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ABSTRACT In representation learning, Convolutional Sparse Coding (CSC) enables unsupervised learning
of features by jointly optimising both an `2-norm fidelity term and a sparsity enforcing penalty. This work
investigates using a regularisation term derived from an assumed Cauchy prior for the coefficients of the
feature maps of a CSC generative model. The sparsity penalty term resulting from this prior is solved via
its proximal operator, which is then applied iteratively, element-wise, on the coefficients of the feature maps
to optimise the CSC cost function. The performance of the proposed Iterative Cauchy Thresholding (ICT)
algorithm in reconstructing natural images is compared against algorithms based on minimising standard
penalty functions via soft and hard thresholding as well as against the Iterative Log-Thresholding (ILT)
method. ICT outperforms the Iterative Hard Thresholding (IHT), Iterative Soft Thresholding (IST), and ILT
algorithms in most of our reconstruction experiments across various datasets, with an average Peak Signal
to Noise Ratio (PSNR) of up to 11.30 dB, 7.04 dB, and 7.74 dB over IST, IHT, and ILT respectively. The
source code for the implementation of the proposed approach is publicly available at https://github.
com/p-mayo/cauchycsc

INDEX TERMS Cauchy-based penalty function, convolutional sparse coding, proximal splitting.

I. INTRODUCTION
Representation learning seeks to understand the underlying
patterns and structures that give raise to the data of interest.
This often involves using generative models to describe the
processes involved in the formation of this data, using known
or assumed priors [1]. In some of these models it is assumed
that data arises from a linear operation among the elements
of a set of basic or canonical features. Thus, in addition to
selecting this set of features, it is also necessary to obtain their
respective coefficients for generating any given sample. Com-
puting the coefficients for such a sample effectively trans-
forms it into the chosen feature domain. This transformation
process is referred as encoding, whilst decoding corresponds
to the reverse action of transforming back into the original
domain [1], [2].

Establishing an effective choice of features for the gener-
ative model can aid in understanding the nature of the data.
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Furthermore, the resulting coefficients can be used in-place
of the raw data for many tasks including source separation
[3], [4], image compression [5]–[7], image denoising [8], [9],
image super-resolution [10], [11], image and audio [12],
[13] [14] classification, or anomaly detection [15]. Algo-
rithms following these approaches have been successfully
employed in a variety of applications such as medical imag-
ing [11], [16], [17] and remote sensing [3], [18]–[20], to name
but a few.

Thus, determining a suitable feature set for the data in ques-
tion is a crucial task, but how should this be accomplished?
Early on, it was common to employ a set of predefined or
fixed basis features. Sets such as Wavelets and ones obtained
from the Discrete Cosine Transform (DCT) have been used
with success for image denoising and compression respec-
tively. For instance, to denoise images, a common practice is
to transform them to the wavelet domain, in which a threshold
can be applied to the wavelet coefficients [9]. Reversing
the coefficients to the original domain after thresholding
results in a cleaner image. Feature sets such as these are in
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some sense universal. As such they are not always effective
in capturing specific traits of a particular dataset. This can
sometimes result in vital particularities of the data being lost.
For this reason different approaches enabling the unveiling of
new meaningful data specific information have become more
prevalent.

As previously mentioned, the assumptions made will guide
the design of the model to utilise for these purposes. Principal
Component Analysis (PCA) [21] and Independent Compo-
nent Analysis (ICA) [22] provide the means to determine
the underlying components comprising the data of interest.
The difference between these two being that ICA makes a
further assumption regarding the independence among these
components. In either case, the generative model corresponds
to a dot product that meets some orthogonality conditions on
the (squared)matrix of features. There is no strict requirement
however, for the feature matrix to be square. For instance,
in AutoEncoders (AE) [23] the goal is to train a network in
an unsupervised fashion such that its weights both encode and
decode the data in a lower dimensional space. Alternatively,
there is dictionary learning and sparse coding [24], in which
it has been suggested that overcomplete sets are capable
of describing as well as (if not better than) complete ones
as they are able to unveil a bigger number of underlying
features [24]. Since the features belong to an overcomplete
matrix, the model to solve is underdetermined and an infinity
of solutions becomes available. This can be remedied by
assuming the data representation is sparse, meaning that only
a few elements of the feature matrix take part in the formation
of the data and hence most of the elements in the vector of
coefficients are set to zero. This is modelled by the addition of
a penalty term known to enforce this behaviour. The assump-
tion of sparsity has been motivated by the way in which the
V1 cells from the visual cortex work [25].

