
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Multiscale Mesh Deformation Component
Analysis with Attention-based Autoencoders

Jie Yang, Lin Gao∗, Qingyang Tan, Yi-Hua Huang, Shihong Xia and Yu-Kun Lai

Abstract—Deformation component analysis is a fundamental problem in geometry processing and shape understanding. Existing
approaches mainly extract deformation components in local regions at a similar scale while deformations of real-world objects are
usually distributed in a multi-scale manner. In this paper, we propose a novel method to exact multiscale deformation components
automatically with a stacked attention-based autoencoder. The attention mechanism is designed to learn to softly weight multi-scale
deformation components in active deformation regions, and the stacked attention-based autoencoder is learned to represent the
deformation components at different scales. Quantitative and qualitative evaluations show that our method outperforms state-of-the-art
methods. Furthermore, with the multiscale deformation components extracted by our method, the user can edit shapes in a
coarse-to-fine fashion which facilitates effective modeling of new shapes.

Index Terms—Multi-Scale, Shape Analysis, Attention Mechanism, Sparse Regularization, Stacked Auto-Encoder

�

1 INTRODUCTION

WITH the development of 3D scanning and modeling tech-

nology, 3D mesh collections are becoming much more

popular. These mesh models usually use fixed vertex connectivity

with variable vertex positions to characterize different shapes.

Analyzing these mesh model collections to extract meaningful

components and using these components for new model gener-

ation (e.g. shape editing [1], [2], [3], deformation transfer [4], [5],

[6]) are key research problems in these areas. Some works [7],

[8], [9], [10] propose to extract deformation components from

mesh data sets. They mainly focus on extracting local deformation

components with sparse regularization at a uniform scale. How-

ever, real-world objects deform at multiple scales. For example,

a person may have different facial expressions which are more

localized deformations on the face, but the whole body can also

be bent, which is a larger scale deformation.

Multi-scale techniques are getting increasingly popular in

various fields. In Finite Element Methods, multiscale analysis

is widely used [11], [12], [13]. In the spectral geometry field,

research works apply multiscale technology on the deformation

representation [14], physics-based simulation of deformable ob-

jects [15], and surface registration [16] by analyzing the non-

isometric global and local (multiscale) deformation. Moreover, for

shape editing, multiscale technology also enables modeling rich

facial expressions on human faces [17].

Such multiscale deformation components are especially useful

to support model editing from coarse level to fine level. One

motivation of this work is to achieve editing consistent with

perceptual semantics by modifying shapes at suitable scales. The

∗ Corresponding author is Lin Gao (gaolin@ict.ac.cn).

• Jie Yang, Lin Gao, Yi-Hua Huang and Shihong Xia are with the Beijing
Key Laboratory of Mobile Computing and Pervasive Device, Institute of
Computing Technology, Chinese Academy of Sciences, Beijing, China, and
also with the University of Chinese Academy of Sciences, Beijing, China.
E-mail: {yangjie01, gaolin, huangyihua20g, xsh}@ict.ac.cn

• Qingyang Tan is with the University of Maryland, College Park, USA.
E-mail: qytan@cs.umd.edu

• Yu-Kun Lai is with the School of Computer Science & Informatics, Cardiff
University, U.K. E-mail: LaiY4@cardiff.ac.uk

user would be able to make rough editing of the overall shape at a

large scale, as well as localized modifications to surface details at

a small scale. Inspired by the recent advances in image processing

with attention mechanism [18], the attention is formulated to focus

on specific regions in our approach.

We propose a novel autoencoder architecture to extract

multiscale local deformation components from shape deformation

datasets. Our network structure is based on the mesh-based

convolutional autoencoder architecture and also uses an effective

representation of the shapes [19] as input which is able to encode

large-scale deformations. In this work, a stacked autoencoder

architecture is proposed such that the network can encode the

residual value of the former autoencoder with the attention mech-

anism, which helps to separate the deformations into different

scales and extract multiscale local deformation components. The

network architecture is shown in Fig. 1. We further utilize a

sparsity constraint on the parameters of the fully connected layers

to keep the deformation components localized. The autoencoder

architecture ensures the extracted deformation components are

suitable for multiscale shape editing and helps reconstruct high

quality shapes with less distortion.

Our contributions are twofolds:

• To the best of our knowledge, this is the first work that

automatically extracts multiscale deformation components

from a deformed shape collection. With these extracted

components, the user can edit the 3D mesh shape in a

coarse-to-fine fashion, which makes 3D modeling much

more effective.

• To achieve this, we propose a novel deep architecture

involving attentional stacked autoencoders. The attention

mechanism is designed for learning the soft weights that

help extract multiscale deformation components in the

shape analysis and the stacked autoencoders are used

to decompose the deformation of shape collections into

different shape components with different scales.

All the components of the network are tightly integrated and

help each other. The attention mechanism makes the follow-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

up autoencoders focus on a specific region, to allow extracting

smaller-scale local deformation components. Extensive compar-

isons prove that our method extracts more meaningful deformation

components than state-of-the-art methods.

In Sec. 2, we review the most related work. We then give

a brief description of the input features used in our method in

Sec. 3, and present detailed description of our novel autoencoder

with the attention mechanism including implementation details

in Sec. 4. Finally, we present experimental results, including

extensive comparisons with state-of-the-art methods in Sec. 5 and

draw conclusions in Sec. 6.

2 RELATED WORK

Mesh deformation component analysis has attracted significant

interest in the research of shape analysis and data-driven mesh

deformation. Many data-driven methods for editing of either man-

made objects [20], [21], [22] or general deformable surfaces [3],

[19], [23], [24] benefit from extracted deformation components.

Our work shares the same interest as theirs, aiming to assist users

to edit shapes efficiently. Although our focus is to extract more

meaningful multiscale deformation components automatically,

it can be incorporated into existing data-driven deformation

methods. In the following, we review work most related to ours.

3D shape deformation component extraction. With the

increasing use of 3D models, the need for analyzing their

intrinsic characteristics becomes mainstream. Early work [25]

extracts principal components from the mesh data set by Principal

Component Analysis (PCA), but the extracted components contain

global deformations, which are not effective for users to make

local edits. Some works [26] demonstrate that sparse constraints

are effective for achieving localized deformation results. However,

the classical sparse PCA [27] does not take the spatial information

into consideration. By promoting sparsity in the spatial domain,

many works extract localized deformation components with a

sparsity constraint [7], [28], which outperform the standard

PCA variants such as Clustering-PCA [29] with respect to

choosing suitable compact basis modes, especially for producing

more localized meaningful deformation. Moreover, the pioneering

work [7] represents meshes with Euclidean coordinates, but this

representation is sensitive to rigid and non-rigid transformations.

Later work [8] extends the previous work [7] to better deal with

rotations by using deformation gradients to represent shapes, but

the method still cannot cope with larger rotations greater than 180◦

due to their inherent ambiguity. Based on deformation gradients,

Neumann et al. [30] learn the arm-muscle deformation using

a small set of intuitive parameters. The work [9] extends [7]

by using a rotation invariant representation based on edge

lengths and dihedral angles [31], so can handle large-scale

deformations. However, the representation [31] is not suitable

for extrapolation as this would result in negative edge lengths.

This limits the capability of [9] for deformation component

analysis, as extrapolation is often needed e.g. when utilizing

the extracted deformation components for data-driven shape

editing. Recent work [10] proposes a convolutional autoencoder

based on an effective shape representation [19] to learn the

localized deformations of a shape set, but their architecture is

not suitable for extracting multiscale deformation components.

Overall, different from these works [7], [8], [9], [10], our method

can produce meaningful and multiscale localized deformation

components. For the detailed deformation-based approaches, we

refer readers to these surveys [32], [33].

Deep learning on 3D Shapes. With the development of arti-

ficial intelligence, deep learning and neural networks have made

great progress in many areas, in particular 2D image processing.

Hence, some researchers transform the non-uniform geometry

signals defined on meshes of different topologies into a regular

domain, while preserving shape information as much as possible,

which enables powerful uniform Cartesian grid based CNN

(Convolutional Neural Network) backbone architectures to be used

on problems such as cross-domain shape retrieval [34], surface

reconstruction [35] and shape completion [36]. DDSL [37] was

recently proposed, which is a differentiable layer compatible with

deep neural networks for learning geometric signals. However, due

to the irregularity of 3D shapes, it is difficult to apply deep learning

straightaway. Inspired by image processing, some works [38],

[39], [40] apply deep learning to the voxel representation with

regular connectivity. However, the voxel representation incurs

significant computation and memory costs, which limits the

resolution such methods can handle. Wang et al. [41], [42] improve

the performance of voxel-based convolutions by proposing an

adaptive octree structure to represent 3D shapes, and apply it to

shape completion [43]. Meanwhile, recent works [44], [45] define

the convolution on point clouds by using K-nearest-neighbors

(KNN) and spherical convolutions. More recently, the work [46]

proposed the EdgeConv operator for learning on the point cloud to

improve the performance of segmentation and classification, and

Guo et al. [47] use transformers [48] to learn the point cloud. In

addition to the voxel and point cloud representations, shapes can

also be represented as multiview projection images to perform 2D-

CNNs [39], [49], [50] for 3D object recognition and classification.

Such approaches are used to learn the local shape descriptors

for shape segmentation and correspondence [51]. For applications

that take meshes as input or generate meshes as output, turning

meshes to alternative representations can lead to useful topology

information to be lost. SubdivNet [52] presented a unified and

flexible network architecture on 3D mesh data using the Jittor

deep learning framework [53].

Alternatively, as a mesh can be represented as a graph, CNNs

can be extended to graph CNNs and novel mesh pooling [54]

in the spatial domain [55], [56], or spectral domain [57], [58],

[59], [60] for mesh-based deep learning. For the comprehensive

understanding on different 3D representation for deep learning,

please refer to these surveys [61], [62], [63], [64]. In the spatial do-

main, works [65], [66], [67], [68] apply variational autoencoders

on 3D meshes for various applications such as reconstruction,

interpolation, completion and embedding. The work [69] uses

autoencoders to analyze deformable solid dynamics. However,

none of the existing methods can extract multiscale deformation

components, which we address by using a novel attention-based

mesh convolutional network architecture.

