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Introduction
Complex networks that arise in nature, such as those from biochemistry, neurobiology, 
ecology, and engineering, exhibit some of the same, simple structures that occur with 
greater than expected frequency, known as “network motifs” (Milo et  al. 2002). Net-
work motifs refer to recurring, significant patterns of interaction between sets of nodes, 
or actors, and they represent the basic building blocks of graphs, typically through the 
overrepresentation of a particular substructure. Identifying such local network patterns 
among small numbers of graph nodes, or “graphlets,” has been particularly useful in pro-
viding insight into the functioning of basic, biological networks, including those in bac-
teria and yeasts (Alon 2007; Shenn-Orr et al. 2002) and food-web structures (Stouffer 
and Bascompte 2010).
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In recent years, a veritable industry of research has arisen in which commonly occur-
ring network motifs form the focus of study. Motif research, per se, often concentrates 
on interconnections that are biological or physical, with less attention to social sci-
ence methods and theory until recently (e.g., Cunningham et  al. 2013; Gu et  al. 2019; 
Michienzi et al. 2021; Zignani et al. 2018). Nevertheless, certain motifs may be univer-
sal across a variety of domains, but this remains unclear. The purpose of this research, 
therefore, is to examine motifs within multiple types of social networks, and focus on 
the relative frequency of two, three, and four node subgraphs, known as dyads, triads, 
and tetrads, respectively. Although decades of statistical studies of social graphs exam-
ine local, network structure, such as dyads and triads (e.g., Holland and Leinhardt 1971, 
1978), little work explicitly adopts a “motif” framework. Given that disciplinary bound-
aries sometimes generate silos of methods and interests (Brandes et  al. 2013), such a 
framework facilitates comparisons across possible divisions.

To identify these overrepresented graphlets, it is necessary to compare observed net-
works to sets of comparable, randomly-generated graphs. Yet several conditional dis-
tributions exist that control for differing aspects of network structure, such as degree 
sequence or the dyad distribution, and the correct choice remains the subject of debate 
(Gotelli and Graves 1996; Yaveroğlu et  al. 2015). Another goal of this research is to 
extend the state-of-the-art by applying a multivariate exponential random graph model 
(ERGM) framework to generate random graphs for the identification of network motifs. 
This approach reduces the scope for misleading results by controlling for multiple, 
potential correlates in the same set of random models.

We employ our methodological approach in a case study in which we analyze a total 
of 24 social networks, with four networks representing each of six, broad genres: (1) 
Friendship, (2) Legislative co-sponsorship, (3) Twitter, (4) Advice, (5) Email commu-
nication, and (6) Terrorism. Additionally, we examine the degree to which these social 
graphs exhibit unique local structural, motif patterns, or “signatures” that differentiate 
one from the other (e.g., Faust and Skvoretz 2002; Welser et al. 2007). We end by com-
paring our findings to those from more traditional approaches to motif detection and 
note key discrepancies.

Network motifs
Motifs identify small, local subgraphs that occur more often than would be expected 
in random graphs with comparable characteristics. In the biological domain, motifs, or 
rather their underlying subgraphs, are viewed as naturally occurring entities that capture 
atomic functions, rather than artificial constructs engineered for analysis. For example, 
motifs between networks of genes and proteins act as the circuitry for local decision-
making on feature activation (Shoval and Alon 2010). Unlike engineered networks (Alon 
2003), small, recurring, biological subgraphs are products of evolution, where they con-
tribute to high degrees of network modularity (Faust and Skvoretz 2002). Motifs aid in 
understanding various network characteristics and functions (Jain et al. 2019), such as 
social mobility patterns (Schneider et al. 2013), triad closure in authors (Braines et al. 
2018), inter-firm connections (Ohnishi et al. 2010), and resilience in power-grids (Dey 
et al. 2019).
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Subgraphs of interest
Dyads

The simplest subgraphs capture reciprocity, or the lack of reciprocity (asymmetry), 
between a pair of nodes. Reciprocity refers to the tendency for pairs of nodes to develop 
mutual connections. Dating back to early empirical and theoretical work (Gouldner 
1960; Moreno 1934), reciprocity receives extensive attention within both the social 
and the physical network literature (e.g., Felmlee and Faris 2016; Whitaker et al. 2016). 
Mutual ties powerfully influence network growth and higher-order network structures 
[e.g., triads (Faust 2010)] for a host of directed networks (Holland and Leinhardt 1971; 
Wasserman and Faust 1994).

