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The ONIX model: a parameter-free multiscale framework for the

prediction of self-desiccation in concrete

M. Pathirage1, D.P. Bentz2, G. Di Luzio3, E. Masoero4, G. Cusatis1,∗

Abstract

The traditional approach for predicting self-desiccation is to simulate hygro-mechanics di-

rectly at the macroscale and to provide hydration-related inputs via phenomenological con-

stitutive models. This manuscript presents instead a novel method that consists of obtain-

ing inputs to such constitutive relations from direct simulations of cement hydration at the

microscale, using a state-of-the-art simulator, namely the Cement Hydration in Three Di-

mensions (CEMHYD3D). This allows avoiding lengthy calibrations from experimental data.

The prediction capabilities of the proposed model are demonstrated using experimental data

of self-desiccation relevant to about 50 different mix designs of concrete, mortar and cement

paste, with water to cement ratios ranging from 0.20 to 0.68 and silica fume to cement ra-

tios from 0.0 to 0.39. The mixes are characterized by various cement chemical compositions,

particle size distributions and Blaine finenesses, and the experiments span numerous time

scales, from one week up to two years.
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1. Introduction

High and Ultra-High Performance Concrete (HPC and UHPC) are amongst the recent

breakthrough technologies in civil engineering. These materials have improved concrete

durability in aggressive environments, and enabled the construction of complex and long-

term cost-effective structures. However, these materials typically undergo self-desiccation to

a significantly greater extent compared to ordinary concrete. This is due to their intrinsic

mix proportions, i.e. low water to cement ratios, finer cements and addition of supplementary

cementitious admixtures such as silica fume.

The term self-desiccation designates the drop of internal relative humidity due to the

partial desaturation of pores in a hydrating concrete paste. The initial water to cement ratio,

the distribution of unhydrated cement particles and cement hydration chemical reactions

and kinetics play a major role in self-desiccation, to cite just a few key factors. While

self-desiccation may be beneficial to some extent, e.g. by enhancing resistance to internal

frost damage or in concrete flooring applications, it is one of the main causes of early-age

cracking, along with thermal stresses (Persson et al., 2005).

Extensive work on modeling and predicting self-desiccation and cement hydration in gen-

eral has been performed over the years. Available models can be mainly distinguished in two

categories: theoretical and/or empirical formulations and direct microstructure development

models.

The first category encompasses mostly macroscale models. Although dedicated to the

analysis of self-desiccation (Hua et al., 1995; Persson, 1997; Nilsson and Mjörnell, 2005; Chen

et al., 2013), most of the models in the literature describe cement hydration processes, in

conjunction with hygral-thermal and mechanical considerations. Among them, it is worth

citing the dispersion model of Knudsen (1982) and the work of Bentz (2006c) with simple
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formulations for hydration based on spatial considerations, as well as the models of Ulm and

Coussy (1995) and De Schutter and Taerwe (1996) that describe cement hydration based

on reaction kinetics and allow the evaluation of strength in time. In addition, Cervera

et al. (1999) proposed a simple model that can take into account the effect of temperature

on strength evolution. More complex models allow the description of hydration, heat and

moisture flow processes, chemical shrinkage and self-desiccation (Gawin et al., 2006a,b; Lin

and Meyer, 2009; Rahimi-Aghdam et al., 2017; Pan et al., 2017; Rahimi-Aghdam and Bažant,

2018). Among them, the Hygro-Thermo-Chemical (HTC) model proposed by Di Luzio

and Cusatis (2009a,b) formulates the evolution of cement hydration and of pore relative

humidity in concrete based on moisture transport and heat transfer governing equations.

The model uses phenomenological evolution laws to describe the reaction degrees for cement

and silica fume, and the associated changes in evaporable and chemically bound waters, along

with adsorption/desorption isotherms and permeability of concrete. The capability of the

HTC model has been demonstrated through extensive numerical studies by many authors

(Di Luzio and Cusatis, 2009b; de Freitas et al., 2015; Boumakis et al., 2015; Bocciarelli and

Ranzi, 2018a,b; Pathirage et al., 2017). The HTC model is adopted in this study as the

macroscale model, which contains several material parameters to be identified.

The second category of models is based on a detailed account of the actual microstruc-

ture of cement paste and concrete. This approach reproduces directly the most important

microscale phenomena. The first model of this kind was proposed by Jennings and Johnson

(1986). This model explicitly simulates cement grains and their Particle Size Distribution

(PSD) as a set of spherical entities composed only of tricalcium silicate (CaO)3(SiO2) = C3S.

Reaction occurs with calcium-silicate-hydrate (CaO)1.7(SiO2)(H2O)4 = C-S-H forming on

and surrounding the C3S particles. Navi and Pignat (1996) proposed a similar model that

simulates C3S spherical particles. However, more elaborate processes such as transport

phenomena are not taken into account. The Durability Concrete Model (DuCOM) model
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(Maekawa et al., 1999) considers heat generation, mass transport and microstructure for-

mation, tackling also the typical overlapping issue of hydrating cement particles, but it is

limited by the fact that the cement particles are assumed to have the same composition and

to be mono-size. The HymoStruc model (Van Breugel, 1995; Koenders and Van Breugel,

1997; Ye et al., 2003) introduces multiple cement grains within the same volume, with each

grain reacting similarly to what was originally proposed by Jennings and Johnson (1986).

Overlapping between growing and potentially overlapping C-S-H domains is accounted for

in order to respect the volume balance of the reactions, namely conversion of C3S and water

into C-S-H and calcium hydroxide (CaO)(H2O) = CH. Bishnoi and Scrivener (2009) pro-

posed the µic model, which is similar to the HymoStruc model but does not constrain the

C-S-H to grow as circular domains surrounding the C3S particles. Instead, C-S-H compact

hemispherical and needle-like morphologies are included. A distinct model from the afore-

mentioned ones is the Cement Hydration in Three Dimensions (CEMHYD3D) model that

was developed at the National Institute of Standards and Technology (NIST) (Bentz and

Garboczi, 1990; Garboczi and Bentz, 1992; Bentz, 1997, 2005). CEMHYD3D mimics trans-

port by using a lattice-based algorithm, which allows for solid domains to diffuse through the

available pore space and leading to more realistic microstructures. For early age simulations,

these aspects have been further improved in the HydratiCA model by Bullard (2007a,b), at

cost, however of significantly greater computational requirements. CEMHYD3D introduced

various features that make it very relevant to applications. In particular, this model describes

explicitly the microstructure of cement paste through a digital image based approach. Scan-

ning electron microscope (SEM) images of the cement of interest are used to construct the

initial 3D skeleton. Moreover, each chemical phase present in the cement powder is distinct

and represented by a number of cubes/voxels that reproduce the characteristics of the SEM

image, respecting the actual PSD. The model is based on a cellular automata algorithm

that works through an iterative cycle process, where each voxel that constitutes a phase
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can dissolve, diffuse and react when in contact with other voxels. A cycle-to-real time scale

factor is to be defined and constitutes the single parameter to be calibrated. CEMHYD3D

also includes a large database of different cement types with different Bogue compositions

and PSD.

One can naturally argue that macroscale modeling is preferable since it can describe

upper scale physical properties, such as the drop of relative humidity in time due to cement

hydration. However, subscale features of hydration are only taken into account implicitly

in the functional forms. More importantly, all these macroscopic models introduce material

parameters that need to be calibrated. Such a calibration process is often tedious and

requires up-to-date experimental data for each group of parameters involved in the different

mechanisms. Microstructural models are exempt from these constraints even though the

major problem lies in the fact that macroscale properties cannot be described or sometimes

even defined at that scale.