With this addition, the model not only learns the features
to represent the data but also the coefficients describing their
contribution. This is commonly achieved by splitting the
learning into two tasks, i.e., a step is devoted to learn the
elements of the dictionary and the other to learn the elements
in the vector of coefficients. There is evidence showing that
the latter step can be the most critical for the model to succeed
in the representation task [2]. In [2] the power of encoding
was demonstrated regardless the choice of learning (or lack
of it) for the features. This motivates efforts on the design
of novel approaches aiming to learn the coefficients in the
encoding stage of the algorithm.

The core contribution of this work is the derivation and
effective demonstration of a new regularisation term used dur-
ing the encoding step of Convolutional Sparse Coding (CSC).
This term arises from the assumption that feature maps of
coefficients follow a Cauchy distribution. To make use of this
new regularisation we propose the Cauchy proximal operator,
which when implemented iteratively follows in the vein of
shrinkage algorithms [26]–[28] and gives raise to an algo-
rithm, which we refer to as Iterative Cauchy Thresholding
(ICT). Unlike existing previous approaches this algorithm

does not perform explicit thresholding, resulting in values
approaching 0 but not necessarily locking to it. Following
the theoretical guarantees for the Cauchy proximal operator
provided in [29], in this manuscript we devoted efforts to
demonstrating the efficiency of this new type of regularisation
in a 2D image reconstruction task via CSC. We evaluate the
performance of the proposed approach against the common
choices of soft, hard, and log thresholding algorithms.

The remaining of this manuscript is organised as follows.
The backbone and derivation of the proposed algorithm is
reviewed in detail in section III along with related work that
inspired our approach. In section IV the algorithm used for the
reconstruction task is shown. The experiments conducted are
found in section V along with their results. Lastly, section VI
offers a discussion, conclusion, and future lines of work.

II. THEORETICAL PRELIMINARIES
In a basic generative model, it is assumed the observation
vector y ∈ IRP can be estimated from a linear combination of
the column vectors (also referred as atoms, codes or features)
of the dictionary matrix A = [a1, a2, . . . , aN ] ∈ IRP×N .
The contribution of each one of these elements is given by
the coefficients in the vector x ∈ IRN such that there is
one coefficient for each column in A. The estimation of the
observed data y is thus given by:

ŷ = Ax. (1)

where ŷ ∈ IRP. Since ŷ does not retrieve exactly the original
sample y, this is y ≈ ŷ, there exists a vector ε such that ε =
y− ŷ or, equivalently

y = ŷ+ ε, (2)

with ε ∈ IRP. For dictionary learning and sparse coding,
the dictionary matrix A is overcomplete, i.e. N > P. In addi-
tion, there is a one-to-one spatial correspondence between the
features and the data to reconstruct, in other words, the size of
the features has to be the same as that of the data, which can
be impractical for large size signals. This can be alleviated
by using patches extracted from the original signal instead,
reducing the size of the dictionary atoms to the one of these
patches. Thus, the observed data is now a set of vectors yi ∈
IRM , i = 1, 2, . . . , I containing the I patches extracted from
the original signal of original dimension P. Moreover, from
the N available features, only a much smaller number L are
used for the generation of the data (L � N ). By using patches
it becomes necessary to perform pre- and post-processing of
the data to extract the patches and then bring them together to
reconstruct the sample. For this to work, it is assumed these
patches are independent, which is not necessarily true. There
are two main ways to extract patches from the data, one of
them is restricting them to not overlap. This, in addition to
the independence assumption, is later on reflected in blocking
artifacts when the samples are reconstructed. On the other
hand, when the patches are overlapped, an average opera-
tion is performed when building the final image, which also
results in a degraded version of the original sample as there is
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now a smoothing effect present in it. Furthermore, the learned
features are often translated versions of other atomswithin the
set (they are not shift invariant).

The use of the convolution operator in the generativemodel
helps to address the aforementioned limitations of dictionary
learning [14], [30]. Thus, it evolves to CSC. Eq. 3 describes
this model.

