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Abstract

Operational flexibility is required in power systems to mitigate load-generation imbalances. Inflex-
ibility either results in infeasible scheduling or shift resources from their economic operating point.
System operators must estimate flexibility requirement, assess its availability from committed re-
sources, and take corrective measures to handle upcoming inflexibility events. Various metrics
are integrated with economic dispatch to quantify different facets of flexibility- ramp, power, and
energy. Consideration of all three facets is essential for its adequate assessment, but is often ne-
glected in literature and requires an in-depth investigation. Further, existing literature hardly
consider resources’ day-ahead scheduling decisions while evaluating flexibility for real-time opera-
tions. This results in erratic assessment of available flexibility. In this context, the paper proposes
a comprehensive metric to quantify flexibility in terms of ramp, power, and energy insufficiency
by simultaneously considering their system-wide requirement and availability. A Resource Flexi-
bility Index based on operating range and ramping capability of resources is proposed for accurate
indication of available flexibility. The proposed metric is integrated with real-time stochastic multi-
interval scheduling framework that considers day-ahead operational constraints. Netload forecast
and associated uncertainty are characterized using Long Short-Term Memory and Markov Chain
Monte Carlo techniques. Results highlight that the flexibility index is proportional to system’s
netload variability handling capability and average inflexibility can be reduced up to 97% with the
utilization of emerging resources and ramp products. The proposed tools are of value to power
system planners and operators to manage netload intermittency.

Keywords: Flexibility index, flexible resources, metrics, netload uncertainty, power system
flexibility

Nomenclature

Sets and Indices

B/b, n Set/index of bus, nodes b, n
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D/d Set/index of ILDR

D′/d′ Set/index of SLDR

E/e Set/index of BESS

H/h Set/index of PHES

I/i Set/index of conventional generation units

J/j Set/index of reduced netload scenarios

K/k Set/index of cost curve segments

M/m Set/index of 5-min time intervals for real-time dispatch

T/t Set/index of 15-min time intervals for day-ahead scheduling

χ Market participant, χ ∈ [D,D′, E,H, I].

Constants and Parameters

Ccurt Penalty for load curtailment ($)

Cmin
i Minimum generation cost for unit i ($)

C
st/sd
i Start-up/shut-down cost of unit i ($)

Cδ
χ Dispatch cost of residual capacity for χ ($), χ ∈ [D,D′, E,H]

Nf
m Forecasted netload at time m (MW)

Nm,j Netload at time m and scenario j(MW)

Pχ/Pχ Upper/lower power limits of χ (MW), χ ∈ [D,D′, I]

P
(.)
e /P

(.)
e Upper/lower limit of BESS in charging and discharging modes ch/di (MW)

r
u/d/st/sd
i Ramp limits of unit i (MW/5min)

(.)i,m,j DA scheduling binary status of unit i for running u/startup y/shutdown z

Sli,k Slope of cost curve segment k for unit i

πj Probability of reduced netload scenario j

̟b,n Transmission line loading limit between bus b and node n (MVA)

λ̄
u/d
m Maximum netload uncertainty in up/downward direction at time m (MW)

ψe,m,j Charging status of BESS at time m and scenario j (0/1)

ζe,m,j Discharging status of BESS at time m and scenario j (0/1).

2



Variables

E
s/δ/ϕ
χ,m,j Energy availability through day-ahead schedule/re-schedule/commitment

of χ at time m and scenario j (MWh)

f
u/d
χ,m,j Flexible ramp up/down allocation of resource χ at time m and scenario j (MW)

Lcurt
b,m,j Load curtailment at bus b in time m and scenario j (MWh)

P
s/δ/ϕ
χ,m,j Scheduled/dispatched/committed power of χ at time m and scenario

j (MW), χ ∈ [D, I]

P
s+/δ+
χ,m,j / Generation / consumption from Scheduled/re-dispatched power of χ at

P
s−/δ−
χ,m,j time m and scenario j (MW) , χ ∈ [D′, E,H]

R
A u/d
χ,m,j Available up/down ramping from χ at time m and scenario j (MW/5min)

R
C u/d
χ,m,j Capable up/down ramping from χ at time m and scenario j (MW/5min)

R
s/δ/ϕ u/d
χ,m,j Scheduled/dispatched/ committed ramp in up/down direction of resource

χ at time m and scenario j (MW/5 min)

α
u/d
χ,m,j Up/down regulation schedule of unit χ at time m and scenario j (MW)

ℓχ,m,j Reserve allocation of χ at time m and scenario j (MW)

(̃.)m,j Insufficiency of ramp R, power P and energy E at time m and scenario j

(MW/5min, MW, MWh)

(̂.)m,j Requirement for ramp R, power P and energy E (MW/5min, MW, MWh)

(.)Am,j Power and energy availability at time m and scenario j (MW, MWh)

̟b,n,m,j Power flow at time m and scenario j in the line connecting bus b and node n

(MVA)

λ
δ/ϕ
χ,m,j Cost incurred for dispatching residual capacity (δ)/commitment (ϕ) of

resource χ at time m and scenario j ($)

φb,m,j Load angle of bus b at time m and scenario j (pu).
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1. Introduction

Power systems are experiencing a strong growth in Renewable Energy Sources (RES) integra-
tion, especially solar and wind. Large-scale integration of such intermittent RES poses challenges
to manage variability and uncertainty of netload i.e., the difference between demand and RES
generation. This underscores the need for flexibility to mitigate netload fluctuations and ensure
reliable system operations. Flexibility is the energy, power, and ramp capability of a system to
modify generation and/or demand in response to netload variations, at minimum cost [1]. Techni-
cally, the committed generation fleet should be able to handle netload variability, and provision of
this additional flexibility should be economically viable. Although Conventional Generation (CG)
units are providing flexibility in current scenario, transformation of energy systems towards the one
dominated by RES requires flexibility to be harnessed from all aspects of power systems. System
operations, Demand Response (DR), grid infrastructure upgradation, and integrating fast-start
resources, Energy Storage Systems (ESS) and sector coupling can enhance flexibility [2, 3]. How-
ever, having sufficient flexible resources may not ensure their availability when required. Hence,
power system operators need to estimate system flexibility requirement, assess its availability from
committed resources, and take corrective measures to handle future system inflexibility events for
reliable and secure system operations.

Indices like Loss of Load Expectation (LOLE) and Expected Energy not Served (EENS) reflect
the reliability of a system based on firm capacity and outage rates of generators. These indices
are applicable in planning horizon [4]. On the other hand, operational flexibility metrics highlight
how an operational state of a resources’ specific parameter contributes to power systems’ ability in
managing netload fluctuations or imbalances [5]. Various metrics have been proposed to quantify
flexibility in both operational and planning time frames. Based on the focus of application, existing
metrics evaluate operational flexibility by a) Flexibility requirement calculation b) Quantification
of available flexibility and c) Flexibility insufficiency calculation.

The first category of metrics focus on evaluating flexibility requirement. Frequency spectrum
based flexibility quantification methods are developed to assess multi-interval ramp and power
requirements [6]. Energy storage requirement for flexibility in a planning horizon to balance netload
fluctuations is assessed using Fourier transforms [7]. However, the methods are limited to planning
studies. Flexibility requirement in terms of magnitude and duration of netload ramp i.e., change
in netload between two consecutive scheduling intervals are analyzed in [8–10]. Though resources
are re-dispatched during Real-Time Economic Dispatch (RTED), in current practice the interval
between market gate closure and re-dispatch is significantly large. This makes system’s operating
point uncertain at the dispatch interval prior to the scheduling time block. Also, netload variations
correlate with RES generation. Existing methods do not consider these uncertain components
between two consecutive scheduling intervals while quantifying ramp requirement. This may result
in inaccurate ramp requirement estimation.

