a function of the number of in-band
signals in the Supplemental Material [33].
Discussion.—Reduced-order models of gravitational-

wave signals from BNS mergers can be used to accelerate
parameter estimation in 3G observatories, thereby remov-
ing a computational hurdle. This work lays the groundwork
for detailed studies of BNS systems in the 3G era. Further,
the ROM and ROQ framework can be used to efficiently
carry out inference on data containing multiple overlapping
signals. Further avenues to pursue include ROMs of more
sophisticated waveforms, e.g., with higher-order gravita-
tional-wave modes, which can place tighter constraints
on parameter estimates [37]. Bayesian inference on very
loud signals—SNR ∼Oð1000Þ—requires significantly
more likelihood evaluations than in analyses of LIGO
and Virgo signals. Sampling-based methods for Bayesian
inference will have to be significantly adapted and scaled
up in order to efficiently analyze data in the 3G era. For
instance, Hamiltonian Monte Carlo methods [38] (which
exploit gradients of posterior densities) and machine
learning techniques, e.g., Refs. [39–42] (which provide
rapid approximations to reduced-order models and pos-
terior densities) may be promising avenues to explore.
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