Attention mechanism on convolutional networks. Deep

neural networks have proved their superiority in extracting high-

level semantics and highly discriminative features on various

image datasets. Researchers now pay more attention to using

convolution features more effectively on fine-grained datasets

to improve the performance. Such works can be widely seen

in different areas of computer vision and natural language

processing, such as image translation (DA-GAN) [70], person

re-identification [71], [72], document classification [73], object

detection [74], [75], video classification [76], etc. The work [77]



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Auto-Encoder 
Block

Attention Mechanism

K

Auto-Encoder 
Block

     Fully 
Connected

     Fully 
Connected      Conv     Conv

Reshape

ReshapeReshape
Kz VC R T V KzC R

VR VR

KR VRVRVR VR

VR

K

am1

am2

amK

V
V

Normalize
K

AM1

AM2

AMK

V

ReshapeReshape

VX R VX R VX X R

Subtract

Reshape

Focus on
local region

Diagonal

V VR

*
*

*

Auto-Encoder 
Block

Auto-Encoder 
Block

Second Level

First Level

Square
Sum

K VR

1

2

K

C1

C2

CK

0

Figure 1. Our network architecture with attention mechanism and stacked autoencoders. We obtain large-scale deformation components and
attention masks from the first-level autoencoder AE0. For the second-level autoencoders AEk, 1 ≤ k ≤ K, we put the residual value X − ̂X
of the first-level autoencoder AE0 with the attention masks into K autoencoders focusing on different sub-regions of the shape. We can then
obtain small-scale deformation components by these autoencoders. This architecture can be further extended to include more scale levels. The
autoencoder has mirrored encoder and decoder structure. The encoder has one convolution layer and a fully connected layer, and the encoder
and decoder share the same trainable parameters. K, V and μ are the dimension of the latent space (the number of attention masks), the number
of vertices and the dimension of the vertex features, respectively. By making the latent vector as a one-hot vector, we can extract the K attention
masks AMk, 1 ≤ k ≤ K from the parameter C as the top-left corner of the figure shows. Please refer to Sec. 4.2 for details.

proposes a “soft attention” mechanism which predicts soft weights

and computes a weighted combination of the items in machine

translation. In [78], a hierarchical co-attention method is proposed

to learn the conditional representation of the image given a

problem. Following [78], [79] extends the co-attention model to

higher orders. Some works effectively utilize attention as a way to

focus on specific regions for learning. Wang et al. [80] demonstrate

the benefit of guiding the feature learning by using residual

attention learning for improving the recognition performance.

Another example is the attention-focused CNN (RA-CNN) [18]

based on the Attention Proposal Network (APN), which actively

identifies the effective region and uses bi-linear interpolation

to adjust the scale, and then the enlarged region of interest is

used for improved fine-grained classification. However, the above

works apply the attention mechanism in the 2D domain. Our

work extends the attention mechanism to the 3D domain to

extract multiscale deformation features based on an effective shape

representation [19].

3 DEFORMATION REPRESENTATION AND CONVO-
LUTION OPERATOR

The input of our overall network is based on the recently

proposed as-consistent-as-possible (ACAP) deformation repre-

sentation [19], which can cope with large-scale deformations

of shapes and is defined only on vertices, making mesh-based

convolutions easier to implement. To validate it is a good choice,

we compare this with a recently proposed general-purpose mesh

autoencoder (AE) architecture DEMEA [67]. Please refer to

Sec. 5.3.6 for the details.

For a given shape set with N shapes that share the

same connectivity each with V vertices, without loss of

generality, we choose the first shape as the reference shape.

For the patch which consists of the ith vertex and its 1-

ring neighbor vertices, we can calculate its deformation

gradient Tm,i ∈ R
3×3. The deformation gradient of the

patch is defined on the ith vertex of the mth shape, which

describes the local deformation w.r.t. the reference shape. Tm,i

of shape m is obtained by minimizing the following formula:

argminTm,i

∑
j∈Ni

cij‖(pm,i − pm,j)−Tm,i(p1,i − p1,j)‖22
where Ni is the 1-ring neighbor vertices of vertex i and

cij = αij + βij is the cotangent weight [1], where αij and βij

are the angles in the two faces that share a common edge (i, j).
Then Tm,i can be decomposed as Tm,i = Rm,iSm,i using the

polar decomposition, where Sm,i ∈ R
3×3 is a symmetry matrix

that describes the scaling/shear deformation and Rm,i ∈ R
3×3 is

an orthogonal matrix that describes the rotation. For the rotation

matrix Rm,i, it can be represented by the rotation axis ωm,i

and rotation angle ωm,j . But the mapping from the rotation

matrix to rotation axis and angle is one-to-many. For shapes

with large-scale rotations, the rotation axis and rotation angle

of adjacency vertices may become inconsistent, which results in

artifacts when synthesizing new shapes, as shown in [19]. Gao et

al. propose a two-step integer optimization to solve the problem

which makes the rotation angle and rotation axis of adjacent

vertices as consistent as possible. For the details, please refer

to [19].

Next, for each vertex i on the mth shape, we can obtain

the feature qm,i = {rm,i, sm,i} ∈ R
9 by extracting non-trivial

elements rm,i ∈ R
3 and sm,i ∈ R

6 from the logarithm of

rotation matrix Rm,i and scaling/shear matrix Sm,i respectively.

Finally, the ACAP feature of the mth shape can be represented by

{qm,i|1 ≤ i ≤ V }. Due to the use of the tanh activation function

[10], we further linearly scale each element in rm,i and sm,i to

[−0.95, 0.95] separately. Then we concatenate qm,i, 1 ≤ i ≤ V
together in the vertex order to form a long vector Xm ∈ R

μV×1

as the feature of the mth shape, where μ = 9 is the dimension of

the ACAP feature of each vertex.

We further introduce the graph convolutional operator used

in our architecture. As illustrated in [10], the output of the

convolution operator for every vertex is a linear combination of

the inputs of the vertex and its 1-ring neighbor vertices, along



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

with a bias. The output yi for the ith vertex is defined as follows:

yi = Wpointxi +Wneighbor
1

Di

Di∑
j=1

xnij
+ b (1)

where xi is the input feature vector of the ith vertex, Di is the

degree of the ith vertex, and nij (1 ≤ j ≤ Di) is the jth neighbor

vertex of the ith vertex. Wpoint, Wneighbor ∈ R
μ×μ and

b ∈ R
μ are the trainable parameters of the graph convolutional

layer. All these weights are shared by all the vertices and their

neighborhoods in the same convolutional layer and learned during

the training of the network.

4 METHODOLOGY
In this section, we introduce our network architecture from these

three main aspects: our novel autoencoder structure, attention

mechanism and redundant component removal. Firstly, we in-

troduce the novel autoencoder structure. Then we describe our

attention mechanism, which is applied to help autoencoders to

extract multi-scale deformation components. Lastly, we explain

how we remove redundant components, followed by implementa-

tion details of our network. This architecture is flexible to support

multiple levels of scales. In most cases, two levels of deformation

scales are sufficient to represent deformation in the dataset of this

paper, so we mainly focus on describing the two-level architecture,

which can be extended to more levels straightforwardly. Please

refer to Sec. 5.3.3 for details.

4.1 Autoencoder Block
As Fig. 1 illustrates, we achieve the multiscale structure by

stacking autoencoder blocks. In the first (coarsest) level, we have

one autoencoder AE0, and in the second level, K autoencoders

AEk (k = 1, 2, . . . ,K) are built, each focusing on one local

region through an attention mechanism, which will be detailed

later. The number of second level AEs is determined by the

dimension of the latent space of AE0.

For each shape m, 1 ≤ m ≤ N , we represent it by the pre-

processed ACAP feature Xm ∈ R
V×μ, as described in Sec. 3.

We use an encoder to map the feature to a 128-dimensional

latent code and a decoder which reconstructs the shape ACAP

feature from a latent code z. Both of the encoder and decoder

have one mesh-based graph convolutional layer and a fully-

connected layer and their network structure is symmetrical, where

the learnable parameters of the fully connected layer are defined

as C ∈ R
Kz×μV , Kz is the dimension of the latent space.

Especially, the fully connected layers of encoder and decoder share

the same learnable parameter C without bias. The latent vector z
for all the N shapes form a matrix Z ∈ R

N×Kz . Similar to [10],

all the layers use the tanh activation function. Figure 1 illustrates

the autoencoder architecture in the top left corner.

The output X̂ ∈ R
μV of the whole autoencoder block can be

scaled back to the ACAP deformation representation and recon-

struct the Euclidean coordinates using [19]. For every autoencoder,

we optimize the following loss function that includes three terms:

reconstruction loss that ensures accurate reconstruction of the

input, sparsity loss Ω(C) that promotes localized deformation

components, and non-trivial regularization term V(Z) to avoid

creating trivial solutions. The total loss for an autoencoder block

AEk is as follows:

LAEk
= λ1Lrecon + λ2Ω(C) + V(Z) (2)

where AEk, 0 ≤ k ≤ K represent the kth autoenoder, λ1, λ2 are

the balancing weights.

The reconstruction loss is the MSE (mean square error) loss,

defined as Lrecon = 1
N

∑N
i=1 ‖Xi − X̂i‖22. For the non-trivial

regularization term, V(Z) = 1
Kz

∑Kz

j=1 max((maxm |Zjm| −
θ), 0), where Zjm is the weight for the jth dimension of the

mth shape, and θ is a positive number and we set θ = 5 in our

experiments.

The above two loss terms are the same as the previous

work [10]. However, we define the loss Ω(C) differently: we

choose the step function Λ (eq. 3) to map geodesic distances

to {0, 1}, rather than the previously used clipped linear in-

terpolation function. This is because our network architecture

extracts hierarchical deformation components, so at any level,

a fixed component size (rather than a range) is preferred.