The second category of metrics attempt to quantify available flexibility using flexibility charts
and ramping capability curves, based on installed capacity and operating point of generation mix.
Such methods do not consider the effect of technical parameters on flexibility provision [11, 12].
Composite metric can rank CG units in a system by normalizing their technical parameters viz.,
Minimum Stable Generation (MSG), Minimum Up/Down Times (MUT/MDT), Operating Range
(OR), ramp-up/down and start-up/shut down time [13]. A similar flexibility index is formulated
using fuzzy analytical hierarchy process [14]. However, ensuring flexibility results in certain ad-
ditional operating cost and the composite metric is improved by considering both technical and
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economic aspects [15]. The models normalize technical parameters (name plate parameters) of
each generator based on the corresponding maximum and minimum values across the spectrum of
available resources. Although these approaches rank generating units in terms of flexibility, they
may not sufficiently provide available flexibility level as they cannot capture resources’ scheduled
power output. Also, among technical parameters, lower values of MSG, MUT/MDT and start
up/shutdown times indicate higher system flexibility. On the other hand, OR and ramp up/down
are positively correlated with system flexibility [15]. In short-term operational time frame, the
latter can sufficiently highlight resource flexibility limits. System flexibility index only considers
available flexibility in terms of ramping from emerging resources and CG units [16]. However, OR
is neglected in the metric. Further, metrics in both the sets can either calculate flexibility require-
ment based on netload variations or flexibility available from conventional units. A comprehensive
methodology that quantifies flexibility by simultaneously considering system-wide flexibility re-
quirements and its availability from committed resources can provide better insights on upcoming
inflexibility events and help system operators in making operational planning decisions.

The third category of metrics quantify system inflexibility using normalized flexibility index
and loss of ramp probability [17–19]. Insufficient ramping resource expectation, similar to LOLE,
is formulated to provide the probability that a power system cannot meet the changes in netload
over a given time frame [20]. Magnitude of ramping insufficiency can be estimated using expected
ramping insufficiency metric and dynamic uncertainty sets based flexibility assessment [21]. Ramp
inflexibility can also be assessed by considering the economic implications of netload variability
[22]. However, such methods are either limited to providing ramp insufficiency or do not estimate
ramp requirement accurately, and need detailed simulations based on historic time series data.
Also, metrics based on a single indicator cannot provide a comprehensive understanding of system-
wide inflexibility [23]. Consideration of all three facets - ramp, power, and energy; is essential for
appropriate assessment, but is often neglected in the literature [10]. Importance of considering
energy limitations along with power and ramping capacities in systems with a significant share
of energy-constrained resources is well highlighted [24]. Hence, an in-depth investigation on ac-
curate flexibility assessment for all facets is required considering its system-wide requirement and
availability from various flexible resources.

Most of the works integrate flexibility metrics in Real-Time (RT) dispatch models and optimize
resources as an independent problem [17–19, 23]. Such dispatch models do not consider CG units’
critical technical parameters like MUT/MDT or start-up/down times. This results in an erratic
assessment of available flexibility. Moreover, consideration of residual/re-dispatchable capacity
i.e., difference between capable output and Day-Ahead (DA) schedule of resources, along with
additional commitment of fast start units in RT can impact system flexibility assessment.

Further, in power systems with high share of RES, incorporating RT netload forecast is es-
sential for both quantifying flexibility requirement and better re-dispatch decisions. Although
utilizing improved forecasting techniques captures netload uncertainty, there exists a significant
prediction error in DA forecasts [19]. Higher magnitude of uncertainty associated with increasing
RES integration may affect the dispatch of committed units. Hence, a feedback from RT netload
forecast must be incorporated in the RT scheduling framework, along with a consideration of DA
operational constraints.

In this context, the paper quantifies flexibility in terms of all three facets considering RT
netload forecasting and DA scheduling decisions of various flexible resources and CG units. The
work contributes to develop:
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• A comprehensive metric to quantify system inflexibility in terms of ramp, power and en-
ergy capability by simultaneous consideration of system-wide flexibility requirement and its
availability from committed resources

• Resource Flexibility Index (RFI) based on operating range and ramping capability to high-
light available flexibility of resources

• Stochastic multi-interval scheduling framework to dispatch resources considering RT netload
forecasts and integrate the proposed flexibility assessment methodology.

Inflexibility is quantified as the difference between required and available values of ramp, power and
energy. The corresponding required values of each facet are estimated from RT netload forecast
and associated uncertainty characterization using Long Short-Term Memory (LSTM) and Markov
Chain Monte Carlo (MCMC) techniques, respectively [25, 26]. Available flexibility is evaluated
from the proposed stochastic multi-interval scheduling framework. The work helps system operators
to analyze frequency and intensity of ramp, power, and energy inflexibility in upcoming scheduling
intervals and provide a flexibility index between 0 and 1 to highlight available flexibility.

The rest of this paper is organized as follows- proposed flexibility assessment methodology and
RFI are presented in Section II. Multi-interval scheduling framework is formulated in Section III.
Section IV presents the case studies and Section V concludes the work.

2. Flexibility Quantification

Flexibility of a system depends on its system-wide requirement, technical characteristics of
integrated resources as well as their operating state. Flexibility can be estimated as its insufficiency
i.e., the difference between flexibility requirement and its availability. Hence, an accurate estimation
of flexibility requirement and availability from resources is essential to assess its insufficiency. Major
limitations of the existing literature are -

• Most of the existing flexibility metrics are developed on the consideration of limited parame-
ters and provide ramping incapability of conventional units [16, 19, 20, 22]. With increasing
integration of flexible resources, there is a need to consider additional two parameters of flexi-
bility i.e., power and energy. This helps to accurately quantify flexibility for the systems with
significant share of energy-constrained sources viz., energy storage and demand response.

• Although the inflexibility probability assessed by most of the metrics gives insight on flexi-
bility, quantifying its magnitude on a wider parameter base would help system operators in
taking corrective measures to ensure secure grid operations.

• Existing scheduling frameworks integrate flexibility metrics in economic dispatch and do not
consider day-ahead scheduling decisions in the models [17–19, 23, 27]. Economic dispatch
models do not consider critical technical parameters of conventional units such as minimum
up/down time, start up/shut down time. Non-Consideration of these parameters may result
in an over/false valuation of flexibility level. In practice, resource scheduling decisions are
taken in day-ahead operations. Consideration of these scheduling decisions helps to assess
actual system flexibility level in real-time.
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• With increasing renewable integration, it is essential to harness flexibility from available
and eligible resources to mitigate large variability from renewable energy sources. Limited
literature has considered flexible resources for flexibility assessment [15, 16].

The proposed work addresses these limitations and quantifies flexibility insufficiency in terms
of ramp, power and energy within a stochastic multi-interval Security Constrained Economic Dis-
patch (SCED) framework. Eqs. (1)-(4) quantify system-wide inflexibility in upward/downward
ramping (MW/5 min), power (MW) and energy (MWh). Power and energy requirements are
considered from real-time netload scenarios. Ramping requirement in up/downward directions is
estimated from netload forecast and its associated uncertainty. Available flexibility is evaluated
from resources’ day-ahead scheduling decisions, residual capacity of online units, and additional
commitment of fast start units.