Triads

Triads, or three node subgraphs, are often considered to be the structural foundation of 
social networks (Holland and Leinhardt 1971; Wasserman and Faust 1994). Triads have 
a long history of scholarly attention within the social sciences, dating back to theoretical 
work by Simmel (1902) and multiple empirical applications (e.g., Davis 1970; Hallinan 
1974; Holland and Leinhardt 1971). Through the study of three person groups, we can 
examine a variety of network patterns, including transitivity, or the tendency for actor 
i to be tied to actor k if a tie exists between actor i and actor j and between actor j and 
actor k, a concept informed by Heider’s balance theory (Heider 1946).

Following the labelling system developed by Holland and Leinhardt (1971), a quintes-
sential example of transitivity can be observed in the 030 T triad, where the first number 
in the label refers to the number of mutual dyadic ties in the triad, the second indicates 
the number of asymmetric edges, and the third represents the number of null, or non-
existent, ties. The T refers to a transitive relationship among the asymmetric ties and 
distinguishes it from other arrangements of three asymmetric edges, such as the 030C 
triad, in which the asymmetric edges are cyclical, rather than transitive.

The 030 T transitive triad represents a dominant network motif in biological networks, 
where it is referred to as the “feed-forward loop.” The feed-forward loop provides the 
architecture for logical “AND/OR” gates (Mangan and Alon 2003) through which a range 
of signal processing occurs in gene networks (Ingram et al. 2006). Previous work finds 
that the subgraph is prominent in key “super families” of biological networks (Milo et al. 
2004) and appears in hundreds of gene systems (Shoval and Alon 2010), ranging from 
bacterial networks (Shenn-Orr et  al. 2002) to protein interactions (Yeger-Lotem et  al. 
2004) and networks in yeast (Lee et al. 2002). In a biological setting, the feed-forward 
loop operates by an arrangement of three genes where one gene can influence another 
both directly and indirectly (i.e., via a third party). Within community ecology, moreo-
ver, the presence of omnivory represents a literal feed-forward pattern, whereby humans 
eat rabbits, rabbits eat carrots, and humans eat carrots, for instance (Stouffer and Bas-
compte 2010). In a social context, these tendencies map exactly to a pattern of triad tran-
sitivity, resulting in a form of triadic closure.

Tetrads

Research points to four node network motifs as additional patterns of interest in biologi-
cal and electronic networks (Hale and Arteconi 2008; Kashtan and Alon 2005; Milo et al. 
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2004). With some exceptions (e.g., Bearman et al. 2004; Coleman 1988; Marcum et al. 
2016; McMillan and Felmlee 2020), tetrads receive less attention than dyads or triads 
in the social science literature, but patterns formed by small groups of four nodes, or 
tetrads, also have likely ramifications for the study of social interaction in the context of 
larger organizational structures.

We argue that tetrad subgraphs can be used to identify the presence of key social 
structures in network data, such as clustering, “anti-clustering,” and bridging. For exam-
ple, the completely connected 4-node clique, in which all four actors extend ties to each 
other, represents an instance of local clustering. Given the tendency of human groups to 
reciprocate interchanges (Gouldner 1960), and for homophilous subgroups to emerge in 
social interaction (McPherson et al. 2001), we expect the clique tetrad will constitute a 
motif in our data sets.

Other four-node subgraphs can capture elements of hierarchy and “anti-clustering” 
(Krumov et al. 2011), where anti-clustering refers to a local subgraph pattern that lacks 
the complete connectivity of a clique. The “box” tetrad (i.e., a–b, b–c, c–d, d–a) is an 
example of an anti-clustering subgraph and is one of the few types of four actor configu-
rations that garners consideration in the social sciences. For example, Coleman (1988) 
argues that two higher status actors (e.g., parents) in certain groups of four can reinforce 
one another’s guidelines and sanctions for each of their two respective, lower status ties 
(e.g., their children). At the same time, previous work documents a pattern of avoidance 
of “four-cycles,” or the “box” tetrad, in adolescent sexual dating networks (Bearman et al. 
2004).

Certain types of tetrads also signify the presence of “bridging” or weak ties among 
actors in a group. The “kite” tetrad (i.e., a–b, b–c, b–d, c–d), or the “1-Edge-Triangle” 
(Wang et al. 2009), for example, indicates that one actor in a group of three connected 
actors has a sole connection to a fourth. The link that extends to the actor represents a 
local “bridge,” or “weak tie,” between two locations in the network. Several theories argue 
that network bridges play a crucial role in the dissemination and diffusion of novel infor-
mation and the transmission of resources (Granovetter 1973). We expect the kite tetrad 
to represent social interactions in which individuals cross “structural holes” (Burt 2004) 
to connect disparate groups.

