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Abstract— We study the problem of robust performance of
quantum systems under structured uncertainties. A specific
feature of closed (Hamiltonian) quantum systems is that their
poles lie on the imaginary axis and that neither a coherent
controller nor physically relevant structured uncertainties can
alter this situation. This changes for open systems where
decoherence ensures asymptotic stability and creates a unique
landscape of pure performance robustness, with the distinctive
feature that closed-loop stability is secured by the underlying
physics and needs not be enforced. This stability, however,
is often detrimental to quantum-enhanced performance, and
additive perturbations of the Hamiltonian give rise to dynamic
generators that are nonlinear in the perturbed parameters, in-
validating classical paradigms to assess robustness to structured
perturbations such as singular value analysis. This problem is
addressed using a fixed-point iteration approach to determine
a maximum perturbation strength δmax that ensures that the
transfer function remains bounded, ||Tδ|| < δ−1 for δ < δmax.

I. INTRODUCTION

Quantum control has become hugely popular in recent
years due to the promise of novel technologies exploiting
quantum phenomena. However, technological applications
usually require robustness to bring quantum technologies out
of the laboratory and into real-world application spaces. So
it is crucial to find ways to assess robustness and engineer
robust quantum controls. For classical robust control, many
tools have been developed, including structured singular
value analysis [21], to calculate stability margins and assess
performance robustness in the presence of perturbations.
However, it is often difficult to apply these tools to quantum
systems for reasons ranging from the non-commutativity of
state variables in, e.g., quantum optics [3], to the lack of
stability margins.

Ideal quantum systems are governed by Hamiltonian dy-
namics. Quantum control problems are typically formulated
as open-loop, model-based control problems, controlling
Hamiltonian dynamics by changing the total Hamiltonian
that governs the evolution of the system via the application of
control fields. However, it is possible to formulate quantum
control problems as feedback control problems [16]. In
general this results in a non-autonomous control system,
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but under certain conditions we can formulate quantum
control as a time-invariant feedback control problem [11].
Such problems are in theory amenable to the application of
classical robust control tools, but there are still numerous
obstacles. Most prominently, Hamiltonian quantum systems
are inherently unstable as the poles of the transfer function
are entirely on the imaginary axis, and coherent Hamiltonian
control, not to be confused with coherent feedback control,
often employed in optical networks, cannot change this.

The situation changes for open quantum systems, as deco-
herence acts as a stabilizing controller for quantum systems.
Open quantum systems are therefore in principle amenable to
the application of tools like structured singular value analy-
sis. Motivated by recent results [18], we specifically consider
controlled quantum systems with phase decoherence. With
decoherence providing stability margins, we consider the
effect of structured perturbations of the Hamiltonian on the
performance. Despite the apparent similarity of the problem
formulation to classical robust control problems, significant
differences quickly become obvious. Structured perturbation
of the Hamiltonian must respect Hermitian symmetry to be
physical. In addition, linear perturbations to the Hamilto-
nian affect system decoherence and give rise to nonlinear
structured perturbation of the dynamics. Nonetheless, we can
define a structurally perturbed transfer function, Tδ(s), eval-
uate its norm and find the maximum perturbation magnitude
δmax that ensures ||Tδ||∞ ≤ δ−1 for all δ < δmax. Finally,
we compare the robustness of the performance in terms of
transfer fidelity for a controlled ring.

II. THEORY & METHODS
A. Bloch Equation Formulation of Quantum Control

The starting point for quantum control is often the
Schrödinger equation

ı~ d
dt |Ψ(t)〉 = H|Ψ(t)〉, (1)

where H is the Hamiltonian and |Ψ(t)〉 denotes a wavefunc-
tion representing the quantum state of the system. Control in
this context is typically formulated as replacing the system’s
natural Hamiltonian H0 by a controlled Hamiltonian, H =
H0 +

