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Progressive collapse of framed structures is a complex topic going beyond the 
usual tools of structural mechanics. The analogy with the propagation of damage 
in the framework of fracture mechanics has already brought some theoretical re-
sults, especially when the energy fluxes are analyzed. Nevertheless, the difficulty 
to get representative experimental data avoids proposing and eventually proving 
the effectiveness of new theories modeling collapsing frames with equivalent ho-
mogeneous cracking continua (or foams). Therefore, reliable computer simula-
tions based on widely accepted methods are necessary. Since traditional FEM are 
inapplicable when a structure looses rigidity, DEM have been used to run the 
simulations shown throughout this paper. The advantages, the limits and the prob-
lems of this approach are discussed and particular attention is paid to the effects 
of impacts between falling elements and the structural members. 
 
1 INTRODUCTION 
Local damage in buildings can occur due to accidental events like gas explosions, 
vehicle impact, gross design-construction errors or malicious terrorist attacks [1]. 
However, it can also be thoroughly planned as part of a controlled demolition 
processes with blast. We talk of progressive collapse if the damage, initiated by 
the loss of one or a few supporting elements, spreads in a chain like reaction. Its 
main characteristic is a final damage being strongly disproportionate to its origi-
nal cause.  
Progressive collapse of buildings received great attention having been promoted 
by outstanding catastrophic collapses. First interest in the subject rose after the 
partial collapse of Ronan Point apartments in London 1968, caused by a gas ex-
plosion. In the following years, the fundamental approaches to structural robust-
ness where formulated. Lately, terrorist attacks e.g. against the Murrah Federal 
Building, Oklahoma City 1995, and the World Trade Center (WTC), New York 
2001, renewed interest in the problem of progressive collapse and vulnerability of 
structures [2]. Today most design codes require tough structural elements to pre-
vent local damage and redundancy to sustain it (Alternate Path Method, APM). 
Nevertheless, the fulfillment of the prescriptions of the codes is not always suffi-
cient to prevent progressive collapse. For example [4] discussed the ineffective-
ness of horizontal ties in thin steel ceilings or [5] showed the small ductility de-
mand related to progressive collapse of 2D framed steel structures. Therefore ad-
vanced simulations are necessary in order to better understand the phenomena and 
mechanisms of progressive collapse of structures. 
Progressive collapse is a dynamic phenomenon. Hence, models have to capture 
the dynamic nature of the process. As an example, the one-dimensional (1D) col-
lapse of the WTC in a collapse model by [6, 7, 8] was given by the upper portion 
of the structure falling with an increasing mass onto the still intact lower one pro-
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ducing progressive buckling of the columns. A closer look on the complicated 
geometry of a 2D framed structure however reveals diverse local rupture modes, 
e.g. buckling, shear, bending, tensile, crushing failures etc, and impact between 
falling elements and intact portions of the structure. Such collapse can only be 
captured by computer simulations. Refs. [9, 10, 11] point out the importance of 
dynamics even in the first stages of the collapse, when the structure responds to 
the sudden loss of a supporting element in contrast to a static APM analysis. Only 
few simulations capture the whole process with the impact between falling rubble 
and still intact portions of the structure. In refs. [12,13] special beam Finite Ele-
ment (FE) macro-elements are developed that are able to consider the impacts of 
masses. In such FE macro-element based models each structural element is repre-
sented by one beam or plate element. They are numerically advantageous but their 
application to more realistic 3D frames is complicated by catenary effects of ceil-
ings that are often neglected for this cause [14], and by the many possible scenar-
ios of impact between the falling elements. In contrast, in FE micro-element mod-
els every structural element is finely meshed. This way catenary effects of the 
ceilings and impacts between the structural elements and with the ground can be 
considered [15, 16]. Unfortunately this is numerically expensive, prohibiting ex-
tensive parametric studies. 
We propose an alternative approach via Discrete Element Methods (DEM). We 
study the response of 3D framed structures after the removal of one column. We 
show that DEM are a suitable approach, since the mechanical response, as well as 
the inter-particle contacts are captured within a robust and efficient simulation 
scheme, allowing for parametric studies. The importance of impacts in the transi-
tion from partial to total collapse is pointed out and the local mechanisms driving 
the damage propagation are discussed. The energetics of the collapse and result-
ing fragment size distributions are studied in detail. The paper is organized as fol-
lows: First we describe the method, model parameters and simulation method 
used throughout the paper, before we study the collapse simulations first from a 
macroscopic and later from a mechanistic point of view. We complete the paper 
with conclusions and an outlook. 
 