This study proposes a novel multiscale approach that keeps the advantages of both

modeling perspectives. Indeed, in this study, the material parameters in the macroscale for-

mulation are identified from the CEMHYD3D model: the relevant information is extracted

and passed from the lower scale to the upper one. This multiscale approach, entitled ONIX

model because it requires ONly (the) mIX design as input, has the great advantage of avoid-

ing any parameter calibration. In particular, as demonstrated in this manuscript, it allows

the full prediction of self-desiccation in concrete and other cementitious composites. It may

also be a useful, straightforward to use, tool for industrial or academic researchers to predict

concrete performance.

The proposed approach was presented in a recent conference (Pathirage et al., 2017) and

it is here largely extended and commented.
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2. Overview of the macro and microscale models

2.1. Macroscale formulation of self-desiccation

The HTC model has been used multiple times in the literature to simulate hydration,

heat diffusion and water transport (Di Luzio and Cusatis, 2009a,b), but also for other appli-

cations such as aging, self-healing and alkali-silica reaction in concrete (Di Luzio and Cusatis,

2013; Wan et al., 2016; Alnaggar et al., 2017; Di Luzio et al., 2018; Pathirage et al., 2019).

In this model, transport phenomena in concrete are modeled at the macroscale through

two main governing equations describing heat diffusion and water transport, respectively.

The temperature T and relative humidity h fields are computed through the two coupled

equations. This manuscript will focus solely on self-desiccation of environmentally sealed

samples, thus moisture ingress and concrete drying, both governed by permeability, will

have no effect. Consequently, this study does not consider any moisture gradient in space

due to an underlying assumption of microstructural homogeneity throughout the samples at

length-scales above the hundred of micrometres. Structural details and evolution at smaller

length scales will be considered instead using CEMHYD3D.

In the following paragraphs of this section, the original HTC model in the case of sealed

concrete will be presented and will be modified compared to its original version to facilitate

its subsequent coupling with the CEMHYD3D microscale evolution simulation, and to ensure

that the parameter identification problem is well-posed. One can isolate a unit volume of

a cementitious composite (concrete, mortar, etc.) and consider the water content w of the

isolated volume, which is a function of relative humidity, cement hydration αc and silica

fume reaction degrees αs. The water content is given by the sum of the evaporable water

we and the chemically bound water wn. we includes all the phases of evaporable water that

exist in concrete, i.e. capillary water, water vapor, adsorbed and hindered adsorbed water.

Although transport mechanisms are different for each water phase, a single average transport

process is assumed for the sake of simplicity (Di Luzio and Cusatis, 2009a). This process
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can be described through a single moisture mass balance equation, which under isothermal

and sealed conditions reads

∂w

∂t
(h, αc, αs) = 0 (1)

or

∂we
∂h

∂h

∂t
+
∂we
∂αc

α̇c +
∂we
∂αs

α̇s + ẇn = 0 (2)

In order to simulate self-desiccation in sealed conditions, one needs to impose Neumann

no flow boundary conditions, along with prescribing the initial relative humidity h = 1 at

time t = 0 (corresponding to initial saturation at the fresh state). For the sake of simplicity

and for the small volume of materials typically considered in self-desiccation tests, the heat

diffusion process can be considered fast enough for the entire process to be isothermal (T is

constant).

The cement hydration degree, αc, is defined as the ratio between the mass of cement

that has reacted and its initial mass. Such a definition represents an average of the different

hydration degrees associated to each individual clinker phase. The expression of its rate is

based on the work of Cervera et al. (1999), and can be written as follows

α̇c = Ac1
(
Ac2 + αc

)〈
α∞c − αc

〉
e
− ηcαc
α∞c e−

Eac
RT (3)

where Ac1, Ac2 and ηc are material parameters, Eac is the global hydration activation energy

and R is the universal gas constant. It is obvious that hydration degree cannot decrease in

time. In order to ensure this requirement, the Macaulay brackets
〈
x
〉

= max(0, x) are used,

so that one always has ∀t > 0, α̇c(t) > 0. Although constant in this study, the temperature

and its effect are included in the equation through an Arrhenius law. The internal relative

humidity plays an important role in hydration kinetics (Powers and Brownyard, 1946; Bažant

and Prasannan, 1989; Bentz, 1997). Unlike the original HTC formulation that considers the
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effect of relative humidity through a multiplicative factor in Equation 3, in this study, such

an effect is included through the value of the asymptotic degree of hydration.

The expression of the asymptotic degree of hydration α∞c is assumed to decay exponen-

tially for decreasing values of h:

α∞c (h) = α̃∞c e
−ζc
(

1
h
−1
)

(4)

where ζc is a material parameter and α̃∞c is the asymptotic hydration degree in saturated

condition (h = 1). Finally, Equation 3 must be solved by setting αc = 0 at t = 0.

Silica fume is commonly used as a supplementary cementitious material, to generate

pozzolanic reactions. These reactions only involve silicon dioxide SiO2 = S, in silica fume

and calcium hydroxide, which is one of the cement hydration products. The pozzolanic

reactions produce a form calcium-silicate-hydrate, called pozzolanic C-S-H (Mitchell et al.,

1998; Bentz, 2000) whose stoichiometry and specific gravity are different to those of conven-

tional C-S-H produced by cement hydration (Cheng-Yi and Feldman, 1985). Similarly to

cement hydration degree in Equation 3, one can define the silica fume reaction degree αs as

the mass of reacted silica fume particles over its initial mass. Its evolution in time can be

written in a rate form as follows

α̇s = As1
(
As2 + αs

)〈
α∞s − αs

〉
e
− ηsαs

α∞s e−
Eas
RT (5)

where As1, As2, ηs are material parameters and Eas is the silica fume reaction activation

energy. Equation 5 is solved with the initial condition αs(0) = 0.

Once again, the effect of relative humidity is taken into account through the asymptotic

silica fume reaction degree α∞s as

α∞s (h) = α̃∞s e
−ζs
(

1
h
−1
)

(6)
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where ζs is a material parameter and α̃∞s is the asymptotic silica fume reaction degree

in saturated conditions. One can further define the so-called total reaction degree, α, by

combining hydration and silica fume reaction degrees into a single variable, as a measure of

the overall C-S-H gel produced. One can write

α =
αccQ̃

∞
c + αssQ̃

∞
s

cQ̃∞c α̃
∞
c + sQ̃∞s α̃

∞
s

(7)

where c and s are respectively the cement and silica fume contents. Q̃∞c is the latent heat of

hydration reaction per unit of hydrated cement mass. Therefore, the rate of heat generation

per unit volume due to cement hydration, Q̇c, is given by Q̇c = α̇ccQ̃
∞
c (Cervera et al., 1999).

It is commonly assumed (Ulm and Coussy, 1995; De Schutter and Taerwe, 1995; Cervera

et al., 1999; Gawin et al., 2006a) and experimentally observed (Bentz and Stutzman, 1994)

that Q̃∞c is constant for a given concrete. Its value depends on the initial phase composition

of the cement, and can be computed as Q̃∞c =
∑n

k=1Q
∞
k wk where n is the number of

compounds in the cement, Q∞k is the individual enthalpy of reaction for each compound

and wk is the associated initial weight percentage (Di Luzio and Cusatis, 2009a). Similarly,

Q̃∞s represents the enthalpy of silica fume reaction per unit of reacted mass and is assumed

constant. The rate of heat generation per unit volume due to silica fume reaction, Q̇s, is

defined as Q̇s = α̇ssQ̃
∞
s (De Schutter and Taerwe, 1995).