∑
m fm(t)Hm. In this formulation the Hamiltonian

depends linearly on the controls, resulting in a bilinear
control problem. Here, however, we will restrict ourselves to
time-invariant forcing terms fm. The Schrödinger equation
formulation is limited to closed systems and pure quantum
states but it can easily be generalized by replacing the
wavefunctions by density operators ρ acting on the Hilbert
space H. For any H with dimension N <∞ we can choose



an orthonormal basis for the Hermitian operators on H and
expand both the state ρ and Hamiltonian H with regard to
this basis, resulting in a convenient, real representation of
the dynamics,

d
dtr(t) = AHr(t), (2)

where r ∈ RN2

and AH ∈ RN2×N2

. It is easy to show
that AH is an adjoint representation of the system. Given
H = H0+

∑
m fm(t)Hm, we have AH = A0+

∑
m fm(t)Am.

The generators Am for m = 0, 1, · · · , corresponding to
the Hamiltonian dynamics, are real anti-symmetric matrices
(rotation generators) with purely imaginary eigenvalues, but
this changes when decoherence is added.

B. Decoherence and Stability Margins

We consider systems subject to decoherence in the form
of dephasing in the Hamiltonian basis, a common type of
decoherence observed, e.g., when electrons or nuclear spins
in a magnetic field precess at (slightly) different rates due to
local field inhomogeneities, resulting in them getting out of
phase and the ensemble losing coherence. Mathematically,
the process can be modeled by
d
dtρ = −ı[H, ρ]+γ

∑
k

(
VkρVk − 1

2{V
2
k , ρ}

)
, [H,Vk] = 0,

where the Vk’s are Hermitian “decoherence” operators, and
[·, ·] and {·, ·} denote the commutator and anti-commutator,
resp. These systems have a number of stable steady states,
determined by the interplay of the Hamiltonian and the
decoherence. We are interested in their robustness under
Hamiltonian uncertainty. In previous work [7], we studied
robustness for small perturbations using measures such as the
logarithmic sensitivity. Here, we aim to assess the robustness
to larger perturbations of the Hamiltonian, which should be
physical, i.e., at a minimum, preserve Hermitian symmetry.
If decoherence acts in the Hamiltonian basis, changes to the
Hamiltonian also indirectly affect the dephasing generators
Vk, often in a non-linear fashion, resulting in complicated
structures for the perturbations of interest.

C. “Dephasing-Structured” Perturbations

Let H be the nominal Hamiltonian and H̃ = H + ∆H
a perturbed Hamiltonian, linear additive in physically mean-
ingful parameters. Express the Hamiltonian and decoherence
operators in the eigendecomposition of H ,

H =
∑
n λnΠn, Vk =

∑
n ck,nΠn, (3)

where Πn is the projector on the eigenspace associated with
the eigenvalue λn and {ck,n}Nn=1 are eigenvalues of the de-
coherence operator Vk, which must satisfy certain conditions
to ensure the decoherence processes remain physical [13].

Expressing the decoherence operators in terms of the
eigenspaces of H secures [H,Vk] = 0, that is, the deco-
herence is pure dephasing acting in the Hamiltonian basis.
Similarly, for the perturbed system,

H̃ =
∑
n λ̃nΠ̃n, Ṽk =

∑
n ck,nΠ̃n. (4)

The perturbation of the Hamiltonian changes both the eigen-
values and eigenspaces, including the eigenspaces of the

decoherence operators, but not the decoherence rates, deter-
mined by the coefficients ck,n in our model. For decoherence
to act in the Hamiltonian basis of the perturbed system, we
need [H̃, Ṽk] = 0, which implies that a linear perturbation
of H leads to a non-linear perturbation of the decoherence
terms. Consequently, Ã (the perturbed A) is nonlinear in
∆H , a departure from the classical paradigm, considering
additive perturbations written as δS, δ being its size and S its
δ-independent structure. Having chosen a suitable operator
basis for the Hilbert space, with respect to which to expand
the operators H , Vk, H̃ , Ṽk, we obtain the real N2 × N2

dynamical generators

A = AH +
∑
k AVk

, Ã = ÃH +
∑
k ÃVk

= A + δS(δ), (5)

with the “dephasing-structured” perturbation S(δ) =
δ−1(Ã(δ) − A) that has an unusual δ dependency. Even for
simple Hamiltonian perturbations, the resulting perturbation
matrices S(δ) have a complicated structure that cannot be
reduced to a simple block-diagonal structure with blocks
consisting of real or complex diagonal matrices or general
complex blocks. Therefore, standard tools available for struc-
tured singular value analysis such as the mussv function in
MATLAB cannot be applied.