Autoencoder blocks at different levels will produce localized

deformation components of different scales by adjusting the

tunable parameter d. Our sparsity loss term Ω(C) is defined

as: Ω(C) = 1
Kz

∑Kz

k=1

∑V
i=1 Λik‖Ck,i‖2, where Ck,i is the μ-

dimensional vector of component k of vertex i, ‖·‖2 is group

sparsity (�2,1 norm) , and Λik is sparsity regularization parameters

defined as follows:

Λik =

{
0 dik < d
1 dik ≥ d

(3)

where the Λik is a binary function, where dik denotes the

normalized geodesic distance [81] from vertex i to the center point

ck of component k, which is defined as ck = argmaxi ‖Ck,i‖2,

and is updated in each iteration of network training. d is a tunable

parameter, which controls the size of the deformation region of a

component. Larger d corresponds to bigger deformed regions of

the shape. For our task, AEs of different levels choose different

values of d. Please refer to Sec. 4.4 for the default value of d.

We train the whole network end-to-end by adding all the losses

of autoencoder blocks together as Ltotal =
∑K

k=0 LAEk
, which

includes a first-level AE (AE0) and K second-level AEs (AEk,

1 ≤ k ≤ K).

4.2 Attention Mechanism for Multiscale Analysis
Similar to 2D images, there are many tasks such as image

recognition that benefit from focusing on different levels of images

by an attention mechanism, e.g. [18]. In this work, we aim

to analyze 3D shape deformation in a multiscale fashion, by

designing an attention mechanism that facilitates our autoencoder

blocks to extract multiscale deformation components.

Mostly, the deformation datasets (e.g. human, horse and fabric)

have both global scale and local scale deformations. Hence, it is

naturally to extract these deformations in a multiscale manner.

To make the second-level AEs focus on sub-regions to extract

finer-level components and then form a multiscale structure, we

extract learnable attention masks from the fully-connected layer

of the first-level AE AE0. Our attention mechanism is shown in

the bottom left corner of Fig. 1. Due to the sparsity constraint

Ω(C), the parameter C of the fully connected layer represents

the sparse deformation components. Ck ∈ R
V μ×1(1 ≤ k ≤ K)

corresponding to each row in C represents a deformed sub-region

of the shape. The deformed sub-regions can be regarded as the

interested mask of the second-level AEs. So in every iteration of

training, we can extract each row of C by setting the latent vector

to a one-hot vector for second-level AEs:



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Ck = CT ×OHk (4)

where OHk is a K-dim column vector, with the kth entry set to

1 and the rest set to 0. Then we reshape Ck to a 2D array with

the size V × μ, denoted as Cr
k . The unnormalized attention mask

amk,i ∈ R
K×V for the kth component of the ith vertex is defined

as

amk,i =

μ∑
j=1

Cr
k,ij

2. (5)

where the Cr
k,ij is the (i, j) entry of Cr

k . We further normalize it

to obtain the normalized attention mask AM ∈ R
K×V , where

AMk,i =
amk,i∑K
k=1 amk,i

. (6)

So for the first-level autoencoder AE0, the residual value of

the reconstruction is X − X̂ and the normalized attention mask is

AM . We reshape (X − X̂) to a 2D array Xres ∈ R
V×μ. For the

second-level autoencoder AEk, 1 ≤ k ≤ K as in Fig. 1, its input

is diag(AMk) ×Xres, where diag(·) returns a square diagonal

matrix with the elements of the vector on the main diagonal.

The input of each second-level AE is therefore the weighted (by

the corresponding attention mask) residual of the first-level AE.

Therefore, this attention mechanism ensures that the second-level

AEs can reconstruct smaller scale deformations that cannot be

well captured by AE0, and each AEk focuses on an individual

local region. The sum of every column of AM is one according

to Eq. 6, which ensures the sum of inputs to AEk, 1 ≤ k ≤ K
equals the residual value Xres of the first-level autoencoder AE0.

Under the supervision of loss function and attention mech-

anism, the first-level autoencoder AE0 is capable of capturing

large-scale deformation and the second-level AEs can capture

smaller-scale deformations in specific regions of the shape.

Consequently, our network can learn multiscale deformation

components of the whole shape set, and the multiscale deformation

components can be extracted from the parameters of fully

connected layers of all AEs.

4.3 Redundant Component Removal
For all autoencoder blocks, we extract a fixed number of de-

formation components for each AE. For fair comparison and to

capture all deformations, we set Kz = 10 for AE0, Kz = 5
for AEk, 1 ≤ k ≤ K . Since the multiscale analysis and our

setting aim to extract deformation components as much as possible

to avoid missing any components, it is possible that the second-

level AEs may contain some redundant components, which do not

correspond to significant deformations, and are often caused by

subtle deformations compared to the reference mesh. To address

this, we remove these components if the contained information

is lower than the given threshold. Fig. 5 shows the results of

the network output without this process, and there are some

components corresponding to slight deformations compared to

the reference mesh). In comparison, Fig. 11 shows that a small

subset of components retained after the redundant component

removal is sufficient to capture the meaningful deformations on

the whole dataset. Thus, all results in our paper are processed by

the redundant component removal, and the process is explained in

detail as follows.

The process aims to make our results more compact and

reasonable and is done after network training. It can gain trade off

between the multiscale decomposition and avoidance of overfitting

on training data. We define the following deformation strength

of a deformation component to filter subtle or noisy deformation

components. The strength I(Xm) on the features Xm is defined

as:

I(Xm) =

∑V
i=1 1(‖(Xdiff )i‖ > ε1)‖(Xdiff )i‖∑V

i=1 1(‖(Xdiff )i‖ > ε1)
(7)

where Xdiff = Xm−Xr , and Xr, Xm ∈ R
V×μ are the features

of the reference mesh and the extracted deformation components

from the autoencoders respectively. ‖ · ‖ is the �2 norm of the

vector, and 1(·) gives 1 if the condition is true, and 0 otherwise.

ε1 = 1e− 6.

Mesh
Data

First Level
Autoencoder

Second Level
Autoencoders

Figure 2. The multiscale structure of deformation components on
the shape set SCAPE [82]. In the figure, we filter the redundant
components. As a result, our method can learn deformation components
of different scales. The first column shows some examples from the
SCAPE dataset, the second column presents coarse level deformation
components from the first-level AE0, and the third column gives the fine
level deformation components from the second-level AEk, 1 ≤ k ≤ K.

If the extracted deformation component corresponds to a slight

deformation, defined as its strength being smaller than a threshold

ε2, we will remove the component. In our experiments, we set

ε2 = 0.01. Finally, we obtain the multiscale structure of the

deformation components, as shown in Figs. 2, 9, 10, 11, 12 and 13,

where deformations at different scales are indicated with arrows.

We also check if our network produces similar components

(near duplicates). To achieve this, we test the similarity of the

extracted deformation components. Fig. 3 visualizes the cosine

similarity matrix of the components extracted from the first-level

AE. It shows that the components have low similarity, because

our AE applies the localization constraint and reconstruction

error minimization to ensure different components in the latent

space represent different parts on the shape; having duplicated

components would lead to reduced representation capability, so

higher total loss.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

1Comp

2Comp

3Comp

4Comp

5Comp

1Comp 2Comp 3Comp 4Comp 5Comp

Cosine Similarity Matrix

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.00

0.05

0.08

0.07

0.07

0.05

1.00

0.14

0.07

0.02

0.08

0.14

1.00

0.02

0.26

0.07

0.07

0.02

1.00

0.07

0.07

0.02

0.26

0.07

1.00

Figure 3. Visualization of the cosine similarity matrix of the components
extracted from the first-level AE. It shows that the components have low
similarity. The value (0-1) in each grid indicates the similarity between
two components. Larger values mean more similar.

Figure 4. Comparison of deformation components located in the left arm
of SCAPE [82], which are extracted by different methods. The deformed
region is highlighted in blue. Every row shows the components located
in a similar region. It shows that our results are more reasonable.

4.4 Implementation Details

Our experiments were carried out on a computer with an i7-6850K

CPU, 16GB RAM and an Nvidia GTX 1080Ti GPU.

Datasets: We compare with the state-of-the-art methods on

the SCAPE dataset [82], Horse dataset [4], Face dataset [83],

Humanoid dataset [9], Dress dataset, Pants dataset [84], Flag

dataset, Skirt Dataset, Fat person (ID:50002) from the Dyna [85]

Dataset, Coma [66] Dataset, Swing and Jumping datasets [86]. The

Dress, Flag and Skirt datasets were synthesized by the NVIDIA

Clothing Tools on 3ds MAX. Our used data ranges from rigged

deformations like human motions to non-rigged deformations such

as faces and cloth, from small datasets with several hundreds

shapes to large datasets containing thousands of shapes (e.g.,

Dyna). For the above datasets, they are mainly sequence models

which have similar deformation between neighboring shapes. So

for testing our model’s generalizablity, we select one from every

ten models to training and the rest to testing, i.e., the ratio is

9:1 for test and training. For non-sequence data like SCAPE, we

spilt the training set and test set randomly with a ratio 1:1. As

a special case for the Coma dataset, we use the same setting as

DEMEA [67] for fair comparison. The statistics of the datasets are

shown in Table 1, which lists the number of shapes each dataset

contains, as well as the numbers of training examples and testing

examples. All datasets are very easy to obtain: some are public

data, and others are synthesized data using professional software.

We will release the synthesized data for future research.

Table 1
Data Statistics. We summarize the data statistics of 10 datasets in our
experiments. Each sequence dataset is split into training set and test
set with a ratio of 1:9, with the exception of the Coma [66] dataset,
where we use the same setting as DEMEA [67] for fair comparison.

DataSet # All Shapes # Training Shapes #Testing Shapes

Swing 280 28 252
Scape 71 36 35
Pants 241 25 216

Humanoid 154 16 138
Horse 49 5 44
Flag 500 50 450
Dress 500 50 450
Jump 150 15 135
Fat 4737 469 4274

Face 385 39 346
Skirt 231 23 208
Coma 20465 17794 2671

In our experiments, our network takes the ACAP features

of 3D shapes as input, which can describe the large scale

deformations, and are calculated using the method in [19].

We have two levels of autoencoders, the first level only has

one AE (AE0), and the second-level has the same number of

AEs (AEk, 1 ≤ k ≤ K) as the number of attention masks.