ŷ =
K∑
k=1

fk ∗ zk , (3)

where the signal of interest y ∈ IRP is now modelled as a sum
of K filters fk ∈ IRM convolved with their respective feature
map zk ∈ IRQ, with P = M + Q − 1 for k = 1, 2, . . . ,K .
Note that y is the complete original signal of size P. Wewould
like to highlight that for ease of reading the equations are
expressed purely using one dimensional data. Nevertheless,
the extension to higher dimensional data is straightforward.

In either of the twomentioned generativemodels, the learn-
ing of the features can be done by minimising the error
between the estimated and the observed data. For instance,
for CSC:

f ∗ = argmin
f

L(f , z),

= argmin
f
||y− ŷ||22,

= argmin
f
||y−

K∑
k=1

fk ∗ zk ||22, (4)

where f = [f1, f2, . . . , fK ] and z = [z1, z2, . . . , zK ] in L(·, ·).
In the traditional dictionary learning approach, the optimi-
sation would be carried over the matrix A instead of f .
From now on, the generative model considered in the paper
is the CSC.

To seek for sparsity, it suffices to add a regularisation term
to the optimisation function as

f ∗, z∗ = argmin
f ,z

G(f , z),

= argmin
f ,z

L(f , z)+ λϕ(z),

s.t. ||fk ||2 = 1, k = 1, 2, . . . ,K , (5)

in which it is now required to learn, in addition to the set of
features in f , the set of coefficients in the feature maps in z.
The constraint on the filters prevents them from absorbing
most of the energy during the learning.

The learning is carried on by iteratively alternating the
optimisation of the cost function over f and z. This means that
in a first step (z-step), the cost function will be minimised by
assuming f is fixed or constant. The opposite happens during
the f-step.

In addition to Gradient Descent, several approaches have
emerged aiming to solve Eq. 5 w.r.t. f to learn features
from the data, such as K-SVD [31] and the more image
statistic-adapted SparseDT [32]. Similarly, optimising the
cost function w.r.t. z will result in the learning of the sparse
coefficients. Such optimisation depends on the choice of

penalty function. If one is to seek for the sparsest solution,
then the penalty term chosen is the `0-norm. Hence, finding
the set of coefficients that optimise Eq. 5 is a combinatorial
(NP-hard) problem. Broadly speaking, there are two main
approaches to solve said regularisation term: greedy and
relaxed algorithms. The first category focuses on solving the
`0-norm whilst the second one considers its relaxed version
(the `1-norm). For the former, Matching Pursuit is one of
the most common solvers in which coefficients are chosen
one by one in a greedy fashion until a stopping criteria is
met. If, on the other hand, one chooses the Least Absolute
Shrinkage and Selection Operator (LASSO), given by the
`1-norm, the function to optimise is now non-smooth convex.
In these circumstances, the choice of penalty term is based

on the known behaviour (shape) of the function. Thus, as long
as one knows the function has a shape that can enforce
sparsity, such function can be used for ϕ(·). Some alterna-
tives are the non-convex `p-norm (with p ≤ 1) or the (also
non-convex) log regulariser among others. A comprehensive
review of these sparsity-enforcing functions can be found
in [33] and references therein.

It is important to note at this point that sparsity can be
perceived from (at least) two perspectives: in one sense,
the aim is to set most elements to zero as enforced by penalties
based on the `1- and `0-norms. The alternative option is to
enforce sparsity from a statistical point of view, whereby the
coefficients follow a heavy-tailed distribution. The Cauchy
distribution underpins ICT, whereas with a similar reasoning
one could also say that Iterative Shrinkage Thresholding
(IST) is based on the Laplace distribution.

Iterative algorithms have come along with an associated
sparsity enforcing penalty term. The IST algorithm is a com-
mon choice when the function to optimise makes use of
the `1-norm whilst the Iterative Hard Thresholding (IHT)
algorithm solves the `0-norm. More recently the use of the
Iterative Log Thresholding (ILT) [28] has been proposed to
optimise the log regulariser. Table 1 summarises the equations
involved in these algorithms.

These algorithms can also be derived via surrogate func-
tions in which one seeks to separate the terms involved in
the cost function. Regardless of the chosen algorithm to use,
these thresholding operators are applied in an element-wise
fashion. These three approaches suppress any value below
some threshold but it is only IST and ILT that update values
higher than said threshold. In the case of IST this has a direct
impact on the results as they often exhibit blurring.