D. Dephasing-Structured Perturbation Analysis

We consider a nominal A and a perturbed Ã-dynamics and
assess the difference relative to the perturbed dynamics:

Tδ(s) =
[
(sI − Ã(δ))−1 − (sI − A)−1

] [
(sI − Ã(δ))−1

]−1
= δ(sI − A)−1S(δ). (6)

Scaling relative to the perturbed dynamics appears counter-
intuitive but has some advantages [15, Eqs. (2.41), (2.42)]
as the perturbed dynamics are the true dynamics, and also
simplifies the frequency sweep.

The transfer matrix Tδ(s) and the behavior of ‖Tδ(ıω)‖
versus δ is the central object of concern. Calculating the
norm of the transfer function is complicated by the fact
that Tδ(ıω) = δ(ıωI − A)−1S(δ) is ill-defined for ω = 0
as the N2 × N2 matrix A for a system subject to pure
dephasing always has N zero eigenvalues [18] corresponding
to constants of motion. We can solve this problem by
eliminating the null-space of A corresponding to the constants
of motion (trace invariants) and replacing (ıωI− A)−1 by a
suitable, effective inverse [18]. Furthermore, the norm of the
transfer function Tδ(ıω) for a quantum system subject to pure
dephasing in the Hamiltonian basis assumes its maximum
when ω is an eigenfrequency of the total Hamiltonian of the
system, including the effects of the control and perturbations,
as exemplified in Fig. 1(a). This means it suffices to calculate
the eigenfrequencies of the system, which correspond to
the energy differences between quantum states that make
up the eigenbasis of the system, ∆E = ~ω. Since there
are at most N(N − 1)/2 distinct eigenvalues (± pairs), we
only have to evaluate the transfer function for this discrete
set of frequencies to obtain the maximum, which greatly
accelerates the computation.



Fundamental objective: The fundamental objective is to
calculate the maximum perturbation strength δmax such that
‖Tδ‖∞ ≤ δ−1 for all δ < δmax. If S is independent of δ, it
is easily seen that δmax = 1/ supω µ(G(ıω)), where µ is the
structured singular value of G(s), the 2×2 block connection
matrix around which the diagonally perturbed and fictitious
feedback matrices are wrapped [21, Fig. 10.5, Th. 10.8].

Computational solution: We choose a regular grid for
ld δ = log10 δ and numerically calculate the norm of the
transfer function Tδ(ıω) as described above. We then find
δmax = f(δmax) for f(δ) = ‖Tδ‖−1 by fitting f(δ) and
calculating the intersection point δmax = f(δmax) if such a
fixed point exists. When f(δ) is continuous and follows a
power law dependence, a linear fit y = ax + b of ld f(δ)
vs δ is performed for x = ld δ and y = ld f(δ) and
the intersection point is calculated as δmax = 10−b/(a−1).
Otherwise, a spline fit is performed and the intersection point
computed numerically using the MATLAB function fzero,
which uses a combination of bisection, secant, and inverse
quadratic interpolation methods. There is a complication,
however, as the perturbation S of the dynamics in the Bloch
representation has itself a dependency on δ as a linear Hamil-
tonian perturbation ∆H causes a non-linear perturbation in
the decoherence part of the dynamics if decoherence acts in
the Hamiltonian basis. However, it may be expected that for
sufficiently small δ, S(δ) is approximately constant. Occa-
sional outliers in the data are removed prior to fitting using
MATLAB’s rmoutliers. By default outliers are values of
more than three scaled median absolute deviations.

