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We introduce TM-NET, a novel deep generative model for synthesizing tex-
tured meshes in a part-aware manner. Once trained, the network can generate 
novel textured meshes from scratch or predict textures for a given 3D mesh, 
without image guidance. Plausible and diverse textures can be generated 
for the same mesh part, while texture compatibility between parts in the 
same shape is achieved via conditional generation. Specifically, our method 
produces texture maps for individual shape parts, each as a deformable box, 
leading to a natural UV map with limited distortion. The network separately 
embeds part geometry (via a PartVAE) and part texture (via a TextureVAE) 
into their respective latent spaces, so as to facilitate learning texture prob-
ability distributions conditioned on geometry. We introduce a conditional 
autoregressive model for texture generation, which can be conditioned on 
both part geometry and textures already generated for other parts to achieve 
texture compatibility. To produce high-frequency texture details, our Tex-
tureVAE operates in a high-dimensional latent space via dictionary-based 
vector quantization. We also exploit transparencies in the texture as an effec-
tive means to model complex shape structures including topological details. 
Extensive experiments demonstrate the plausibility, quality, and diversity 
of the textures and geometries generated by our network, while avoiding 
inconsistency issues that are common to novel view synthesis methods.

CCS Concepts: · Computing methodologies → Shape modeling.
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1 INTRODUCTION

With rapid advances in deep learning, many recent works propose
deep neural networks to learn 3D shape representations [Chen et al.
2020; Chen and Zhang 2019; Gao et al. 2019; Groueix et al. 2018; Li
et al. 2017; Mescheder et al. 2019; Mo et al. 2019a; Park et al. 2019;
Wang et al. 2018a; Wu et al. 2019], 3D generative models [Chen and
Zhang 2019; Gao et al. 2019; Li et al. 2017; Wu et al. 2016, 2019], and
reconstructions from different sources such as images [Li and Zhang
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Textured meshes generated from random samples

Multiple textures generated for the same mesh

Fig. 1. Our deep generative network, TM-NET, can generate texturedmeshes

from random samples in a latent space (top) and synthesizemultiple textures

for the same input shape (bottom). Our texture generation is part-aware,

where different shape parts may be textured differently. Furthermore, even

if the underlying mesh is relatively low-resolution (e.g., the top right chair

has < 4K vertices), the generated textures can exhibit the appearance of

topological details (e.g., holes between the slats on the chair back).

2021; Richter and Roth 2018;Wang et al. 2018b], point scans [Groueix

et al. 2018; Park et al. 2019], and sketches [Han et al. 2017; Lun et al.

2017]. However, state-of-the-art methods still cannot produce 3D

shapes with high visual quality, in terms of the realism and richness

of the shapes’ appearance. The generation and reconstruction of

surface and topological details are especially difficult, due to lack

of data and the technical and computational challenges in training

deep models for high-resolution geometries.

In the absence of geometric details, a classical graphics łtrickž is

to create the appearance of surface richness by simulating details

in the image space, e.g., via texture or bump mapping. As shown

in Figure 1, textured meshes can exhibit the kind of realism and

visual fidelity that geometry alone cannot convey, even when the

underlying mesh resolution is fairly low. However, despite the flour-

ishing of geometric deep learning, there have been few attempts

at developing a deep generative model for textured meshes. To the

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2021.
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Fig. 2. An overview of the key components of TM-NET, for textured mesh generation. Each part is encoded using two Variational Autoencoders (VAEs):

PartVAE for geometry with 𝐸𝑛𝑐𝑃 as the encoder and 𝐷𝑒𝑐𝑃 as the decoder, and TextureVAE for texture with 𝐸𝑛𝑐𝑇 as the encoder and 𝐷𝑒𝑐𝑇 as the decoder.

For texture generation, TM-NET designs a conditional autoregressive generative model, which takes the latent vector of PartVAE as condition input and

outputs discrete feature maps. These feature maps are decoded as texture images for the input mesh geometry.

best of our knowledge, existing works on textured shape gener-

ation have predominantly relied on single- or multi-view image

guidance [Chen et al. 2019; Liu et al. 2019; Raj et al. 2019].

In this paper, we introduce TM-NET, a deep generative network

for textured meshes, aiming to fill several gaps in learning-based

realistic 3D shape modeling. First, we seek a generic decoder which

can generate textured meshes with or without image guidance. Next,

the network can generate novel textured meshes, e.g., from random

samples in some latent space, and predict textures for a given 3D

shape. Last but not least, the generative model should be part-based

to allow different shape parts to be textured differently, which is

naturally expected for many real-world objects.

With these goals in mind, our design for TM-NET draws inspira-

tion from SDM-NET [Gao et al. 2019], a deep generative network

for structured deformable meshes. Specifically, SDM-NET generates

meshes formed by parts, where each part is homeomorphic to a

cuboid box and finer-scale geometry of the part can be controlled by

deforming the template box. Architecturally, the network consists of

a part-level variational autoencoder (VAE) for learning genus-zero

mesh parts and a structure-part VAE (SP-VAE), which jointly learns

part structures and part geometries from a shape collection.

Figure 2 shows the key components of our network TM-NET,

with the dataset and training processes detailed in Section 4. Similar

to SDM-NET, our model learns a structured mesh representation,

where a textured mesh is represented at both the part level and

the overall shape level using VAEs. This allows both geometry and

texture to be represented in a well-aligned canonical form: the rich

geometry details are approximated and represented by deformations

enabled by the template boxes, and these boxes work naturally with

the UV-maps for texture mapping. Specifically, we can cut desig-

nated edges of a template box and flatten the box by unfolding it

onto the UV space that contains texture information; see Figure 3,

for example. The collection of deformable boxes, when mapped to

the parameter space, forms a consistent texture atlas even for shapes

with substantial structure and/or geometry variations, making ef-

fective learning of structured and textured shapes possible.

(a) (b) (c) (d)

Fig. 3. Texture representation with deformed boxes: (a) input model; (b)

template box and unfolded UV map where numbers on the box faces help

illustrate the unfolding process; (c) geometry and texture representations

with the deformable box; (d) decoded geometry and texture.

However, the generation of plausible, high-quality, and diverse

textured meshes poses several new challenges:

• First, the mapping between shape parts and textures is gen-

erally far from one-to-one Ð the same shape part may pos-

sess drastically different textures and vice versa. Thus a joint

learning of part geometry and part texture, which resembles

the SP-VAE in SDM-NET, would be unsuitable. We need a

different and more adaptive encoding approach.

• Second, a critical requirement to part-based texture represen-

tation is to ensure that compatible textures are generated for

different parts. Hence, we must add a new layer of depen-

dency, via conditional modeling, into our network design.

• Third, to produce textures with high-frequency details, we

must address the tendency of VAEs to generate blurry out-

puts [Dosovitskiy and Brox 2016].

To address these challenges, TM-NET separately embeds part

geometry (via a PartVAE) and part texture (via a TextureVAE) into

their respective latent spaces (see Figure 4), as a means to facilitate

learning the texture probability distribution conditioned on geome-

try. To resolve possible ambiguities due to identical or similar part

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2021.
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Fig. 4. Network architecture for representing a textured part: a PartVAE for

encoding part geometry and a TextureVAE for texture.

geometries having different textures, we introduce a conditional

autoregressive model based on PixelSNAIL [Chen et al. 2018] for

texture generation. Within this framework, compatibility between

textures generated for different shape parts is achieved via a condi-

tional generative approach. Specifically, we designate a seed part for

each shape category. The network is trained to texture the seed part

conditioned on its geometry, while for other parts, the condition

input is a concatenation of part geometry and the VGG [Simonyan

and Zisserman 2014] image features of the texture of the seed part.