III. ITERATIVE CAUCHY THRESHOLDING
The Cauchy assumption in the field of image processing is
not new as it has previously been used to model the noise
corrupting the images of interest [34], [35]. Nonetheless,
in this work it is not the noise but the coefficient values
involved in the generativemodels the ones that are assumed to
follow this distribution. In fact, the assumption of a Cauchy
prior for the model has been done with success in the past
[36]–[40].
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TABLE 1. Penalty terms that promote sparsity and their proximal operators.

The encoding step depends on the regularisation term in the
optimisation model. This term could fall into the non-smooth
convex functions, such as the `1-norm; non-smooth non-
convex, such as the log regulariser or the `0-pseudo norm; or
smooth non-convex penalty terms, such as the one explored in
this paper. This function is derived from a statistical assump-
tion on the coefficients, serving as prior in a Maximum a
Posteriori (MAP) approach. The resultant learning algorithm
corresponds to a function which, despite the non-convexity
of its regularisation term, is guaranteed to convergence under
a certain condition. Specifically, it is the Cauchy distribution
the one assumed to drive the learning framework. The use of
this prior enables the learning of the coefficients by iteratively
applying its proximal operator on the coefficients, achieving
shrinkage around a non-explicit threshold that emerges natu-
rally from the equations involved in this process. In addition,
the parameters shaping the distribution of the coefficients can
be estimated from the observations, facilitating the use of this
method.

A. THE CAUCHY DISTRIBUTION
In this work, we make use of a penalty function based on
the Cauchy distribution, which is known to be heavy-tailed,
hence ideal to model sparsity [14]. From a purely theoretical
viewpoint, our preference for the Cauchy model over other
candidate models stems from its membership of the α-Stable
family of distributions. Specifically, unlike other empirical
distributions able to faithfully fit distributions with heavy-
tails, α-Stable distributions are motivated by the generalised
Central Limit Theorem (CLT) similarly to the way Gaussian
distributions are motivated by the classical CLT. However,
although the (symmetric) α-Stable density behaves approxi-
mately like a Gaussian density near the origin, its tails decay
at a lower rate than the Gaussian density tails. Indeed, let X be
a non-Gaussian symmetric α-Stable random variable. Then,
as x →∞

P(X > x) ∼ cαx−α, (6)

where cα = 0(α)(sin πα2 )/π , 0(x) =
∫
∞

0 tx−1e−tdt is the
Gamma function, and the statement h(x) ∼ g(x) as x → ∞
means that limx→∞ h(x)/g(x) = 1. Hence, the tail probabili-
ties are asymptotically power laws.

FIGURE 1. Cauchy p.d.f. with different values for the parameters δ and γ .

The location and dispersion of the Cauchy distribution are
described by the parameters δ and γ respectively, and its p.d.f.
is defined by

p(x) =
γ

π (γ 2 + (x − δ)2)
, (7)

whilst Figure 1 illustrates their role on the distribution.
For the aim of the proposed work (enforcing sparsity), it is

required that δ = 0, so that the distribution is peaked at the
origin. This results in a simplification of the expression to
work with. On the other hand, the parameters of the distri-
bution can be estimated from the data itself using maximum
likelihood estimation as

γ = argmin
γ
−

T∑
t=1

log(p(x)+ ε), (8)

where ε is a very small value.
Thus, the overall cost function to be optimised is composed

of two functions, as illustrated in Eq. 5. The data fidelity
term L(·, ·) being convex with ϕ(·) possibly non-smooth or
non-convex or both. The properties of the penalty term are
determined by the chosen function, for instance, the `1-norm
is non-smooth convex, the log penalty term is non-smooth
and non-convex, and the Cauchy penalty term is smooth non-
convex.
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The optimisation of Eq. 5 is done by following the prox-
imal splitting approach, in which the functions that present
challenges during conventional optimisation techniques are
projected into a convex set via their proximal operators. Note
that the number of functions involved in the optimisation can
be≥ 2. The proximal operator of a given function ϕ(·) can be
obtained by solving:

proxλϕ(x) = argmin
z

(z− x)2 + λϕ(z) (9)

B. THE CAUCHY PROXIMAL OPERATOR
Following a MAP approach, the penalty term on the coeffi-
cients in z is then defined as ϕ(·) = − log(p(·)), with p(·)
as defined in Eq. 7 and setting δ = 0. This penalty term is
applied individually on every element of z. Thus, by using
ϕ(z) = −log(p(z)) in Eq. 9 it is possible to derive the Cauchy
proximal operator as

proxλϕ(x) = argmin
z

(z− x)2 + λϕ(z)

