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Progressive collapse of framed structures is a tomippic going beyond the

usual tools of structural mechanics. The analogh Wie propagation of damage
in the framework of fracture mechanics has alrdamyight some theoretical re-
sults, especially when the energy fluxes are aedlyklevertheless, the difficulty
to get representative experimental data avoidsgsiog and eventually proving

the effectiveness of new theories modeling collagp$iames with equivalent ho-

mogeneous cracking continua (or foams). Therefagkable computer simula-

tions based on widely accepted methods are nege&Sace traditional FEM are

inapplicable when a structure looses rigidity, DHilglve been used to run the
simulations shown throughout this paper. The acdged, the limits and the prob-
lems of this approach are discussed and partiatantion is paid to the effects
of impacts between falling elements and the strattmembers.

1 INTRODUCTION

Local damage in buildings can occur due to accalestents like gas explosions,
vehicle impact, gross design-construction errormalicious terrorist attacks [1].
However, it can also be thoroughly planned as parm controlled demolition
processes with blast. We talk of progressive cebaip the damage, initiated by
the loss of one or a few supporting elements, sisr@aa chain like reaction. Its
main characteristic is a final damage being strpagdproportionate to its origi-
nal cause.

Progressive collapse of buildings received grei@n#dbn having been promoted
by outstanding catastrophic collapses. First istene the subject rose after the
partial collapse of Ronan Point apartments in Lond668, caused by a gas ex-
plosion. In the following years, the fundamentap@aches to structural robust-
ness where formulated. Lately, terrorist attacks against the Murrah Federal
Building, Oklahoma City 1995, and the World Traden&@&r (WTC), New York
2001, renewed interest in the problem of progressollapse and vulnerability of
structures [2]. Today most design codes requirghaiructural elements to pre-
vent local damage and redundancy to sustain iefAdite Path Method, APM).
Nevertheless, the fulfilment of the prescriptiafshe codes is not always suffi-
cient to prevent progressive collapse. For exarfyjleliscussed the ineffective-
ness of horizontal ties in thin steel ceilings B $howed the small ductility de-
mand related to progressive collapse of 2D franteel structures. Therefore ad-
vanced simulations are necessary in order to betiegerstand the phenomena and
mechanisms of progressive collapse of structures.

Progressive collapse is a dynamic phenomenon. Hencdels have to capture
the dynamic nature of the process. As an examiptephe-dimensional (1D) col-
lapse of the WTC in a collapse model by [6, 7, &swgiven by the upper portion
of the structure falling with an increasing mastodhe still intact lower one pro-



ducing progressive buckling of the columns. A ctoe®k on the complicated
geometry of a 2D framed structure however revealsrse local rupture modes,
e.g. buckling, shear, bending, tensile, crushinlgires etc, and impact between
falling elements and intact portions of the struetSuch collapse can only be
captured by computer simulations. Refs. [9, 10, ddipt out the importance of
dynamics even in the first stages of the collapgeen the structure responds to
the sudden loss of a supporting element in contoaatstatic APM analysis. Only
few simulations capture the whole process withitingact between falling rubble
and still intact portions of the structure. In rdfs2,13] special beam Finite Ele-
ment (FE) macro-elements are developed that asetaldonsider the impacts of
masses. In such FE macro-element based modelseactural element is repre-
sented by one beam or plate element. They are mattgradvantageous but their
application to more realistic 3D frames is compkchby catenary effects of ceil-
ings that are often neglected for this cause [444l by the many possible scenar-
ios of impact between the falling elements. In castt in FE micro-element mod-
els every structural element is finely meshed. ™M/ catenary effects of the
ceilings and impacts between the structural elesnantl with the ground can be
considered [15, 16]. Unfortunately this is numdhcaxpensive, prohibiting ex-
tensive parametric studies.

We propose an alternative approach via Discreten&he Methods (DEM). We
study the response of 3D framed structures afeeremoval of one column. We
show that DEM are a suitable approach, since thehamecal response, as well as
the inter-particle contacts are captured withinobust and efficient simulation
scheme, allowing for parametric studies. The ingraeé of impacts in the transi-
tion from partial to total collapse is pointed @und the local mechanisms driving
the damage propagation are discussed. The enargétitbe collapse and result-
ing fragment size distributions are studied in dleTde paper is organized as fol-
lows: First we describe the method, model paramessd simulation method
used throughout the paper, before we study themsd simulations first from a
macroscopic and later from a mechanistic pointietw We complete the paper
with conclusions and an outlook.