Since in most wild datasets, the deformation of shapes is not

very exaggerated, two levels of autoencoders are enough to

extract the multiscale localized deformation components in our

experiments, but this can be easily extended if necessary. We

perform experiments on the SCAPE dataset to demonstrate how

we choose the suitable hyperparameters in Sec. 5.3, and the same

fixed hyperparameters are used for different categories above. As

shown in that section, our stacked AEs have the lowest error

with the following default parameters: λ1 = 10.0, λ2 = 1.0,

where λ1, λ2 are the weights of reconstruction error and sparsity

constraint terms, respectively. d = [d1, d2] = [0.4, 0.2],Kz =
[10, 5], corresponding to the coarse and fine levels. Here, we

train the whole network end-to-end rather than separately. We

set the learning rate as 0.001 with the exponential decay by

the ADAM solver [87] to train the network end-to-end until it

converges, which takes approximately 10, 000 epochs. For all

AEs, we set the batch size as 256, which is randomly sampled

from the training data set. For a typical dataset, the training of

stacked AEs takes about 10 hours. Once our network is trained,

the extracted components are produced efficiently: outputting one

component only takes about 50 milliseconds.

As we will later discuss, compared with separate training in

Table 4, training the network end-to-end can result in smaller

reconstruction errors Erms on all datasets. The main reason is

that the network can adjust the attention mask by minimizing the



7IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

Table 2
Errors of applying our method to generate unseen data from Horse [4], Face [83], Humanoid [9], Pants [84], Flag dataset, Fat person (ID:50002 
from the Dyna dataset [85]), Synthetic Dress/Skirt dataset, CoMA [66] dataset, Swing and Jumping [86] datasets. From the table, the generation 

ability of our network is better than the other methods on the Erms error and STED error.

Dataset Metric
Method

Ours Tan et al. Wang et al. Huang et al. Neumann et al. Bernard et al.

Horse
Erms 6.9246 12.9605 29.6090 18.0624 7.3682 20.1994

STED 0.0336 0.04004 0.04332 0.05273 0.08074 0.4111

Face
Erms 1.4409 2.9083 8.5620 12.3221 2.9106 2.9853

STED 0.0071 0.007344 0.01320 0.01827 0.008611 0.02662

Jumping
Erms 16.3475 24.4827 44.3362 37.9915 29.3368 49.9374

STED 0.0321 0.04862 0.05400 0.06305 0.1268 0.4308

Humanoid
Erms 3.2127 3.4912 60.9925 16.1995 14.3610 6.6320

STED 0.0226 0.01313 0.03757 0.02247 0.07319 0.04612

Swing
Erms 12.2615 14.0836 29.5329 24.495 15.1942 22.6571

STED 0.0311 0.03789 0.04224 0.04343 0.0830 0.1139

Pants
Erms 6.4083 7.8986 39.2946 10.1880 28.4118 23.6785

STED 0.0372 0.0414 0.0540 0.04958 0.1762 0.06484

Dress
Erms 11.5117 34.0579 35.2816 35.2340 55.5806 12.2239

STED 0.0397 0.0415 0.0635 0.0782 0.0784 0.2167

Fat
Erms 4.3456 4.5609 25.9187 5.3215 7.4522 5.3348

STED 0.0052 0.0053 0.0055 0.0035 0.0372 0.0289

Flag
Erms 20.0627 26.3174 62.2925 51.2551 23.1364 23.1535

STED 0.0157 0.0176 0.0354 0.2183 0.0914 0.0169

Skirt
Erms 3.9863 13.0794 27.2709 28.2209 5.6254 5.0889

STED 0.0291 0.0422 0.0342 0.0332 0.0491 0.0601

CoMA [66]
Erms 0.6791 2.2063 7.1492 2.3796 2.4172 1.8023

STED 0.0403 0.0430 0.0687 0.0447 0.0441 0.1537

loss function, and conversely, the adjusted attention mask will

result in smaller reconstruction errors Erms. Such collaborative

optimization leads to better results, as shown in Table 4.

5 EXPERIMENTAL RESULTS & EVALUATION

In this section, we will evaluate our method on the above datasets

from the following aspects: Quantitative Evaluation, Qualitative

Evaluation and Applications.

5.1 Quantitative Evaluation
We compare the generation ability of our method with the state-

of-the-art methods [7], [8], [9], [10], [28] on various datasets. In

this experiment, we select one model from every ten models for

training and the remaining for testing. After training, we align

all the models and scale them to fit within a unit ball. Then we

use Erms (root mean square) error [88] and STED error [89]

to compare the generalization error on the test data (i.e., the

reconstruction error for unseen data) with the various methods. In

particular, STED error is designed for motion sequences with a

focus on ‘perceptual’ error of models. To ensure fairness, we train

each autoencoder to extract 50 components. As Table 2 shows, the

performance of our method is better than the existing methods

on both Erms and STED. Because the Euclidean coordinate

representation is sensitive to rotation, the extracted deformation

components of the methods [7], [28] have clear artifacts and

implausible deformation, leading to larger reconstruction errors.

Due to the limitation of the edge lengths and dihedral angle

representation for extrapolation, the reconstruction using the

method [9] can also be inaccurate and unstable. The method [8] is

not capable of encoding large-scale deformation (e.g. folds on the

fabric), so it cannot recover the original deformation accurately

in such cases. The method [10] uses a large-scale deformation

representation to achieve good performance, but it cannot produce

multiscale deformation components. In comparison, our method

can keep lower reconstruction errors by using stacked AEs and

analyzing the residual value of the first-level AE to extract

effective multiscale deformation components.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Figure 5. The multiscale structure of deformation components on the Pants dataset [84]. In the figure, to demonstrate the necessity of redundant
component removal, we do not filter the redundant components, and the symbol ‘· · · ’ indicates that there are more results which contain slight
deformation. In comparison, results shown in Fig. 11 have been processed by the redundant component removal in Sec. 4.3. As a result, our
method can learn meaningful deformation components of different scales, and a compact set of deformation components can be extracted.

5 10 15 20 25 30
Number of Control Points

20

30

40

50

60

70

80

90

G
en

ra
liz

at
io

n 
 E

rr
or

 o
n 

SC
A

PE
  (

  E
 rm

s )

Tan et al.
Neumann et al.
Huang et al.
Bernard et al.
Our

Figure 6. The reconstruction error using sparse control points to deform
the SCAPE data set [82]. The control points are obtained by furthest
point sampling. The generalization error is measured by the data-driven
deformation with the extracted deformation components of various
methods. In this figure, our performance is better than the other methods
with lower errors.

Meanwhile, our extracted components are served for data-

driven deformation. In the real world, the user usually edits the

shape by a limited number of control points. To demonstrate

the ability of each method to reconstruct deformed models by

limited control points, we use the furthest point sampling [90],

[91] to sample the control points to ensure that the sampled points

distribute on the shape evenly. Under the constraint of the control

points, we use the same number of the extracted components to

perform data-driven deformation on the SCAPE dataset. As shown

in Fig. 6, the reconstruction by our extracted components always

keeps a lower error. In comparison, due to the use of Euclidean

coordinate representation, the methods [7], [28] fail to reconstruct

shapes accurately. Our multiscale deformation components better

characterize the deformation of the shape, leading to reduced

errors.

5.2 Qualitative Evaluation
We also provide qualitative evaluation of extracted multiscale

deformation components, by comparing the visualization results

Figure 7. Comparison of deformation components located in a similar
area on the Horse [92], which are extracted by different methods. The
deformed regions are highlighted in blue. The first row shows the results
of other methods, and the second row gives the results of our method.
Every column shows a component located in a similar region.

of our method with the other methods. In our experiments, we use

two levels of autoencoders. For each level, we extract deformation

components of the corresponding scale from the fully connected

layer using the same method as [10]. For every autoencoder, we

can extract the same number of components as the dimension

of the latent space. Due to our setting (Kz = [10, 5]), the

first level and second level autoencoders each output 10 and

5 deformation components respectively. We apply the post-

processing step to remove redundant components, as described in

Sec. 4.3. For qualitative evaluation, we visualize retained extracted

components and further color the deformed regions compared with

the reference mesh.

As independently extracted deformation components do not

correspond to each other, we adopt the visualization method

in [8], [9], [10], and manually select two components with similar

deformation areas as much as possible. Figs. 4 and 7 show

the comparison with various methods on the SCAPE and Horse

datasets. We show the corresponding deformation components in a

similar area on the shape (left arm of the SCAPE and every major

part of the horse). Our results are more meaningful, capturing

major deformation modes in a multiscale manner.

We then verify if our extracted components are more seman-

tically meaningful than other methods by a user study. We test

it on three datasets (SCAPE, Horse and Pants) and compare our

method with five state-of-the-art methods [7], [8], [9], [10], [28].

We adopt a scoring method to determine whether a component

has a certain semantics meaningfulness. The scoring is based on



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Front View Back View

Side
View

Mesh 
Sequence

First Level
Autoencoder

Second Level
Autoencoders

vel
ers

Fron

Figure 8. Multiscale deformation components on the skirt cloth dataset, extracted by our method with redundant component removal. The dataset is
obtained by simulation using a physics engine, which contains challenging cloth folds and complex motions. Some samples of the skirt dataset are
shown in the first row. In the second and third rows, deformation components extracted by the first-level AE and second-level AEs are visualized.
The results show that our method can learn to extract deformation components of different scales with the multiscale structure.

Front
View

Back
View

Side
View

Mesh 
Sequence

First Level
Autoencoder

Second Level
Autoencoders

With attention mechanism No attention mechanismntion mechanismNo at

Figure 9. Multiscale deformation components on the Dress dataset, extracted by our method with redundant component removal. The dataset
is obtained by simulating a lady walking forward in a skirt using a physics engine. In this figure, we compare the results with (left) and without
(right) the attention mechanism. The first row shows some examples in the dress dataset from the side view. For the results on the left with
attention mechanism, the second row visualizes the deformation components extracted by the first-level AE (AE0), which correspond well to major
deformations caused by the leg movement and wind, where the two results on the left are the deformations of the front of the skirt, and the two
results on the right are the deformation of the back of the skirt. The third row shows the detailed deformations of the cloth during the movement,
which are extracted by the second-level AEs (AEk, 1 ≤ k ≤ K). In contrast, the results on the right without attention are similarly extracted by two
levels of AEs, but no longer have a multiscale structure.

the participants perception of semantic appropriateness of each

component. For each data set, we first render the components

extracted by all methods into the same rendering style and mix

them together. We let the users browse all the pictures to have

an idea of distribution first, and then let the users score in the

range from 0 to 100 for each rendered image using a slider. 10

participants were involved in the user study. Then we work out

the average score of each method by every participant as shown in

Table 3. Our method receives highest scores in all the datasets.