In addition, we add three fully connected layers before feeding

the condition into the autoregressive network. Overall, the learned

mapping between geometry and texture is one-to-many.

Last but not least, since part geometry and texture possess differ-

ent data characteristics, e.g., smooth geometry vs. high-frequency

image details, the two part-level VAEs have different architectures.

In particular, to address the blurry image issue with conventional

VAEs, we adapt VQ-VAE-2 [Razavi et al. 2019a,b] for learning and

generating textured mesh parts. With the aid of vector quantiza-

tion (VQ), our approach allows the learning of a high-dimensional

texture latent space to facilitate the generation of quality textures,

with high-frequency details and less blurriness.

Our main contributions can be summarized as follows:

• To the best of our knowledge, TM-NET is the first deep gener-

ative model which learns to synthesize high-quality textured

meshes in a part-aware manner.

• Once trained, our network can generate novel texturedmeshes

from random samples in a latent space or predict textures for

a given 3D mesh, with or without image guidance. Plausible

and diverse textures can be generated for the same mesh part,

with texture compatibility between parts in the same shape.

• By utilizing texture transparency via the alpha channel, TM-

NET is able to generate and reproduce the visual appearance

of topological details such as holes in the chair back; see

Figure 1. Visually, the obtained results are superior than those

attainable by state-of-the-art generative networks.

We study the generative capabilities of TM-NET under several

application scenarios, including autoencoding and novel generation

of textured meshes, shape-conditioned and image-guided shape

texturing, as well as textured shape interpolation in the latent space.

The quality of the textured meshes generated by our network is

demonstrated both qualitatively and quantitatively. Evaluation is

conducted via ablation studies and comparisons to state-of-the-

art generative models, including SDM-NET [Gao et al. 2019], BSP-

Net [Chen et al. 2020], and Texture Fields [Oechsle et al. 2019].

2 RELATED WORK

We cover works most closely related to ours: deep generative models

for 3D shapes, texture synthesis, and joint 2D-3D encoding.

Deep Generative Models for 3D Shapes. With the development

of the deep neural networks such as Variational Autoencoders

(VAEs) [Kingma and Welling 2013] and Generative Adversarial Net-

works (GANs) [Goodfellow et al. 2014], novel 3D shapes can be

effectively generated by learning the distributions of existing data.

For generating 3D shapes, existing deep generative models produce

shapes in different representations, including voxels [Wu et al. 2016],

point clouds [Achlioptas et al. 2018], implicit functions [Chen and

Zhang 2019; Mescheder et al. 2019; Park et al. 2019], deformable

meshes [Tan et al. 2018], multi-patch representations [Groueix et al.

2018; Smirnov et al. 2021] and and structured representations, e.g.

GRASS [Li et al. 2017], StructureNet [Mo et al. 2019a] and SDM-

NET [Gao et al. 2019]. Recent methods with improved shape repre-

sentations allow 3D shapes with richer geometric details and more

complex structures to be synthesized or reconstructed, e.g., [Li and

Zhang 2021; Xu et al. 2019]. However, none of these methods gener-

ate 3D models with textures. Furthermore, textures are crucial for

the visual realism and rich appearance of 3D shapes. In this paper,

we build our texture generation method on SDM-NET, a recent

shape generation method based on structured deformable meshes,

where each part is represented by using deformations from a box.

The method produces shapes with fine geometric details. For more

discussions on 3D generative models, we refer readers to [Ahmed

et al. 2018; Bronstein et al. 2017; Xiao et al. 2020; Yuan et al. 2021].

Texture synthesis. Texture synthesis for 2D images [Efros and

Leung 1999] and 3D solids [Kopf et al. 2007] have been widely

studied in computer graphics. In recent years, neural network based

methods have been proposed [Gatys et al. 2015; Henzler et al. 2021;

Snelgrove 2017; Zhou et al. 2018] for the synthesis problem, leading

to improved results, although these methods are still restricted to

image textures, rather than generating textures over surfaces of 3D

shapes. Another popular texture synthesis problem is synthesizing

geometric textures [Berkiten et al. 2017; Hertz et al. 2020; Lai et al.

2005], which mainly focus on transferring geometric details from

an example model to the target surface.

For surface texture generation, the texture representation strongly

relies on the underlying geometry representation. Although point

clouds are flexible, and suitable for applications such as segmen-

tation and classification [Qi et al. 2017a,b], they are too sparse to

represent geometry details [Hu et al. 2019], and also suffer from this

major issue when used for representing high-resolution textures.

For the voxel-based representation, the texture representation based

on voxels [Tulsiani et al. 2017] is also limited by the resolution due

to the high memory overhead.

Recently, some works propose to generate textures using deep

generative models. According to the statistical properties, textures

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2021.
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on 3D shapes can be divided into two categories, namely stochastic

textures such as wood and marble which can often be compactly

modeled using a procedural generation process or some samples,

and non-stochastic textures which are generic images on surfaces.

Several methods [Chen et al. 2015; Park et al. 2018] work on provid-

ing stochastic textures or material suggestions for 3D shapes and

3D scenes. These methods can search for suitable textures or mate-

rials in a database but are not designed to generate novel textures.

Henzler et al. [2019] propose a method to encode stochastic textures

from 2D exemplars for synthesizing 3D solid textures. While solid

textures are useful for certain applications, they are not associated

with shape surfaces. The method is also restricted to stochastic

textures, which are insufficient for texturing general 3D objects.

Generating textured 3D Shapes. To obtain textured 3D shapes,

some works use single-view color images as 2D supervision to

recover 3D objects with colors. Hu et al. [2019] use a two-stage

method that first infers the object coordinate map and then uses

reprojection onto the input image to recover dense point clouds

with colors. The method is able to handle input images of different

(and even unseen) object categories; however, it only generates a

partial point cloud with visible colored points for a given input

image, and multi-view fusion is required to obtain complete shapes.

Other methods, e.g., [Chen et al. 2019; Liu et al. 2019; Pavllo et al.

2020], rely on differentiable renderers to train networks to pre-

dict vertex positions and colors for meshes with a fixed topology.

Recently, deep implicit surface representations [Chen et al. 2020;

Chen and Zhang 2019; Mescheder et al. 2019; Park et al. 2019] have

achieved a great success in geometry modeling. Several pioneering

implicit representation methods take RGB or RGB-D scans as input

to infer both implicit surfaces and associated textures for human

body shapes [Saito et al. 2019, 2020], man-made objects [Huang

et al. 2020] and indoor scenes [Dai et al. 2021]. These methods rely

mainly on the input image or depth to provide constraints, whereas

our approach aims to generate textures without image or depth guid-

ance. Moreover, the use of a fixed-topology shape such as a sphere

as the starting point also prevents these methods from handling

shapes with complicated structures or rich geometric details.

A fundamental challenge for texturing 3D shapes is an effective

texture mapping from the 3D surface to some texture (UV) space.

UV mapping is usually difficult to be consistently defined across

shape collections, and previous UV-mapping based methods mainly

deal with models with fixed topology including planar topology (for

faces) [Saito et al. 2017] and spherical topology (for birds) [Kanazawa

et al. 2018]. These representations however cannot be generalized

to cope with shapes with complex structures. Recent work Texture

Fields [Oechsle et al. 2019] avoids this problem by learning textures

using mapping from the 3D texture space. However, the use of 3D

solid space is not only expensive, but also harder to learn, as textures

of interest are usually only shape surfaces. Raj et al. [2019] propose

a two-stage approach to generating textured meshes, where in the

first stage, a network is trained to map 2.5D depth images to texture

images, and in the second stage, multiview texture images are fused.