Control distributions
The wider literature can leave the impression that network motifs are an “absolute” 
concept, in the sense that motifs are uniquely specified on a graph as a consequence 
of comparison against similar random graphs. However, this is not the case: random 
graphs may take many forms, and therefore motifs are defined relative to the type of 
random graph with which assessments are made. Thus, to benchmark the relative over 
(or under) representation of subgraphs and determine the presence of motifs, it is neces-
sary to draw comparisons against an appropriate sample of random graphs (Wasserman 
and Faust 1994; Honey et  al. 2007) referred to as the “null model”. Discussion contin-
ues regarding the most suitable model, and there is debate over the strengths and weak-
nesses of using marginal tests versus statistical modeling approaches for motif research 
(Gotelli and Graves 1996; Yaveroğlu et al. 2015).
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Within the network field, the choice of a null model varies, with many studies using a 
uniform conditional distribution that either randomizes the distribution of edges (Ash-
ford et al. 2019; Milo et al. 2002), or controls for the indegree and outdegree of vertices 
(Milo et al. 2004; Shenn-Orr et al. 2002). Controlling for the number of observed edges 
and nodes represents the most rudimentary approach, wherein observed networks are 
compared to random graphs that share their same size and density. Previous work shows 
that utilizing a conditional distribution that solely controls for the number of observed 
edges and nodes can produce biased estimates of subgraph presence, in the case of 
highly skewed degree sequences (Artzy-Randrup et al. 2004). As a result, research in the 
natural and physical sciences often compares the patterns of local structures to random 
networks that are conditional on observed degree distributions (e.g., Kashtan and Alon 
2005; Shenn-Orr et al. 2002; Yeger-Lotem et al. 2004).

Many other foundational analyses of local network structure apply a random, directed 
graph distribution known as the U|MAN distribution (Faust 2010; Holland and Lein-
hardt 1978; Wasserman and Faust 1994) to the study of triads. This uniform distribution 
conditions on three elements, the numbers of mutual, asymmetric, and null dyads in a 
directed graph. It assigns equal probability to all diagraphs of n nodes that have the same 
number of mutual, asymmetric, and null dyads, and where conditioning on two of the 
three counts will mean that the third is fixed.

Recent approaches to studying local patterns use multivariate statistical modeling 
techniques to evaluate the over and under representation of various micro-level struc-
tures (e.g., Yaveroğlu et al. 2015). Since relying on a single structural control can yield 
biased findings, multivariate methods, such as exponential random graph models 
(ERGMs), hold promise because they can account for various network properties simul-
taneously. ERGMs represent a statistical network method that can compare the patterns 
observed in actual networks to what would be expected to occur randomly (Hunter et al. 
2008; Robins et al. 2007; Snijders et al. 2006; Wasserman and Pattison 1996). Through 
the application of such methods, motif researchers can control for competing structural 
processes that underlie the formation of network edges, such as tendencies towards reci-
procity and skewed degree distributions.

ERGM‑based simulation technique
Traditional, univariate, conditional distributions used to identify motifs are limited in 
the extent to which they can incorporate underlying structural patterns. While multi-
variate statistical techniques can address these limitations, issues of near degeneracy, 
model instability, and sensitivity can make it challenging to estimate multivariate statis-
tical models, such as ERGMs, particularly across diverse samples of empirical networks 
(Schweinberger 2011; Yaveroğlu et al. 2015). For instance, ERGMs may fail to converge 
when structural parameters control for subgraph patterns that are nested within one 
another, or concentrated in local pockets in a network (Hunter 2007). These problems 
are especially prevalent when models simultaneously include parameters that count the 
occurrence of multiple dyad, triad, and tetrad configurations (Yaveroğlu et al. 2015).