It is well-known that hydration degree and chemically bound water wn can be assumed

to be proportional. Indeed, a way to measure experimentally hydration degree is through

a loss on ignition (LOI) test. By heating concrete above 105◦C, all the evaporable water is

lost and as a consequence, only the non-evaporable water remains. A temperature as high

as 1000◦C is needed for the non-evaporable to be completely removed from the concrete

solid skeleton: this temperature is called ignition. Thus, the measurement of the weight

loss difference at 105◦C and at ignition corresponds to the chemically bound water content
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(Fagerlund, 2009). Knowing wn experimentally, one can then deduce experimentally the

hydration degree through the following equation

wn = κcαcc (8)

where κc is the mass ratio of non-evaporable water at full hydration and c is the cement

content. Equation 8 does not include the negligible effect of silicate polymerization, i.e. the

length increase of the C-S-H silicate chains which causes a long term reduction of chemically

bound water (Zhang and Gjørv, 1991; Brough et al., 1996). Aside from polymerization, one

can find discordant points of view in the literature concerning the direct effect of pozzolanic

reaction on the amount of non-evaporable water in the C-S-H. Sellevoid (1987) states that

this amount produced by such reaction is similar to the one contained in the CH. On the

other hand, Diamond (1983) suggests from experimental evidences that the non-evaporable

water content increases in cement pastes that contain silica fume, whereas Li et al. (1996)

found a reduction in chemically bound water when silica fume is added to concrete. For the

sake of simplicity, it is here assumed as in Powers and Brownyard (1946), that the amount

of reacted silica does not affect the non-evaporable water content.

To complete the description of Equation 1, one needs to provide a relationship between

evaporable water we and relative humidity h.

This relationship is quantified by the adsorption/desorption isotherms. In environmen-

tally sealed conditions, one expects relative humidities above 0.7-0.8, otherwise hydration

ceases (Flatt et al., 2011). Hence hysteresis, i.e. the difference between adsorption and

desorption would be limited due to the small range of humidities covered. It is thus as-

sumed, as a first approximation, and similarly to Xi et al. (1994), that adsorption and

desorption isotherms are similar enough to model both processes through a single so-called

sorption isotherm. Masoero et al. (2018) recently raised other concerns on the nanoscale
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morphology of the C-S-H gel that influences self-desiccation and sorption isotherms. One

solution suggested by the authors, however out of the scope in this work, is to extend the

microstructural development models by considering information on the nanostructure evo-

lution. Several models of sorption isotherms were proposed (Brunauer et al., 1938; Mainguy

et al., 1999; Baroghel-Bouny et al., 1999; Pinson et al., 2015; Masoero et al., 2018) in order

to consider the combination of factors that influence the shape of the isotherms. The for-

mulation implemented in the current macroscale model is based on the phenomenological

expression of Nilsson and Mjörnell (2005), which explicitly takes into account the evolu-

tion of hydration on the one hand, and silica fume reaction on the other, and separates

the contribution of the evaporable water in the C-S-H gel wgele and the capillary water wcape

through

we = wgele + wcape (9)

The evaporable water in the C-S-H gel, determined by the so-called gel isotherm reads

as

wgele = g2α

(
cα̃∞c + sα̃∞s

Q̃∞s
Q̃∞c

)[
1− e−10α̃∞

c (g1−α)h
]

(10)

whereas the capillary water, or capillary isotherm, reads

wcape =
w0 + ∆w − wn − w̃gele[

e10α̃∞
c (g1−α) − 1

] [
e10α̃

∞
c (g1−α)h − 1

]
(11)

where g1 and g2 are two additional material parameters, w0 is the initial water content

(defined as w0 = (w/c)c), w̃gele denotes the gel isotherm at saturation, i.e. w̃gele = wgele (h = 1).

The capillary isotherm is derived from a mass balance equation, described later in Section 3

and this explains the presence of the term ∆w that defines the mass of water to be supplied

to compensate chemical shrinkage and maintain saturated conditions. The functional form
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of ∆w is

∆w = κsh

[(
1− Q̃∞c

Q̃∞s

)
cαc + sαs

]
(12)

where κsh is a material parameter.

The combination of Equations 1, 3, 5, 7, 8 and 9 allows the calculation of the relative hu-

midity evolution in time. The numerical integration of the governing equation (Equation 1)

is carried out by using a finite element approach as described by Di Luzio and Cusatis

(2009b).

2.2. The microscale CEMHYD3D model

In order to identify the material parameters of the macroscale model, one needs now

to investigate microscale phenomena. CEMHYD3D generates a digitized microstructure of

size 100×100×100 µm3, made out of a cubic grid of 1 µm3 size units called voxels, and

obtained from the water to cement ratio, PSD and phase fractions of the different clinker

phases and other hydration reactants. Individual cement particles are represented by a

collection of voxels and are randomly placed inside the simulation box, until the target

water to cement ratio and PSD are obtained. Periodic boundary conditions are imposed

to avoid any boundary-related spurious effect (see Bentz and Stutzman (1994) for details

regarding the algorithm).

Once the initial suspension of cement particles is created, the algorithm uses images

from SEM to assign each voxel with a specific type of reactant (Bentz and Stutzman, 1994),

namely C3S, C2S, C3A, C4AF, C-S-H2 (in three forms: anhydrite CS, dihydrate C-S-H2 and

hemihydrate C-S-H0.5), S and H (see notation in Table 1).

The model is now ready to “hydrate” the digitized cement paste. Hydration is simulated

as a sequence of configurational changes called cycles. Each cycle involves three steps: disso-

lution, diffusion, and precipitation. The conversion from cycle number to time is performed

through a single parameter β at the end of a simulation. The relationship is a parabolic
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Table 1: Designation and properties of cement coumpounds involved in hydration.

Compound Designation Notation Density Heat of hydration
Coefficient to compute
non-evaporable water content

[g/cm3] [kJ/kg] [g water/g cement phase]
Tricalcium silicate C3S 3.21 (a) 517 (a,e) 0.24 (c)
Dicalcium silicate C2S 3.28 (a) 262 (a,e) 0.21 (c)
Tricalcium aluminate C3A 3.03 (a) 1144 (a,e) 0.40 (c)
Tetracalcium aluminoferrite C4AF 3.73 (a) 725 (a,f) 0.37 (c)
Gypsum C-S-H2 2.32 (a) 132-187* (b) 0.0**
Silicon dioxide S 2.20 (a) 780 (b) 0.0 (d)
Calcium silicate hydrate C1.7SH4 2.12 (a) - 0.0
Pozzolanic calcium silicate hydrate C1.1SH3.9 1.69 (a) - 0.0
Calcium hydroxide CH 2.24 (a) - 0.0
Ettringite C6AS3H32 1.70 (a) - 0.0
Monosulfate C4ASH12 1.99 (a) - 0.0
Hydrogarnet C3AH6 2.52 (a) - 0.0
Iron hydroxide FH3 3.00 (a) - 0.0

*Hemihydrite and anhydrite respectively, **assumed, -not used, (a) Bentz (1997), (b) Bentz (2000), (c)
Molina (1992), (d) Powers and Brownyard (1946), (e) Garboczi and Bentz (1992), (f) Scrivener (1986).