= argmin
z

(z−x)2−λ log

(
γ

π
(
γ 2+z2

)) . (10)

To find the stationary points, we just need to take the
derivative of the above expression and setting it equals to
zero. After doing this and rearranging the terms, we obtain:

z3−xz2 + (γ 2
+ λ)z− γ 2x = 0. (11)

Using the Cardano’s method to find the roots of the previ-
ous cubic equation with a = 1, b = −x, c = γ 2

+ λ and
d = −γ 2 x, one finally gets to:

z =
x
3
+ t, (12)

where

t = 3

√
−
q
2
+

2√
1+ 3

√
−
q
2
−

2√
1,

1 =
q2

4
+
p3

27
,

p = λ+ γ 2
−
x2

3
,

q = −
2
27
x3 +

1
3

(
λ− 2γ 2

)
x.

The Cauchy proximal operator, thus, requires the selection
values for the parameters γ and λ, for which it becomes ideal
to understand their function in the operator. By fixing γ to a
specific value and vary λ and vice-versa it is possible to gain
an intuition of their roles. In fact, it is found that the value
of γ shapes the thresholding function and smaller values
contribute to a more aggressive shrinkage near the threshold,
whilst λ shifts the threshold location. Fig. 2a and 2b illustrate
this behaviour.

In fact, when γ → 0 the threshold→ 2λ and the shape
of the function approximates the ILT. On the other hand,
when λ → 0, the roots of Eq. 11→ γ i,−γ i, and x, which
would keep the values unchanged, i.e. no shrinkage would be

performed. Nonetheless, in this work we do not treat γ as a
tunable parameter. Instead, this value is estimated from the
data following the approach mentioned in Section III-A.

One could compare the Cauchy and log penalty terms
(third row in Table 1) since both are shaped by the logarithm
function and some parameter (δ for ILT and γ for ICT).
However, the corresponding proximal operators are consid-
erably different. A major difference between ICT and the rest
of the algorithms presented in this manuscript so far is the
lack of an explicit threshold. The coefficients are still shrunk
according to the Cauchy proximal operator in an iterative
manner, reaching values closer to zero but not necessarily
locking on it. This occurs since, as we can see in Fig. 2a,
there are curves that do not set any value to zero at all. The
actual shape of the function describing the proximal operator
will depend on the data itself.

FIGURE 2. Behaviour of ICT for varying (a) γ ’s and (b) λ’s.

The penalty term derived from the Cauchy distribution is a
smooth non-convex function, which makes the optimisation
of G(·, ·) challenging. However, the cost function defined
in Eq. 5, as a whole, can be guaranteed to converge to a
minimum, if the following condition is met [29]:

λ ≤ 8γ 2. (13)

Specifically, the condition given in Eq. 13 ensures that
the cost function in the Cauchy proximal operator (Eq. 10)
converges. This condition guarantees convergence in the sce-
nario in which the proximal operator needs to be applied in
an iterative manner for inverse problems [29] as it ensures
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FIGURE 3. Behaviour of the different thresholding algorithms and, in the
case of Cauchy, using different parameters.

Algorithm 1 Iterative Cauchy Thresholding
Initialise x with 0’s
Set η, γ and λ
Choose stopping criterion. In this work this corresponds to
a max number of iterations
while Stopping criterion has not been met do
Compute z← z− η∇zL(f , z)
Shrink every element in z using Eq. (12).

end while

that the Hessian of the expression to minimise in Eq. 10 is
positive semidefinite (see Lemma 2 and Theorem 2 in [29] for
the details of the mathematical derivation). It is this iterative
process the one that gives rise to our proposed ICT algorithm,
whose pseudocode is presented in Algorithm 1. Note that
an additional parameter η is present as it accounts for the
learning rate, thus, the original equation contains ηλ, and
since λ = 1 the algorithm has η only, which also affects the
convergence condition to η ≤ 8γ 2 instead.

This condition is easily applied when the generative model
corresponds to CSC. As shown by [29], this arises from
the condition being derived by taking the second derivative
where the generative model is no longer involved and
the resultant expression is dependant only on the hyper-
parameters.