Given the limitations and challenges associated with current marginal tests and statis-
tical approaches, we employ an alternative technique that extends the ERGM modeling 
approach by using the statistical method to simulate random graphs. More specifically, 



Page 6 of 26Felmlee et al. Appl Netw Sci            (2021) 6:63 

our approach examines the extent to which motifs occur in a sample of social networks 
with the use of conditional distributions that are generated using an ERGM framework. 
ERGMs, or p*, models are far from new to network science (Hunter et al. 2008; Robins 
et al. 2007; Wasserman and Pattison 1996), and numerous studies use this approach in 
statistical analyses of network data (e.g., Faris et al. 2020; Goodreau et al. 2009; Lusher 
et al. 2013; McMillan 2019). What is novel here, however, is the application of ERGMs 
to formulate comparable conditional graphs used to identify network motifs. This 
new framework has the advantage that it enables flexibility to incorporate the varying 
strengths of different distributions, as well as account for multiple, endogenous struc-
tural processes in the same model (e.g., reciprocity and transitivity). Additionally, since 
there does not exist a “general” ERGM parameterization that can be applied across all 
networks (Yaveroğlu et al. 2015), our approach holds promise for comparative network 
research as it enables researchers to apply more parsimonious tests.

Hypotheses
In our analyses, we examine the relative frequency of patterns of dyads, triads, and tet-
rads in our sample of networks, with a view to understanding how these different size 
substructures provide insight into network characteristics both within and between net-
work genres. We simulate three sets of random networks to examine the prevalence of 
individual, subgraphs that are conditioned on various structural features of the observed 
networks (e.g., density, reciprocity, transitivity). First, we begin by examining patterns 
of dyads, and here we expect to find reciprocated dyads to be overrepresented in social 
data sets (Hypothesis 1). Next, we examine subgraph ratio profiles for each network to 
uncover both three and four node motifs (Milo et al. 2004). In a robustness analysis, we 
also note several differences between our findings and those that utilize either the degree 
distribution or U|MAN. Given prior theoretical and empirical work across various disci-
plines, we predict that transitive triads, such as the 030 T triad, will be overrepresented in 
our data sets (Hypothesis 2). Due to social clustering, we expect four-node cliques to be 
overrepresented (Hypothesis 3).

Finally, we investigate the extent to which the six network genres exhibit motifs that 
differ from those of the other types of networks by comparing patterns between all indi-
vidual networks. That is, we address the following question: Does each network genre 
exhibit a triad and tetrad significance pattern that represents a “structural signature” 
(Skvoretz and Faust 2002) that is distinctive, and varies across types of network relations?

Data
We examine network motifs in 24 social networks, including those of adolescent friend-
ship, U.S. senate bill co-sponsorship, Twitter online messaging, advice seeking, email 
communication, and terrorist organizations. These data sets each represent anonymized 
network structures that were collected outside of the current study and are used here for 
purposes of secondary data analysis. Within each of the six social network genres, we 
consider four distinct networks, which yields a total sample of 24 graphs. A descriptive 
summary of all included networks is included in Table 1.
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For our adolescent friendship data, we randomly selected four school-based net-
works from the in-school survey collected during the first wave of the National Study 
of Adolescent to Adult Health (Add Health) (Harris et  al. 2009). During this wave, 
entire student bodies from a nationally representative sample of U.S. middle and high 
schools were surveyed and respondents were asked to nominate up to ten of their 
closest school friends. From these friendship nominations, we constructed directed 
networks in which nodes represent individual adolescents, and a tie from node a to 
node b indicates that adolescent a nominated adolescent b as a friend.

Our four co-sponsorship networks were constructed from data on US Senate co-
sponsorship interactions during the 1995, 2000, 2005, and 2010 congressional terms 
(Fowler 2006). Each node represents an individual senator and edges are directed. A 
tie from node a to node b indicates that during the congressional term of interest, 
senator a co-sponsored at least one piece of legislation for which senator b was the 
primary sponsor.

The Twitter networks used in our sample were previously gathered outside of this 
study (Felmlee et al. 2020) via the Twitter API using a keyword search function, based 
on a period of one week at the end of February 2017. Tweets were collected that con-
tained aggressive, harmful terms (i.e., curse words) that targeted women and minorities. 
Networks of online interaction were created by downloading connected messages based 