Cement chemistry notations: CaO = C, SiO2 = S, Al2O3 = A, Fe2O3 = F, H2O = H and SO3 = S.

function that is written as treal = βn2
cycle where treal is the real time in hours and ncycles is

the number of cycles. Despite this fitting of time, the model retains the ability to predict

the sequence of configurational changes in the microstructure. Different values for β (in

hours/cycles2) are reported in the literature and were obtained by calibrating the aforemen-

tioned nonlinear function against experimental data from either the evolution in time of the

hydration degree or the heat release or the non-evaporable water content. The following val-

ues are typically reported: 0.00027 (Bentz, 2006b), 0.00030 (Bentz, 2000; Bentz et al., 2000),

0.00036 (Bentz et al., 2000), 0.000437 (Princigallo et al., 2003) and 7 different values ranging

from 0.00022 to 0.00043 (Bentz, 2007). In order to make ONIX a parameter-free model, the

most commonly used value of the cycle to time factor, i.e. β = 0.00035 hours/cycles2 (Bentz,

1997, 2000, 2005, 2006a; Chen et al., 2007), was selected and fixed throughout the current

study.

Dissolution is represented as the conversion of a solid voxel (e.g. the above-listed hydra-

tion reactants, such as C3S) into one or more “packets” of diffusing species, each with size

of one voxel. Diffusion is not required to satisfy volume balance, which is instead recovered
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during the latter stage of precipitation. The chemistry of the packets of diffusing species

depends on the dissolved species. For example, C3A dissolves into C3A packets, whereas

C3S produces both CH and C1.7SH4 packets. In reality, dissolution leads to individual ions

diffusing in solution and generating a continuous concentration field. The dissolution im-

plemented in CEMHYD3D is thus conceptual and simplified: a detailed implementation of

ion-by-ion dissolution can be found in HydratiCA (Bullard, 2007a,b), to the detriment of

computational efficiency.

All the solid voxels in the simulation box, both hydration reactants and products, are

candidates for dissolution. The probability for each of them to dissolve is given by the

product of three factors. The first factor is a solubility flag, set to 0 for phases that are

treated as insoluble (e.g. C-S-H) and to 1 for soluble phases (e.g. C3S but also some

hydration products such as CH). The second factor is either a constant or a function of the

amount of certain dissolved species in solution: this factor mimics the chemical kinetics of

different reactions, e.g. C3S dissolution being faster than C2S dissolution (this approximates

what other simulations treat explicitly, e.g. HydratiCA or, at the smaller nanoscale, the

coarse-grained simulations in Shvab et al. (2017)). The third factor is the number of first-

neighbour voxels, around the dissolution candidate, that pertain to the pore space. This

factor ensures that only voxels that are in contact with the pore space can dissolve, and that

the dissolution probability is proportional to the local solid-pore surface area.

Diffusion of species in solution is approximated as a one-step random walk of the one-

voxel species within the voxels pertaining to the pore space. Each diffusing voxel is treated

independently, since in CEMHYD3D, each voxel can only be occupied by a single solid,

diffusing, water or air (empty porosity) species. It is also important to note that diffusion

can only occur in the water-filled porosity, and thus does not occur through any voxels

containing a solid, including C-S-H. At this stage, only the initial reactants are present in
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the microstructure and the possible chemical reactions read as follows

C3S + 5.3H C1.7SH4 + 1.3CH (13)

C2S + 4.3H C1.7SH4 + 0.3CH (14)

C3A + 6H C3AH6 (15)

C4AF + 10H C3AH6 + CH + FH3 (16)

One can notice that silica dissolution is not considered, but diffusing CH can react at

a silica surface (Equation 21). The volume stoichiometry of each reaction is on average

respected after simple considerations of number of moles in the reaction and molar volumes

of each compound. As an example, one can take the case of the aluminate reaction (Equa-

tion 15). If 1 voxel of C3A is dissolved, 1.69 voxels of C3AH6 are thus produced. In reality,

the number of voxels produced can be higher or lower and is associated to a probability,

which ensures that in average, for a collection of 100 voxels of C3A, 169 voxels of C3AH6

are indeed produced. Once the dissolution occurs, diffusing entities corresponding to the

previously listed chemical reactions proceed with a one-step random walk in the pore space

available. It is worth mentioning that a diffusing voxel represents a group of ions of size 1

µm3, as opposed to individual ions.

Precipitation can occur via three mechanisms: (i) homogeneous nucleation, where a

diffusing species is directly converted into a hydration product; only some diffusing species

can undergo this process, e.g. CH, whereas other cannot, e.g. C-S-H, (ii) heterogeneous

precipitation, where the diffusing species can convert to hydration product only when it

comes into contact with certain other solid voxels, e.g. C1.7SH4 can precipitate only when it

comes into contact with either C3S, C2S, or other voxels of already precipitated C-S-H, (iii)

collision-based reaction, where the diffusing species can generate hydration products only
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upon collision with a voxel of either another specific diffusing species, or another specific

solid phase (e.g. diffusing CH colliding with a silica voxel S to form C1.1SH3.9). In the latter

case, the possible chemical reactions possible for the diffusing species are

C3A + 3CSH2 + 26H C6AS3H32 (17)

2C3A + C6AS3H32 + 4H 3C4ASH12 (18)

C4AF + 3CSH2 + 30H C6AS3H32 + CH + FH3 (19)

2C4AF + C6AS3H32 + 12H 3C4ASH12 + 2CH + 2FH3 (20)

1.1CH + S + 2.8H C1.1SH3.9 (21)

C1.7SH4 + 0.5H C1.1SH3.9 + 0.6CH (22)

As mentioned earlier, Equation 21 represents the pozzolanic reaction between calcium

hydroxide and silica to produce pozzolanic C1.1SH3.9, whose composition differs from that of

conventional C1.7SH4. The latter, upon contact with water, can also transform to pozzolanic

C-S-H (Equation 22), liberating additional CH to participate in Equation 21 (Bentz, 2000).

Similar to the dissolution stage, a precipitation reaction occurs with a probability that is

either constant or a function of the amount of certain diffusing species in solution, to mimic

the chemical kinetics of the various reactions. Equations 17 to 22 entail volume changes

which may not be respected locally by each individual reaction in the simulation, due to

the voxel resolution: for example, if 100 precipitation reactions occur at different locations

during a cycle, each of which entails the appearance of 0.7 volume voxels of species A and the

disappearance of 0.5 volume voxels of species B, the simulation will generate A-voxels only at

70 locations (out the 100 where the reactions have occurred) and will remove B-voxels only

at 50 locations, in such a way that the volume balance is respected on average in the whole
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simulation box. Finally, after a fixed user specified, number of diffusion steps (Bentz, 2000),

a new cycle starts. A linked list of active diffusing species is maintained throughout the

hydration simulation so that they may remain in solution from one dissolution cycle to the

next one. It is only during the last cycle of hydration that all diffusing species are converted

to hydration products. CEMHYD3D allows for adiabatic, semi-adiabatic and isothermal

conditions. In this study, only the isothermal condition is considered. Moreover, hydration

can occur in either saturated or sealed conditions. In saturated condition, the pores emptied

by chemical shrinkage are filled with water at each cycle until the capillary pores are deper-

colated in the three spatial directions. It is important to note that depercolation is a global

state and no edge or boundary effects are considered. In sealed condition, instead, some of

the voxels corresponding to capillary pores are emptied and, to simulate near-equilibrium

conditions during self-desiccation, CEMHYD3D redistributes the remaining water to ensure

that the first voxels to be emptied are those pertaining to the largest still water-filled pores,

then drying up those that pertain to progressively smaller pores.