2 SIMULATING PROGRESSIVE COLLAPSE

The progressive collapse of framed structures shmwasplex dynamics, includ-

ing sectional ruptures of beams and columns, faomatf fracture lines in the

ceiling slabs, multiple buckling and impacts ofifaj elements with still standing

portions of the structure and with the ground, joshame a few. For this study
DEM is used for several reasons [17]. First of BEEM is naturally suitable for

dynamic problems since it is based on the direteigmation of Newton’s equa-

tions of motion, leading to simple and fast aldoris. Furthermore geometrical
and mechanical nonlinearities like large displacaisi@nd local ruptures can be
easily modeled without remeshing. Finally, momentuwmsmissions due to con-
tacts between structural elements can be incluttadyistforwardly (see Sec. 2.2).
Disadvantages are the need for a rather fine neesbduce the discretisation er-
rors for the volume representation and discretallé@acture (see Sec. 2.2) and
small time increments that come along with the Hamdy contact of stiff ele-



ments. First we will discuss the geometric paranetton of the frame structure,
then the discretisation and material in the DEMnesvork, before we discuss de-
tails of the simulation.

2.1 Model Construction

The study is focused on geometries of simple &b structures consisting of a
regular 3D frame of %4 x4 identical square cuboid cells with edge lendths
andH (see Fig. 1; Table 1). The structure consistsadfimans in Z direction,
clamped to the ground (Z = Om) and connected &t sty by principal beams
in X and Y direction. Thin slabs spanning betwdan principal beams constitute
the ceilings while vertical walls are neglected.

Fig. 1: The studied frame structure and elementelig with b)a= 1 and cj= 2. and
cross sections of structural elements and dispwsitf the reinforcement. Subscrigtsh
ands used for column, beam and slab.

The structure is thought to be made of reinforcedceete (RC) with Young's
modulusE and Poisson's ratio. Geometrical quantities of the element’s cross
sections are given in (Fig. 1). We define theirgh&s proportional to their length
using the coefficients., A, andAs scaled with a uniform dimensionless geometry
parameteni. Note that largeo enlarges element cross sections, leading to rstiffe
and stronger structures. The aspect ratio of beawhtalumn cross sections is de-
fined by the coefficient$, and .. Resulting cross sectional are&sinertiasl
with respect to the principal axes and torsiontiasrare summarized in Table 1.
Note that ceiling slabs are subdivided into squaneoid portionds X Ls X hs
(Fig. 1); Sec. 2.2) withg independent on.

2.2 Model Description

The structure is idealized with Euler-Bernoulli (Eiieam elements [19] connect-
ing nodes. A sphere is centered on each node ZHij.to avoid penetration of
nodes. They also represent the volume occupiedhbystirrounding material.
Columns and beams are represented by 8 EB beanergiemvhile ceilings are
subdivided in & 8 slabs portions (Fig. 1) whose centers of masplawed on a
plane square grid of EB beam elements (Fig. 21a@. dross sections of the beam
elements are set according to Sec. 2.1. Sincedheontal displacements due to
bending are negligible compared to the verticapmes assumeld, = |«