The caveat: Continuity of f(·) can be traced back to
continuity of the decoherence operator Vk(δ) solution to
the pure dephasing condition [H(δ), Vk(δ)] = 0. Write
the solution as Vk = (vk,1, vk,2, · · · , vk,N ) and define
vk = (vTk,1, v

T
k,2, · · · , vTk,N )T . Then the pure dephasing

condition in the adjoint representation can be written as
(I ⊗H(δ)−H(δ)⊗ I)vk(δ) = 0. The question is whether
a continuous basis in the kernel of adH(δ) exists. For
symmetric rings at the nominal δ = 0 the dimension of the
null space of adH(δ) changes, so that Dolez̆al’s theorem [2]
does not apply. However, a generalization [19] implies:

Theorem 1: There are analytic branches vk(δ) in solutions
to adH(δ)vk(δ) = 0 in a neighborhood of δ = 0. Moreover,
δS(δ) is analytic in δ in the same neighborhood. Finally,
Tδ(ıω) is real-analytic in both δ and ω.

Proof: The existence of analytic branches vk(δ) in
the kernel of adH(δ), even under varying dimension with
δ, is guaranteed by [19], as a corollary of the Weirstrass
factorization theorem [9, Chap. 1]. Hence, the operator Vk(δ)
is analytic and since an analytic function of an analytic
function is analytic (Faà di Bruno expansion [10]), the
Lindbladian

(
Ṽk(δ)ρṼk(δ)− 1

2{Ṽ
2
k (δ), ρ}

)
is analytic in δ.

The transcription from the Lindblad to the Bloch formulation
(H̃, Ṽk) 7→ Ã is analytic in both arguments, so Ã(δ) and δS(δ)
are analytic. Analyticity of Tδ(ıω) follows trivially.

(a) Norm ‖Tδ(ıω)‖ vs. ω, δ (b) Norm ||Tδ|| vs. δ

Fig. 1: Norm vs. (a) δ, ω and (b) δ of transfer matrix for
uncontrolled N = 4 chain. (a) shows that ‖Tδ(ıω)‖ assumes
its maximum at distinct spikes corresponding to eigenfre-
quencies of the system. (b) shows the norm calculated by
searching over eigenfrequencies.

E. Application to Spin Systems

We apply this analysis to coupled spin systems subject to
energy landscape control considered in previous work [5],
[6]. While applicable to spin systems in general, as a con-
crete example we consider rings and chains with dynamics
restricted to the single excitation subspace [5], [6]. Assuming
nearest-neighbor coupling between spins, the Hamiltonians
take on a simple symmetric tridiagonal (chains) or cyclic
(rings) structure. The off-diagonal elements are determined
by the intrinsic interaction strength between adjacent spins.
The diagonal elements are mostly determined by the exter-
nally controlled energy landscape. Here, the energy land-
scape controls are simply constants added to the diagonal
corresponding to local, static potentials on the spins. We can
define physically meaningful structured perturbations.

For a chain of N uniformly coupled spins with XX
coupling we have

HCh =
∑N−1
n=1 en,n+1 + en+1,n, (7a)

HCt =
∑N
n=1Dnenn, (7b)

and for a ring, Hring = Hchain + e1N + eN1, where emn
is an N × N matrix with 1 in the m,n position and
zeros otherwise. Dn are the control parameters. There are
N − 1 basic structured perturbations of individual couplings
between spins

SHn = en,n+1 + en+1,n, n = 1, · · · , N − 1 (8)

and for rings, SSN = eN,1 + e1,N , and N perturbations for
the controlled elements on the diagonal

SDn = en,n n = 1, · · · , N (9)

where the superscript H indicates that the uncertainty per-
tains to the system Hamiltonian and D indicates uncertainty
in the controller.