Ultimately, a CEMHYD3D simulation provides the temporal evolution of the volume

fractions of all the reactive phases and hydration products (see Table 1), enabling one to

compute degree of hydration, chemical shrinkage, heat release rate, evaporable and chem-

ically bound water contents, and other quantities that will be relevant for the macroscale

model.

3. Bridging the two length scales: the ONIX model

3.1. Necessity of a multiscale framework

As explained previously in Section 2, the macroscale model for self-desiccation introduces

several material parameters that need calibration. One can classify them into three groups.

Groups 1 and 2 comprise the parameters related to the two evolution laws of hydration

degree and silica fume reaction degree respectively; group 3 comprises the parameters that
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are involved in the various constitutive relations of water phases and heats of reaction.

Table 2: Parameters of the macroscale model to be identified.
Par. Units Identification Value

Group 1 Ac1 [1/h] Calorimetric/LOI ?
Ac2 [-] Calorimetric/LOI 0.005
ηc [-] Calorimetric/LOI ?
α̃∞c [-] Calorimetric/LOI ?
Eac [kJ/mole] Calorimetric 40.00
ζc [-] Calorimetric/LOI ?

Group 2 As1 [1/h] Calorimetric/LOI ?
As2 [-] Calorimetric/LOI 0.05
ηs [-] Calorimetric/LOI ?
α̃∞s [-] Calorimetric/LOI ?
Eas [kJ/mole] Calorimetric 83.14
ζs [-] Calorimetric/LOI ?

Group 3 κc [-] LOI ?
g1 [-] Sorption isotherms 1.50
g2 [-] Sorption isotherms ?

κsh [-]
Geiker/Tazawa
methods

?

Q̃∞c [kJ/kg]
Calorimetric/
Heat of solution

?

Q̃∞s [kJ/kg]
Calorimetric/
Heat of solution

780.00

Par: Parameter, LOI: Loss On Ignition, ? identified from the CEMHYD3D model

Table 2 shows that the macroscale model requires the calibration of 18 parameters in

total. Calibrating these parameters from experiments requires at least 4 different tests:

groups 1 and 2 require either adiabatic calorimetric tests to monitor the rise in temperature

or the heat released, or loss on ignition tests (Bentz et al., 1997; Cervera et al., 1999; D’aloia

and Chanvillard, 2002; Nilsson and Mjörnell, 2005). Group 3 requires loss on ignition tests

to estimate the non-evaporable water content, but also sorption isotherms tests (Nilsson and

Mjörnell, 2005). Chemical shrinkage also needs to be measured separately using the methods

described by Geiker (1983) or Tazawa et al. (1995). Finally, the reaction enthalpies require

either measurements of heat of solution (Newman, 1950) or calorimetric tests (Livesey et al.,

1991). Literature data rarely provide this whole set of measurements for a specific cement
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paste, and up-to-date data also happen to be scarce.

An effective way to overcome the aforementioned limitation is to determine these param-

eters from a microscale perspective. First of all, it is possible to fix the values (see Table 2) of

hydration activation energy assumed as an equivalent activation energy that comprises the

different activation energies of each cement powder phase (Bentz, 1997) and the activation

energy of silica fume reaction (Bentz et al., 1998). The enthalpy of silica fume reaction Q̃∞s

can be also fixed (Bentz et al., 1998). The values are identical to the ones that CEMHYD3D

uses, and are assumed constant for different types of cement. The two functional forms in

Equations 3 and 5 are able to describe well hydration and silica fume reaction degrees, as

shown later in the study. It was observed however that the first few hours of hydration are

not fully captured. In order to keep the formulation simple, the parameters that control the

initial part (first 24 hours) of the hydration and silica fume reaction degrees as functions of

time, namely Ac2 and As2, can also be fixed based on Di Luzio and Cusatis (2009b). Last

but not least, the effect of the parameter g1 involved in the sorption isotherms (Equations 10

and 11) can be assumed fixed since it cannot be obtained from the CEMHYD3D model and

because its optimal value is fairly constant from data analysis of different cement composites

(Di Luzio and Cusatis, 2009b).

In total, 12 model parameters remain and their identification using the CEMHYD3D

model is described next.

3.2. Parameter upscaling workflow

A specific strategy is needed in order to fully take advantage of the inputs and outputs of

the CEMHYD3D and the macroscale models. Concerning the inputs, the database provides

the designations of the different cements, in the case where only the type of cement is known.

Further knowledge on the Blaine fineness is preferable to perform the cement selection more

accurately. Alternatively if the cement oxide composition is known, one can estimate the

Bogue composition through the following equations
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C3S = 4.0710× C− 7.6024× S− 6.7187× A− 1.4297× F (23)

C2S = 2.8675× S− 0.7544× C3S (24)

C3A = 2.6504× A− 1.6920× F (25)

C4AF = 3.0432× F (26)

In the above equations, F corresponds to Fe2O3 and A to Al2O3. The equations are

solved simultaneously, which allows the determination of the four different clinker phases.

Since there are several other underlying assumptions, the reader can refer to Taylor (1997)

for more details. Once the composition is estimated, one can choose the closest cement type

among the 27 available in the CEMHYD3D model database (Bentz, 2005).

The first step consists in running the CEMHYD3D model at saturated condition (h = 1).

The length of the simulation is fixed to 10,000 cycles, which represents approximately 4 years

in real time, in order to capture the long term evolution of the microstructure.

Once the simulation terminates, ONIX extracts the relevant model outputs, and by

keeping track of the number of voxels at each cycle and knowing the initial quantities and

densities, it computes hydration degree and silica fume reaction degree using the same

definitions as in the macroscale model. The evaporable water in the C-S-H gel is computed

similarly. In addition, chemical shrinkage and heat of hydration are calculated based on

the different molar volumes, heats of formation (listed in Table 1), and the aforementioned

chemical reactions. The chemically bound water content is also estimated knowing that it is

proportional to the mass of reacted clinker phases through the coefficients given in Table 1.

ONIX then proceeds to an automatic parameter identification process. The identifications

are here carried out using the non-linear least square method. If one considers an output yj

of CEMHYD3D as a function of another output xj, one can first equally discretize them and
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define the values yji and xji at index i of the curve j. Furthermore, if one denotes with f j the

corresponding functional form j in the macroscale formulation, and with pj = {pj1, ..., pjn}

the nj unknown parameters, one can formulate the minimization problems as follows

Find pj that minimizes ϕj =
N∑
i=0

(
yji − f j(x

j
i ,p

j)
)2

(27)

where ϕj is the objective function for the curve j and N is the number of discretized points.

In order to perform this minimization process, the simplex algorithm (Nelder and Mead,

1965) is used. For example. in the case of hydration, f 3 is defined through Equation 3, x3

is the hydration degree, y3 = ẋ3 is its time rate and p3 = {Ac1, ηc, α̃∞c }.

An example shows such a process, that is later used for one self-desiccation prediction

(see Figure 2f, w/c = 0.36 and s/c = 0.10). Figures 1a,b,c,d show the identified curves

for each evolution law listed previously, at saturated condition. It is worth pointing out

that since the outputs of the CEMHYD3D model are relevant to cement paste, a volume

conversion is needed in the cases of mortar and concrete, for which the aggregate to cement

ratio is known. A more detailed analysis on the effect of aggregate could be performed, but

it is outside the scope of this study. For instance, the presence of water in the aggregate

may affect the non-evaporable content and available corrections (Fagerlund, 2009) could

be taken into account. Moreover, in the proposed framework, the mechanical interaction

between aggregates and cement paste is not considered, and although the aggregate shape

and grading affect autogeneous shrinkage (Rasoolinejad et al., 2019), they are not important

as far as self-desiccation is concerned.