However, the method does not give details how to ensure seamless

synthesis of texture atlas, and how to ensure sufficient coverage

of texture images, especially for shapes with complex structures

where self-occlusion is a problem, and shows examples of a single

category (cars) which are of spherical topology. Unlike all these

existing methods, our approach is able to generate higher-quality

textured meshes with more complex structures. Our method can

also generate geometry and texture simultaneously, which cannot

be achieved with existing methods.

Novel view synthesis (NVS). Given a single image, humans can eas-

ily extrapolate what the object/scene looks like from another view.

NVS focuses on generating images from an unknown viewpoint

with an input image. Sun et al. [2018] takes multiple images from

different source viewpoints and predicts a flow field to move the

pixels from the source image to the target image. Then it aggregates

predictions from different viewpoints to produce the target image.

SRN [Sitzmann et al. 2019] proposes a continuous 3D-structure-

aware 3D scene representation that maps the world coordinates

into a feature representation which helps preserve the geometry

surface from novel viewpoints. GeLaTO [Martin-Brualla et al. 2020]

moves a step forward to generate rendered images of transparent

objects from a new viewpoint and interpolate rendered images from

different viewpoints using U-NET [Ronneberger et al. 2015] and

AtlasNet [Groueix et al. 2018]. However, their intermediate tex-

ture is an implicit representation, which cannot be directly mapped

onto 3D shapes for typical graphics applications. Although textured

meshes can be rendered from novel viewpoints, our method is fun-

damentally different from NVS methods, which have been an active

research topic in recent years: not only does our method not require

a single-view image as input (and can generate textured meshes di-

rectly), our method also ensures the rendered images from different

views are consistent, which cannot be guaranteed with NVS.

3 METHOD

Given a collection of textured 3D meshes, TM-NET encodes the

geometry associated with textures for generation and other applica-

tions such as conditional shape texturing and textured shape inter-

polation. As discussed before, we build on recent SDM-NET [Gao

et al. 2019] which provides structural deformable boxes to represent

3D objects, each corresponding to a semantic part. Thanks to this

representation, it intrinsically provides a way to define consistent

texture atlases for objects, even if shapes in the collection may not

have identical topology (e.g. a table may have different numbers of

legs). Each box can be easily unfolded to the texture domain, with no

extra distortion at this stage. In the following subsections, we will

describe our texture representation and how to convert textured 3D

models to this representation. We then describe the details of our

novel network architecture, i.e. how the geometry detail determines

its texture, first at the part level and finally the object level.

Themesh geometry and structure are learned jointly by one global

VAE, to ensure that the generated textured meshes are consistent

in both geometry and structure. Since a single part can be textured

differently while still being plausible, instead of generating textures

conditioned on the input geometry in a one-to-one manner, we learn

a probability distribution based on PixelSNAIL [Chen et al. 2018].

Once the distribution is learned, we can sample several times on the

distribution which will lead to multiple reasonable textures for the

input shape. Directly applying this network at the part level could

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2021.
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(a) (b) (c)

Fig. 5. Illustration of the procedure that maps the ground truth texture to

the unfolded box to form a texture image. (a) the texture image to be filled,

(b) the deformed box that approximates the input model part, (c) the input

model containing ground truth texture.
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Fig. 6. Examples showing our part-based texture representation (bottom

row), which is able to retain most fine-level details and visually reproduces

the appearance of rich topological structures (e.g., holes in the chair’s back)

that cannot be represented using the underlying geometry.

not ensure the compatibility of textures between different parts

on the same shape. Hence for each category we choose one part

as the seed part (e.g. the table surface for tables). When modeling

texture distributions of other parts, we append the VGG feature

of the seed part’s texture to the geometry condition. The texture

generation of the seed part is conditional on its geometry, while

texture generation of remaining parts depends on both their own

geometry and the texture feature of the seed part. This strategy

ensures that generated textures for different parts are coherent.

3.1 Part-based Texture Representation

To represent textures on a mesh, a key step is to build a texture atlas.

Traditionally, such an atlas is generated individually for each mesh,

which makes learning difficult.

Our method is based on SDM-NET [Gao et al. 2019], which pro-

vides a set of consistently segmented parts across each category. The

geometry details of each part are represented by the deformations

of a template box. In our setting, template boxes are also served as

the domains for surface textures with predefined UV mapping. To

minimize the mapping distortion from the template box to the 2D

texture maps, the template box is unfolded in a straightforward man-

ner as illustrated in Figure 3 (b). Let 𝐼𝑖, 𝑗 be the texture image of the

𝑗 th part on the 𝑖th shape. By the unfolding operation, the template
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Fig. 7. Network architecture of TextureVAE. The encoder maps the input

image patch onto two continuous feature maps, top (𝑡 ) and bottom (𝑏). Then

the dictionary-based vector quantization is performed. The decoder takes

the discrete feature maps as input and reconstructs the image.

box 𝑏𝑜𝑥0 is unfolded and parameterized to the 2D mesh in the UV

space to obtain 𝑏𝑜𝑥0 as shown in Figure 3, with texture image size

4𝑙 × 3𝑙 where 𝑙 is the length of the edge of the template box when

mapped to the UV space. Throughout the paper, we fix 𝑙=256, while

the texture resolution for a single part is set at 1, 024×768. Although

a larger 𝑙 would lead to higher-resolution texture images that better

represent details, the network training must require more data. Our

current setting reflects a quality-cost trade-off.

With the UV mapping between the deformed box 𝑏 ′𝑖, 𝑗 and the

corresponding texture image 𝐼𝑖, 𝑗 as defined above, the next step is to

fill in each pixel 𝑢̃ on the texture image 𝐼𝑖, 𝑗 . As shown in Figure 5, the

2D mesh 𝑏𝑜𝑥0 gives a partition of the texture image into triangles.

Assuming that 𝑢̃ belongs to a 2D triangle 𝑓 on 𝑏𝑜𝑥0 with barycentric

coordinates 𝑏𝑐 (𝑢̃), we can find the corresponding 3D face 𝑓 ′ located

on the deformed box 𝑏 ′𝑖, 𝑗 , and the corresponding 3D position 𝑝 ′

based on barycentric coordinates 𝑏𝑐 (𝑢̃) on 𝑓 ′. We then project 𝑝 ′

onto the input shape to obtain the ground truth color for pixel 𝑢̃.

Note that a genus-zero box cannot geometrically model a high-

genus part, e.g., the chair back in Figure 5 with holes, unless a

topology-varying deformation is performed. We avoid the need for

such a deformation by utilizing the alpha channel of the texture

image to indicate transparency, so as to allow the appearance of a

high-genus part to be produced through ray tracing. Specifically, if

the projection of 𝑝 ′ is not on the surface of the input shape, then the

alpha channel for the pixel 𝑢̃ is set to 0, indicating total transparency,

otherwise it is set to 1 for opaque. When rendering a shape whose

parts are all of genus 0 using ray tracing, a ray that hits a point

whose alpha value is 0 would continue to travel; see Figures 6 and 9

for some examples of such a rendering of decoded meshes by TM-

NET. Without such transparency flags, which are encoded into the

texture images, previous works such as SDM-NET [Gao et al. 2019]

cannot produce the visual appearance of topological details.

3.2 Part-level Texture and Geometry Encoding
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We first present how the geometry and texture are encoded for a

given object part. For the geometry, we use the mesh-based vari-

ational autoencoder (PartVAE) in SDM-NET [Gao et al. 2019] to

encode the geometric details. Please refer to [Gao et al. 2019] for its

network structure. As for the texture, we introduce a TextureVAE for

encoding texture images. Different networks are needed to address

their fundamentally different characteristics.