III. RESULTS AND DISCUSSION
A. Preliminary Results

Fig. 1(a) shows that ‖Tδ(ıω)‖ assumes its maximum
when ω is an eigenfrequency of the system and that it



(a) Critical frequencies vs δ (b) Poles of transfer matrix

Fig. 2: (a) shows a linear increase of the critical frequency
from 1 for δ = 0 to 2 for δ = 1. The critical frequency can
be explained by the frequency of pole closest to x = 0 in
subplot (b), around 1 for δ = 0, increasing to 2 for δ = 1.
(b) also shows that the Hamiltonian perturbation only shifts
the frequencies of the poles along the imaginary axis.

suffices to evaluate ‖Tδ(ıω)‖ for the eigenfrequencies of
the system. The observed four distinct peaks seen around
ω ∈ {1, 1.23, 2.23, 3.23} are consistent with expectations.
For the uncontrolled, unperturbed chain it is easy to verify
by direct calculation that the Hamiltonian has four distinct
eigenvalues at 1,

√
5±1,

√
5, two of which are (1,

√
5) two-

fold degenerate. We find empirically that if the Hamiltonian
is perturbed the eigenfrequencies shift. Fig. 1(b) further
suggests a scaling of ||Tδ|| consistent with theoretical ex-
pectations, following a power law ||Tδ|| ∝ δα. A numerical
fit of the data gives α = 0.9981 with 95% confidence interval
(0.9971, 0.9992), i.e., slightly below 1, the value expected if
S was independent of δ.

Subplot (a) in Fig. 2 shows the critical frequency ω∗
for which ‖Tδ(ıω)‖ assumes its maximum, which can be
explained by plotting the poles of the transfer matrix, as
shown in subplot (b): the critical frequency observed between
1 (δ = 0) and 2 (δ = 1) corresponds to the poles with
the smallest real part. Crucially, subplot (b) shows that the
Hamiltonian perturbation only moves the poles along the
vertical axis. Even if the basis in which decoherence acts
changes as a result of the Hamiltonian perturbation, provided
the decoherence rate γ itself is not affected, the real part
of the poles does not change. Therefore, no amount of
Hamiltonian perturbation destabilizes the system as the poles
remain in the left half-plane.

B. Uncontrolled Chains and Rings

We first consider one of the simplest cases, uncontrolled
rings and chains. To systematically assess the effect of
Hamiltonian perturbations on uncontrolled chains and rings
we choose N = 4. For the chain, there are three fundamental
structured perturbations, S1 to S3, corresponding to perturba-
tions to the couplings between spins (1, 2), (2, 3) and (3, 4),
respectively. For rings, there is an additional perturbation
corresponding to (4, 1). However, due to the symmetry with
respect to cyclic permutations, it suffices to consider a single
structured perturbation, e.g., S1, for rings. For chains we

Fig. 3: Typical exponential distribution of δmax over 100
decoherence processes with a fixed strength γ. The example
shown: N = 4 ring, S1 perturbation.

(a) Chain N = 4: Power law fit (b) Ring N = 4: Generic spline fit

Fig. 4: Determination of δmax by (a) performing a linear
fit of y = log10 f(δ) for f(δ) = ||Tδ||−1 vs x = log10 δ
and (b) performing a spline fit of f(x), and calculating the
intersection with y = x. Observe the break-point in plot (b)
indicating that S depends on δ.

explore all three perturbations, although we expect the effect
of S1 and S3 to be identical due to inversion symmetry.

The effect of dephasing with unknown decoherence rates
was modeled by selecting 100 decoherence processes corre-
sponding to valid pure dephasing processes, which were gen-
erated by a low-discrepancy sampling of the decoherence rate
parameter space and eliminating unphysical combinations of
parameters [13]. Each decoherence process can further be
scaled to vary the total decoherence strength γ. For each
structured perturbation to the Hamiltonian, Sn, δmax was
calculated for all 100 decoherence processes, scaled to a
fixed decoherence strength γ. The Lilliefors test, a normality
test based on the Kolmogorov–Smirnov test, rejected the null
hypothesis that the resulting distributions for δmax come from
the normal family at the 0.001 significance level for both
rings and chains, and all structured perturbations, and the
distributions appear exponential as shown in Fig. 3.