Table 1 Summary of networks and descriptive statistics

Network Number of 
nodes

Directed? Density Proportion 
reciprocated

Clustering 
coefficient

Friendship 1 1408 Yes 0.0028 0.3966 0.1931

Friendship 2 757 Yes 0.0069 0.4191 0.1867

Friendship 3 729 Yes 0.0068 0.3793 0.1598

Friendship 4 987 Yes 0.0037 0.2726 0.1132

Cosponsorship 1 104 Yes 0.3910 0.5148 0.5667

Cosponsorship 2 101 Yes 0.5629 0.6315 0.6955

Cosponsorship 3 100 Yes 0.5041 0.5931 0.6379

Cosponsorship 4 102 Yes 0.6227 0.7040 0.7552

Twitter 1 1994 Yes 0.0004 0.1640 0.5363

Twitter 2 2399 Yes 0.0003 0.0878 0.4895

Twitter 3 2095 Yes 0.0004 0.0090 0.4682

Twitter 4 2469 Yes 0.0003 0.0076 0.3069

Advice 1 46 Yes 0.4237 0.7457 0.6932

Advice 2 21 Yes 0.4524 0.4737 0.6640

Advice 3 71 Yes 0.1795 0.3924 0.4433

Advice 4 56 Yes 0.0776 0.3013 0.3464

Email 1 309 Yes 0.0318 0.7212 0.5158

Email 2 162 Yes 0.0679 0.8205 0.7118

Email 3 142 Yes 0.0687 0.7884 0.7001

Email 4 180 Yes 0.0800 0.5943 0.3507

Terrorism 1 34 No 0.1034 0.5000

Terrorism 2 27 No 0.3191 0.5647

Terrorism 3 27 No 0.4444 0.7224

Terrorism 4 27 No 0.2336 0.5863
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on retweets and “likes.” Each of the four networks represents a network of retweets and 
likes that evolved over the week in response to an initiating tweet that included a racial 
or gendered slur. Each network contained several negative, conflictual ties but also posi-
tive ties of support. The networks used in the current study were in an anonymous form.

Our four advice networks were collected from surveys administered to employees 
in four different workplaces, including a law firm (Lazega 2001), high-tech company 
(Krackhardt 1987), IT department of a Fortune 500 company (Almquist 2014), and 
consulting company (Cross and Parker 2004). In each survey, employees were asked 
to nominate the coworkers whom they would ask for professional advice. From their 
nominations, we were able to construct directed networks where nodes represent 
individual employees. A tie from node a to node b indicates that employee a seeks 
advice from employee b.

Our four email communication networks include three networks from different 
administrative departments in the European Union (Leskovec et al. 2007) and one from 
the company ENRON (Klimt and Yang 2004). For all four networks, we consider email-
sending patterns over an eighteen-month period. We construct a directed network 
where nodes represent individual employees, and a directed edge from node a to node 
b indicates that employee a sent at least one email to employee b during the period of 
interest.

Finally, our four terrorist networks were randomly selected from the John Jay and 
ARTIS Transnational Terrorism Database (2009). Each network is focused on a specific 
terrorist act (e.g., 2002 Bali bombings) and nodes represent individual terrorists. Ties 
indicate whether a social relationship existed between the two terrorists in the year of 
interest (e.g., the pair was acquainted, roommates, operational collaborators, etc.). Due 
to the symmetric nature of these relationships, all four terrorist networks are character-
ized by undirected edges.1

Analytical approach
Our novel approach to identify those dyads, triads, and tetrads that occur more fre-
quently than expected consists of three steps. First, we estimate an exponential random 
graph model (ERGM) on each of the observed networks that includes controls for the 
structural processes of interest. Second, we use the coefficient values of the estimated 
ERGM to simulate 1000 conditional graphs. Finally, we compare the prevalence of sub-
graphs across the observed and random graphs by calculating subgraph ratio profiles 
(SRPs).

Step 1. Exponential random graph models (ERGMs)

To simulate conditional graphs, it is first necessary to estimate ERGMs that account for 
structural processes of interest on each of the observed networks. Here, we define Y as 

1 We note that the original data sets from which we extract network ties were collected using a variety of methods 
(e.g., survey versus direct observation, varying nomination limits). For instance, all four advice networks originate from 
different sources. However, despite these variations, our results suggest that all the advice networks are substantially 
more similar to one another in their local structural foundations than they are to any of the other types of networks 
in our sample. This finding increases our confidence that the subgraph patterns we observe are primarily the result of 
social processes, as opposed to data collection strategies, not unlike the results from other analyses of multiple data sets 
(Skvoretz and Faust 2002).
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an n x n matrix (where n equals the number of actors) where the (i, j) entry of this matrix 
is equal to 1 if there is a relational tie between actors i and j or 0 if no such tie exists. 
The ERGM specifies the probability that a set of relational ties Y will form given a set of 
individuals:

The X term represents a matrix of covariates and θ represents a vector of all network 
coefficients hypothesized to relate to the probability of the observed network’s forma-
tion. A vector of network statistics, g(y), is calculated using the observed adjacency 
matrix and k(θ ) is a normalizing factor that ensures the equation predicts a legitimate 
probability distribution.