In summary, compared with existing methods, our method can

extract plausible and reasonable localized deformation compo-

nents with semantic meanings, while the other methods have some

distortions and cannot extract multiscale deformation components.

Note that our extracted components correspond to deformations,

rather than semantic parts, so it is natural that they are not always

aligned with semantic segmentation, but instead aligned at the

motion sequence level, as observed also in previous works [7],

Table 3
The user study that verifies the semantic meaning of deformation

components extracted by various methods. We ask 10 participants and
report their average scores of each method on the three datasets.

DataSet
Neumann Bernard Wang Huang Tan

Our
et al. et al. et al. et al. et al.

Horse 46.69 30.37 48.37 56.28 52.41 68.00

SCAPE 33.87 40.87 55.29 48.13 61.33 72.54

Pants 36.37 55.75 23.00 50.50 46.00 73.37

[8], [9], [10], [28].

In addition, we show more visualization results of multiscale

deformation components on the following datasets: Swing [86],

a fat person (ID: 50002) from Dyna [85], Flag, Dress and Skirt.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Mesh Data

First Level
Autoencoder

Second Level
Autoencoders

el
rs

Figure 10. The multiscale structure of deformation components on the fat person (ID: 50002) from the Dyna [85] dataset, extracted by our method
with redundant component removal. The first row shows example shapes in the dataset, the second row presents coarse-level deformation
components from the first-level AE0, and the third row shows the fine-level deformation components from the second-level AEs.

Mesh 
Sequence

First Level
Autoencoder

Second Level
Autoencoders

Figure 11. The multiscale structure of deformation components on the
running pants data set [84]. In the figure, we have removed redundant
components. Our method can learn deformation components at different
scales. The first row shows example shapes of the running pants, the
second row gives deformation components extracted by the first-level
AE, which correspond to deformations caused by leg movement, and
the third row presents the detailed deformations of the cloth from the
second-level AEs.

The Flag, Dress and Skirt datasets are synthesized by physical

simulation. The Skirt dataset contains more complex motion

and deformations. In Figs. 10, 12, 9, 8, 13, the components

extracted by our method are in a multiscale manner and consistent

with semantic meanings and our method can learn deformation

components of different scales with multiscale structure from

complex datasets.

We further compare shape editing using various methods by

given control points and deformation components they extract.

An example is shown in Fig. 14. We use the 8 control points

(rendered as green balls) on the 29th shape in the SCAPE

dataset [82] manually chosen by the user. Then we apply the

data-driven method [19] to reconstruct it with the help of the

extracted deformation components by various methods. As the

Mesh 
Sequence

First Level
Autoencoder

Second Level
Autoencoders

Figure 12. The multiscale structure of deformation components on
the Swing [86] dataset. The first row shows some example shapes
in the dataset, the second row presents coarse-level deformation
components from the first-level AE0, and the third row shows the fine-
level deformation components from the second-level AEs (AEk, 1 ≤
k ≤ K).

left part of Fig. 14 shows, our result is similar to the ground

truth and plausible, while the other results have some artifacts and

distortions, such as the right arm of [9] and left arm of [10]. The

right part of Fig. 14 shows the three main activated components

during data-driven deformation. Since the SCAPE contains much

large-scale rotation, the method [10] only focuses on extracting

large-scale deformation, but fails to capture important fine details,

which results in the serious distortion in the arm due to lack of

essential components.

5.3 Parameter Settings and Ablation Study

In this section, we evaluate the model sensitivity to the parameters,

including the weights (λ1, λ2) in the loss function, the size of

deformation region (d of Λik), the effect of attention mechanism



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Mesh 
Sequence

First Level
Autoencoder

Second Level
Autoencoders

Figure 13. The multiscale structure of deformation components on
the Flag dataset extracted by our method. The first row shows some
example shapes of the dataset, the second row presents coarse-level
deformation components from the first-level AE (AE0), and the third row
shows the fine-level deformation components from the second-level AEs
(AEk, 1 ≤ k ≤ K).

Figure 14. Comparison of shape reconstruction with different methods.
The first column shows the error heat maps on the ground truth shape
between the editing results and ground truth. The second column
presents the editing results of different methods. The right side of the
figure shows the three main activated deformation components during
data-driven deformation. We use the same control points manually
chosen by the user (8 vertices on the 29th shape in the SCAPE [82])
to reconstruct the shape with the data-driven deformation method [19]
and the same number of components. The figure shows that our result is
more plausible than the existing methods, and it is similar to the ground
truth.

on generalization error and the difference between joint training

and separate training.

5.3.1 The choice of λ1, λ2

We test the influence of parameters λ1, λ2 on the generalization

ability of the network. We evaluate it by Erms errors of

reconstructing unseen shapes on the SCAPE dataset. By fixing λ1

to the default value 10, we change λ2 from 0.2 to 30 as the right

curve of Fig. 15 shows. The result shows our network is robust to

different choices of λ2. With fixed λ2, we change λ1 from 0.2 to

30 as the left curve of Fig. 15 shows. The result justifies that our

0.2 0.5 1 2 5 10 15 20 25 30

1
10

20

30

40

G
en

ra
liz

at
io

n 
 E

rro
r

0.2 0.5 1 2 5 10 15 20 25 30

2

Figure 15. Erms errors of generating unseen shapes with our overall
autoencoder w.r.t. the weights λ1 and λ2. The figure shows that our
network can get lower errors when λ1 = 10 and is robust to different
choice of λ2.

(a) SCAPE [82] (b) CoMA [66]

Figure 16. The relationship between Erms of generating unseen shapes
and (d1, d2) is visualized, where d1 and d2 are from AE0 (first-level AE)
and AEk, 1 ≤ k ≤ K (second-level AEs) on six datasets, including
Dress, Fat, Pants, SCAPE, Skirt, and CoMA. The error distributions on
the heatmap are not entirely smooth in the figure, due to the gradient-
descent training procedure that leads to local minima. The black (below
the main diagonal) means no data, as by definition d1 should be larger
than d2.

network can get lower errors when λ1 = 10, which is chosen as

the default value in our experiments.

5.3.2 The choice of d in Λik

The other parameter to choose is d in Λik, which is the parameter

that determines the scale of the extracted components. In our

network, by default we stack two levels of autoencoders, so

we need choose two parameters d1, d2 for both the first-level

and the second-level autoencoders (AE0 and AEk(1 ≤ k ≤
K)) respectively. d1, d2 are cutoffs for normalized geodesic

distances with a range from 0 to 1, and thus the original

size of specific shapes in the dataset has little effect on them.

These parameters only reflect the relevant size of the localized

deformation components compared to the whole model. In order

to extract multiscale deformation components, we need to ensure

d1 > d2, then AEk will cover a more detailed region than

AE0. As Fig. 16 shows, we test the network generalization ability

(Erms) on the SCAPE [82] and CoMA [66] datasets with different

combinations d1, d2 by changing values from 0.05 to 0.5 with

step 0.05. The figure illustrates that using smaller d1 and d2
results in larger reconstruction errors. Although lower errors can

be achieved when d1 and d2 are large enough (close to 0.5),

this will lead to extracting more global deformation components,

which are not suitable for localized editing and may not be

perceptually meaningful. It is therefore a trade-off to balance the

generalization ability and the extracted deformation components.

In our experiments, we set d = [0.4, 0.2], which can make

the network extract localized components while keeping lower

reconstruction errors.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Mesh
Data

First Layer
Autoencoder

Second Layer
Autoencoders

Third Layer
Autoencoders

Figure 17. Three levels of visualization results on the Fat [85] dataset. In this figure, we display the extracted components visually from the three-
level autoencoders. For the 3rd level AEs, we can see that the extracted components have no clear semantic meanings and largely contain noise,
which is not desired and not useful for shape analysis/editing.

Table 4
Comparison of different training strategies and the influence of the attention mechanism for shape reconstruction. We show results comparing joint
training with separate training, and whether or not the attention mechanism is used. For each setting, we test it on several data sets by computing

Erms of the reconstructed shapes for unseen shapes. It shows that joint training with attention mechanism gives the best results.

DataSet Swing SCAPE Pants Humanoid Horse Flag Dress Jumping Fat Face

With Attention

Joint Training
12.2615 23.6807 6.4083 4.1538 6.9246 20.0627 11.5744 16.3475 4.3465 1.4409

Without Attention

Joint Training
17.1974 46.2339 8.2945 6.0285 20.8894 25.2675 12.5284 23.2829 5.3045 2.500

With Attention

Separate Training
20.2918 36.1484 15.0249 6.0469 11.5899 24.4949 14.0248 19.1332 4.4469 2.1345

Without Attention

Separate Training
26.7981 43.4439 19.8732 8.0583 17.4221 28.9938 17.3392 24.9437 7.3341 3.9472

5.3.3 The number of AE levels
The architecture of this neural net supports multiple levels of

deformation scales from coarse to fine. In almost all tested

dataset in this paper, the two level AEs architecture is enough

to represent. The error between the input ACAP feature Xi and

the reconstructed ACAP feature X̂i, 1 < i < N is divided by the

norm of Xi to get the relative squared errors as shown in Eqn. 8.

Êi =
||Xi − X̂i||2F

||Xi||2F
(8)

where ||·||F is the Frobenius norm, Êi is the relative squared error

on the ith shape in this dataset. Then, we choose the maximum

relative squared error in the whole dataset to represent the amount

of deformation that has not been represented in a normalized

manner. We show the results in Table 5. The experiment illustrates

that the relative squared errors of two-level AEs are very low in

all datasets so that our two-level AEs are sufficient, and the extra

3rd level AEs cannot improve the generalization on unseen data

significantly compared to the 2nd AEs.

Besides that, we also evaluate it on the Fat [85] dataset

qualitatively. From Figure 17, we can see that the extracted

components of the third-level AEs are not meaningful and mainly

correspond to noise, which are not useful for applications such as

shape analysis and editing.