R̃u
m,j = R̂u

m −
∑

χ

RA u
χ,m,j (1)

R̃d
m,j = R̂d

m −
∑

χ

RA d
χ,m,j (2)

P̃m,j = P̂m,j −
∑

χ

PA
χ,m,j (3)

Ẽm,j = Êm,j −
∑

χ

EA
χ,m,j (4)

Further, eight technical parameters govern the resources available flexibility, especially gener-
ating units. They are ramp up and ramp down limits, OR, MSG, MUT, MDT, start up and shut
down times. Consideration of all these technical parameters is important for ranking generating
units based on their flexibility level [13–15, 17]. However, resource scheduling decisions are taken
during day-ahead unit commitment, which considers start up and shut down times along with
MUT and MDT of CG units. Additional unit commitment to meet load-generation imbalances in
RT is carried out for only fast start units, hence the four parameters have limited impact on RT
flexibility assessment. Varying MSG of units necessitates retrofitting, and usually it is assumed
to be constant. In order to mitigate netload variations, committed resources must change their
operating point based on the economic re-dispatch decisions. This capability depends on ramping
up/down ability and operating range of resources. Hence, ramping and operating range are the
three critical parameters that govern the available flexibility level of a resource. In this context,
two resource flexibility indices (RFI) based on OR and ramping are developed to indicate available
flexibility of committed resources. Further, lower index for OR also highlights the inflexibility due
to MSG.

The adopted min-max normalization method covert indices to an identical range between 0
and 1, as given in (5)-(6). Unlike existing works, corresponding unit’s maximum and minimum
limits are taken in (5)-(6) for normalization. OR index (5) near 0 represents resource inflexibility
in MSG (Pχ) or MUT/MDT, while the value near 1 highlights resource insufficiency in ramping up
in case of sudden increase in demand. Similarly, a higher value of (6) indicates system’s capability
in utilizing available ramping. Generating units and flexible resources can ramp up or ramp down.
However, for a given scheduling interval and netload, they can utilize any of the two capabilities.
Hence to ensure proper normalization, average ramping capability of a resource is considered in
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the denominator of (6).

RFIOR
χ =

J
∑

j

M
∑

m

πj

[

(PA
χ,m,j − Pχ)

(Pχ − Pχ)

]

(5)

RFIramp
χ =

J
∑

j

M
∑

m

πj

[

(RA u
χ,m,j +RA d

χ,m,j)

0.5(RC u
χ,m,j +RC d

χ,m,j)

]

(6)

3. Multi-Interval stochastic SCED Framework

The proposed flexibility assessment methodology, (1-6), is integrated into a two-stage flexi-
bility constrained scheduling framework with a 15-minute temporal DA - Security Constrained
Unit commitment (DA-SCUC) and a 5-minute temporal Stochastic RT - Security Constrained
Economic Dispatch (RT-SCED). Flexibility enhancement options like Battery Energy Storage Sys-
tems (BESS), Pumped Hydro Energy Storage (PHES), interruptible and shiftable load type DR
are considered along with CG units. Fig. 1 outlines the proposed methodology. CG units and flex-
ible resources along with wind and solar generation are scheduled in DA to meet 100% anticipated
electricity demand and ancillary services. In DA-SCUC, energy, regulation, spinning reserve and
Flexible Ramp Products (FRPs) are co-optimized. RT-SCED cannot be solved independently as
resource dispatch decisions are bounded to DA schedules. Hence DA decisions are given as input
to RT-SCED to highlight the impact of resources technical parameters on both dispatch and flex-
ibility assessment. The 96 scheduling decisions of each resource for a complete day are converted
into 288 dispatch decisions (5-minute resolution) considering resources scheduled and rated ramp
limits. This data in 5-minute resolution is given as input to Stage-II i.e., stochastic RT-SCED.
This conversion do not violate the DA scheduling decisions. Resource scheduling inputs are same
for each scenario. Along with resource schedule, RT netload profile forecasted from LSTM and
associated uncertainty characterized using MCMC are utilized for Stage-II simulations. RT-SCED
schedules additional CG units and residual capacity from resources along with DA schedule to fulfill
stochastic netload. This scheduling framework provides resource dispatch decisions and informa-
tion on system inflexibility. DA scheduling constraints are presented in Appendix-A. Operational
constraints corresponding to RT-SCED are presented in this section-

3.1. Objective Function

The proposed RT- stochastic SCED minimizes the additional costs incurred due to dispatch
of residual capacity, additional commitment of resources along with the penalties for load and RE
curtailments and ramp up/down insufficiency, given in (7)

λRT =
J
∑

j

M
∑

m



{
B
∑

b

(Lcurt
b,m,j)+R̃

u
m,j + R̃d

m,j}πjC
curt + πj{

I
∑

i

λϕi,m,j +
∑

χ,χ/∈i

λδχ,m,j}



 (7)

λϕi,m,j = (Cst
i y

′

i,m,j + Csd
i z

′

i,m,j) + Cmin
i u′i,m,j +

K
∑

k

Sli,k(P
δ
i,k,m,j + Pϕ

i,k,m,j) (8)

λδχ,m,j = Cδ
χ(P

δ
χ,m,j) ∀ χ /∈ i (9)
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DA Optimization
Obj. : min. cost (energy, regulation, spinning reserve,
FRP, and RE curt.)
Subject to :
Resources techno-economic operational constraints 
Network constraints 
Power balance

RT netload forecast Netload uncertainty Generator schedules
in 5-min resolution 

Binary variables for
resources status

DR, ESS and
generating units cost
coefficients and
technical parameters 

Regulation,
reserve and FRP

requirements

Forecasted day-
ahead electricity

demand
Historical load, solar

and wind data

DA
-SC

UC
RT-

 SC
ED

Dispatch schedules

System operating
cost

Load curtailment

Flexibility Indices

Economic Re-Dispatch
Obj.: min. cost (redispatch, load curt.)

Subject to: 
Resources techno-economic operational constraints 
Network constraints 
Power balance

No

Parameterize
resource ramping
and power output

Yes
Sum(Ps

x,m,j) =Nm,j ?

No

m>M? m=m+1

No

Yes

j=j+1 j>J?

Initiate j=1 and m=1

Yes

Figure 1: Proposed methodology for flexibility assessment

The first term of (7) gives the penalty for load curtailment, ramp up and down insufficiency. The
second term gives the additional cost incurred in dispatching CG units and flexible resources,
given in (8) and (9). Eq. (8) represents the linearized form of operating cost with the first term
representing cost of additional start-up and shutdown of conventional units. Second part of (8)
gives the cost incurred for committed conventional units to operate at MSG. Third term of (8)
represents the linearized form of operating cost for committed CG units as well as for additional

dispatch of committed units, where
K
∑

k

P
δ/ϕ
i,k,m,j = P

δ/ϕ
i,m,j . The quadratic cost curve of CG units is

divided into K segments having a slope of Sli,k using piece-wise linearization. u′i,m,j , y
′

i,m,j and
z′i,m,j indicate operating, start-up and shut down status of additionally committed unit i in RT.

3.2. Ramp Requirement Calculations

3.2.1. Ramp Requirement

Unlike existing flexibility metrics, the proposed work estimates ramp requirement from the net-
load variation between two consecutive scheduling intervals considering their extreme uncertainty.
Eqs. (10)-(11) give the ramp requirement estimation [28]-

R̂u
m = max

{

0, (Nf
m + λ̄um)− (Nf

m−1 − λ̄dm−1)
}

(10)

R̂d
m = max

{

0, (Nf
m−1 + λ̄um−1)− (Nf

m − λ̄dm)
}

(11)
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Nf
m and Nf

m−1 is the forecasted netload at intervals m and m− 1. λ̄um and λ̄dm−1 is the maximum
upward/downward uncertainty at intervals m and m − 1, respectively. Eq. (10) estimates the

ramp up requirement. It is positive for netload movement in positive direction i.e., (Nf
m + λ̄um) >

(Nf
m−1 − λ̄dm−1) , else it takes zero value. Similar condition is for ramp down requirement. This

formulation considers total range of netload variability, and ramp requirement remains same for
each scenario.