IV. CAUCHY CONVOLUTIONAL SPARSE CODING
In this section, our new CSC algorithm for representation
learning is introduced. It is based on the use of the Cauchy
proximal operator through an iterative process in order to
encode the data for the z-step. The cost function is derived via
MAP. The prior knowledge employed and which then trans-
lates into the penalty function corresponds to the assumed
statistical distributions of the coefficients [14].

By using the Cauchy distribution in the generative model
it is now required to perform the z-step via the Cauchy
proximal operator defined in Section III-B. Our goal is thus

Algorithm 2 Cauchy Convolutional Sparse Coding
Initialise zk with 0’s, k = 1, 2, ..,K
Initialise randomly fk , k = 1, 2, ..,K
Estimate γ from the data using Eq. 8
Choose stopping criterion
while Overall stopping criterion has not been met do
Set zold ← z
while Stopping criterion for z-step has not been met do

Set CO← G(f , z)
For every zk compute:
zk ← zk − ηz∇zkL(f , z)
Shrink zk using Eq. (12).
Set CN ← G(f , z)
if CN > CO then
Set z← zold

Set ηz = ηz/2
else

Set zold ← z
end if

end while
Set f old ← f
while Stopping criterion for f -step has not been met do

Set CO← G(f , z)
For every fk compute GD on the filers:
fk ← fk − ηf∇fkL(f , z)
if CN > CO then
Set f ← f old

Set ηf = ηf /2
else

Set f old ← f
end if

end while
end while

to solve Eq. (5) for the feature maps using the Cauchy penalty
function. Specifically, the cost function is now:

G(f , z) = ||y− ŷ||22 − λ
K∑
k=1

Q∑
q=1

log

(
γ

π(γ 2 + z2k,q)

)
, (14)

with ŷ as defined in Eq. 3. Thus, the full algorithm aims to
learn the set of filters f and the feature maps z associated to
the data from a dataset of size T . Note that extending the cost
function defined in Eq. 5 to learn from more than one sample
(i.e. dataset size> 1) is straightforward and hence not detailed
in here.

As it is common in similar algorithms, the proposed
approach works by alternating optimisation between the
learning of the features and the learning of the coefficients,
until a convergence criterion is met. This can consist in
reducing the reconstruction error below some predefined
value or in a maximum number of iterations to be reached.
Gradient descent is used as learning approach for the features
(f-step) in conjunction with a chosen thresholding algorithm
for the coefficients (z-step). In each of the learning steps,
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FIGURE 4. Block diagram of the Cauchy Convolutional Sparse Coding algorithm. After a few iterations the
coefficients within the feature maps get closer to zero.

their respective learning rate is reduced when the cost func-
tion increases, so that overshooting over the local minima
is prevented. This is achieved by halving the learning rate
for the current step following an observed increase in value
subsequent to an update.

The f -step is solved by minimising Eq. 14 over f , which
can be written compactly as

f ∗ = argmin
f
||y−

K∑
k=1

fk ∗ zk ||22. (15)

This requires taking the gradient over f and choosing a step
size ηf for updating the features iteratively. This guarantees
convergence since it involves the optimisation of the `2-norm,
which is a smooth convex function.

The key to implementing the Cauchy Convolutional Sparse
Coding (CCSC)method consists in using ICT in the encoding
phase of the algorithm. This is achieved by solving:

z∗ = argmin
z
||y−

K∑
k=1

fk ∗ zk ||22

− λ

K∑
k=1

Q∑
q=1

log

(
γ

π (γ 2 + z2k,q)

)
. (16)

In addition to the regularisation parameter λ, one requires
also to choose a learning rate ηz. Similarly to what has been
done for the f -step, ηz is updated whenever the cost function
increases as result of the previous coefficient update. The
pseudocode of the whole approach is presented in Algo-
rithm 2 whereas its block diagram is depicted in Figure 4.
For reproducibility of the results, the source code of the

presented algorithms is provided at https://github.
com/p-mayo/cauchycsc

V. SIMULATION RESULTS
In order to quantify the performance of our proposed method,
we compared results obtained when using CSC in conjunc-
tion with ICT, IHT, IST, and ILT, in a 2D image reconstruc-
tion task. The data employed were classical images such as
Lena and the Shepp-Logan phantom, as well as the MNIST
and AT&T faces1 datasets. Before applying the represen-
tation learning algorithm, independently of the regulariser
used, the data have been pre-processed firstly with MinMax
normalisation followed by the subtraction of the mean, such
that the intensity distribution is centred at the origin (zero-
mean). There is no pre-processing done to enforce the dataset
to have unit variance since this could affect the estimation
of the γ parameter required by the ICT algorithm. Since
MNIST and the faces dataset are considerably large, a sample
composed of T = 500 and T = 30 random images therein
were used in the respective experiments.