In determining δmax we observe an interesting difference
between chains and rings. For all the uncontrolled chains,
||Tδ||−1 fitted a power law over a wide range of δ as shown in
Fig. 4(a), while for the rings we consistently observed a cut-
off value for δ, below which ||Tδ|| appears to be effectively
constant, as shown in Fig. 4(b). Despite this difference, Fig. 5
shows that δmax as a function of γ appears to follow a similar
power law scaling for both uncontrolled rings and chains of



Fig. 5: Median of δmax over 100 decoherence processes
scaled by an overall strength γ vs γ for uncontrolled rings
and chains of size N = 4, respectively, suggests a power law
scaling of γα with α just below 0.5 for both cases.

size N = 4. For the chain, we compared the distributions for
S1, S2 and S3 perturbations, and, as expected, the S1 and S3

distributions were identical (Pearson correlation coefficient
of 1.0000). The distributions for S1 and S2 were still strongly
correlated with a (Pearson) correlation coefficient of 0.9574,
suggesting that for simple systems like uncontrolled rings or
chains, it may be sufficient to consider a single perturbation.

C. Controlled Spin Networks

Next, we consider simple spin networks subject to energy
landscape control, which in this context simply means that
the diagonal elements of the Hamiltonian are non-zero. The
controllers considered have been optimized to achieve high-
fidelity information transfer between an input and output
node, here 1 and 3, respectively. It was shown in previous
work [16] that these controllers have interesting robustness
properties in that the differential sensitivity of the transfer
fidelity for superoptimal controllers, i.e., controllers that
achieve unit-fidelity transfer, vanishes, which runs counter
to the trade-off between performance and robustness that is
commonly seen for classical systems [15]. However, other
work indicates that this performance advantage disappears in
the presence of decoherence [14], [17]. Moreover, differential
sensitivity gives no information how the system responds to
larger perturbations over a prolonged period of time, or what
the critical frequencies are.

Fig. 6 shows the distributions for δmax over different
decoherence processes and different controllers. There is
little variation in the distributions over the decoherence for
the different controllers but large variation in the distributions
over different controllers for different decoherence operators.
This is not too surprising, as δ−1max, can be regarded as a
measure of the gain (or damping) of a perturbation, primarily
determined by the decoherence rates.
Robust Performance. While the gain of a potential distur-
bance is a useful measure of robustness, it does not give
any direct insight into the effect of the perturbation on the
performance of a controller in terms of the desired time-
domain information transfer. The performance measure used
here is the overlap of the state ρ(tf ) of the system at a fixed

time tf with a desired state ρout, F = Tr[ρoutρ(tf )]. If
ρout represents a pure target state then the maximum fidelity
F is Tr(ρ2out) = 1, assumed for ρ(tf ) = ρout. Therefore,
1 − F is a measure of the transfer error. Fig. 7 illustrates
the distributions of the transfer error for different levels of
Hamiltonian perturbations δ and decoherence, quantified by
the decoherence strength γ. Absent decoherence (Fig. 7(a)),
the transfer error increases with δ and the logarithm scale
plot suggests a power law dependence for the median transfer
error. When decoherence is active, even at the lowest level of
γ = 0.001 (subplot (b)), the performance is mainly limited
by decoherence and the effect of Hamiltonian perturbations
only becomes significant for perturbations several orders of
magnitude larger than the decoherence. For example, for
γ = 0.001, the effect of the Hamiltonian perturbation on
the median of the error distribution only becomes significant
for δ = 0.1, and for γ = 0.1, even Hamiltonian perturbations
at the δ = 0.1-level barely increase the error (subplot (d)).

The results are not unexpected. While decoherence stabi-
lizes the system and dampens the effect of perturbations,
which is desirable, further analysis shows that the states
stabilized by decoherence in this example are classical mixed
states, which perform poorly for information transfer.

The distributions for δmax over the decoherence processes
for fixed controllers appear closer to normal distributions—
the Lilliefors test rejected the null hypothesis that the distri-
butions came from a normal family at the 0.05 significance
level only for a small fraction (< 15%) of the controllers con-
sidered. The distributions of δmax over different controllers
for a fixed decoherence process, on the other hand, follow
no clearly discernible pattern and do not appear normal.