2 SIMULATING PROGRESSIVE COLLAPSE 
The progressive collapse of framed structures shows complex dynamics, includ-
ing sectional ruptures of beams and columns, formation of fracture lines in the 
ceiling slabs, multiple buckling and impacts of falling elements with still standing 
portions of the structure and with the ground, just to name a few. For this study 
DEM is used for several reasons [17]. First of all, DEM is naturally suitable for 
dynamic problems since it is based on the direct integration of Newton’s equa-
tions of motion, leading to simple and fast algorithms. Furthermore geometrical 
and mechanical nonlinearities like large displacements and local ruptures can be 
easily modeled without remeshing. Finally, momentum transmissions due to con-
tacts between structural elements can be included straightforwardly (see Sec. 2.2). 
Disadvantages are the need for a rather fine mesh to reduce the discretisation er-
rors for the volume representation and discrete local fracture (see Sec. 2.2) and 
small time increments that come along with the hard body contact of stiff ele-
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ments. First we will discuss the geometric parameterization of the frame structure, 
then the discretisation and material in the DEM framework, before we discuss de-
tails of the simulation. 
 
2.1 Model Construction 
The study is focused on geometries of simple flat slab structures consisting of a 
regular 3D frame of 4×4×4 identical square cuboid cells with edge lengths L, 
and H (see Fig. 1; Table 1). The structure consists of columns in Z direction, 
clamped to the ground (Z = 0m) and connected at each story by principal beams 
in X and Y direction. Thin slabs spanning between the principal beams constitute 
the ceilings while vertical walls are neglected.  
 

         
Fig. 1: The studied frame structure and elementary cells with b) α= 1 and c) α= 2. and 

cross sections of structural elements and disposition of the reinforcement. Subscripts c, b 
and s used for column, beam and slab. 

 
The structure is thought to be made of reinforced concrete (RC) with Young's 
modulus E and Poisson's ratio ν. Geometrical quantities of the element’s cross 
sections are given in (Fig. 1). We define their heights proportional to their length 
using the coefficients λc, λb and λs scaled with a uniform dimensionless geometry 
parameter α. Note that larger α enlarges element cross sections, leading to stiffer 
and stronger structures. The aspect ratio of beam and column cross sections is de-
fined by the coefficients δb and δc. Resulting cross sectional areas A, inertias I 
with respect to the principal axes and torsion inertias are summarized in Table 1. 
Note that ceiling slabs are subdivided into square cuboid portions Ls × Ls × hs 
(Fig. 1); Sec. 2.2) with Ls independent on α. 
 
2.2 Model Description 
The structure is idealized with Euler-Bernoulli (EB) beam elements [19] connect-
ing nodes. A sphere is centered on each node (Fig. 2.b) to avoid penetration of 
nodes. They also represent the volume occupied by the surrounding material. 
Columns and beams are represented by 8 EB beam elements, while ceilings are 
subdivided in 8×8 slabs portions (Fig. 1) whose centers of mass are placed on a 
plane square grid of EB beam elements (Fig. 2.a). The cross sections of the beam 
elements are set according to Sec. 2.1. Since the horizontal displacements due to 
bending are negligible compared to the vertical ones, we assumed Iη = Iξ. 
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Table 1: Model and simulation parameters. 

 
 

 
Fig. 2: Discretized structure with a total amount of 9248 EB beam elements (a) and 5081 

spheres (b). The arrow points at the element where damage is initiated. 
 

The mass Mi of a generic sphere i is obtained by adding an extra mass MEX,i, for 
the dead load to the sum of half the masses MEB,j of the m EB elements attached to 
the node, namely 
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Therefore the masses of the EB elements are eventually concentrated in the nodes, 
while the sphere’s rotation inertia is calculated with uniformly distributed mass. 
Every node is subjected to the gravity force and an external force for the live load 



 5

on all horizontal beams and ceilings. If beams are connected to it, three moments 
and forces transmitted via the beams themselves are added as well [19].  
The generic beam connecting node i and node j can fail according to the breaking 
rule max max 1,ε ε + Θ Θ ≥ with the axial strain ε and the elongation threshold εmax. 

Θ denotes the maximum bending at the nodes divided by EI/Lij, with I momentum 
of inertia of the cross section and initial beam length Lij and Θmax the correspond-
ing rotational threshold. In detail, 

{ }, , , , , , , ,max 4 2 , 2 4 , 4 2 , 2 4 ,i j i j i j i jξ ξ ξ ξ η η η ηϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕΘ = + + + +  (3) 

with rotation ϕξ,i with respect to the ξ axis of the cross section at node i, referring 
to the line connecting node i to node j. The adopted criterion neglects failures un-
der pure compression, assuming perfectly brittle coupled axial and bending failure 
without plastic stress redistributions in this stage of the model. The failure thresh-
olds are calculated starting from the uncoupled ultimate pure axial force 