5.3.4 The choice of Kz

Kz specifies the dimensions of the latent spaces of two-level

AEs. This hyper-parameter decides the number of deformation

components in each autoencoder of each level. Since methods

compared in the paper produce 50 deformation components, we let

Kz0×Kz1 = 50 for fair comparison. We have the following com-

binations: Kz = [1, 50], [2, 25], [5, 10], [10, 5], [25, 2], [50, 1].
However, [1, 50], [50, 1] are trivial settings, so we test the other

four settings of Kz on the SCAPE dataset. Table 6 shows the

results, which illustrate that it performs well when Kz = [25, 2].
But, there are only two deformation components for each second-

level AE, which is not reasonable for most datasets. For example,

in Fig. 2, our network extracts three meaningful components for

some branches on the SCAPE dataset. This is consistent with



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Figure 18. Comparison of multiscale shape editing. We compare the editing results with different methods on the SCAPE [82] and Horse [4]
datasets. The results demonstrate that our extracted deformation components are suitable for multiscale shape editing. The first column shows
the editing steps. Every row gives the deformed results of the corresponding action of various methods. The differences with other methods are
highlighted in the orange rectangle with closeups to show the details. The existing methods have obvious distortions, demonstrating the superiority
of our multiscale deformation components.

Table 5
The maximum of per-shape relative squared errors for every tested dataset in this paper. The errors are calculated by Eqn. 8 (Eqn. 8 in our paper).
As shown in the table, the two-level AEs can represent deformations very well with tiny relative reconstruct errors, while the reconstruction errors
with one-level AE are much larger for reconstructing the input features. While adding another level of AEs slightly reduces reconstruction errors,

the extra 3rd level AE cannot improve the generalization on unseen data significantly, compared to the 2nd AE.

Dataset Horse Face Jumping Swing Pants Dress Fat Flag Humanoid Skirt CoMA SCAPE

Relative Squared Error

(one-level AEs)
0.1219 0.06325 0.2312 0.4756 0.1763 0.5471 0.1322 0.1983 0.02563 0.4319 0.1171 0.3977

Relative Squared Error

(two-level AEs)
0.005491 0.001065 0.007800 0.06876 0.01745 0.06296 0.005652 0.02674 0.008002 0.07159 0.01960 0.02155

Relative Squared Error

(three-level AEs)
0.003567 0.0008306 0.004958 0.01065 0.009976 0.05927 0.003280 0.02595 0.003805 0.04081 0.01143 0.01225

observations from other datasets. So we choose the second high

performance with the setting Kz = [10, 5].

5.3.5 Training strategies and attention mechanism
Finally, we evaluate the effect of the attention mechanism and

different training strategies. The statistics are shown in Table 4

based on the experiments on the SCAPE dataset.

For the training strategy, we compare the reconstruction error

(Erms) by training the network either jointly or separately. The

results are shown in the first and third rows of Table 4, and jointly

training the network can get better results.

We also perform the experiment to demonstrate the effect

of the attention mechanism qualitatively and quantitatively. The

results are shown in the first and second rows of Table 4. Training

Table 6
The reconstruction errors on the unseen data from SCAPE with

different settings of Kz . For each setting, it represents the dimensions
of latent spaces of two-level AEs. From the table, it shows that our

method has high performance with the setting Kz = [25, 2]. However,
there are only up to 2 deformation components for each second-level
AE with the setting, which is not reasonable for most of datasets. For

example, in figure 2, our network extracts three meaningful components
for some branches on the SCAPE dataset. So we choose Kz = [10, 5].

Kz [2, 25] [5, 10] [10, 5] [25, 2]
Erms 34.9763 29.1127 23.6807 21.7749

with attention mechanism gets lower errors. The reason is that

each autoencoder of the second-level will focus on a different



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

sub-region to minimize the loss.

For the qualitative evaluation, we show the results in Fig. 9.

If we train our network without the attention mechanism, our

network architecture degenerates into the version of Tan et al. [10]

with two-level autoencoders. In this case, a single second-level

AE is sufficient as there would be no differences between them if

multiple AEs were used. Despite this, different level autoencoders

are also able to extract the different scale deformation components

as shown in the right part of Fig. 9. In the left part of Fig. 9,

the second and third rows represent the deformation components

extracted by first-level and second-level AEs respectively, with

redundant components removed. The first row shows some sample

meshes in the Dress dataset. The results illustrate that without the

attention mechanism, the deformation components no longer have

a multiscale structure when the second level AEs do not focus on

sub-regions to extract the deformations components.

5.3.6 Comparison with DEMEA on Shape Reconstruction
For fair and convincing comparison, we compare our baseline

architecture with DEMEA [67] on the four datasets (COMA [66],

SynHand5M [93], TextureLess Cloth [94], and DFaust [95]) with

the same setting as used in [67]. We also use the same training

set and test set split. With the same dimensions (8 and 32) of

latent space, we also set our network with only one-level AE

to make the architectures more comparable on the same metric

(average per-vertex errors). In Table 7, we present the quantitative

evaluation on the test datasets with different dimensions of latent

space, and we can see that our method outperforms DEMEA

on the four datasets for the shape reconstruction task. This also

demonstrates that the shape representation and our autoencoder

architecture are better choices than DEMEA [67]. Such benefits

can be more substantial when shapes undergo more substantial

deformations, such as various human body poses, so we build our

network architecture based on this.

Table 7
In this table, we evaluate the generalization ability on the test data for 4

datasets (CoMA [66], SynHand5M [93], TextureLess Cloth [94], and
DFaust [95]) and compare our baseline with DEMEA [67] with different

dimensions of latent space. For fair comparison, we also set our
network with only one-level AE to make the architectures more

comparable and use the same metrics (average per-vertex errors).

Methods CoMA SynHand5M Cloth Dfaust

Dimension of

latent space
8 32 8 32 8 32 8 32

DEMEA [67] 1.49 1.05 8.97 4.67 13.40 8.30 6.60 2.90

Ours (baseline) 1.17 0.82 6.10 3.30 10.03 4.62 6.05 2.17

5.4 Multiscale Shape Editing
Multiscale shape editing is an important application in computer

graphics. Users usually start with editing of the overall shape,

and then focus on adjusting the details. With existing methods,

the extracted deformation components either contain some global

information [7], [28] thus making the components unsuitable

for local editing, or focus too much on large-scale deformations

and fail to capture essential small-scale deformations for faithful

reconstruction, leading to distortions like [10], which would affect

the users’ editing efficiency for 3D animations. Given a shape de-

formation dataset that contains diverse deformations, our method

can produce multiscale localized deformation components which

are visually semantically meaningful, corresponding to typical

deformation behaviour. Along with data-driven deformation [19],

this allows users to edit shapes efficiently and intuitively under

the constraints of the control points and subspace spanned by

extracted deformation components. Please refer to the work [19]

for implementation details of data-driven deformation.

Fig. 18 shows some examples. For the SCAPE dataset, we

design two actions: raising the left arm (Action 1) and then

turning the wrist (Action 2). All the compared methods perform

well in Action 1. However, in Action 2, only our method can

naturally twist wrist with the help of our extracted multi-scale

deformation components. In contrast, all other methods have

various distortions. For the Horse dataset, we also design two

actions: raising the whole tail (Action 1) and then twisting the

end of the tail (Action 2). Our method can bend the end of

the tail naturally after raising the whole tail. But other methods

have more distortions and even lead to changes on the entire

tail, especially the methods [7], [28] based on the Euclidean

coordinate representation. In summary, our extracted multiscale

deformation components can perform better than existing methods

in multiscale shape editing. See the accompanying video for more

results.

6 LIMITATION AND CONCLUSION

In this paper, we propose a novel autoencoder with the attention

mechanism to extract multiscale localized deformation compo-

nents. We use stacked AEs to extract multiscale deformation

components. This helps capture richer information for better shape

editing, with better generalization ability (see Table 2). Moreover,

the first-level AE extracts some coarse level components and

learns attention masks to help the second-level AEs focus on

relevant sub-regions to extract fine-level components. Extensive

quantitative and qualitative evaluations show that our method is

effective, outperforming state-of-the-art methods. The extracted

deformation components by our method can be used on multiscale

shape editing for computer animation, which demonstrates that

the extracted multiscale localized deformation components are

effective and meaningful for reducing the user’s efforts. In the

future, this work can give more solutions and explorations on

applying the attention mechanism on 3D shape analysis and

synthesis.

Although our method can analyze the shape dataset in a

multiscale manner to extract deformation components of different

scales for easy shape editing, there are some limitations. Our

method can only handle datasets containing meshes with the same

connectivity. Although such datasets are common for deformable

shapes, it would be useful to extend our method cope with general

3D shapes, e.g. from ShapeNet. In addition, our current method

uses a fixed network architecture and attention mechanism to

analyze shapes in a multiscale manner, which does not take into

account unique characteristics of shape deformations in individual

datasets. In the future we would like exploit analyzing and

capturing the variation of the multiscale structures automatically.

Furthermore, this method could also be implemented on other

deep learning frameworks such as Jittor [53] – a just-in-time (JIT)

compiled deep learning framework with higher efficiency. Finally,

it would also be useful to improve the pipeline to merge he post-

processing (Sec. 4.3) to the neural network which can predict the

number of sub-components automatically.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

ACKNOWLEDGMENTS

This work was supported by the the National Natural Science

Foundation of China (No. 62061136007 and No. 61872440), the

Beijing Municipal Natural Science Foundation (No. L182016),

the Science and Technology Service Network Initiative, Chinese

Academy of Sciences (No. KFJ-STS-QYZD-2021-11-001), Royal

Society Newton Advanced Fellowship (No. NAF\R2\192151),

the Youth Innovation Promotion Association CAS and the Open

Research Projects of Zhejiang Lab (No. 2021KE0AB06).

REFERENCES

[1] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,”
in Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on
Geometry Processing, 2007, pp. 109–116.

[2] T. Igarashi, T. Moscovich, and J. F. Hughes, “As-rigid-as-possible shape
manipulation,” ACM transactions on Graphics (TOG), vol. 24, no. 3, pp.
1134–1141, 2005.