3.2.2. Ramp Capability

Ramping capability of committed resources for each netload scenario j is assessed using (12) and
(13). Capable ramping is evaluated as the minimum of ramping capability and available operating
range of resources. uχ,m,j , yχ,m,j and zχ,m,j indicate operating, start-up and shut down status of
resource χ, obtained from DA-SCUC. During start up or shut down, corresponding ramping of
units rstχ or rsdχ are considered.

RC u
χ,m,j = min

{

(ruχuχ,m−1,j + rstχ yχ,m,j), (Pχ − P s
χ,m−1,j)uχ,m,j

}

(12)

RC d
χ,m,j = min{(rdχuχ,m,j + rsdχ zχ,m,j), (P

s
χ,m−1,j − Pχ)(uχ,m,j + zχ,m,j)} (13)

3.2.3. Ramp Availability

Available ramping is evaluated from the scheduled and residual ramp of resource χ for each
scenario j along with the ramp available from additional commitment of resources, given in (14)
and (15). Resources ramping in different scheduling options is calculated based on the change in
corresponding power generation output between two consecutive dispatch intervals, given in (16)
and (17)

RA u
χ,m,j = Rs u

χ,m,j +Rδ u
χ,m,j +Rϕ u

χ,m,j (14)

RA d
χ,m,j = Rs d

χ,m,j +Rδ d
χ,m,j +Rϕ d

χ,m,j (15)

R
s/δ/ϕ u
χ,m,j = P

s/δ/ϕ
χ,m,j − P

s/δ/ϕ
χ,m−1,j (16)

R
s/δ/ϕ d
χ,m,j = P

s/δ/ϕ
χ,m−1,j − P

s/δ/ϕ
χ,m,j (17)

Similarly, available power and energy capacity, PA
χ,m,j and EA

χ,m,j, are taken as the sum of
scheduled , dispatched and committed power and energy capacities.

3.3. Resource Constraints

3.3.1. Generator Constraints

Eqs. (18) and (19) give the generator’s maximum and minimum technical limits and feasible
operating range for allocating energy, regulation, spinning reserve, and FRP. (20) and (21) ensure
that change in power generation and allocation of regulation, reserve & FRP are within generator’s
ramp up rui and ramp down rdi limits. At start up/shutdown time of unit, respective ramping rsti /r

sd
i

are considered.

P
s/ϕ
i,m,j + P δ

i,m,j + αu
i,m,j + ℓi,m,j + fui,m,j ≤ P iui,m,j ∀i,m, j (18)
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P
s/ϕ
i,m,j − P δ

i,m,j − αd
i,m,j − ℓi,m,j − fdi,m,j ≥ P iui,m,j ∀i,m, j (19)

P
s/ϕ
i,m,j − P

s/ϕ
i,m−1,j + P δ

i,m,j − P δ
i,m−1,j + αu

i,m,j + ℓi,m,j + fui,m,j+

fdi,m−1,j ≤ rui (ui,m−1,j + u′i,m−1,j) + rsti (yi,m,j + y′i,m,j) ∀i,m, j
(20)

P
s/ϕ
i,m−1,j − P

s/ϕ
i,m,j + (P δ

i,m−1,j − P δ
i,m,j) + αd

i,m,j + fdi,m,j+

fui,m−1,j ≤ rdi (ui,m,j + u′i,m,j) + rsdi (zi,m,j + z′i,m,j) ∀i,m, j
(21)

3.3.2. BESS Constraints

BESS is modeled considering its State of Charge (SOC) in DA-SCUC as given in (A.13)-
(A.18). Based on the DA schedules, redispatch is carried out by considering battery’s maximum and
minimum limits in charging and discharging modes, given in (22) - (23). Inclusion of P δ

e,m,j changes
the SOC of BESS and hence its dispatch is monitored through SOC, given in (24). Constraints
(22)-(23) ensure that charging or discharging power, regulation, spinning reserve, and FRP does

not exceed the rated power capacity of BESS. P
ch
e , P

di
e and P ch

e , P di
e are maximum and minimum

power limits in charging/discharging modes, respectively. SOC of BESS at the end of scheduling
day is assumed to reach its initial value. P ch

e,m,j and P di
e,m,j is the total scheduled power allocation

of BESS for energy and ancillary services i.e., P ch
e,m,j = P s−

e,m,j + αd
e,m,j + fde,m,j and P di

e,m,j =

P s+
e,m,j + αu

e,m,j + ℓe,j,m + fue,m,j . Here ∆m in eq. (24) is 1
12 .

P s−
e,m,j + P δ−

e,m,j + αd
e,m,j + fde,m,j ≤ P

ch
e ψe,m,j , P s−

e,m,j ≥ P ch
e ψe,m,j ∀e,m, j (22)

P s+
e,m,j + P δ+

e,m,j + αu
e,m,j + ℓe,m,j + fue,m,j ≤ P

di
e ζe,m,j , P s+

e,m,j ≥ P di
e ζe,m,j ∀e,m, j (23)

SOCe,m,j = SOCe,m−1,j +
{

(P ch
e,m,j + P δ−

e,m,j)η
ch
e − (P di

e,m,j + P δ+
e,m,j)/η

di
e

}

∆m, ∀m (24)

3.3.3. PHES Constraints

Power generated and consumed from PHES is calculated using heads of the upper and lower
reservoirs and the quantity of water discharge in generating and motoring modes. Change in the
head of upper and lower reservoirs are modeled as SOC. Detailed modeling of PHES for DA-SCUC is
presented in (A.19)-(A.24) [29]. Maximum power generation/consumption in generating/motoring
modes is given in (25) and (26). Similar to BESS modeling, PHES dispatch is limited by the

water head of both upper and lower reservoirs. P prod
h,m and P cons

h,m are the generation and motoring
capability of PHES h at time m obtained from DA scheduling.

P s+
h,m,j + P δ+

h,m,j + αu
h,m,j + ℓh,m,j + fuh,m,j ≤ P prod

h,m (25)

P s−
h,m,j + P δ−

h,m,j + αd
h,m,j + fdh,m,j ≤ P cons

h,m (26)
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3.3.4. Demand Response Constraints

Interruptible Load DR (ILDR) and Shiftable Load DR (SLDR) models are implemented for
the studies. (27)-(29) give the operating constraints of interruptible load type DR. (27) and (28)
ensure that energy, regulation, spinning reserve, and FRP procurement from aggregated ILDR
at each bus b are within maximum and minimum limits P d and P d. (29) limits the maximum
time of DR participation. Γd,m,j is the binary indicator for ILDR participation and ~ is an integer.
(30) and (31) give the participation of SLDR through load reduction and increment, respectively
for different services. (32) restricts simultaneous decrement and increment of load d′ at interval
m. The net energy through SLDR is maintained zero (32). P s+

d′,m,j and P s−
d′,m,j indicate electricity

demand reduction and increment to virtually increase/decrease electricity generation, respectively.

P s
d,m,j + P δ

d,m,j + αu
d,m,j + ℓd,m,j + fud,m,j ≤ P dΓd,m,j (27)

P s
d,m,j − P δ

d,m,j − ℓd,m,j ≥ P dΓd,m,j (28)

M
∑

m

Γd,m,j ≤ ~ (29)

0 ≤ P s+
d′,m,j + P δ+

d′,m,j + αu
d′,m,j + ℓd′,m,j + fud′,m,j ≤ P d′Υd′,m,j (30)

−P d′Υ
′

d′,m,j ≤ P s−
d′,m,j + P δ−

d′,m,j + αd
d′,m,j + fdd′,m,j ≤ 0 (31)

Υd′,m,j +Υ′

d′,m,j ≤ 1 ,

M
∑

m

(P−

d′,m,j + P+
d′,m,j) = 0 (32)

3.3.5. Power Flow Constraints

The proposed scheduling problem ensures that power transfer between each bus b and node n
is within the technical limits of transmission lines for each scenario. (33) gives power flow in a line.
xb,n is the reactance of transmission line connecting bus b with node n. Sbase is used to convert pu
quantity and assumed to be 100 MVA. Constraint (34) ensures that power flow between buses is
within line capacity limits ̟b,n.