,th s y sN A Eε=  and the ultimate plastic moment ,inf 0.9th s y sM A E hε=  around the ξ 

axis of the cross section, where only the strength contribution of the steel (Fig. 3) 
at its yield point is considered. As is the area of reinforcement in the cross section, 
As,inf  is the inferior portion of As, h denotes the height of the cross section and 0.9 
is a coefficient that relates h to the distance between the inferior and the superior 
reinforcement. Since the RC section with the geometrical and mechanical parame-
ters in Table1 should break at Nth and Mth in uncoupled strain state, the equivalent 
full-reacting section failure thresholds come out to be 

, .s y th ijth
th s th

E M LN

AE E EIξ

ε
ε ρ= = Θ =   (5) 

Internal damping of beams is taken into account through the coefficients in Table 
1. If two spheres overlap, a contact force, calculated by a Hertzian contact law 
with high elastic modulus and damping coefficients is added to the respective 
nodes. If a sphere touches the ground an additional contact is considered [17]. For 
simplicity, disorder in breaking thresholds or geometries is neglected. 
 
2.3 Numerical Method and Simulations 
To follow the time evolution of the system, the explicit time integration of the 
Newton’s equations of motion is calculated via a 5th order Gear-Predictor-
Corrector algorithm [18]. The time increment used throughout the simulation de-
creases with α because the stiffness of the system grows. The element geometry, 
high stiffness of building materials and overlapping moduli, lead to time steps in 
the order of 10-5-10-6s. Nevertheless, we have to simulate the long duration proc-
ess (2-8s) of collapse which is the principal limitation for the size of the systems 
that can be simulated. 
The simulations start in the undeformed configuration and the structures are in-
stantaneously loaded by gravity and live loads. The subsequent deformations gen-
erate a state of strain and stress in the beam elements that tends to balance the ex-
ternal load. In this simulation stage, we overdamp the system by setting the ve-
locities of all the nodes to zero as soon as the overall kinetic energy reaches a 
maximum, until the equilibrium is reached. Subsequently an accidental event is 
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simulated by the removal of an external column (Fig. 2), leading to elastic dy-
namic stress redistribution. Consequently other beam elements can become over-
stressed and fail. Ruptures can disconnect whole portions of the structure from the 
rest that impact against intact ones. The simulations stop 8 real-time seconds after 
the accidental event. 
 

 
Fig. 3: Collapse evolution for structures with increasing α.Simulation parameters are 

summarized in Tab. 1. 
 
3 PROGRESSIVE COLLAPSE OF FRAMED STRUCTURES  
We perform simulations of various systems that only differ by a single geometry 
parameter α described in Sec. 2.1. By changing α, we simulate robust structures, 
partially collapsing and fully destroyed ones. Snapshots of the system are given in 
Fig. 3 for three values of α. First we report on overall properties like system ener-
gies, damage evolution, degree of structural collapse or fragment distribution of 
rubble, before we address local failure mechanisms of the collapse in Sec. 4. 
 
3.1 Energetics 
The evolution of different energies in the system are important to confirm the 
analysis. Note that energy can only be dissipated by the formation of damage and 
due to damping when particles collide. If the stress redistribution induced by the 
initial damage is sufficient to disconnect a portion of the structure, the average 
kinetic energy <EK> starts to grow almost quadratically in time due to the free 
fall. Then, the impact of falling slabs on still intact ones underneath them as well 
as with the ground produces bumps in the <EK> plot (Fig. 4.a). (Fig. 4.b) shows 
the growth of the number of broken bonds in time. 
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Fig. 4: Time evolution of the kinetic energy and the number of broken bonds during the 
collapse for α = 1.125. 

 
3.2 Transitions in the final stage of the collapse 
The damage evolution in terms of broken bonds is not sufficient to characterize 
the degree, a structure has collapsed. Therefore we define the survival space in 
the structure as the ratio between the structural volume VS that is still standing and 
serviceable and the initial volume V. Its dual is the demolition rate DR, defined as 
DR=(V-VS)/V.  
 

 
Fig. 5: Demolition rate as function of α. 

 
The DR – α plot (Fig. 5) shows two transitions: T1 from partial to no collapse (α 
= 1.35) and T2 from total to partial collapse (α = 1.125). T1 is exclusively pro-
duced by dynamic elastic stress redistribution and therefore could be evidenced 
through classical approaches neglecting the impacts. Differently, T2 is definitely 
impact-dependent and is a novel result of the proposed approach. T2 is very im-
portant for the design of robust structures (α > 1.35). A partial collapse could be 
acceptable in the prospective of an optimization involving a minimization of costs 
and negative consequences of the collapse. In this context, the DR jump from the 
20-30% of the partial collapse regime and the 100% of the total collapse regime 
can make the difference between a robust and a vulnerable response of a reasona-
bly economic structure. 
 

a) b) 
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3.3 Scaling behavior of rubble 
A quantitative characterization of the final collapse for systems with varying α is 
possible by analysing the composition of the rubble in terms of fragment masses. 
Therefore a cluster analysis is performed and resulting cumulative fragment mass 
distributions are shown in (Fig. 6.a). Partially collapsed (1.125<α<1.35) and fully 
collapsed (α<1.125) structures are clearly separated in two distinct regimes.  
 