[3] S.-Y. Chen, L. Gao, Y.-K. Lai, and S. Xia, “Rigidity controllable as-rigid-
as-possible shape deformation,” Graphical Models, vol. 91, pp. 13–21,
2017.

[4] R. W. Sumner and J. Popović, “Deformation transfer for triangle meshes,”
ACM Transactions on graphics (TOG), vol. 23, no. 3, pp. 399–405, 2004.

[5] J. Yang, L. Gao, Y.-K. Lai, P. L. Rosin, and S. Xia, “Biharmonic
deformation transfer with automatic key point selection,” Graphical
Models, vol. 98, pp. 1–13, 2018.

[6] L. Gao, J. Yang, Y.-L. Qiao, Y.-K. Lai, P. L. Rosin, W. Xu, and S. Xia,
“Automatic unpaired shape deformation transfer,” ACM Transactions on
Graphics (TOG), vol. 37, no. 6, pp. 1–15, 2018.

[7] T. Neumann, K. Varanasi, S. Wenger, M. Wacker, M. Magnor,
and C. Theobalt, “Sparse localized deformation components,” ACM
Transactions on Graphics (TOG), vol. 32, no. 6, p. 179, 2013.

[8] Z. Huang, J. Yao, Z. Zhong, Y. Liu, and X. Guo, “Sparse localized
decomposition of deformation gradients,” in Computer Graphics Forum
(CGF), vol. 33, no. 7. Wiley Online Library, 2014, pp. 239–248.

[9] Y. Wang, G. Li, Z. Zeng, and H. He, “Articulated-motion-aware sparse
localized decomposition,” in Computer Graphics Forum (CGF), vol. 36,
no. 8. Wiley Online Library, 2017, pp. 247–259.

[10] Q. Tan, L. Gao, Y. Lai, J. Yang, and S. Xia, “Mesh-based autoencoders
for localized deformation component analysis,” in AAAI Conference on
Artificial Intelligence (AAAI), 2018, pp. 2452–2459.

[11] C. N. Alleman, J. W. Foulk, A. Mota, H. Lim, and D. J.
Littlewood, “Concurrent multiscale modeling of microstructural effects
on localization behavior in finite deformation solid mechanics,”
Computational Mechanics, vol. 61, no. 1-2, pp. 207–218, 2018.

[12] M. Mathew, A. Ellenberg, S. Esola, M. McCarthy, I. Bartoli, and
A. Kontsos, “Multiscale deformation measurements using multispectral
optical metrology,” Structural Control and Health Monitoring, vol. 25,
no. 6, p. e2166, 2018.

[13] M. K. Abeyratne, W. Freeden, and C. Mayer, “Multiscale deformation
analysis by cauchy-navier wavelets,” Journal of Applied Mathematics,
vol. 2003, 2002.

[14] K. C. Lam, T. C. Ng, and L. M. Lui, “Multiscale representation
of deformation via beltrami coefficients,” Multiscale Modeling &
Simulation, vol. 15, no. 2, pp. 864–891, 2017.

[15] Y. Yang, W. Xu, X. Guo, K. Zhou, and B. Guo, “Boundary-aware
multidomain subspace deformation,” IEEE transactions on visualization
and computer graphics (TVCG), vol. 19, no. 10, pp. 1633–1645, 2013.

[16] H. Hamidian, Z. Zhong, F. Fotouhi, and J. Hua, “Surface registration
with eigenvalues and eigenvectors,” IEEE transactions on visualization
and computer graphics (TVCG), 2019.

[17] S.-L. Liu, Y. Liu, L.-F. Dong, and X. Tong, “Ras: A data-driven rigidity-
aware skinning model for 3d facial animation,” in Computer Graphics
Forum (CGF), vol. 39, no. 1. Wiley Online Library, 2020, pp. 581–594.

[18] J. Fu, H. Zheng, and T. Mei, “Look closer to see better:
Recurrent attention convolutional neural network for fine-grained image
recognition,” in Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 2, 2017, p. 3.

[19] L. Gao, Y.-K. Lai, J. Yang, Z. Ling-Xiao, S. Xia, and L. Kobbelt, “Sparse
data driven mesh deformation,” IEEE transactions on visualization and
computer graphics (TVCG), 2019.

[20] W. Xu, J. Wang, K. Yin, K. Zhou, M. Van De Panne, F. Chen, and B. Guo,
“Joint-aware manipulation of deformable models,” ACM Transactions on
Graphics (TOG), vol. 28, no. 3, pp. 1–9, 2009.

[21] M. E. Yumer and L. B. Kara, “Co-constrained handles for deformation in
shape collections,” ACM Transactions on Graphics (TOG), vol. 33, no. 6,
p. 187, 2014.

[22] M. E. Yumer, S. Chaudhuri, J. K. Hodgins, and L. B. Kara, “Semantic
shape editing using deformation handles,” ACM Transactions on
Graphics (TOG), vol. 34, no. 4, p. 86, 2015.

[23] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y. Shum,
“Large mesh deformation using the volumetric graph laplacian,” in ACM
SIGGRAPH 2005 Papers, 2005, pp. 496–503.

[24] L. Gao, Y.-K. Lai, D. Liang, S.-Y. Chen, and S. Xia, “Efficient and
flexible deformation representation for data-driven surface modeling,”
ACM Transactions on Graphics (TOG), vol. 35, no. 5, p. 158, 2016.

[25] M. Alexa and W. Müller, “Representing animations by principal
components,” in Computer Graphics Forum (CGF), vol. 19, no. 3. Wiley
Online Library, 2000, pp. 411–418.

[26] L. Gao, G. Zhang, and Y. Lai, “Lp shape deformation,” Science China
Information Sciences, vol. 55, no. 5, pp. 983–993, 2012.

[27] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component
analysis,” Journal of computational and graphical statistics, vol. 15,
no. 2, pp. 265–286, 2006.

[28] F. Bernard, P. Gemmar, F. Hertel, J. Goncalves, and J. Thunberg,
“Linear shape deformation models with local support using graph-based
structured matrix factorisation,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 5629–5638.

[29] J. R. Tena, F. De la Torre, and I. Matthews, “Interactive region-based
linear 3D face models,” in ACM Transactions on Graphics (TOG), 2011,
vol. 30, no. 4, pp. 1–10.

[30] T. Neumann, K. Varanasi, N. Hasler, M. Wacker, M. Magnor,
and C. Theobalt, “Capture and statistical modeling of arm-muscle
deformations,” in Computer Graphics Forum (CGF), vol. 32, no. 2pt3.
Wiley Online Library, 2013, pp. 285–294.

[31] S. Fröhlich and M. Botsch, “Example-driven deformations based on
discrete shells,” in Computer graphics forum (CGF), vol. 30, no. 8.
Wiley Online Library, 2011, pp. 2246–2257.

[32] M. Botsch and O. Sorkine, “On linear variational surface deformation
methods,” IEEE transactions on visualization and computer graphics
(TVCG), vol. 14, no. 1, pp. 213–230, 2007.

[33] Y.-J. Yuan, Y.-K. Lai, T. Wu, L. Gao, and L. Liu, “A revisit of shape
editing techniques: From the geometric to the neural viewpoint,” Journal
of Computer Science and Technology, vol. 36, no. 3, pp. 520–554, 2021.

[34] M. Chen, C. Wang, and L. Liu, “Cross-domain retrieving sketch and
shape using cycle cnns,” Computers & Graphics, 2020.

[35] C. Jiang, D. Wang, J. Huang, P. Marcus, M. Nießner et al.,
“Convolutional neural networks on non-uniform geometrical signals
using euclidean spectral transformation,” 2019.

[36] K. Sarkar, K. Varanasi, and D. Stricker, “3D shape processing by
convolutional denoising autoencoders on local patches,” in 2018 IEEE
Winter Conference on Applications of Computer Vision (WACV). IEEE,
2018, pp. 1925–1934.

[37] C. Jiang, D. Lansigan, P. Marcus, and M. Nießner, “DDSL:
Deep differentiable simplex layer for learning geometric signals,”
in Proceedings of the IEEE International Conference on Computer
Vision(ICCV), 2019, pp. 8769–8778.

[38] D. Maturana and S. Scherer, “VoxNet: a 3D convolutional neural network
for real-time object recognition,” in IEEE Conference on Intelligent
Robots and Systems, 2015, pp. 922–928.

[39] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3D shape recognition,” in IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 945–
953.

[40] M. E. Yumer and N. J. Mitra, “Learning semantic deformation flows
with 3D convolutional networks,” in European Conference on Computer
Vision (ECCV), 2016, pp. 294–311.

[41] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-CNN:
Octree-based convolutional neural networks for 3D shape analysis,” ACM
Transactions On Graphics (TOG), vol. 36, no. 4, pp. 1–11, 2017.

[42] P.-S. Wang, C.-Y. Sun, Y. Liu, and X. Tong, “Adaptive o-cnn: A patch-
based deep representation of 3d shapes,” ACM Transactions on Graphics
(TOG), vol. 37, no. 6, pp. 1–11, 2018.

[43] P.-S. Wang, Y. Liu, and X. Tong, “Deep octree-based cnns with
output-guided skip connections for 3d shape and scene completion,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2020, pp. 266–267.

[44] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolution
on x-transformed points,” Advances in Neural Information Processing
Systems (NeurIPS), pp. 820–830, 2018.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 16

[45] H. Lei, N. Akhtar, and A. Mian, “Spherical convolutional neural network
for 3D point clouds,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 9631–9640.

[46] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” Acm
Transactions On Graphics (TOG), vol. 38, no. 5, pp. 1–12, 2019.

[47] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M.
Hu, “Pct: Point cloud transformer,” Computational Visual Media, vol. 7,
no. 2, pp. 187–199, 2021.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems(NeurIPS), 2017, pp. 5998–6008.

[49] B. Shi, S. Bai, Z. Zhou, and X. Bai, “DeepPano: Deep panoramic
representation for 3-D shape recognition,” IEEE Signal Processing
Letters, vol. 22, no. 12, pp. 2339–2343, 2015.

[50] K. Sarkar, B. Hampiholi, K. Varanasi, and D. Stricker, “Learning 3d
shapes as multi-layered height-maps using 2d convolutional networks,”
in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 71–86.