̟b,n,m,j = (φb,m,j − φn,m,j)Sbase/xb,n ∀b,m, j (33)

−̟b,n ≤ ̟b,n,m,j ≤ ̟b,n ∀b,m, j (34)

3.3.6. Power Balance Constraints

Eq. (35) ensures power balance at each node in the optimization at time m under scenario
j. Here, Db, D

′
b, Eb, Hb, Ib and Nb are the set of ILDR, SLDR, BESS, PHES, generators, and

nodes connected to bus b, respectively. In RT, along with resource schedules, FRP procured from
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resources are dispatched for each scenario to meet anticipated netload,

∑

i∈Ib

(P
s/ϕ
i,m,j + fui,m,j − fdi,m,j + P δ

i,m,j) +
∑

h∈Hb

(P
s+/δ+
h,m,j − P

s−/δ−
h,m,j + fuh,m,j − fdh,m,j)+

∑

e∈Eb

(P
s+/δ+
e,m,j − P

s−/δ−
e,m,j + fue,m,j − fde,m,j) +

∑

d∈Db

(P s
d,m,j + P δ

d,m,j + fud,m,j)+

∑

d′∈D′

b

(P
s+/δ+
d′,m,j + P

s−/δ−
d′,m,j + fud′,m,j + fdd′,m,j) + Lcurt

b,m,j −N b,m,j =
∑

n∈Nb

̟b,n,m,j ∀b,m, j

(35)

Power and energy requirements in the stochastic SCED framework are taken from 5-minute
temporal real-time netload forecast and associated uncertainty characterization presented in Sec-
tions 3.4 and 3.5, respectively.

3.4. Netload Forecasting

LSTM approach is used in the proposed work to forecast real-time netload. Its architecture
consists of a set of recurrently connected subnets, termed as, memory blocks. Each memory block
contains one or more self-connected memory cells and three multiplicative units - the input, output
and forget gates; along with a Recursive Neural Network (RNN) block. These facilitate to write,
read and reset cells’ operations. A set of equations are modeled to activate forward pass gradient
calculation of LSTM hidden layer. The ι, φ, ω denote input, forget and output gates, respectively.
c refers to one of the C memory cells. wxy represents the weight of the connection from unit x and
y. The weights from cell c to various gates are denoted by wcϑ, where ϑ ∈ [ι, φ, ω] . aϑt represents
the network input to unit ϑ at time t, and activation of unit ϑ at time t is denoted by bϑt. sct defines
the state of the cell c at time t. fϑ is the activation function of the gates. LSTM architecture
is illustrated in Fig. 2 for a single cell. In case of a single input, aϑt = xit. The concatenated
expressions after each activation function can be denoted as bϑ,t = fϑ(wcϑ[ht−1, aϑt]) + γϑ and
output of each cell is ht = fω tanh(St)

fℓ fι fϕ

wcϕ
bϕ,t

tan h fω

tanh

ht

ht

Sc,tSc,t-1

ht-1

Input Gate Output Gate

Output

Cell State

Hidden State

xi,tInput

wcl, bl,t

wcω, bω,t

Forget Gate RNN Block

Figure 2: LSTM architecture

The outputs of cell are connected to other blocks in the layer. The activation of states, cell
inputs, gates are only visible within the block. i and h denotes the cell’s input and hidden layer’s
output, respectively. LSTM contains more input as compared to output. The forward pass is
calculated for a length T sequence by starting at the time t = 1 and recursively applying the
updates while incrementing. The final weights derivative can be found by summing over the
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derivatives at each time step. Equations (36) and (37) define different gates of LSTM [30].

aϑt =
I

∑

i=1

wiϑxit +
H
∑

h=1

whϑbh,t−1 +
C
∑

c=1

wcϑsc,t−1 ∀ϑ ∈ [ι, φ, ω] (36)

bϑt = f (aϑt) ∀ϑ ∈ [ι, φ, ω] (37)

The proposed forecasting model is implemented using Python. Fig. 3 illustrates the step-wise
procedure for the process [31]. The studies are conducted on four representative days, Q1-Q4, one
each from four seasons. Historic 5-minute granular data of load, wind, and solar generation of each
season is used to estimate netload. This time series is given as input to the model and processed
for its use. This includes – data normalization, conversion to supervised time series, segregation
of data into train and test data sets. Considering the architecture of LSTM layers, the data is
converted into three-dimension. Here, one sequence is equivalent to one sample, one-time step
equals a point of observation in the sample, and one feature is one observation at a time step. A
single-layer LSTM model is considered with a sigmoid activation function for forget, input, and
output gates and tanh for RNN block. The model is compiled by defining adam as an optimization
algorithm and the Mean Squared Error (MSE) as the loss function. Based on the input and output
matrix, weights are adjusted to better fit the model. This model is used to predict the netload
profile of all representative days, Q1-Q4.

Figure 3: Netload forecasting procedure

3.5. Netload Uncertainty

Netload uncertainty is considered to analyze the impact of netload forecast uncertainties. Net-
load uncertainty is estimated using MCMC technique. MCMC is a sampling method to characterize
distribution without complete mathematical properties by randomly sampling values from the dis-
tribution. MCMC methods are widely used in diverse fields to predict the posterior distribution
in Bayesian inference. The prime component of this method is Markov Chain that performs a
random walk in the search space and consequently reaches the solution. N-Metropolis method is
adopted for this work. Netload scenarios are generated from MCMC based multi linear regression
using historical data, given in (38) [32, 33],

Yh = β0 + β1Xh + β2X
1
h + β3X

2
h + ∈h,∈h

= N(0, σ2), h = 1...H
(38)
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where,Yh, is the forecasted netload profile of scheduling day and Xh, X
1
h & X2

h are historical
netload profiles of previous three days. β0, β1, β2 & β3 are regression coefficients and ∈h is an
observational error. Posterior distribution of model parameters β0, β1, β2 & β3 can be obtained
using likelihood function and prior distribution as follows [33]

P (β0, β1, β2, β3, σ
2|y, x) α

(

1
σ2

)(H

2
)+1

e

{

−1

2σ2

H
∑

h=1

[yh−(β0+β1xh+β2x1

h
+β3x2

h
)]
2

}

(39)

4. Case Study

4.1. Data and Assumptions

Effectiveness of the proposed methodology is analyzed on IEEE RTS 24 and reduced Great
Britain (GB) test systems with a peak demand of 2.7 GW and 70 GW, respectively. Four rep-
resentative days, Q1 - Q4, one day from each quarter of a year are examined to investigate the
impact of netload seasonal variability on flexibility requirement. Studies are carried out for 30% -
50% RES integration levels. Historical data of load, solar irradiance, and wind speed of California
and GB are taken from [34, 35]. Fig. 4 shows 15-minute temporal netload variation for each
representative day of both test systems at 30% RES integration. RT forecasting and associated
uncertainty characterization are carried out using 5-minute temporal netload time series data. For
each representative day, historical netload time series of the corresponding season is used to train
and test LSTM model. Fig. 5 compares actual and predicted 5-minute temporal netload profiles
of GB system for all representative days at 40% RES. The prediction accuracy is found to be very
high. In order to characterize uncertainty in netload forecast, 1000 netload scenarios are generated
from β0, β1, β2, β3 & σ2 samples using (38). Statistical tool - SAS is used for scenario generation.
Table 1 gives the posterior distribution summaries of GB test system for Q3 and 30% RES inte-
gration. Further, generated scenarios are reduced to 10 plausible sets to reduce the computational
burden. Reduced scenarios and associated probabilities are obtained from the backward scenario
reduction method, implemented using SCENRED2 in GAMS 24.2.3.