The latent heat of hydration Q̃∞c is identified by computing the initial masses of the

different clinker phases. The curves of cement hydration and silica fume reaction degrees as

functions of time (Figure 1a) allow the identification of all the parameters in groups 1 and 2,

with the exception of ζc and ζs, which requires a separate procedure described later in this
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section. The parameters in group 3 are then determined, starting with κc that is identified

from the non-evaporable water vs hydration degree curve (Figure 1b). wn is here plotted as

a function of total reaction degree, as opposed to cement hydration degree. The gradient

of wn(α) displays a small but meaningful increase at about α = 0.75, which corresponds to

the plateau of silica fume reaction degree. Indeed, the number of water voxels available for

the dissolution of C3S, C2S, C3A and C4AF increases when all the silica fume voxels are

consumed in the pozzolanic reaction, and consequently engenders an increase of the mass of

reacted clinker phases. κsh is identified from the chemical shrinkage vs total reaction degree

curve (Figure 1c) and g2 from the evaporable water in the C-S-H gel vs total reaction degree

curve (Figure 1d).

At the end of this phase, only two parameters are yet to be determined: ζc and ζs. The

CEMHYD3D model is again used but in sealed condition for which the capillary pores are

not water-filled at each cycle. This allows the identification of the latter two parameters

from cement hydration and silica fume reaction degrees vs time curves respectively, which

are now different from the curves corresponding to saturated conditions. The fact that

the CEMHYD3D model is limited to sealed or saturated conditions does not narrow the

applicability of ONIX. Indeed, the relevant parameters related to the relative humidity

variation are all identified. The formulations in the HTC model then allow any external

environmental conditions applied to the defined finite element domain boundaries. In the

case of non-uniform relative humidity, the permeability plays of course a large role and

the associated parameters are to be identified from either experimental data or from the

published literature.

3.3. Mass conservation verification

One can notice that the evolution of evaporable water in the capillaries (Figure 1e) is not

fitted because it is simply a consequence of the identification process previously described:

the only parameter involved in Equation 11 is indeed g2 (because g1 has been assumed
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Figure 1: Parameter identification procedure on an example: Persson (1996), Figure 2f, w/c = 0.36 and
s/c = 0.10. (a) cement and silica fume reaction degrees as a function of time, (b) chemically bound water
content as a function of total reaction degree, (c) chemical shrinkage as a function of time, (d), (e) and (f)
evaporable water in the C-S-H gel, in the capillaries and total evaporable water, respectively, as a function
of total reaction degree.

constant, see Section 3) and is identified through the evaporable water in the C-S-H gel.

Such a match of wcape (Figure 1e) is achieved because Equation 11 translates a mass balance.

Indeed, the amount of water needed to ensure saturated condition and the total water

content must be equal. This mass conservation principle can be written as

w0 + ∆w = we + wn (28)

where ∆w and wn have been already identified earlier. Figure 1f shows the total evaporable

water we as a function of the total reaction degree. One can see that Equation 28 is re-

spected at any time, for both the macroscale model and CEMHYD3D. As expected, the

non-evaporable water, the chemical shrinkage and the evaporable water in the C-S-H gel in-

crease, while the evaporable water in the capillaries and the total evaporable water decrease

in time, as a direct result of hydration.
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4. Parameter-free model predictions
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Figure 2: Prediction of self-desiccation. Markers represent experimental data, dashed and solid curves are
respectively the predictions using an initial relative humidity value of h = 1 (upper bound) and h = 0.98
(lower bound). (a), (b) and (c) McGrath and Hooton (1990), (d) Hua et al. (1995), (e) and (f) Persson
(1996) where error bar represent respectively +/-5% in humidity (absolute), (g) Persson (1997), (h) and (i)
Jensen and Hansen (1999).

In order to validate the proposed ONIX model, a vast collection of experimental data

available in the literature is considered. The set of data contains self-desiccation results for

49 different cementitious composites and for all of them, relative humidity was measured

on sealed specimens at room temperature. Figures 2, 3 and 4 show the full prediction

results. The figures appear in chronological order and are plotted in semi-logarithm scale

to highlight the long-term nature of self-desiccation. The first 24 hours are omitted due to

the lack of accuracy in the identification procedure prior to that age (see Section 3). For
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Figure 3: Prediction of self-desiccation. Markers represent experimental data, dashed and solid curves are
respectively the predictions using an initial relative humidity value of h = 1 (upper bound) and h = 0.98
(lower bound). (a) Kim and Lee (1999), (b) Loukili et al. (1999), (c) Jensen and Hansen (2002), (d)
Lura et al. (2003), (e) Yang and Zhang (2004), (f) Lura et al. (2005), (g) and (h) Jiang et al. (2005), (i)
Baroghel-Bouny and Mounanga (2005).
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Figure 4: Prediction of self-desiccation. Markers represent experimental data, dashed and solid curves are
respectively the predictions using an initial relative humidity value of h = 1 (upper bound) and h = 0.98
(lower bound). (a) Baroghel-Bouny et al. (2006), (b) Bentz et al. (2001) where four different Blaine finenesses
were tested, (actual experimental value ∼ simulated value). The initial relative humidity was estimated to
be h = 0.98 and therefore only the associated prediction is shown in solid curves, (c) Wan et al. (2016) where
the gray area represents the upper and lower bounds of the experimental curves, and markers represent the
average.
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further details on the identified values of the parameters, the reader can refer to the attached

supplementary material.

When a concrete sample is still at fresh state and environmentally sealed, there is first an

increase of humidity as the sensor placed within the specimen equilibrates with the concrete

pore solution. The relative humidity then reaches a plateau, at about h = 0.98 before

decreasing, due to cement hydration. It is reported in the literature that the initial relative

humidity is never h = 1 and that the plateau is due to the dissolved ions (Ca+, Na+, etc.)

in the pore solution (Bentz et al., 2001; Lura et al., 2003). The value of humidity in this

initial plateau depends on the water to cement ratio and on the cement composition. It may

be estimated using Kelvin’s equation combined with Raoult’s law (Lura et al., 2003) but in

most cases, this initial value of relative humidity is between h = 1 and h = 0.98, where the

latter value is more commonly reported for low water to cement ratios. The dashed and solid

curves in Figures 2, 3 and 4 are respectively the predictions using an initial relative humidity

value of h = 1 (upper bound) and h = 0.98 (lower bound). Thus, the actual prediction

lies in between these two bounds and one can observe a very good agreement with the

experimental data. ONIX does not explicitly take into account the mechanisms happening

at a scale lower than the resolution provided by the CEMHYD3D model. Considerations

of capillary depression, surface tension of colloidal particles or disjoining pressure (Hua

et al., 1995) are thus only averaged. A recent work has also shown that the precipitation of

hydration products in confined spaces, together with the effect of charged colloidal particles

contribute to bulk volume changes (Abuhaikal et al., 2018). ONIX does not capture such

phenomena; self-desiccation is only predicted through the evolution of the different water

contents, more specifically through the empirical isotherm that relates saturation degree

with relative humidity, regardless of the nanostructure of hydrating cement.
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5. Discussions

5.1. Effect of w/c and s/c ratios

The effects of w/c and s/c ratios are well captured by ONIX, namely lower w/c ratio and

higher s/c ratio both increase self-desiccation. For instance, Figures 2a,c and Figures 3a,g

show a clear trend of increasing self-desiccation when the water to cement ratio decreases.