The complete approach was performed 100 times for each
dataset using different random initialisation for the filters. For
the MNIST and AT&T datasets a random set of samples was
also chosen at the beginning of each of their experiments.
The maximum number of iterations was fixed to 100 per
experiment.

Note that the hyperparameter λ absorbs the learning rate
during learning for IHT, IST and ILT, whereas for ICT it was
set to 1 in order to leave it as close to the original cost function

1https://git-disl.github.io/GTDLBench/datasets/
att_face_dataset/
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FIGURE 5. Reconstructions of image Lena (first row) and AT&T Faces dataset (third row) using the algorithms (a,i) IHT, (b,j) IST, (c,k) ICT, and (d,l)
ILT and the filters learned (second and fourth row, respectively) using (e,m) IHT, (f,n) IST, (g,o) ICT, and (h,p) ILT on second and fourth row.

derived fromMAP as possible. Hence, only the estimation of
γ is required.
For ICT, the learning rate needs to meet the condition in

Eq. 13. The additional tunable parameters employed were
K = 25 and a filter size of 5× 5 for all the experiments.

For an initial qualitative assessment, Figures 5 and 6 show
the filters learned for the different datasets, along with the
reconstructed images. We show samples from the experi-
ments with the highest Peak Signal-to-Noise Ratio (PSNR)
for each algorithm. By visually inspecting Figures 5 and 6,
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FIGURE 6. Reconstructions of image Shepp-Logan Phantom (first row) and MNIST dataset (third row) using the algorithms (a,i) IHT, (b,j) IST, (c,k)
ICT and (d,l) ILT and the filters learned (second and fourth row, respectively) using (e,m) IHT, (f,n) IST, (g,o) ICT and (h,p) ILT.

it can be seen that of the four algorithms assessed, it is the IST
algorithm that provides clearer and sharper features. On the
other hand, we also notice that ICT can learn a larger number
of meaningful filters as observed in the less random patterns
they exhibit. By contrast, for IST, IHT and ILT, some of these
bases failed to be meaningfully updated. In fact, we noticed

that the initialisation of the filters plays an important role in
their learning as sometimes there seem to be no learning at all
for IHT as the filters have a noisy appearance. This is in spite
of their relatively good reconstruction performance with high
PSNR values achieved and this confirms the dependence of
reconstruction performance on the encoding step [2].
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FIGURE 7. Boxplots of PSNR (dB) for CSC using different algorithms for z-step.

FIGURE 8. Learning iterations vs PSNR (in dB) for CSC using different algorithms for z-step.

The performance of the four representation learning
approaches is also assessed through quantitative analysis.
The PSNR values for the reconstruction of each sample was

computed and their average values as well as their standard
deviations are reported in Table 2 and Fig. 7 showing their
respective boxplots. Table 3 reports the average proportion of
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TABLE 2. PSNR (in dB) results of CSC using different penalty terms.

TABLE 3. Proportion of non-zero coefficients learned via CSC using
different penalty terms.

non-zero elements in the learned featuremaps. In both Table 2
and Table 3, the best performance for each dataset is shown
in bold.

Lastly, in Fig. 8, a plot of the learning performance as
function of average PSNR as the iterations progress is pro-
vided. From Fig. 8 we can see that ICT and IST reach
the plateau corresponding to the highest PSNR early in the
learning process, with IHT and ILT reaching their own max-
imum a few iterations later. It is ICT, however, the one that
achieves the highest PSNR and requires the least iterations.
The three algorithms, IHT, IST and ILT, require tuning of
a number of parameters for optimal performance, whereas
for ICT the parameter γ is estimated directly from the data.
In fact, the use of the iterative Cauchy algorithm requires the
choice of only two values, the learning rate and the scale
parameter. As noted in section III-B, γ can be estimated
from the original data whilst ηz needs to obey the condition
in Eq. 13.