Our TextureVAE is inspired by VQ (Vector Quantization)-VAE-

2 [Razavi et al. 2019a,b] and its overall architecture is illustrated

in Figure 7 and detailed network architecture is shown in the sup-

plementary material. Here, VQ-VAE-2 is employed for the follow-

ing reasons. It is difficult for the convolutional VAE [Kingma and

Welling 2014] with a continuous representation to encode/decode

high-resolution texture images (e.g. 256×256) well due to their high-

frequency characteristics, which would lead to blurry results. In

contrast, VQ-based VAE could represent them well. This is because

there are often repetitive patterns on texture images, which could

be effectively represented by a single codebook vector using vector

quantization. In this way, modeling the whole image is converted

into modeling smaller patterns, substantially reducing the learning

difficulty. The input of TextureVAE is a four-channel texture patch

in size 256×256, including three channels of RGB values and one

channel of alpha values. Texture images in the UV space contain

large areas of unused pixels (see Figure 5 for an example). To make

texture encoding more efficient, we perform encoding based on

256 × 256 patches each corresponding to a face of the cube.

The encoder in VQ-VAE-2 [Razavi et al. 2019a] that is capable

of encoding 256×256 images is a two-level image pyramid which

extracts two feature maps. We refer to them as the top- and bottom-

level feature maps 𝑧𝑡𝑒 and 𝑧𝑏𝑒 , respectively. Each feature map 𝑧∗𝑒 ,

where ∗ = 𝑏 or 𝑡 , goes through a vector quantization which maps

each feature vector to its closest vector in the dictionary 𝑒∗ to obtain

the discretized feature map 𝑧∗𝑞 . The dictionary is updated during

the training process as in [Razavi et al. 2019a], to capture the data

distribution. The decoder takes the discrete feature maps as input to

produce the reconstructed image. For more information about vector

quantization and discrete vectors for quantization, please refer to

the appendix of [Razavi et al. 2019a]. This architecture captures

multiscale texture characteristics and allows high-frequency details

often present in textures to be faithfully represented using a low-

dimensional latent vector, thanks to the dictionary-based vector

quantization and low-dimensional embedding.

With PartVAE encoding the geometry and TextureVAE encoding

the texture, our method can represent meshes with fine geome-

try and fine textures. Moreover, our texture contains transparency

information so the texture is also leveraged for its geometric rep-

resentation ability, enabling our method to represent a single part

with possibly many holes in it, as shown in Figure 6.

Since the geometry and texture distributions lie in their own

manifold spaces, PartVAE and TextureVAE are trained separately.

Let 𝐸𝑛𝑐𝑃 (.) and 𝐷𝑒𝑐𝑃 (.) denote the encoder and decoder of part de-

formations for representing geometric details, 𝐸𝑛𝑐𝑇 (.) and 𝐷𝑒𝑐𝑇 (.)

denote the encoder and decoder for the associated texture images,

𝑥𝑝 and 𝑥𝑡 be the respective input deformation representation and

texture images, and 𝑧𝑝 = 𝐸𝑛𝑐𝑃 (𝑥𝑝 ) and 𝑧𝑡 = 𝐸𝑛𝑐𝑇 (𝑥𝑡 ) be the en-

coded latent vectors of geometry and texture, respectively, where

𝑧𝑡 = (𝑧𝑡𝑞, 𝑧
𝑏
𝑞) is the concatenation of discrete feature maps from

the VAEs of the two layers. And finally, let 𝑥 ′𝑝 = 𝐷𝑒𝑐𝑃 (𝑧𝑝 ) and

𝑥 ′𝑡 = 𝐷𝑒𝑐𝑇 (𝑧𝑡 ) be the reconstructed deformation feature vector and

texture image, respectively.

The loss function of PartVAE follows [Gao et al. 2019], so that

the TextureVAE would minimize the following loss:

𝐿𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑉𝐴𝐸 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝐿𝑠𝑒𝑎𝑚 + 𝛼1𝐿𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔, (1)

where 𝐿𝑟𝑒𝑐𝑜𝑛 = ∥𝑥 ′𝑡 − 𝑥𝑡 ∥1 is the reconstruction loss to ensure

faithful reconstruction. The embedding loss, 𝐿𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 , is defined

as:

𝐿𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 =

∑

∗∈{𝑡,𝑏 }

∥𝑠𝑔[𝑧∗𝑒 ] − 𝑒∗∥22 + 𝛽1∥𝑠𝑔[𝑒
∗] − 𝑧∗𝑒 ∥

2
2, (2)

where 𝑠𝑔 stands for stop gradient operator which does not influence

the forward pass but has zero partial derivatives in the backward

pass. The first term aims at updating the embedding space, i.e., mak-

ing the dictionary 𝑒∗ closer to the feature maps 𝑧∗𝑒 extracted by

the encoder. The second term updates the encoder’s parameters

to make the feature map move towards the embedding space or

the dictionary 𝑒∗. Please refer to [Razavi et al. 2019a,b] for more

detail. And 𝐿𝑠𝑒𝑎𝑚 penalizes the differences between texture bound-

ary pixels that are in the same template box edge before unfolding

to promote synthesizing seamless textures. For more detail about

𝐿𝑠𝑒𝑎𝑚 , please refer to the supplementary file. 𝛼1 and 𝛽1 control the

relative importance of each loss term.

3.3 Geometry Guided Texture Generation

Mesh geometry and texture could be encoded by PartVAE and Tex-

tureVAE respectively. In many cases, there are clear correlations

between geometry and texture, e.g., beams always appear in the

front of the car and they are usually white, while tires are black.

In other cases however, the same geometry may be textured in

different, and equally plausible ways, e.g., color of the car body.

To enable the texture generation network to output different

textures for an input shape, we develop an autoregressive model

to predict the conditional probability distribution of each pixel in

the texture image, and sample different textures from the predicted

distribution. Our model design is inspired by PixelSNAIL [Chen et al.

2018], which has shown success for discrete feature map generation

by integrating temporal convolution with an attention mechanism.

PixelSNAIL models the distribution of every single pixel in the

discrete representations 𝑧∗𝑖 . We adapt the conditional PixelSNAIL

with three fully connected layers for feeding the geometry latent

vector, as shown in Figure 8. Two such different conditional au-

toregressive models learn the high-dimensional distributions of the

two discrete index matrices 𝑧𝑡𝑖 and 𝑧
𝑏
𝑖 . It should be clarified that we

learn the data distribution of the entire texture image instead of that

of individual texture patches. That is, we concatenate the discrete

index matrices of different patches in a texture image together and

feed it into the autoregressive model.

The top level autoregressive model takes the top level index ma-

trix 𝑧𝑡𝑖 as input and the geometry latent vector 𝑧𝑝 (for the seed part)

or concatenation of geometry latent vector 𝑧𝑝 and the seed part
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Fig. 8. The architecture of our autoregressive generative model. The network

takes an index matrix as input and geometry latent vector as condition and

outputs reconstructed index matrix.

texture’s VGG feature [Simonyan and Zisserman 2014] (for other

parts) as condition, while the bottom level autoregressive model

takes the bottom level discrete index matrix 𝑧𝑏𝑖 as input and the top

level discrete index matrix 𝑧𝑡𝑖 as condition.