 
Fig. 6. Fragment mass distribution and analysis of the rubble. 

 
For demolition purposes the size of the largest and second largest fragment is of 
interest. They prove to be not very sensitive to α (see Fig. 6.b) when normalized 
by the total mass of the system. In this plot, partial collapse is characterized by a 
sudden difference between the largest and second largest fragment for α≈1.15. In 
the inset the normalized average fragment mass decreases with increasing α, 
meaning a better degree of fragmentation. The reason in believed to be the higher 
impact energy of structural parts, since their weight increases with α. 
 
4 MECHANISMS OF COLLAPSE 
During the different stages of the progressive collapse, several mechanisms of the 
damage propagation can be observed, depending on α and time. Some of them are 
not visible in classical collapse simulations and in fact also not in our model if we 
omit inter-particle or particle-ground contacts. The first collapse stage is domi-
nated by the elastic dynamic stress redistribution after the damage initiation. The 
second collapse stage is dominated by inter-particle contacts and three distinct 
mechanisms can be defined, namely the hammer effects, drag and base cutting 
mechanisms (see Fig. 7). 
� The hammer effect arises from impacts between the falling ceilings and the 

still intact ones underneath them. The large sudden transmission of energy 
generally fragments the underlying ceiling and can induce rupture of the col-
umns of neighboring structural cells.  

� The damage propagation due to drag originates from lateral impacts between 
falling rubble and still intact portions of the structure. The impact can break 
the beams and columns of neighboring cells and trigger further collapses. This 
mechanism shows the strongest sensitivity to modeling details like the starting 
conditions. 



 9

� The base cutting mechanism is triggered by rubble that piles up on the ground 
exerting lateral pressure on the base columns of the still intact portions of the 
structure. The eventual loss of one of these base columns goes along with 
large stress redistributions and elastic waves that can trigger a large propaga-
tion of the further collapse. 

 

 
Fig. 7: Observed local mechanisms leading to collapse. 

 
Interestingly, when we switch off all contacts it turns out, that elastic dynamic 
redistributions aren’t able to induce a complete collapse in well designed struc-
tures (i.e. structures that are able to carry the service load without failures when 
not damaged by a starting accidental event). Furthermore, neglecting the presence 
of the ground, which is equal to switching off the column base cutting mecha-
nism, moves the transition point between total and partial collapse from α= 1.125 
to α= 1. This means that in the region 1<α<1.125 hammer and drag mechanisms 
alone are not sufficient for complete collapse. However, the exact numerical val-
ues might be effected by the low degree of redundancy in our structure and the 
lack of vertical walls and material plasticity. 
 
5 CONCLUSIONS AND OUTLOOK 
We presented a simulation study on the progressive collapse of parameterized flat 
slab structures, following elastic dynamic stress redistribution due to the loss of 
one structural element. By changing the geometric control parameter α, we go 
from robust structures to partially and completely collapsed ones, exhibiting a 
complex sequence of damage propagation mechanisms. It was demonstrated, that 
calculations with purely dynamic load redistribution without the possibility for 
rubble impacts are not sufficient to provoke more than partial collapse. The rele-
vance of the hammering effect suggests that targeted attacks on base columns 
could be less hazardous than those aimed at upper ones. In the first case the ki-
netic energy of the falling ceilings will be transmitted to the ground and only part 
of it will be available for base cutting of neighboring columns. Of course, this 
conclusion must be validated also for the case when crushing collapse of the col-
umns due to stress redistributions is admitted, since in this case the loss of a base 
column could be much more critical. Moreover, the loss of a base column pro-
vokes a more energetic initial dynamic stress redistribution that increases the 
probability that farther portions of the structure can fail and trigger an impact-
driven catastrophic progressive collapse. Including disorder into the mechanical 
properties of the elements as well as geometrical imperfections will probably 
bring more detailed and realistic results concerning the fragment size distribution. 
Taking into account the possibility for plastic stress redistributions and a higher 
degree of redundancy e.g. by internal walls, would affect the collapse scenario 
towards more robustness. The goal of such optimization should be the prevention 
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of complete collapse. Works to include plasticity and refined failure criteria that 
also account for column crushing and eccentric compression ruptures that distin-
guish between steel and concrete are in progress. 
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