The presence of silica fume emphasizes this reduction, for similar w/c ratios (Figures 2e,f).

Not only the relative humidity diminishes for lower w/c ratios, but also the rates of

relative humidity drop in time increase. Similarly, a further increase of the rates is observed

when silica fume is added (Figures 2e,f).

For fixed cement types, PSD and Blaine finenesses, the increase in w/c ratios induces an

increase in the parameters Ac1, α̃
∞
c and ζc. No particular trend is observed for ηc: in some

cases, this value increases (Figures 2e,f,g, Figure 3g) and in others, the trend is not clear

(Figure 4a). On the other hand, g2 decreases, along with κc. The parameter κsh for the

chemical shrinkage remains constant. It should be noted that when silica fume is added to

the mix, κsh becomes about three times larger, which illustrates the importance of pozzolanic

reaction and the increase in the proportion of fine reactants on chemical shrinkage.

The reason why ONIX is able to simulate this behavior is because for low w/c ratios, the

asymptotic hydration degree, along with the chemical shrinkage decrease. Indeed, the water

content in the capillaries is not enough to obtain full hydration of the clinker phases. The

evaporable water in the C-S-H gel is also reduced as a consequence. Furthermore, adding

silica fume increases the surface area of the reactants in the CEMHYD3D microstructure

and thus accelerates hydration rate. The size of the capillary pores is also captured by the

(changing) shape of the sorption isotherm, as a function of w/c or s/c ratio, which in turn

contributes to an increase of self-desiccation. Equations 3, 5, 8, 9 and 12 plugged into the

moisture mass balance equation (Equation 1) translate the aforementioned changes of the

water contents into a more prominent self-desiccation.
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The other physical reason at the nanoscale, not captured by ONIX, is that for lower

w/c ratios, the pore structure becomes finer. Kelvin’s equation thus helps explain the larger

decrease of relative humidity (Bentz et al., 2001). Moreover, the addition of silica fume

makes the pore structure to become even finer (Sellevold and Justnes, 1992), and therefore

further increases the effect of self-desiccation.

5.2. Effect of cement type

The composition of cement plays an important role in hydration, and consequently in

self-desiccation. In order to illustrate the effect of cement type, one can for instance compare

the drop of relative humidity given in Figure 2a (McGrath and Hooton, 1990) and Figure 2e

(Persson, 1996), without silica fume addition, for w/c = 0.32 and 0.33 respectively. The

difference in w/c is negligible. McGrath and Hooton (1990) used a CSA Type 10 cement,

similar to Type I cements, whereas Persson (1996) adopted a low alkali cement. The Bogue

compositions for the four major clinker phases C3S, C2S, C3A and C4AF are 61.69%, 11.31%,

6.52%, 7.25% and 53.0%, 22.50%, 1.42%, 13.4%, for the CSA Type 10 and low alkali cements,

respectively. The experimental measurements show that, at age 90 days, the low alkali

cement induces a lesser degree of self-desiccation compared to the CSA Type 10 cement.

The percentage difference between the two averages is 4.25%. ONIX is able to capture

this difference, with a little higher percentage difference of 9%. Indeed, as explained in

Section 2, the dissolution probability of C3S is larger than the other clinker phases, and

one can notice that the quantity of C3S is smaller in the low alkali cement used in Persson

(1996). This results in a higher value of α̃∞c in the case of low alkali cement, for the same

final age of four years. The evolution of the microstructure becomes thus different, and

results in a larger reduction of relative humidity for the CSA Type 10 cement. On the

contrary, Figure 3c (Jensen and Hansen, 2002) and Figure 3f (Lura et al., 2005) show that

for close enough cement types, in this case white and low alkali white cements respectively,

the minor difference in composition does not affect noticeably self-desiccation.
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5.3. Effect of PSD and Blaine fineness

It was previously mentioned that the surface area is a crucial parameter affecting the hy-

dration reaction rates, in both the actual hydrating cement skeleton and in the CEMHYD3D

model. The effect of particle size distribution and Blaine fineness of cement was studied

(Bentz et al., 2001) and it was found that for the same cement ground to four different fine-

nesses, the finer the cement, the higher the rate of relative humidity decrease at a constant

w/c (Figure 4b). This experimental work is here simulated using four different Blaine fine-

nesses similar to the actual ones. One can observe a good agreement between the predictions

and data, particularly in terms of trend. The larger pores corresponding to a lower Blaine

fineness induce a lower drop of relative humidity. Similarly to the effect of cement type,

the effects of Blaine fineness and PSD on self-desiccation are well captured by the model

due to the fact that the CEMHYD3D model microstructure is based on the actual particle

size distribution. The asymptotic hydration degree does not change whereas the hydration

dregree rate increases, i.e. Ac1 decreases and ηc increases, as opposed to the effect of w/c

ratios previously described. It is worth pointing out that in the proposed framework, no

approximation is needed, for instance assuming an effective cement particle size.

5.4. Short and long term behavior

Self-desiccation is observed from early ages to many years. One can see that an overall

good agreement is achieved, for the entire time span. The decrease of relative humidity in

time is monotonic, and a typical S-shaped curve is expected when plotted in semi-logarithmic

scale. Depending on the mix design, the final equilibrium is reached but it appears that

for some of the collected data, the self-desiccation process continues while the predictions

always reach an equilibrium after a certain time period, as shown for instance in Figures 2g

or Figures 3h, and it seems that the plateau is reached a little earlier than the experimental

values. As an example, one can observe the case used to illustrate the identification process in
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Figure 5: Statistics of the ONIX predictions. (a) Scatter of the measured versus predicted values of h, (b)
Error (or residual), i.e. the difference between the measured and the predicted values of h, as a function of
time.

Figure 1a and Figure 2f (Persson, 1996) for w/c = 0.36 and s/c = 0.10. The relative humidity

plateaus as soon as the hydration and silica fume reaction degrees reach their asymptotic

values, at about 100 days. The reason of the plateau is that the rates of hydration and silica

fume reaction degrees become closer to 0. Indeed, the quantity of capillary water decreases as

hydration chemical reactions progress in time and becomes insufficient for further reactions.

One explanation is that as hydration occurs, cement hydrates form on and surround

anhydrous cement particles, building a shell nearly impermeable that only allows a slow

water transport and thus prolongs hydration (Rahimi-Aghdam et al., 2017; Rahimi-Aghdam

and Bažant, 2018). The CEMHYD3D model does not consider such a process since diffusion

is not allowed through solid particles, as mentioned in Section 2.

It is also worth mentioning that the CEMHYD3D model does not take into account the

influence of long term creep and C-S-H modification on internal relative humidity.