To aggregate geometry feature and the seed part texture’s VGG

feature, three fully connected layers are used to fuse them. For

simplicity, let 𝑥 and 𝑐 denote the input and the condition of the

conditional autoregressive model 𝑓 . In the training process, the

conditional autoregressive model minimizes the following loss:

𝐿𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 = 𝐿𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑥, 𝑓 (𝑥, 𝑐)) . (3)

Note that we use the SP-VAE from SDM-NET [Gao et al. 2019]

to jointly encode the geometry and structure of different parts to

represent the whole 3D shape.

3.4 Applications

We now present how our method can be applied to various applica-

tions with textured meshes.

Shape-Conditioned Mesh Texturing. Our network can be used to

generate texture for a given shape automatically. Given a new shape,

we first convert it into our representation. Then we can obtain the

geometry latent vector of each part in the latent space using PartVAE.

The autoregressive generative model PixelSNAIL for the seed part

models the distribution of the two-level index matrices. Then we

sample on the distribution for several times to generate different

index matrices 𝑧𝑡𝑖 and 𝑧
𝑏
𝑖 , which are later used as indexes to obtain

corresponding code vectors in the codebook to form discrete feature

maps 𝑧𝑡𝑞 and 𝑧𝑏𝑞 . Finally, the decoder of TextureVAE decodes 𝑧𝑡𝑞

and 𝑧𝑏𝑞 to generate textures. Once the texture of the seed part is

generated, we extract its VGG feature and concatenate it with the

geometry of other parts as the condition for their autoregressive

models, which will lead to coherent texture for different parts.

Generation and Interpolation. Given our deep generative model

TM-NET, we can randomly generate textured mesh models and

interpolate mesh models in the latent space. For textured mesh gen-

eration, we first generate the structured meshes with fine geometry

by randomly sampling from the SP-VAE latent space. For each part

Table 1. Numbers of segmented, textured meshes in our experiments.

Object category Car Chair Plane Table

# Segmented, textured meshes 1,824 3,746 2,690 5,266

# Texture patches 73,482 162,984 164,766 167,628

we encode the geometry into the latent space of PartVAE. Then the

problem is converted to conditional texturing the generated shape

as mentioned above. For interpolation, the geometry and structure

of two input shapes are interpolated in the latent space of SP-VAE,

and the textures are interpolated in the continuous feature maps 𝑧∗𝑒
of TextureVAE for generating in-between textured meshes.

Image-Guided Mesh Generation. Our method can be adapted for

textured shape generation as guided by a single-view image, where

the untextured shape geometry is produced by existing methods

with a pre-trained geometry prediction network. Specifically, we

first predict the 3D shape and camera viewpoint from the input

image using DISN [Xu et al. 2019]. The predicted shape is then

segmented by PointNet++ [Qi et al. 2017b] pretrained on our dataset

and encoded using our PartVAE. With the segmentation and camera

viewpoint, we project all parts onto the image plane to obtain an

image mask. Finally, a pretrained PixelSNAIL network takes the

VGG features of the masked input image and the part geometry

features as condition to produce the part textures.

4 DATASETS AND NETWORK IMPLEMENTATION

In this section, we describe our network architecture and training

process in detail. The experiments are performed on a cluster with

three deep learning servers, each of which is equipped with an

I7 6850K CPU, 64GB RAM , and four Nvidia RTX 2080Ti GPUs.

Twelve Nvidia RTX 2080Ti GPUs are used for training TM-NET. All

the networks are implemented with PyTorch [Paszke et al. 2019].

Jittor [Hu et al. 2020] implementation is also supported. Codes are

available at https://github.com/IGLICT/TM-NET.

4.1 Dataset

The dataset used in our experiments consists of segmented meshes

with textures from the dataset employed by SDM-Net [Gao et al.

2019], which is a subset of ShapeNet Core V2 [Chang et al. 2015]

with part segmentations provided by SDM-Net. See Table 1 for the

numbers of textured meshes in different categories in our dataset.

4.2 Network Architecture

Our network is composed of four parts including PartVAE for en-

coding part geometry, TextureVAE for encoding part texture, condi-

tional PixelSNAIL for generating textures, and SP-VAE for jointly

encoding both global structure and part geometries. The architec-

tures of PartVAE and SP-VAE follow [Gao et al. 2019].

As shown in Figure 7, the encoder of TextureVAE has three con-

volutional blocks, each followed by one convolution layer to obtain

two different levels of continuous feature representations, which

then go through vector quantization. The decoder concatenates

the discrete latent variables from different levels and outputs the

reconstructed texture images through deconvolution blocks.
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The detailed architecture of encoding and decoding networks can

be found in the supplementary material. For the hyperparameters

in the loss function of TextureVAE, they are the same as those in

[Razavi et al. 2019a]. Further, the conditional texture generation

network architecture is the same as the original implementation,

except that before putting conditional input into PixelSNAIL, we

add three fully connected layers to convert the conditional input

into the same size as the input discrete index matrix.

The network architecture of SP-VAE follows the SP-VAE in [Gao

et al. 2019]. Leaky ReLU is set as the activation function. We first

train PartVAE and SP-VAE. After that, we train TextureVAE. The

conditional autoregressive network is trained at last.

4.3 Metrics for Evaluation

To evaluate and compare quality of the generated shapes and tex-

tures, we employ the Learned Perceptual Image Patch Similarity

(LPIPS) [Zhang et al. 2018] and Structure Similarity Image Metric

(SSIM) [Zhou et al. 2004], which are image similarity measures be-

tween input textured shapes and decoded textured meshes. Since

the texture and geometry are interconnected, we can evaluate their

quality together by rendering the textured shapes. Specifically, we

render the decoded textured meshes and the input textured meshes

in 12 viewpoints and use SSIM to measure the difference of rendered

images from the same viewpoint and under the same lighting.

Also, to evaluate the realism of generated textures for a given

shape, we use fooling rate which is a human judgment approach

proposed in [Zhang et al. 2016]. This test shows a real image and a

synthesized image to a human participant for one second each and

asks them to tell which is łrealž. The fooling rate is the possibility

of synthesized images being mistaken for real images.

4.4 Parameters

Hyper-parameters are fixed for datasets of different object categories.

We demonstrate how the results change with the hyper-parameters.

Each dataset is randomly divided into training and test sets, with

a 9:1 split, using the data released from SDM-NET. We use Struc-

tural Similarity Index (SSIM) (see more in Sec. 5) to measure image

perceptual similarity between rendered images of input textured

meshes and those of decoded textured meshes. 𝛼1 and 𝛽1 are set to

1 and 0.25.

We performed ablation studies on these parameters. For the hyper-

parameter 𝛽1, we fixed 𝛼1 to 1 and performed an experiment on

how its value influences the SSIM score between the input texture

image and the output. As shown in Table 2, TextureVAE reaches its

best performance when 𝛽1 is set to 0.25. Then we fixed 𝛽1 to 0.25

and performed an ablation study on 𝛼1. The results in Table 3 show

that 𝛼1 = 1 gives the best reconstruction quality.

Table 2. Comparison of average texture reconstruction quality (measured

by SSIM) between the input texture images and decoded textured images

in the test dataset of table w.r.t changing hyper-parameter 𝛽1.

𝛽1 0.1 0.25 0.5 1.0 2.0

SSIM on textures 0.886 0.915 0.741 0.739 0.729

Table 3. Comparison of average texture reconstruction quality (measured

by SSIM) between the input texture images and decoded textured images

in the test dataset of table w.r.t changing hyper-parameter 𝛼1.