[51] H. Huang, E. Kalegorakis, S. Chaudhuri, D. Ceylan, V. Kim,
and E. Yumer, “Learning local shape descriptors with view based
convolutional neural networks,” ACM Transactions on Graphics (TOG),
vol. 2, 2018.

[52] S.-M. Hu, Z.-N. Liu, M.-H. Guo, J.-X. Cai, J. Huang, T.-J. Mu, and R. R.
Martin, “Subdivision-based mesh convolution networks,” arXiv preprint
arXiv:2106.02285, 2021.

[53] S.-M. Hu, D. Liang, G.-Y. Yang, G.-W. Yang, and W.-Y. Zhou, “Jittor:
a novel deep learning framework with meta-operators and unified graph
execution,” Science China Information Sciences, vol. 63, no. 12, pp. 1–
21, 2020.

[54] Y.-J. Yuan, Y.-K. Lai, J. Yang, Q. Duan, H. Fu, and L. Gao,
“Mesh variational autoencoders with edge contraction pooling,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2020, pp. 274–275.

[55] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Advances in Neural Information
Processing Systems (NeurIPS), 2015, pp. 2224–2232.

[56] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in International Conference on Machine Learning
(ICML), 2016, pp. 2014–2023.

[57] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in Neural Information Processing Systems (NeurIPS), 2016. [Online].
Available: https://arxiv.org/abs/1606.09375

[58] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” in International Conference on
Learning Representations (ICLR), 2014.

[59] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances in
Neural Information Processing Systems (NeurIPS), 2016, pp. 3844–3852.

[60] T. Qingyang, L.-X. Zhang, J. Yang, Y.-K. Lai, and L. Gao, “Mesh-based
variational autoencoders for localized deformation component analysis,”
IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),
2021.

[61] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[62] A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris, “Deep
learning advances in computer vision with 3d data: A survey,” ACM
Computing Surveys (CSUR), vol. 50, no. 2, pp. 1–38, 2017.

[63] Y. Jin, D. Jiang, and M. Cai, “3d reconstruction using deep learning: a
survey,” Communications in Information and Systems, vol. 20, no. 4, pp.
389–413, 2020.

[64] Y.-P. Xiao, Y.-K. Lai, F.-L. Zhang, C. Li, and L. Gao, “A survey on deep
geometry learning: From a representation perspective,” Computational
Visual Media, vol. 6, no. 2, pp. 113–133, 2020.

[65] Q. Tan, L. Gao, Y. Lai, and S. Xia, “Variational autoencoders for
deforming 3D mesh models,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 5841–5850.

[66] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black, “Generating 3D faces
using convolutional mesh autoencoders,” in European Conference on
Computer Vision (ECCV), 2018, pp. 725–741.

[67] E. Tretschk, A. Tewari, M. Zollhöfer, V. Golyanik, and C. Theobalt,
“DEMEA: Deep Mesh Autoencoders for Non-Rigidly Deforming
Objects,” arXiv:1905.10290v1, 2020.

[68] O. Litany, A. Bronstein, M. Bronstein, and A. Makadia, “Deformable
shape completion with graph convolutional autoencoders,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition(CVPR), 2018, pp. 1886–1895.

[69] L. Fulton, V. Modi, D. Duvenaud, D. I. Levin, and A. Jacobson, “Latent-
space dynamics for reduced deformable simulation,” in Computer
Graphics Forum (CGF), vol. 38, no. 2. Wiley Online Library, 2019,
pp. 379–391.

[70] S. Ma, J. Fu, C. W. Chen, and T. Mei, “DA-GAN: Instance-level image
translation by deep attention generative adversarial networks,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 5657–5666.

[71] J. Si, H. Zhang, C.-G. Li, J. Kuen, X. Kong, A. C. Kot, and G. Wang,
“Dual attention matching network for context-aware feature sequence
based person re-identification,” 2018 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[72] J. Xu, R. Zhao, F. Zhu, H. Wang, and W. Ouyang, “Attention-
aware compositional network for person re-identification,” 2018 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[73] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in Proceedings of the
2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2016, pp.
1480–1489.

[74] X. Zhang, T. Wang, J. Qi, H. Lu, and G. Wang, “Progressive
attention guided recurrent network for salient object detection,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 714–722.

[75] B. Zhuang, Q. Wu, C. Shen, I. Reid, and A. van den Hengel, “Parallel
attention: A unified framework for visual object discovery through
dialogs and queries,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition(CVPR), 2018, pp. 4252–4261.

[76] X. Long, C. Gan, G. de Melo, J. Wu, X. Liu, and S. Wen, “Attention
clusters: Purely attention based local feature integration for video
classification,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 7834–7843.

[77] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[78] J. Lu, J. Yang, D. Batra, and D. Parikh, “Hierarchical question-image
co-attention for visual question answering,” in Advances In Neural
Information Processing Systems (NeurIPS), 2016, pp. 289–297.

[79] P. Wang, Q. Wu, C. Shen, and A. van den Hengel, “The VQA-
machine: Learning how to use existing vision algorithms to answer
new questions,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 4, 2017, pp. 1173–1182.

[80] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and
X. Tang, “Residual attention network for image classification,” The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3156–3164, 2017.

[81] K. Crane, C. Weischedel, and M. Wardetzky, “Geodesics in Heat: A
New Approach to Computing Distance Based on Heat Flow,” ACM
Transactions on Graphics (TOG), vol. 32, pp. 152:1–152:11, 2013.

[82] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and
J. Davis, “SCAPE: shape completion and animation of people,” in ACM
transactions on graphics (TOG), vol. 24, no. 3, 2005, pp. 408–416.

[83] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz, “Spacetime
faces: High-resolution capture for modeling and animation,” in ACM
Transactions on Graphics (TOG), 2004, pp. 548–558.

[84] R. White, K. Crane, and D. A. Forsyth, “Capturing and animating
occluded cloth,” in ACM Transactions on Graphics (TOG), vol. 26, no. 3.
ACM, 2007, p. 34.

[85] G. Pons-Moll, J. Romero, N. Mahmood, and M. J. Black, “Dyna: A
model of dynamic human shape in motion,” ACM Transactions on
Graphics(TOG), vol. 34, no. 4, pp. 120:1–120:14, 2015.

[86] D. Vlasic, I. Baran, W. Matusik, and J. Popović, “Articulated mesh
animation from multi-view silhouettes,” in ACM Transactions on
Graphics (TOG), vol. 27, no. 3. ACM, 2008, pp. 97:1–97:9.

[87] D. Kingma and J. Ba, “ADAM: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015.

[88] L. Kavan, P.-P. Sloan, and C. O’Sullivan, “Fast and efficient skinning of
animated meshes,” in Computer Graphics Forum (CGF), vol. 29, no. 2.
Wiley Online Library, 2010, pp. 327–336.

[89] L. Vasa and V. Skala, “A perception correlated comparison method
for dynamic meshes,” IEEE transactions on visualization and computer
graphics (TVCG), vol. 17, no. 2, pp. 220–230, 2011.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 17

[90] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest point
strategy for progressive image sampling,” IEEE Transactions on Image
Processing, vol. 6, no. 9, pp. 1305–1315, 1997.

[91] A. M. Bronstein, M. M. Bronstein, and R. Kimmel, Numerical geometry
of non-rigid shapes. Springer Science & Business Media, 2008.

[92] R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popović, “Mesh-based
inverse kinematics,” in ACM transactions on graphics (TOG), vol. 24,
no. 3. ACM, 2005, pp. 488–495.

[93] J. Malik, A. Elhayek, F. Nunnari, K. Varanasi, K. Tamaddon, A. Heloir,
and D. Stricker, “Deephps: End-to-end estimation of 3d hand pose
and shape by learning from synthetic depth,” in 2018 International
Conference on 3D Vision (3DV). IEEE, 2018, pp. 110–119.

[94] J. Bednarik, P. Fua, and M. Salzmann, “Learning to reconstruct texture-
less deformable surfaces from a single view,” in 2018 International
Conference on 3D Vision (3DV). IEEE, 2018, pp. 606–615.

[95] F. Bogo, J. Romero, G. Pons-Moll, and M. J. Black, “Dynamic FAUST:
Registering human bodies in motion,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), Jul. 2017.

Jie Yang received a bachelor’s degree in math-
ematics from Sichuan University in 2016. He
is currently a PhD candidate in the Institute
of Computing Technology, Chinese Academy of
Sciences. His research interests include com-
puter graphics and geometric processing.

Lin Gao received the bachelor’s degree in math-
ematics from Sichuan University and the PhD
degree in computer science from Tsinghua Uni-
versity. He is currently an Associate Professor at
the Institute of Computing Technology, Chinese
Academy of Sciences. He has been awarded
Royal Society Newton Advanced Fellowship and
the Asia Graphics Association young researcher
award. His research interests include computer
graphics and geometric processing.

Qingyang Tan received the B.Eng. degree in
Computer Science and Technology from Univer-
sity of Chinese Academy of Sciences. He is a
Ph.D. student at University of Maryland, College
Park. His research interests include computer
graphics and geometric processing.

Yi-Hua Huang obtained his bachelor degree
from the University of Chinese Academy of Sci-
ences. He is currently a graduate candidate in
the Institute of Computation Technology, Chi-
nese Academy of Sciences. His research inter-
ests include computer graphics and visions.

Shihong Xia is a professor associated with
the Beijing Key Laboratory of Mobile Computing
and Pervasive Device, Institute of Computing
Technology, Chinese Academy of Sciences. He
received a bachelor’s degree in mathematics
from Sichuan Normal University, China, in 1996
and a PhD degree in computer software and the-
ory from the University of Chinese Academy of
Sciences in 2002. His research interests include
computer graphics, virtual reality and artificial
intelligence.

Yu-Kun Lai received his bachelor’s degree and
PhD degree in computer science from Tsinghua
University in 2003 and 2008, respectively. He
is currently a Professor in the School of Com-
puter Science & Informatics, Cardiff University.
His research interests include computer graph-
ics, geometry processing, image processing and
computer vision. He is on the editorial boards
of Computer Graphics Forum and The Visual
Computer.