[ Parameter Unit Value ][ Parameter Unit Value ]
( Bay of the cell L m 4 D Dead load Gq |kg/ m? 285
Height of the cell H m 3 Live load Q |N/m? 660
Columns slenderness Ae — 1/9 L Gravity acceleration g m/s? 10
Beams slenderness b — 1/8.5 4 Mesh of the columns Le m 0.375 R
Slabs slenderness As - 1/50 Mesh of the beams Ly m 0.5
Columns sec asr de - 1 Mesh of the ceiling slabs L, m 0.5
Beams sec asr 12 - 2/3 Columns tensile th €maz,c Y0 ps,cE* =0.18
Slabs portion sec asr s - AsL/Ls Beams tensile th €mazb | Joo pspE* =0.14
= 8/50 Slabs portion tensile th €maz,s %0 ps,sE* =0.25
Columns tc f(8e) - 0.141 Columns rot th Omaz,c| rad 3€maz,c0.9ac-
Beams tc f(6s) - 0.196 HL/(8I¢,)
Slabs portion tc £(8s) - 0.264 Beams rot th Omas,p | Tad €maz,bA0.90\p
Columns steel-RC ar Ps,c - 0.0145 LLy/(2I¢ )
Beams steel-RC ar Ps,b - 0.0109 Slabs portion rot th Omaz,s | tad |€mas,s AZ0.9/(2I¢,s)
\__Slabs portion steel-RC ar Ps,s - 0.0198 ) Beam damping coef. o | kg/s 0.06
( RC Young modulus E N/m?| 30-10° h Columns spheres & D, m 0.95L. = 0.35625
RC Poisson ratio v — 0 Beams/slabs portion spheres &| Dy,Ds m 0.95L5,s
RC specific weight Yrc |kg/m® 2500 Spheres overlapping stiffness Y |N/m? 108
Steel Young modulus Es N/m?| 210-10° ||Spheres normal and tangent dc| yn,v: | kg/s 10000
\___ Steel yield axial strain €y — 0.00178 ) Spheres friction coef. m — 0.3
Columns sec area A, m? | 5.a®)\2 2 )| Ground overlapping stiffness Y¢ |N/m? 108
Beams sec area Ay m? | &a?A2L? ||Ground normal and tangent de 1S Af | ke/s 10°
Slabs portion sec area As m? aXsLLs Ground friction coef. ue - 10°
Columns sec inertia & and ) |I¢c,Inc| m* [1/(126.)A2 Pre-dumping duration tq s 01-03
Beams sec inertia £ and n | Iep0yp| m* | 1/(1265)A2 |\ Simulation end te s 8.1 J
Slab portion sec inertia £ and 7| Ig,s,In,s | m* [1/(1202)A3|(
Colunms sec torsion inertia L. m* | £(8.)/6.A2 threshu!d (th); cuefficien_t (coef); diss_ipatiun coefﬁcignt (de);
Beams sec torsion inertia Ly mt | £(85)/85A2 are»a‘ ratio (ar); aspect ratio (asr); sectional (sec); rotation (rot);
K K 4 2 o torsional constant (tc); E¥=Eg /E
\_ Slabs port. sec tors. inertia Iit, s m® | f(8s)/Ls A

Table 1: Model and simulation parameters.

b)

Fig. 2: Discretized structure with a total amouh®248 EB beam elements (a) and 5081
spheres (b). The arrow points at the element wii@neage is initiated.

The massVi; of a generic sphereis obtained by adding an extra maas;, for
the dead load to the sum of half the mad8gs of them EB elements attached to
the node, namely

1
Mi:MEX,i+Z§MEB,j' (1)

j=1
Therefore the masses of the EB elements are eWgntoacentrated in the nodes,
while the sphere’s rotation inertia is calculatethwiniformly distributed mass.
Every node is subjected to the gravity force an@xéernal force for the live load



on all horizontal beams and ceilings. If beamscar@ected to it, three moments
and forces transmitted via the beams themselvesdaied as well [19].

The generic beam connecting nodend node can fail according to the breaking
rule &/€,,,+0/0,...2Lwith the axial straire and the elongation threshadgh.

O denotes the maximum bending at the nodes divigidel b;j, with | momentum
of inertia of the cross section and initial beamglé L; and Oy the correspond-
ing rotational thresholdn detail,

o=max{| B, + B, || B+ 4| | 4.+ 2,2, &} @

with rotation¢s; with respect to thé axis of the cross section at nddeeferring

to the line connecting nodeo nodej. The adopted criterion neglects failures un-
der pure compression, assuming perfectly brittigpted axial and bending failure
without plastic stress redistributions in this stad the model. The failure thresh-
olds are calculated starting from the uncoupledmalte pure axial force
N, = A€ E,, and the ultimate plastic momeht, = A ;£ E0.%h around the,

axis of the cross section, where only the strengtitribution of the steel (Fig. 3)
at its yield point is consideref is the area of reinforcement in the cross section,
Asint IS the inferior portion of\, h denotes the height of the cross section and 0.9
is a coefficient that relatdsto the distance between the inferior and the soiper
reinforcement. Since the RC section with the gedoatand mechanical parame-
ters in Tablel should breakd$ andMy, in uncoupled strain state, the equivalent
full-reacting section failure thresholds come aubé

_N,_ _E& _ Ml

“ERETATE Gt (5)

Internal damping of beams is taken into accourdubgh the coefficients in Table
1. If two spheres overlap, a contact force, catedleby a Hertzian contact law
with high elastic modulus and damping coefficierstsadded to the respective
nodes. If a sphere touches the ground an additmordghct is considered [17]. For
simplicity, disorder in breaking thresholds or getnes is neglected.