Figs. 6a and 6b present the reduced netload scenarios of both test systems for Q4 and 30%
RES integration. Due to larger time intervals, the granularity of randomly selected portions is
highlighted in upper part of the figures. Statistical properties of these highlighted portions are
shown in Figs. 7a and 7b for corresponding systems. The average difference between mean and
standard deviations of generated and reduced scenarios is found to be less than 1% and 7%,
respectively. This justifies the proficiency of scenario reduction method as scenario distribution of
both generated and reduced scenarios is identical.

PHES of 200 MW capacity having 08 hours discharge time with a reservoir (upper and lower)
capacity of 1 TMC, and a 50 MW/200 MWh BESS are considered [36, 37]. The maximum capacity
of ILDR and SLDR is assumed to be 10% of peak load at each bus. Up/down regulation requirement
is assumed to be 1% of load at time m. Spinning reserves are allocated by approximating their full
deployment in 10-minutes from the time of contingency. Netload uncertainty components for FRP
estimation are calculated from the standard deviation of historical netload data at 95% confidence
interval. The proposed MILP is formulated in GAMS 24.2.3 and solved using CPLEX solver on
3.4 GHz, Intel i7 processor with 16 GB RAM. All simulations for RT-SCED are solved under 300
seconds.
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Figure 7: Statistical properties of generated and reduced netload scenarios

Table 1: Posterior summaries and intervals of MCMC

Parameter N Mean Std. de-
viation

95% HPD interval

β0 1000 3617.9 3.7056 3613.3 3625.1
β1 1000 -1.8174 0.000456 -1.8186 -1.8169
β2 1000 -1.1877 0.000385 -1.1883 -1.1869
β3 1000 3.4628 0.000259 3.4624 3.4631
σ2 1000 17.0947 0.000347 17.094 17.0954

Sampling
method

N-
metropolis

Shape factor 3/10

Scale factor 10/3

4.2. IEEE RTS 24

4.2.1. Case-1: Impact of Increasing RES Integration

Increasing RES integration from 30%-50% has decreased operating costs for all representative
days, Q1−Q4, in DA scheduling. However, diverse pattern in operating cost is observed in RT with
netload uncertainty consideration. Variation in operating cost is primarily due to load curtailment
caused by ramp insufficiency of scheduled resources. Although additional scheduling of committed
resources significantly reduced inflexibility, maximum ramp-up insufficiency of 153 MW is observed
for Q4 at 30% RES integration. Total power insufficiency of 5-minute dispatch intervals is 3813
MW for Q4 at 30% RES and energy insufficiency is 318 MWh. RT up/ down capacity of 702 MWh
and 716 MWh is additionally dispatched for Q4 and Q1 at 30% RES, respectively.

4.2.2. Case-2: Impact of Flexible Resources Integration

Integrating flexible resources like BESS, PHES, ILDR, and SLDR has shown a significant
improvement in operating costs and technical parameters for all representative days and integration
levels compared to Case-1. Similar to Case-1, RT operating costs tend to increase from 50% RES
integration for Q1 and Q4. Whereas operating costs reduced with increasing RES integration in
Q2 and Q3. A maximum reduction in RT operating cost of 15.98% is observed for Q4 at 40% RES.
Flexible resources integration has reduced magnitude and frequency of inflexibility events for all
representative days and RES integration levels compared to Case-1. Further, in comparison to the
scenario presented in Case-1, maximum ramp insufficiency for Q4 has reduced 7.85% in the case

17



0

2

4

6

8

10

12

14

16

18

30% 40% 50% 30% 40% 50% 30% 40% 50%

C-1 C-2 C-3

C
o
st

 i
n

 m
il

li
o
n

 U
S

D

Q1 Q2 Q3 Q4

Figure 8: Operating cost comparison for IEEE RTS 24

at 30% RES. Total power insufficiency of 5-minute dispatch intervals and total energy insufficiency
reduced to 2262 MW and 189 MWh for Q4 and 30% RES. Also, integration of flexible resources
increased the residual capacity of committed resources and a slight increment in its utilization is
observed in all representative days. A maximum additional capacity of 1000 MWh is scheduled for
Q3 at 30% RES and a maximum ramp down capacity of 749 MWh is utilized in Q4 and 40% RES.

4.2.3. Case-3: Impact of Integrating Flexible Ramp Products

To ensure sufficient ramping availability in RT, many ISOs are implementing new market
products, termed, Flexible Ramp Products (FRPs). These FRPs secure additional ramping from
eligible resources and dispatch them in RT. In this case, FRPs are integrated with the system
outlined in Case-2. FRPs are secured in DA scheduling by co-optimizing with energy and ancillary
services. Integrating ramp products has increased operating costs compared to other cases due to
additional capacity requirement for FRP provision. However, a significant reduction in penalties
and improvement in the system’s netload uncertainty handling capability is observed with the
utilization of FRPs. Average ramp insufficiency reduction of 44.3% for all integration levels and
representative days with a maximum reduction of 88% for Q1 at 30% RES in comparison to Case-
1 is observed. In comparison to Cases-1 and 2, total power insufficiency for Q4 at 30% RES is
reduced to 1116 MW and associated energy insufficiency to 93 MWh. Around 50% reduction in
the dependency on additional scheduling of resources is noticed for all representative days and
integration levels.

Fig. 8 illustrates the total operating cost for all cases. System operating costs tend to vary
from Q1 to Q4 due to seasonal netload variability. RT operating costs decreased 35.6% and 18.22%
with FRP integration compared to Cases-1 and 2, respectively. However, total operating cost in
this case is more due to increase in DA scheduling cost. DA operating costs increased 13.52% and
20.92% in Case-3 as compared to Cases 1 and 2. Also, total operating cost of all cases tends to
decrease with increasing RES integration.

4.2.4. Flexibility Indices

MUT/MDT, start up and shut down times play an important role in DA scheduling. As the
simulation is carried out in a multi-interval time frame and fast-start resources are scheduled based
on their operating status and technical constraints, resources operating range and ramping limits
can sufficiently estimate flexibility. RFI presented in (5) and (6) are integrated with the scheduling
framework to evaluate the flexibility scores. These indices highlight the flexibility contribution
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of individual resources for the scheduling day. OR index near zero for more units highlights the
inflexibility in MSG or ramp down in the system. Similarly, the value near one indicates the
possibility of ramp-up insufficiency during contingencies. Ramping index near zero highlights the
system’s incapability of utilizing the available ramping from resources. Figs. 9a, 9b and 9d give
the mean scores for individual and combined RFI of all representative days, Q1−Q4, at 30% RES
integration. An equal weight of 0.5 is assumed for calculating combined RFI from OR and ramping
i.e., CRFIχ = 0.5RFIOR

χ + 0.5RFIramp
χ
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Figure 9: Mean flexibility index of cases at 30% RES for IEEE RTS 24

Fig. 9a illustrates the flexibility index of generating units for OR. In Case-1, when only CG
units are available, the RFI for maximum units is near zero. This is due to the generating units
turned ON to meet demand at few intervals are scheduled to operate near MSG to fulfill their
MUT. However, improvement in the index is observed with the integration of flexible resources
or FRPs as given in Cases-2 and 3. Fig. 9b highlights resource flexibility in terms of ramping.
Higher value of this index gives resources ramp availability. The combined flexibility index of the
cases for Q1 and 30% RES is given in Fig. 9d. A reduction in the number of committed CG units
is observed due to improvement in flexibility with the integration of flexible resources and FRPs.
More number of units operating at higher combined RFI denote higher flexibility. Similar trend
is observed for all representative days and RES integration levels. System-wide flexibility can be
obtained upon integrating and normalizing resources in the combined flexibility index,

∑

χCRFIχ.
Higher the value of system flexibility index, the greater is the flexibility of the system. Fig. 9c gives

19



the system flexibility index for Q1−Q4 at 30% RES. Higher flexibility index in each representative
day indicates greater flexibility in handling netload uncertainty and vice-versa. A high flexibility
index (0.715) in Case-3 and Q1 indicates the mitigation of a large amount of ramp and power
insufficiency events, with maximum ramp insufficiency reduced to 4.2% of peak load. Table 2 gives
the technical comparison of cases for Q4 at 50%.