𝛼1 0.1 0.25 0.5 1.0 2.0

SSIM on textures 0.837 0.856 0.882 0.915 0.874

ALGORITHM 1: Training steps

1. Train PartVAE for each part;

2. Train SP-VAE for each shape;

3. Train TextureVAE for all parts;

4. Load checkpoint and extract PartVAE and TextureVAE latents 𝑧𝑝 ,

𝑧𝑡𝑖 and 𝑧𝑏𝑖 for the seed part;

5. Train conditional PixelSNAIL for the seed part in the top and

bottom level discrete feature spaces;

6. Load checkpoint and extract PartVAE and TextureVAE latents 𝑧𝑝 ,

𝑧𝑡𝑖 , 𝑧
𝑏
𝑖 , and VGG feature of the corresponding seed part’s texture

for other parts;

7. Train conditional PixelSNAIL for other parts in the top and

bottom level discrete feature spaces.

4.5 Training Details

Our network is trained stage by stage. On the geometry side, similar

to SDM-NET, every semantic part has a corresponding PartVAE.

All of these PartVAEs are trained separately. After training the

PartVAEs, we then concatenate the latent vector of PartVAE and

the structure code as the input to train SP-VAE. The PartVAE is

trained with 20,000 iterations and SP-VAE with 120,000 iterations

with batch size 128. On the texture side, a single TextureVAE is

trained for textures of all object parts. The TextureVAE is trained

with 400,000 iterations with batch size set as 120.

After the training process of SP-VAE and TextureVAE are fin-

ished, we train the top and bottom level PixelSNAILs. The top level

PixelSNAIL is trained with 200,000 iterations and bottom level Pix-

elSNAIL is trained with 300,000 iterations with batch size 6. For

all the networks, every training batch is randomly selected from

the training dataset. The detailed training process is summarized in

Algorithm 1. In all the neural networks, we use the ADAM optimizer

with an initial learning rate 0.0003, which decays every 100 steps

with a decay rate of 0.999. Take the car dataset with seven parts as

an example, the whole training process takes about 5 days. Once

the networks are trained, generating a textured shape takes about

10 minutes.

5 EXPERIMENTAL RESULTS AND EVALUATIONS

In this section, we present results of textured mesh autoencoding,

novel generation, shape-conditioned and image-guided texturing, as

well as latent-space interpolation. We also perform ablation studies

to show the benefits of each component in our design.

5.1 Reconstruction and Generation of Textured Meshes

Textured Mesh Autoencoding. First, we qualitatively and quan-

titatively compare TM-NET with state-of-the-art geometry deep

learning methods for the shape autoencoding task. To this end, only
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(a) GT. (b) SDM. (c) ImN. (d) BSP. (e) PSG. (f) StrN. (g) TM-N.

Fig. 9. Comparing shape autoencoding between TM-NET (TM-N) and sev-

eral state-of-the-art generative models: SDM=SDM-NET, ImN=IM-NET, BSP

= BSP-NET, StrN = StructureNET, with GT = ground truth. Outside of TM-

NET, the part-based SDM-NET tends to obtain the best overall shape and

structure, but is unable to reproduce topological details such as holes on

the chair back and tabletop. With texturing and transparency, TM-NET is

the only method that can produce the appearance of such details.

the alpha channel is used, while color textures are ignored. In Fig-

ure 9, we show two representative autoencoding results on the test

set, where the input shapes possess fine-grained topological details.

A comparison with other recent deep models shows that TM-NET

and SDM-NET tend to produce the cleanest shape structures due

their their structure-aware autoencoding. With the utilization of

texture transparencies, TM-NET is the only network that is able to

reproduce the appearance of topological details. Table 4 provides

quantitative comparison results, using the multi-view SSIM metric,

demonstrating that TM-NET outperforms the other methods over

all four major shape categories of ShapeNet.

For autoencoding textured meshes, we are not aware of existing

alternatives from the literature. Hence, we elect to show some qual-

itative results in Figure 10, which provides the ground truth meshes

with texture, the input textured meshes with our representation,

and the decoded textured meshes by TM-NET. The example results

shown were randomly selected from each shape category to provide

a general assessment of how well the TM-NET autoencoding is able

to preserve the geometry and texture details and structures. More

random results can be found in the supplementary material.

Textured Mesh Generation. As a generative model, and compared

to SDM-Net [Gao et al. 2019], TM-NET can not only output plau-

sible shape structures and geometries but also generate a suitable

texture for each part. On the geometry side, our SP-VAE encodes the

structural information of different parts together with their geome-

try. On the texture side, the TextureVAE encodes texture informa-

tion to ensure texture quality, while the conditional autoregressive

model learns the relationship between geometry and texture to en-

sure compatibility between them. To obtain a textured mesh from

scratch, we first sample on the latent space of SP-VAE to generate a

structured deformable mesh without texture. Then similar to the

shape-conditioned texturing procedure, we feed the geometry latent

vectors into the conditional autoregressive network to predict Tex-

tureVAE index matrices. Finally, the decoder of TextureVAE takes

these predicted index matrices as input to decode plausible textures

Table 4. Quantitative comparisons, using the SSIM metric, between TM-

NET and other recent deep representations for 3D geometry autoencoding,

without color textures. TM-NET outperforms all these other methods over

all four shape categories. Note that StructureNET uses PartNet [Mo et al.

2019b] as input which does not contain the car or plane category.

Categories
SSIM metric ↑

Car Chair Plane Table

SDM-NET 0.901 0.915 0.919 0.925

IM-NET 0.893 0.907 0.874 0.896

BSP-NET 0.899 0.908 0.869 0.919

PSG 0.724 0.619 0.713 0.693

StructureNet - 0.803 - 0.798

Ours 0.914 0.923 0.920 0.930

GT Input Output GT Input Output

Fig. 10. Randomly sampled results of textured mesh autoencoding by TM-

Net, on meshes from the test set. These results are better viewed by zooming

in. In each triplet, the left shows the ground-truth textured shape, the

middle is our input representation relaying both geometry and texture

features, which are generally well preserved by the decoded mesh (right),

demonstrating that TM-NET learns an effective embedding.

for the generated shape. Figure 11 shows a sampler of output tex-

tured meshes using the above procedure for each shape cateogry.

Note that these results were randomly selected, except for the first

chair in the first row, which was picked to show an example of using

texture transparency to łfakež topological details.

We qualitatively evaluate the novelty of the generated meshes by

showing the closest neighbor shapes from the training set, both in

terms of geometry and appearance. These results demonstrate that

TM-NET is able to generate diverse and novel textured meshes with

quality. However, the generated car and plane textures tend to be

blurrier than those from the other categories. This is because these

textures typically contain a mixture of definitive sharp features (e.g.,

plane windows, car headlights, etc.) and smooth or constant textures

(e.g., the color of the remaining parts). Such mixtures are more

difficult to encode using the VQ- or compression-based TextureVAE

in our framework, as compared to the chair/table textures that have
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Fig. 11. Randomly sampled results of textured mesh generation by TM-NET

(best viewed by zooming in), except for the first chair, which was picked

to show texture transparency. We show four results per shape category,

with more in the supplementary material. In each triplet, the left one is

the generated textured mesh; the middle shows its closest neighbor from

the training set, in terms of shape geometry as measured using Chamfer

Distance (CD) on 1,024 uniformly sampled points on each mesh surface;

the right shows the closest neighbor from the training set, in terms of

appearance as measured by SSIM on multi-view images. For each mesh, we

normalize it to a unit cube and render it from six fixed viewpoints.

a relatively simpler frequency-domain characterization. More mesh

generation results can be found in the supplementary material.