Another explanation is that the CEMHYD3D model seems to predict an early plateau

of the hydration and silica fume reaction degrees. A change in the cycle-to-time scale factor

would certainly help improving the results, however, a calibration process would then be

needed. It does not appear necessary to introduce a new level of complexity since the

prediction results as such are more than satisfactory.
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5.5. Prediction accuracy

All the results shown in this paper are pure predictions, i.e. no parameter fitting using

experimental data was performed, and their accuracy varies from set to set, as one can see

in Figures 2, 3, and 4. In order to assess the overall accuracy of the predictions, it is con-

venient to analyze the statistics of the entire database. Figure 5a shows the experimental

values of relative humidity plotted against the model predictions for all the results shown in

Figures 2,3 and 4. The solid and dashed curves are the identity line and the linear regres-

sion, respectively. The linear regression is characterized by a coefficient of determination

R2 = 0.834, which indicates that the predicted values are generally well correlated with the

measured data. However, R2 is not a rigorous measure of the prediction accuracy, which

instead requires the statistical regression analysis with reference to the identity line (Legates

and McCabe Jr, 1999; Bažant and Baweja, 2000).

This task can be handled efficiently by the algorithm devised by Bažant and coworkers

with reference to creep and shrinkage data (Bažant and Baweja, 1995, 2000; Bažant and

Li, 2008; Bažant and Jirásek, 2018; Rasoolinejad et al., 2019). This approach, based on

the method of weighted least square, handles correctly the spurious effect of non-uniform

data distribution always plaguing time dependent data sets of concrete response. It is

worth observing that the applicability of statistical regression analysis based on least square

requires nearly homoscedastic experimental data (Bulmer, 1979; Ang and Tang, 1975). For

the self dessication data analyzed in this paper, nearly homoscedasticity can be obtained by

using a log time scale.

Figure 5b shows the error (or residual), computed as the difference between the experi-

mental and the predicted values of relative humidity, e = hexp − hpre, as a function of time.

One can see that for the majority of the data points are below 0.1 in absolute value. The

error distribution is clearly non uniform and there are more data points at early ages. This

is correlated with having more data points for h close to 1 as visible in Figure 5a.
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A remedy to this issue is to define time intervals that are equally spaced in log scale,

∆ti = ti+1 − ti = 2ti − ti = ti for i = 1, ..., 10; t1 = 1 day, and to compute a weight for

each interval as wi = 1/(miw̄) (see Figure 5c) where w̄ =
∑n

i=1 1/mi = 0.4370. The average

weighted error is ē = (w̄/n)
∑n

i=1wi
∑mi

j=1 |eij| = 0.0221, which is very small considering that

the relative humidity can take values between 0 and 1. Furthermore, following Rasoolinejad

et al. (2019), the overall weighted standard deviation of the prediction data and the overall

weighted standard deviation of the experimental data read

s =

√√√√ N

(N − p)
w̄

n

n∑
i=1

wi

mi∑
j=1

e2ij = 0.0338 (29)

and

s̄ =

√√√√ N

(N − p)
w̄

n

n∑
i=1

wi

mi∑
j=1

(
hexpij − h̄

)2
= 0.0857 (30)

respectively, where N = 494 is the total number of data points, p = 0 is the number of pa-

rameters that were identified with the experimental data, and h̄ = (w̄/n)
∑n

i=1wi
∑mi

j=1 hij =

0.875 is the weighted mean of all the experimental data. Finally, by using s and s̄, one can

compute the unbiased coefficient of variation of the prediction data, ω = s/h̄ = 3.87%, and

the coefficient of determination, r2 = 1− s2/s̄2 = 0.844, with respect to identity line of the

hexp versus hpre plot.

These results demonstrate that the numerical predictions are in excellent statistical agree-

ment with the experimental data over the entire database and that the model formulation

can intrinsically account for a very large percentage of the data variation.

The prediction error might be due to several reasons that are described briefly below.

First of all, the model cannot capture phenomena at nanoscale which is much smaller than

the resolution of CEMHYD3D. Moreover, there is no consideration of ITZ between the

paste and aggregate particles in the cases of mortar and concrete, that can play a role in the

quantity of the different waters consumed and generated (Bentz et al., 1999). As mentioned
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earlier, the effect of water contained in the aggregates was also not taken into account.

In addition, some of the experimental data collected, for instance in Figure 3b (Loukili

et al., 1999), show peculiar trends. One can observe a typical drop of relative humidity that

plateaus at about 30 days followed by an unexpected second drop. The latter drop would

either indicate that hydration and/or silica fume reactions are accelerated at this time period,

which is unphysical, or that it is simply caused by drying due to a defective sealing of the

specimens. For higher w/c and lower s/c ratios, a larger volume of capillary water is present

in the paste and if the specimen sealing becomes imperfect after a certain period of time,

drying may occur but remains minimal and will not result in a significant drop in humidity.

The opposite phenomenon is expected for lower w/c and higher s/c (Figure 3b). Indeed,

keeping a concrete sample perfectly sealed throughout the years is challenging and such

results may be considered with great attention in order to avoid erroneous conclusions.

Finally, the experiments always display a significant scatter, which is sometimes non-

negligible, and limits the accuracy that can be expected from predictions. One of the main

reasons of this observed scatter is due in general to the small accuracy of the devices adopted

to measure the relative humidity. This scatter is especially noticeable for concrete containing

low w/c and high s/c ratios. Figure 4c shows a percentage difference of about 30% at 40 days

between the upper and lower curves relevant to two samples having the same mix design.

Although this large difference is due to the uncommon mix ratios used for this specific high

performance concrete, this observation raises the fact that the scatter in the experiments

must be taken into consideration while evaluating the capabilities of a model.

5.6. Computational cost

In general, microstructural development models needs more computational resources

than macroscale models, depending on the termination time prescribed for hydration. In

order to accurately capture the asymptotic values of hydration and silica fume reaction

degrees, ONIX is executed for a long time scale, typically 4 years in real time (see Section 3).
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Nevertheless, the model requires only up to 4 hours if launched on a normal desktop computer

to complete full hydration and identify the macroscale model parameters. Moreover, once

the parameters are identified, there is indeed no need to rerun ONIX calibration during the

numerical analysis. As a matter of fact, the time needed for the execution of ONIX is always

much smaller than the time required for the parameter identification based on experimental

data that requires many experiments to be carried out.

6. Summary and Conclusions

This paper presents the formulation and validation of a novel multiscale approach, enti-

tled the ONIX model, to simulate self-desiccation of concrete, mortar and cement paste. The

ONIX model formulates self-dessication by means of a macro-scale mass balance equation

involving evaporable water and chemically bound water whose evolution depends on the

extent of the cement hydration and the silica-fume reactions. All the parameters governing

the aforementioned equation are identified by using the output of micro-scale simulations

carried out by the CEMHYD3D model. The ONIX model was validated by predicting

self-dessication data of 49 different mix designs, relevant to numerous water to cement ra-

tios, silica fume to cement ratios, cement types, Blaine finenesses and cement particle size

distributions. Based on the on the obtained results the following conclusions can be drawn.

• Contrarily to all other models for self dessication available in the literature, the ONIX

model does not require any preliminary calibration with experimental data and it uses

as input only the mix design of the concrete, mortar, or cement paste to be simulated.

• The predicted variation of relative humidity as function of time is overall in excellent

agreement with the experimental data. Indeed, an unbiased statistical comparison of

the prediction data versus the experimental data provides a coefficient of variation of

the predictions equal to 3.87% and a coefficient of determination of 0.844.
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• The ONIX model predicts well, both qualitatively and quantitatively, the effect of the

most important mix design parameters controlling self desiccation, namely water to

cement ratio, silica fume to cement ratio, cement type, and Blaine fineness.

• Since the ONIX model uses the micro-scale CEMHYD3D model only to identify the

parameters of the macro-scale equations, the numerical simulations of self-dessication

are computationally inexpensive even for practical, large scale applications.
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