Table 2: Technical comparison of cases for IEEE RTS 24

C-1 C-2 C-3

DA Operating cost ($M) 3.43 3.02 3.37
RT operating cost ($M) 0.87 0.63 0.45
Maximum Ramp insufficiency
(MW/5min)

140.26 130.24 102.56

Total power insufficiency (MW) 3732 2670 1900
Total Energy insufficiency (MWh) 311 222.5 158.33
Energy up schedule (MWh) 678.91 833.33 581.58
Energy down schedule (MWh) 570.83 676 362.25
FRU(MWh) 0 0 560.66
FRD(MWh) 0 0 382
System flexibility index 0.64 0.7 0.72
DA Computational time (secs) 930 1200 1535
Number of startups /shutdowns 10/13 8/12 3/7
Average load factor 53.4 48.50 50.86

4.2.5. Impact of Minimum Stable Generation on RFI

Further, to analyze the impact of MSG on RFI, CG units are scheduled at 40% technical
minimum. Reduction in operating cost and inflexibility are observed at 40% MSG compared to
the case with CG units operation at 50% MSG. Fig. 10 gives the comparison of RFI for Case-1
at 50% and 40% MSG (T50% and T40%) for IEEE RTS 24. Results further justify the discussion
on Fig. 9a. Decreasing MSG resulted improvement in units’ OR, which further reduced the non-
essential start up of units. This resulted in RFI score improvement for most of the generators.
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4.3. Reduced GB Test system

Similar case studies are carried out on reduced GB test system to validate the scalability of
proposed work. Increasing RES integration resulted in the reduction of DA operating cost for all
representative days except Q3. Operating costs tend to increase from 30% - 40% and decrease for
50% RES integration in Q3, due to high renewable curtailment. RT operating costs varied in all
cases due to netload uncertainty. However, system’s total operating cost reduced with increasing
RES integration. Fig. 11 gives operating costs of all cases at various RES integration levels.
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Figure 11: Operating cost comparison for reduced GB test system

A higher system inflexibility in handling RT netload uncertainty is observed in the base case
i.e., Case-1. A maximum ramp insufficiency of 6513 MW is observed for Q4 at 30% RES. RT up/
down capacity of 3700 MWh and 10 GWh is additionally scheduled. Total power insufficiency of
5-minute dispatch intervals is 465808 MW for Q4 at 30% RES and associated energy insufficiency
is 38 GWh for whole day scheduling. Utilizing flexible resources significantly reduces inflexibility
events. The magnitude of ramp insufficiency reduced to 1538 MW for Q4 at 30% RES. Total
power insufficiency reduced to 14145 MW and corresponding energy insufficiency to 1.18 GWh.
Integrating ramp products has resulted in a significant improvement in system performance with
ramp and power insufficiency reduction of 76.38% and 96% as compared to Case-2. Also, 85%
and 98% reduction in Ramp and power insufficiency from Case-1 is observed for Q4 at 30% RES
integration. Figs. 12a, 12b and 12d give mean RFI for generating units. A large number of units
are scheduled near P i or at their MSG, P i. This highlights inflexibility in MSG and MUT. Fig.
12c gives system-wide flexibility index for all cases. Similar to IEEE RTS -24, cases with higher
flexibility index found to have a lower frequency of inflexibility in respective representative days.
Table 3 gives technical comparison of cases for Q4 at 50% RES.
Although improvement in system-flexibility is observed in Cases- 2 and 3, limited capacity of
flexible resources and ramp products resulted in inflexibility events. Planning additional flexible
resources along with the integration of FRPs can completely eliminate inflexibility events. Also,
in both test systems, a decrement in load factor of CG units’ is observed with the integration of
flexible resources and decreasing MSG. This highlights the need for compensation mechanism for
such units to cater their wear and tear.

5. Conclusion

With the proliferation of variable and uncertain renewable energy sources integration, system
operators need to assess flexibility requirements in upcoming scheduling intervals. The paper
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Figure 12: Mean flexibility index of cases at 30% RES for reduced GB system

Table 3: Technical comparison of cases for reduced GB system

C-1 C-2 C-3

DA Operating cost ($M) 48.14 45.38 47.62
RT operating cost ($M) 8.63 2.54 0.06
Maximum Ramp insufficiency
(GW/5min)

2.94 1.33 0.065

Total power insufficiency (GW) 78.77 17.16 0.072
Total Energy insufficiency (GWh) 6.56 1.43 0.006
Energy up schedule (GWh) 2.83 3.24 0.13
Energy down schedule (GWh) 0.05 0.029 0
FRU (GWh) 0 0 14.36
FRD (GWh) 0 0 5.29
System flexibility index 0.65 0.69 0.8
DA Computational time (secs) 2814 3200 1560
Number of startups /shutdowns 62/98 38/50 28/47
Average load factor 62.80 42.30 55

proposes an explicit framework to assess system-wide flexibility in terms of ramp, power and
energy insufficiency. Further, an index to quantify resource flexibility based on operating range
and ramping is proposed. The flexibility quantification metric and index are integrated with a
stochastic multi-interval scheduling framework. Real-time netload is forecasted using Long Short-
Term Memory. Netload uncertainty associated with the forecast is quantified using scenarios
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derived from the Markov Chain Monte Carlo technique. Following observations are made from the
case studies –

• The proposed framework effectively quantifies system inflexibility in terms of ramp, power,
and energy insufficiency. Also, the value of resource flexibility index in each case is found to
be proportional to system’s netload variability handling capability.

• Integrating demand response and energy storage systems improves flexibility at a lower cost
compared to utilizing conventional generation.

• Ramp products can significantly improve flexibility, however with some increased operating
cost.

• Reducing minimum stable generation of conventional generators has exploited additional
operational flexibility.

• Average inflexibility can be reduced up to 97% with the utilization of emerging resources and
ramp products.

The proposed methodology can be extended to consider the coordinated operation of interconnected
systems to enhance flexibility and assess their impact on the metric. The proposed scheduling
framework can be improved by including multiple intraday netload updations for the accurate
estimation of flexibility requirements. Analysis of techno-economic impact on resources flexibility
provision can help system operators in taking appropriate control actions. Although the work
considers various flexible resources, emerging resources like electric vehicles and virtual storage can
also be integrated with the proposed scheduling framework.
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Appendix A. Day Ahead - Security Constrained Unit Commitment

Notations for variables represent the same as in RT, however with 15-minute time intervals, t.