From Table 2 we can see that ICT provides the best PSNR
performances in three out of four cases, which is consistent
with the visual evaluation. IST, on the other hand, is the
one with the worst reconstruction performances although the
features learned with it are seemingly sharper in comparison
to ICT. IHT and ILT lie in between in terms of reconstruction
performance. It is also observed that ILT offers the sparsest
feature maps whilst producing a reasonable PSNR for most
datasets. Interestingly, for the Shepp-Logan phantom image,
ILT did not provide the sparsest solution and produced many
more non-zero values in contrast to its behaviour on the
other datasets. We believe that this could be remediated by
a lengthy fine tuning of the hyperparameters η, δ and λ.
IST presents more consistency in regard of the PSNR results
obtained as the inter-quartiles range is shorter than the other
two algorithms, as seen in Fig. 7.
We observe an increase of the average PSNR as the images

increase in size for the four thresholding algorithms consid-
ered, with ICT exhibiting the highest of such jumps. Indeed,
ICT performed better as the size of the images increased,
having very similar performance to IHT and ILT for the small

size MNIST (28 × 28) dataset as opposed to the case of the
Shepp-Logan phantom (256 × 256) and Lena (512 × 512)
images. Furthermore, despite the high PSNR values obtained
with IHT, some degradation in the reconstructed images sur-
rounding the edges and the lose of details is apparent. In the
case of IST, the images exhibit a smoothing effect regardless
of their dimension. Lastly, the reconstructed images produced
by ICT also present some artifacts near the edges, which
become more apparent in smaller image sizes. Further exper-
iments would be needed to inspect this behaviour in more
detail as the image content varies greatly from dataset to
dataset. For example, Lena and the AT&T datasets are richer
in information than the MNIST and Shepp-Logan phantom.

With respect to Table 3, it is evident that ICT is the
approach that offers the least sparse solutions. Having a
closer look to the histograms of coefficients (Fig. 9) it can
be observed that most coefficients are in a very close vicinity
of 0, which might explain the ability to learn most of the
features most of the times whilst reducing their noisy appear-
ances. Even though ICT does not promote sparsity in the same
way the `1- and `0- norms do, it is based on a function with
various important statistical characteristics such as ability
to model non-Gaussianity and heavy-tails remarkably well
compared to the `1- and `0- norms. Due to its statistical
characteristics and closed-form proximal operator existence,
we believe CCSC to be an excellent tool for optimal image
data representation.

FIGURE 9. Histogram of coefficient values from the 25 feature maps
involved in the reconstruction of the image Lena using ICT. Y axis scale
factor: 105.

Of course, we are aware of the existence of approaches
such as Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [41] or the Accelerated Iterative Hard Threshold-
ing [42] for the `1- and the `0-norm, respectively, which can
lead to better reconstruction performance. However, investi-
gating this is beyond the scope of this paper, since our interest
is in demonstrating the benefits of using a better statistical
model as the driving force behind such algorithms, while
enhancements similar to those in [41] could be incorporated
in our approach as well.
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VI. CONCLUSION AND FUTURE WORK
In this work a new convolutional sparse coding framework
based on a Cauchy model assumption is proposed. This
approach enables the learning of filters and their respec-
tive feature maps by using said distribution as prior for
the coefficients in the latter, which results in a new cost
function. The Cauchy proximal operator was derived and
used for its optimisation. This requires a preliminary step
before the learning process, which involves the estimation
of the corresponding scale parameter. In fact, we consider
this to be one of the strongest features of our approach, as it
requires virtually no tuning of hyper-parameters, as opposed
to IHT, ICT, and ILT, for which a bad choice of parame-
ters is likely to have a negative impact in the output of the
algorithms. The performance was evaluated on four differ-
ent datasets and compared against the reconstruction perfor-
mance achieved using existing methods. Even though CCSC
does not achieve the same degree (and type) of sparsity
as the other three algorithms, the filters learned are seem-
ingly better for the reconstruction task based on their higher
PSNR values achieved. The current implementation of the
ICT algorithm is computationally more demanding than the
other methods included in this study, as can be seen from
Table 1 and Eq. 12.

Our current work focuses on investigating the discrimina-
tive power of the proposed representation in classification
problems. In addition, further investigations will be con-
ducted on the potential use of the CCSC algorithm in a wider
variety of scenarios and for solving different imaging inverse
problems.
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