2.3 Numerical Method and Simulations

To follow the time evolution of the system, the koip time integration of the
Newton’s equations of motion is calculated via 8 &der Gear-Predictor-
Corrector algorithm [18]. The time increment uskrbtughout the simulation de-
creases witlu because the stiffness of the system grows. Theeglegeometry,
high stiffness of building materials and overlagpmoduli, lead to time steps in
the order of 18-10%. Nevertheless, we have to simulate the long idurgtroc-
ess (2-8s) of collapse which is the principal latidn for the size of the systems
that can be simulated.

The simulations start in the undeformed configoratand the structures are in-
stantaneously loaded by gravity and live loads. Jiilesequent deformations gen-
erate a state of strain and stress in the beanealsrthat tends to balance the ex-
ternal load. In this simulation stage, we overdahmg system by setting the ve-
locities of all the nodes to zero as soon as theradvkinetic energy reaches a
maximum, until the equilibrium is reached. Subsedjyean accidental event is



simulated by the removal of an external column .(R) leading to elastic dy-
namic stress redistribution. Consequently othembekements can become over-
stressed and fail. Ruptures can disconnect whateops of the structure from the
rest that impact against intact ones. The simulatgiop 8 real-time seconds after
the accidental event.
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Fig. 3: Collapse evolution for structures with ieasinga.Simulation parameters are
summarized in Tab. 1.

3 PROGRESSIVE COLLAPSE OF FRAMED STRUCTURES

We perform simulations of various systems that aliffer by a single geometry
parametek. described in Sec. 2.1. By changimgwe simulate robust structures,
partially collapsing and fully destroyed ones. Siagis of the system are given in
Fig. 3 for three values af. First we report on overall properties like systemer-
gies, damage evolution, degree of structural celapr fragment distribution of
rubble, before we address local failure mechanisintise collapse in Sec. 4.

3.1 Energetics

The evolution of different energies in the systera emportant to confirm the
analysis. Note that energy can only be dissipayethd® formation of damage and
due to damping when patrticles collide. If the streedistribution induced by the
initial damage is sufficient to disconnect a partiof the structure, the average
kinetic energy €x> starts to grow almost quadratically in time duethe free
fall. Then, the impact of falling slabs on stilkagt ones underneath them as well
as with the ground produces bumps in tl&g><plot (Fig. 4.a). (Fig. 4.b) shows
the growth of the number of broken bonds in time.
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Fig. 4: Time evolution of the kinetic energy and tiumber of broken bonds during the
collapse form = 1.125.

3.2 Transitions in the final stage of the collapse

The damage evolution in terms of broken bonds issuafficient to characterize
the degree, a structure has collapsed. Therefordefiee thesurvival space in
the structure as the ratio between the structwiaine Vs that is still standing and
serviceable and the initial volunyé Its dual is thelemolition rate DR, defined as
DR=(V-Vg)/V.
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Fig. 5: Demolition rate as function af

The DR —a plot (Fig. 5) shows two transitions: T1 from paktio no collapsed(

= 1.35) and T2 from total to partial collapse £ 1.125). T1 is exclusively pro-
duced by dynamic elastic stress redistribution #retefore could be evidenced
through classical approaches neglecting the imp&stierently, T2 is definitely
impact-dependent and is a novel result of the egapproach. T2 is very im-
portant for the design of robust structures>1.35). A partial collapse could be
acceptable in the prospective of an optimizatio/oiving a minimization of costs
and negative consequences of the collapse. Irctimtext, theDR jump from the
20-30% of the partial collapse regime and the 1@@%e total collapse regime
can make the difference between a robust and asabife response of a reasona-
bly economic structure.