Obj = min (λDA
En + λDA

α + λDA
ℓ + λDA

f + λRC) (A.1)

λDA
En =

∑

i,t

[

(Cmin
i ui,t +

∑

k

Sli,kP
s
i,k,t) + (Cst

i yi,t + Csd
i zi,t)

]

+
∑

e,t
CeP

s−
e,t

∑

h,t

[

C+
h P

s+
h,t + C−

h P
s−
h,t

]

+
∑

d/d′,t

Cd

[

P s
d,t + P s+

d′,t

] (A.2)

λDA
α =

∑

χ,t

Cα
[

αu
χ,t + αd

χ,t

]

+
∑

d,t

Cααu
d,t ∀χ ∈ [D′, E,H, I] (A.3)
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λDA
ℓ =

∑

χ,t

Cℓℓχ,t ∀χ ∈ [D,D′, E,H, I] (A.4)

λDA
f =

∑

χ,t

Cf
[

fuχ,t + fdχ,t

]

+
∑

d,t

Cffud,t ∀χ ∈ [D′, E,H, I] (A.5)

λRC = Ccurt

[

∑

s,t

P sc
s,t +

∑

w,t

Pwc
w,t

]

(A.6)

Eq. (A.1) gives the objective function of the proposed Day-Ahead Security Constrained Unit
Commitment (DA- SCUC). The SCUC is solved to minimize the total operating cost incurred for
cost of electricity generation (λDA

En ), allocating regulation (λDA
α ), reserve (λDA

ℓ ) and FRP (λDA
f )

along with renewable curtailment (λRC). Eq. (A.2) gives the cost of electricity generation from CG
units and flexible resources. First term of (A.2) gives the linearized cost function of CG units along
with its cost for minimum generation and start up/shutdown [38]. ui,t, yi,t and zi,t are the binary
variables representing unit’s running, start and shutdown status. Second term of (A.2) represents
the charging cost of BESS, where Ce is the charging cost per MW. Third term of (A.2) highlights
the cost of power generated and consumed in generating and motoring modes of PHES. C+

h , C−

h

and P s+
h,t , P s−

h,t are the costs and scheduled power in generating and motoring modes. Last part of
(A.2) denotes cost incurred in utilizing interruptible and time shifting demand response schemes.
P s
d,t is the utilized capacity of ILDR and P s+

d,t /P
s−
d,t is power decrement/increment from SLDR.

(A.3)-(A.5) gives total cost incurred for securing up and down regulation (α
u/d
χ,t ), reserve (ℓχ,t) and

flexible ramp product (f
u/d
χ,t ) services from resources. Cα/ℓ/f are the offer prices for regulation,

reserve and FRP, respectively. (A.6) highlights the penalty for solar and wind power curtailment.

P s
i,t + αu

i,t + ℓi,t + fui,t ≤ P̄iui,t ∀i, t (A.7)

P s
i,t − αd

i,t − ℓi,t − fdi,t ≥ P iui,t i, t (A.8)

P s
i,t − P s

i,t−1 + αu
i,t + ℓi,t + fui,t + fdi,t−1 ≤ τ rui ui,t−1 + τ rsti yi,t ∀i, t (A.9)

P s
i,t−1 − P s

i,t + αd
i,t + fdi,t + fui,t−1 ≤ τ rdi ui,t + τ rsdi zi,t ∀i, t (A.10)

αu
i,t + ℓi,t ≤ ξ′ rui , αd

i,t ≤ ξ′ rdi (A.11)

fui,t ≤ ξ rui , fdi,t ≤ ξ rdi (A.12)

Constraints (A.7)-(A.12) give the operating constraints of CG units. (A.7) and (A.8) ensure that
the total power generation for energy and ancillary services do not violate respective unit’s op-
erating range. Ramping limitations on CG units scheduling is denoted using (A.9) and (A.10).
Here, τ = 3 is used to estimate ramping in 15-minute temporal. Constraints (A.11) and (A.12)
ensure that the ancillary services dispatch-ability is as per market regulations. ξ and ξ′ are 3 and
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2, respectively.

SOCe,t = SOCe,t−1 + [P ch
e,tη

ch
e − P di

e,t/η
di
e ]∆t ∀e, t (A.13)

SOCe ≤ SOCe,t ≤ SOCe ∀t (A.14)

P s−
e,t + αd

e,t + fde,t ≤ P̄ ch
e ψe,t ∀t (A.15)

P s+
e,t + αu

e,t + ℓe,t + fue,t ≤ P̄ di
e ζe,t ∀t (A.16)

P s−
e,t ≥ P ch

e ψe,t , P s+
e,t ≥ P di

e ζe,t ∀t (A.17)

ψe,t + ζe,t ≤ 1 ∀t (A.18)

SOC at the end of current scheduling interval depends on its level in previous interval, total
discharging (P di

e,t) and charging (P ch
e,t) power of BESS in current interval, as shown in (A.13). To

avoid deep discharge of BESS, the SOC is limited within an optimal range as represented by
(A.14). (A.15), (A.16) and (A.17) ensure BESS power allocation for various services is within its
maximum and minimum rated dis/charging capability. (A.18) limits BESS from its simultaneous
participation in charging and discharging, where ψe,t and ζe,t are binary variables representing
charging and discharging modes. (P di

e,t) and (P ch
e,t) is the sum of allocated power for energy and

ancillary services in discharging and charging modes, respectively.

P prod
h,t = (ηGh ρgH

UR)Q+
h,t (A.19)

P cons
h,t = (ρgHLR)QM

h,t/η
M
h (A.20)

LUR
h,t = LUR

h,t−1 + (Q−

h,t −Q+
h,t)t (A.21)

LLR
h,t = LLR

h,t−1 + (Q+
h,t −Q−

h,t)t (A.22)

P s+
h,t + αu

h,t + ℓh,t + fuh,t ≤ P prod
h,t (A.23)

P s−
h,t + αd

h,t + fdh,t ≤ P cons
h,t (A.24)

Unlike BESS, generated and consumed power of PHES are constrained by the head of upper and
lower reservoirs (HUR/HLR), water discharge between the reservoirs in generating and motoring

modes Q
+/−
h,t along with the operational efficiencies (η

G/M
h,t ) in generating and motoring modes,

respectively. (A.19) and (A.20) give the relation among various parameters in power generation
and motoring modes of PHES. P prod / P cons are the total power produced /consumed in generating
and motoring modes. (A.21) and (A.22) depict the water level of upper and lower reservoirs, which
depend on water flow at the current scheduling interval and water level of reservoirs at the previous
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interval. The levels are inversely related to each other. (A.23) and (A.24) give the power allocation
of various services.

DA constraints of ILDR and SLDR holds the same as given in (27)-(32) of Section 3, however
∀t

N b,t = Lb,t −
∑

s∈Sb

Ps,t −
∑

w∈Wb

Pw,t ∀b, t (A.25)

∑

i∈Ib

Pi,t+
∑

h∈Hb

(P+
h,t−P

−

h,t)+
∑

e∈Eb

(P+
e,t−P

−

e,t)+
∑

d∈Db

Pd,t+
∑

d′∈D′

b

(P+
d′,t + P−

d′,t)−N b,t =
∑

n∈Bb

̟b,n,t ∀t

(A.26)
Netload at each bus Nb,t is the difference between load Lb,t and solar and wind generation Ps,t,

Pw,t integrated to the bus b , as given in (A.25). In DA scheduling resources are dispatched to
meet 100% of anticipated load. However, it results in some renewable power curtailment, P sc

s,t and
Pwc
w,t, which is limited by a high penalty for curtailment. (A.26) ensures the power balance at each

bus b and time t. ̟b,n,t is the power flow between bus b and node n. Transmission line security
limits are ensured using the constraints as given in (33) and (34) of Section 3, ∀t. Sum of allocated
reserve, regulation and FRP are equal to their respective requirements.
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