As for a comparison to existing methods, we are not aware of

other networks designed for textured 3D shape generation. The

work by Zhu et al. [2018] called Visual Object Networks (VON)

could be compared in terms of generating different and novel views

of object textures. VON does not generate a textured 3D shape, but

only 2D images of an object after texture generation from a sampled

texture code. As such, it is difficult to maintain texture consistency

between multiple views, as shown in Figure 12, in contrast to results

from textured mesh generation by TM-NET.

Table 5 shows a quantitative comparison in Fréchet Inception

Distance (FID) [Heusel et al. 2017] between VON and TM-NET,

where we evaluate the rendered images of the generated textured

shapes against those from the training set.

Shape-ConditionedMesh Texturing. Given an untextured 3D shape,

TM-NET can predict plausible and diverse textures for the shape

V
O
N

T
M
-N

E
T

Fig. 12. A comparison to VON [Zhu et al. 2018] for novel view synthesis of

object textures (top row). The two VON results were randomly selected, then

for each, we randomly selected a TM-NET result with similar overall color

as the VON result. We observe texture inconsistency from different views

since each viewpoint was generated separately with no global regularization.

In contrast, TM-NET generates an entire textured 3D shape which, when

rendered in multiple views, ensures texture consistency.

Table 5. Quantitative comparison between VON and TM-NET in terms of

their generative capabilities, measured in FID ↓ [Heusel et al. 2017]. Note

that VON did not contain the plane or table categories.

Method Car Chair Plane Table

VON 83.3 51.8 - -

TM-NET 56.9 46.4 34.1 42.3

that are conditioned on the shape’s geometry. Figure 13 shows such

shape texturing results, where the same input shape can lead to

different textures, by varying the sampling. The part-by-part texture

generation is clearly revealed as different parts of the same shape

can also be textured differently (e.g., chair seat vs. back and tabletop

vs. leg). One could argue that some part textures generated by TM-

NET are not quite compatible, e.g., see the second chair result in

the first row. In regards to this, we shall point out that even more

drastic texture łincompatibilities" can be observed from the training

set, as shown in Figure 14. In the supplementary material, we show

more generated samples for shape texturing, as well as the closest

training textures to the generated samples.

We compare our method to Texture Fields (TF) [Oechsle et al.

2019], a state-of-the-art method for texturing an input 3D shapewith

a texture image sampled from a latent space. The comparisons were

done on the same input shapes, from the same viewpoints, and using

the same rendering parameters, but the output textures are generally

different since both were sampled. We show some visual results

in Figure 15, while for a quantitative study, we compare the LPIPS

values between different results generated by the same method to

demonstrate the diversity, and report fooling rate through a user

study to evaluate realism. As demonstrated by results in Table 6,

texturing results by TM-NET were deemed to be both more realistic

and more diverse than those from Texture Fields.

Image-Guided Mesh Generation. As described in Section 3.4, TM-

NET can be adapted for image-guided generation of texturedmeshes.

In Figure 16, we show several randomly sampled results and compare

to DVR [Niemeyer et al. 2020]. Note that due to the sampling strategy

of PixelSNAIL, our method can generate multiple textured shapes
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Fig. 13. Randomly selected shape-conditioned texturing results by four

samplings of the learned probability distribution conditioned only on input

geometry (left). The seed parts are chair seats and tabletops, respectively.

Note the plausible and diverse textures generated by TM-NET, as well as

different textures generated for different parts in the same shape.

Fig. 14. Several chair meshes from the training set whose part textures may

be perceived as łincompatiblež, yet łstylish".
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Fig. 15. Comparison of our mesh texturing with Texture Fields (TF) [Oechsle

et al. 2019], on several randomly picked examples.

from which it would be quite easy to find one that is the closest

in appearance to the input image. In general, this result is more

faithful to the input than the DVR outputs.

Table 6. Comparison to Texture Fields [Oechsle et al. 2019] in terms of

diversity (measured by LPIPS) and realism (measured by fooling rate). As a

diversity measure, larger values of LPIPS is better, i.e., more diverse.

Realism Diversity

Method Fooling rate ↑ LPIPS ↑

Texture Fields 23.8% 0.148

Ours 41.5% 0.263

(a) Image guidence. (b) DVR result. (c) TM-NET result 1. (d) TM-NET result 2.

Fig. 16. Image-guided generation of textured shapes and a comparison

to DVR [Niemeyer et al. 2020], on a few randomly sampled results. Our

network can generate multiple textured shapes, containing results that are

generally closer to and more faithful to the guidance image (c-d).

Textured Shape Interpolation. In our method, shape geometry

and texture are separately encoded into the latent spaces of SP-

VAE and TextureVAE, respectively. Hence, we can perform linear

interpolation in both latent spaces and then recover the textured

meshes by the decoders of SP-VAE and TextureVAE. In Figure 17, we

show a sampler of such interpolation results on chairs, and compare

to VON [Zhu et al. 2018], TF [Oechsle et al. 2019], and simple alpha

blending between textures on a per-part basis. Note that the original

TF implementation only supported texture interpolation. Since their

model outputs rendered images using a depth map, a shape code,

and a texture code, we obtained the TF interpolation results by

interpolating on all these three components. On the other hand,

VON only generates in-between views of textured objects and it

is not part-aware. Since it is a GAN-based model, it is difficult to

compare VON to other methods using exactly the same source and

target shapes. As a remedy, for each set of comparisons, we first run

VON interpolation in both shape and texture latent spaces to obtain

a random pair of source and target shapes. We then run TM-NET,

TF, and part-based alpha blending using source and target shapes

from our test set that are respectively the closest, as measured by

SSIM, to the source and target shapes generated by VON.

We can see that compared to TF andVON, the interpolation results

by TM-NET are more plausible and faithful in both geometry and

texture, demonstrating the advantage of our structured approach

and the learned latent spaces. Alpha blending also works well, with

results quite close to those from TM-NET. We believe that this can

be attributed to the part-by-part texture blending, where each part

is simply a box, which facilitates part correspondence.
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Fig. 17. Randomly sampled results of latent-space linear interpolation be-

tween chairs (first and last columns), comparing TM-NET to VON [Zhu

et al. 2018], TF [Oechsle et al. 2019], and part-by-part alpha blending.

5.2 Self evaluations

Dividing texture image into patches. As mentioned in Sections 3.2

and 3.3, we divide the input texture image into six patches, each

corresponding to a face of the template box. Compared with our

divide and conquer approach, a straight-forward strategy is to feed

the whole texture image of size 1024 × 768 into the TextureVAE.

If we feed the whole texture image of size 1024 × 768 into the

TextureVAE, we have to adopt a three-level hierarchy TextureVAE

and augoregressive model as VQ-VAE-2 [Razavi et al. 2019a] does

and use three index matrices of size 32 × 32, 64 × 64 and 128 ×

128, to cope with the higher input resolution. Here, we compare

shape texturing results using these two strategies in Figure 18. The

Fig. 18. Comparison of mesh texturing results. Top row: dividing a tex-

ture image into patches. Bottom row: regarding the same texture image

as a whole. Results show that with the patch-based, divide-and-conquer

approach, TM-NET can generate textures with higher quality.

Seed Seed Seed Seed

Seed Seed Seed Seed

Seed Seed Seed Seed

Seed Seed Seed Seed

Fig. 19. Mesh texturing results on the same shape, randomly selected, by

specifying different seed parts. Row 1: chair back as seed; row 2: chair seat

as seed; row 3: tabletop as seed; row 4: left front leg as seed.

result shows that by dividing the whole image into patches, the

autoregressive model can generate textures with higher quality.