3.3Scaling behavior of rubble

A quantitative characterization of the final cobapfor systems with varying is
possible by analysing the composition of the rubbleerms of fragment masses.
Therefore a cluster analysis is performed and tiegutumulative fragment mass
distributions are shown in (Fig. 6.a). Partiallylapsed (1.125&<1.35) and fully
collapsed <1.125) structures are clearly separated in twindisregimes.
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Fig. 6. Fragment mass distribution and analysthefrubble.

For demolition purposes the size of the largest sewbnd largest fragment is of
interest. They prove to be not very sensitivext(see Fig. 6.b) when normalized
by the total mass of the system. In this plot,iphdollapse is characterized by a
sudden difference between the largest and secogestafragment foo~1.15. In
the inset the normalized average fragment masseases with increasing,
meaning a better degree of fragmentation. The remsbelieved to be the higher
impact energy of structural parts, since their Wweigcreases with.

4 MECHANISMS OF COLLAPSE

During the different stages of the progressiveapse, several mechanisms of the

damage propagation can be observed, dependingamal time. Some of them are

not visible in classical collapse simulations amdaict also not in our model if we
omit inter-particle or particle-ground contacts.eTfirst collapse stage is domi-
nated by the elastic dynamic stress redistribusiter the damage initiation. The
second collapse stage is dominated by inter-parttointacts and three distinct
mechanisms can be defined, namely the hammer gffdag and base cutting

mechanisms (see Fig. 7).

= The hammer effect arises from impacts between dhimd ceilings and the
still intact ones underneath them. The large suddemsmission of energy
generally fragments the underlying ceiling and gatuce rupture of the col-
umns of neighboring structural cells.

» The damage propagation due to drag originates fabemal impacts between
falling rubble and still intact portions of the wtture. The impact can break
the beams and columns of neighboring cells anddrifurther collapses. This
mechanism shows the strongest sensitivity to mogeletails like the starting
conditions.



» The base cutting mechanism is triggered by ruldidé piles up on the ground
exerting lateral pressure on the base columnseoétili intact portions of the
structure. The eventual loss of one of these bakenms goes along with
large stress redistributions and elastic wavesdaattrigger a large propaga-
tion of the further collapse.

Interestingly, when we switch off all contacts urris out, that elastic dynamic
redistributions aren’t able to induce a completbapse in well designed struc-
tures (i.e. structures that are able to carry #eice load without failures when
not damaged by a starting accidental event). Furtbes, neglecting the presence
of the ground, which is equal to switching off tbelumn base cutting mecha-
nism, moves the transition point between total paudial collapse frona= 1.125

to a= 1. This means that in the regionokl.125 hammer and drag mechanisms
alone are not sufficient for complete collapse. ideer, the exact numerical val-
ues might be effected by the low degree of reducygam our structure and the
lack of vertical walls and material plasticity.

5 CONCLUSIONS AND OUTLOOK

We presented a simulation study on the progressillapse of parameterized flat
slab structures, following elastic dynamic stresdistribution due to the loss of
one structural element. By changing the geometittrol parameten, we go
from robust structures to partially and completebflapsed ones, exhibiting a
complex sequence of damage propagation mechaniismas demonstrated, that
calculations with purely dynamic load redistributiavithout the possibility for
rubble impacts are not sufficient to provoke mdrant partial collapse. The rele-
vance of the hammering effect suggests that tadgateacks on base columns
could be less hazardous than those aimed at up@s: 0 the first case the ki-
netic energy of the falling ceilings will be trangied to the ground and only part
of it will be available for base cutting of neighbw columns. Of course, this
conclusion must be validated also for the case vdneshing collapse of the col-
umns due to stress redistributions is admittedesin this case the loss of a base
column could be much more critical. Moreover, thesl of a base column pro-
vokes a more energetic initial dynamic stress tedigion that increases the
probability that farther portions of the structwan fail and trigger an impact-
driven catastrophic progressive collapse. Includisprder into the mechanical
properties of the elements as well as geometricglerfections will probably
bring more detailed and realistic results conceytime fragment size distribution.
Taking into account the possibility for plasticests redistributions and a higher
degree of redundancy e.g. by internal walls, waafféct the collapse scenario
towards more robustness. The goal of such optiiizahould be the prevention



of complete collapse. Works to include plasticihdaefined failure criteria that
also account for column crushing and eccentric cesgon ruptures that distin-
guish between steel and concrete are in progress.
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