IV. CONCLUSIONS AND FUTURE WORK

A novel way to study robustness for quantum systems,
introducing a substitute for µ-analysis, referred to as δmax-
analysis, was presented. The transfer function analysis shows
that a Hamiltonian system can never be completely robust in
that perturbations of the system at its critical frequencies can
become unbounded, which is bad news for applying estab-
lished classical methods to robust quantum control. Decoher-
ence changes this, providing natural damping that removes
the purely imaginary poles in the transfer function, limiting
the gain of any disturbance. Thus, generic decoherence
stabilizes the system, making it more robust to disturbances.
Moreover, a quantum system stabilized by decoherence can-
not be destabilized by Hamiltonian perturbations even if the
perturbation changes the basis in which decoherence acts if
the overall decoherence rates are unchanged. Decoherence
thus imbues quantum systems with significant robustness.
However, states robustly stabilized by decoherence are often
classical or at least do not offer any quantum advantage.
A general theory of robust quantum control is needed to
understand the trade-off between quantum advantage and
robustness, including new tools to analyze the robustness of
closed quantum systems (i.e., those without dissipation and
dephasing), where a stability margin cannot be defined in the
same way as for classical systems.



Fig. 6: Box plot of δmax distributions for controlled ring (N = 5). Distributions over the decoherence processes for different
controllers (bottom) appear similar; distributions over the controllers for fixed coherence processes (top) differ wildly.

(a) Transfer error γ = 0 (b) Transfer error γ = 0.001

(c) Transfer error γ = 0.01 (d) Transfer error γ = 0.1

Fig. 7: Transfer error for various decoherence rates.

For the spin systems studied, the gains of the controlled
chains (cf. Fig. 4) appear substantially lower than for the
uncontrolled chains. This ultimately requires a physical ex-
planation, and apparent scaling laws for the transfer function
norm (again cf. Fig. 4) should be investigated rigorously in
the future. Further work is also needed to understand how the
fidelity of these spin transfer systems changes as δ increases,
and how, if at all, this is encapsulated in the behavior of the
critical frequencies, ‖Tδ‖ and µ.

Finally, experimental confirmation of the results will be
needed, which could be achieved by controlling the coupling
between transmon qubits [4] or mapping this Hamiltonian
onto a system of cold, trapped atoms [1]. Our theoretical
method can also be extended to study similar Heisenberg-
type Hamiltonians in, e.g. transmon qubits [12], trapped
ions [8] or cold atoms in optical lattices [20]. Applications
to other systems (e.g. EIT, coupled qubits in cavities) should
also be considered, as there are well-defined notions of quan-
tumness (e.g. entanglement measures) that can be applied in
these cases.
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89:466–469, 1964.

[3] D. Dong and I.R. Petersen. Quantum control theory and its applica-
tions: a survey. IET Contr. Theo. Appl., 4:2651–2671, 2010.

[4] M.R. Geller, et at. Tunable coupler for superconducting xmon qubits:
Perturbative nonlinear model. Phys. Rev. A, 92:012320, 2015.

[5] E.A. Jonckheere, S.G. Schirmer, and F.C. Langbein. Quantum net-
works: The anti-core of spin chains. Quantum Inf. Process., 13:1607–
1637, 2014.

[6] E.A. Jonckheere, S.G. Schirmer, and F.C. Langbein. Information
transfer fidelity in spin networks and ring-based quantum routers.
Quantum Inf. Process., 14:4751–4785, 2015.

[7] E.A. Jonckheere, S.G. Schirmer, and F.C. Langbein. Jonckheere-
Terpstra test for nonclassical error versus log-sensitivity relationship
of quantum spin network controllers. Int. J. Robust Nonlinear Control,
28:2383–2403, 2018.

[8] K. Kim, et al. Entanglement and tunable spin-spin couplings between
trapped ions using multiple transverse modes. Phys. Rev. Lett.,
103:120502, 2009.

[9] K. Knopp. Theory of Functions, Part II. Dover, New York, 1975.
[10] S.G. Krantz and H.R. Parks. A Primer of Real Analytic Functions
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