Seed Part. To ensure the coherence between textures generated

for different shape parts, we introduced the use of seed parts, where

the generation of textures for the remaining parts is conditioned

on the seed part’s generated texture features and the remaining

parts’ geometry features. We evaluate how the choice of seed parts

influences the generated textures in Figure 19, which demonstrates

experimentally that while the final texturing results do differ as the

seed parts vary, the generated textures remain plausible and exhibit

compatability across the whole shapes.

Texture Image Resolution. Finally, we test how TM-NET performs,

specifically on the textured mesh autoencoding task, as we vary

the resolution of the texture images. As shown in Table 7, when

the image resolution is low at 64 × 64, the SSIM value is low which

means that the reconstruction error on the test dataset is high.

However, the reconstruction quality does not always improve as the

resolution increases, since when the texture resolution is too high,

the generalization capability of the network can be compromised.

Experimentally, we find that the best quality is attained by setting
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Table 7. SSIM measured on rendered images from autoencoding the chair

test set, as we vary the texture resolution. Recall that 𝑙 is the length of the

edge of the template box when mapping to UV space; see Section 3.1.

l 64 128 256 512

SSIM on autoencoding textures 0.837 0.859 0.928 0.905

(a) Without seam loss. (b) With seam loss.

Fig. 20. Comparison of decoded results without and with seam loss 𝐿𝑠𝑒𝑎𝑚 .

Due to unfolded boundaries of the texture image in our texture representa-

tion, the generated texture images may show some artifacts (inconsistency

in the unfolded boundaries, as highlighted with red rectangles in (a)). The

loss can prevent the artifacts (b). The results demonstrate the seam loss is

effective for removing artifacts related to unfolded boundaries.

𝑙 = 256 and the texture resolution for a single part to 1, 024 × 768;

this is the setting we adopt throughout our experiments.

5.3 Ablation Studies

We perform several ablation studies to demonstrate the necessity of

key components of our network architecture.

With vs. without seam loss. Since our texture representation relies

on unfolding boxes (see Figure 3), pixels on the boundary during

unfolding are mapped to two or more places in the texture space.

This may lead to artifacts when pixels on the boundaries are not con-

sistent. So we introduced a seam loss to prevent this, which ensures

the unfolded boundaries in the texture images are as consistent as

possible. Figure 20 shows the decoded results of a chair without and

with the seam loss 𝐿𝑠𝑒𝑎𝑚 . The results show black line artifacts (on

legs and seat and highlighted with red rectangles) exist near the

unfolded boundaries without the seam loss, and our result with the

seam loss does not have such artifacts.

With vs. without texture part compatibility. As demonstrated in

the sections above, the autoregressive model is able to generate

reasonable textures for each part. However, generating textures for

each part individually can lead to incompatible between different

parts. To solve this issue, a greedy strategy is applied to ensure

the coherence between different parts. Firstly, one selected part’s

texture (usually the selected part’s center is closest to the shape

center) is generated, and then the VGG feature of its texture is

extracted and concatenated with other parts’ geometry latent code

to be the conditional input of other parts’ conditional autoregressive

network. The comparison of mesh texturing results without and

with seed part’s VGG feature conditional input is shown Figure 21.

We can find that the generated textures are incompatible among

parts without the seed part’s VGG feature condition input.

Seed

Seed

(a) Untextured mesh. (b) No part compatibility. (c) With part compatibility.

Fig. 21. Comparison of mesh texturing without vs. with part compatibility.

Row 1: without using VGG features of the tabletop (the seed part) as condi-

tional input, the texture generated for one of the table legs is inconsistent

with the rest. Row 2: with chair back as the seed, the chair seat has an

incoherent texture generated if no part compatibility is enforced.

6 CONCLUSION, LIMITATION, AND FUTURE WORK

We present a part-aware deep generative model, TM-NET, for tex-

tured meshes embedded in 3D. Our network utilizes a simple and ef-

fective consistent texture atlas obtained from unfolding deformable

boxes. It separately encodes box deformation and textures using

VAEs at the part level and learns one-to-many relationships between

geometry and texture. Textures are encoded using dictionary-based

vector quantization to allow high-frequency details to be faithfully

synthesized. Our generative model is quite generic and supports

several typical applications in the realm of realistic 3D shape mod-

eling, e.g., synthesizing textures for a given 3D shape, generation of

novel textured meshes, latent-space interpolation, and image-guided

generation of textured shapes, all under a unified framework.

As a first attempt at the challenging problem of neural and gener-

ative modeling of both the geometry and texture of 3D shapes, our

work is still quite preliminary and limited on several fronts. To start,

we have only explored the dependency of part texture on shape

geometry and structure, without taking into account the correla-

tion between texture and material properties, which are often tied

to object functionality. For example, to be sat on comfortably, sofa

textures are often those of fabrics and leather. A joint learning of

texture, material, and functionality is left for future work.

In general, textures are highly complex signals that can exhibit

a wide variety of frequency-domain characteristics. For example,

the wood or leather grain textures on furniture objects are quite

different from image patterns on an airplane. As shown in Figure 11,

our texture encoding using VQ-VAEs is not as effective in learning

the car and plane textures due to their more complex and varied

frequency-domain characteristics, compared to the furniture tex-

tures. The resulting artifacts include blurrier decoded textures and

cross-fading during latent-space interpolation (see Figure 22). In ad-

dtition, the VQ-VAE in our TextureVAE does not impose constraints

on the intermediate feature space as the original VAE or normalizing
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Fig. 22. Cross-fading results from latent space interpolation described in

Sec. 5.1 by TM-NET on the car and plane examples (best viewed by zooming

in). Row 2 is further enlarged in row 3 for clearer detail visualization.

(a) Ground truth. (b) Reconstruction. (c) Image guidance. (d) Generation.

Fig. 23. Some failure cases. (a-b): TM-NET cannot accurately reconstruct the

small slits on top of the ground truth table. (c-d): Image-guided generation

of textured shapes by TM-NET may produce unexpected texture.

flows [Berthelot et al. 2018], thus it cannot ensure that all the entries

in the codebook are mapped to reasonable textures images.

In addition, while TM-NET can represent 3D shapes with high

genus and rely on the texturing trick to create the visual illusion of

topological details, using the alpha channel in texture space, it is not

always able to decode the fine-grained shape details. As shown in

Figure 23(a-b), the tabletop contains many small slits. Our current

method cannot reconstruct such geometric details accurately, e.g.,

some of the gaps are closed in the decoded shape. The details around

the slits appear over small regions on the texture image, which are

difficult to encode and decode precisely. Still, we believe that the

generated textures can provide sufficient constraints to help refine

the geometry in a postprocess. To train a network to accomplish

this in an end-to-end manner left for future work.

Another possible failure case occurs for our image-guided gener-

ation of textured 3D shapes, as shown in Figure 23(c-d). The shape

generation uses the guidance image as a condition. However, due

to the sampling strategy employed by the conditional generative

network, the input texture is not guaranteed to be reproduced or

even closely approximated. It is worth considering in future work

how to reconstruct both shapes and textures more deterministically

by making better use of the input image via neural rendering.

As for other possible directions to explore, wewould like to extend

our method to other applications, e.g. single-view 3D reconstruc-

tion. Expansions to other types of input, such as line drawings for

both shape and texture, and to other encoding schemes are also

interesting to explore. We also plan to extend our current represen-

tation with procedural texture generation, e.g., based on Perlin noise

style texture [Henzler et al. 2019] to improve texture generation. Fi-

nally, our current shape-conditioned texturing is unable to generate

stylish outputs such as the ones shown in Figure 14 which exhibit

significant deviations between textures in different parts. Learning

texturing styles would be an interesting direction for future work.
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