In the current project, we estimate three sets of ERGMs that include different speci-
fications according to whether they will be utilized to simulate graphs that assess the 
overrepresentation of dyads, triads, or symmetric tetrads. To identify those directed 
dyads that occur more frequently than expected, we first estimate an ERGM on each 
of the twenty directed graphs that produces random graphs that are tantamount to an 
Erdős-Rényi or Bernoulli model (Goodreau et  al. 2008). These ERGMs represent the 
simplest possible model and only include a control for the base log odds of a tie, which 
accounts for the likelihood that an edge will exist between any two actors in the network. 
To identify overrepresented directed triads, we estimate a second set of ERGMs on each 
of the directed networks in our sample that generate random graphs that are identical to 
those that condition on the dyad distribution of the observed network. This second set 
of ERGMs includes two controls: one for reciprocity and one for the base log odds of a 
tie. The reciprocity parameter accounts for actors’ tendencies to send ties to those actors 
from whom they also receive social ties.

Finally, we estimate a set of ERGMs that enable us to uncover the symmetric tetrads 
that are overrepresented in our sample of networks. Following the precedent of previous 
motif studies (e.g., Hale and Arteconi 2008), we focus on tetrads in which all four nodes 
are connected. We consider symmetric tetrads, rather than directed tetrads, moreover, 
because it reduces the number of tetrads in which each node is adjacent to at least one 
edge from 199 to 6.

This third set of ERGMs introduces open triad and closed triad variables, which con-
trol for tendencies towards transitivity. The open triad variable accounts for the nec-
essary preconditions, while the closed triad term measures tendencies towards the 
structural phenomenon itself (Hunter 2007). When we estimate this third set of ERGMs 
on the directed networks in our sample, we include controls for the base log odds of a tie 
and reciprocity. Among the symmetric networks in our sample (i.e., the terrorism net-
works), the ERGMs only include the triad-level variables and a term for the base log odds 
of a tie. Across these various models, the base log odds of a tie term refers to the edges 
parameter, reciprocity refers to the mutual parameter, open triads is the geometrically 

P
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∣
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exp[θTg
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weighted dyad-wise parameter, and closed triads is the geometrically weighted edge-
wise parameter.2

Step 2. ERGM simulations

After estimating each ERGM (see discussion of convergence and goodness of fit in the 
Additional file  1), we use the models’ coefficients to simulate samples of random net-
works. This enables us to generate random networks that are conditional on the struc-
tural phenomena parameterized in the model (for additional details, see Hunter et  al. 
2008). For each of the directed networks, we generate 1000 random networks according 
to each of the three sets of ERGMs, resulting in 60,000 simulated networks (20 observed 
networks × 3 ERGM specifications × 1000 simulations). To uncover which symmetric 
tetrads occur more frequently than expected, we weakly symmetrize our observed net-
works and the corresponding simulated networks (i.e., a tie exists between node a and 
node b if either node a or node b send ties to one another). Because most networks in 
our sample are relatively sparse, this method of symmetrizing is useful. To make com-
parisons among the symmetric terrorist networks, we generate 1000 random networks 
based on the specification of the symmetric ERGM that controls for triadic patterns (4 
observed networks × 1000 simulations). Taken together, these analyses result in a final 
sample of 64,000 random, conditional networks.

Step 3. Subgraph Ratio Profiles (SRPs)

To consider the prevalence of dyads across our networks, we compare the proportion 
of reciprocated dyads in our observed networks to the average proportion across their 
associated conditional networks. We calculate the subgraph ratio profile (SRP) for each 
network’s distribution of triads and tetrads (Milo et al. 2004). This ratio compares what 
we see in the observed graph to a set of randomly simulated graphs, and it forms the 
basis for motif analysis across the wider literature. For each subgraph i in an individual 
graph, we start by calculating the following:

where Nobservedi is the number of observed i subgraphs in the network and < Nrandomi
> 

is the mean number of such subgraphs in the random conditional graphs. The ε is an 
error term to make sure that �i is not too large when the subgraph rarely appears in both 
the observed and random conditional graphs. The term is set to three for triads, and four 
for tetrads (Milo et al. 2004). We use these values to calculate the SRP, or a normalized 
vector of all �i:

�i =
Nobservedi− < Nrandomi

>

Nobservedi+ < Nrandomi
> +ε

SRPi = �i/

√

∑

�i
2

2 In an attempt to evaluate these subgraph patterns through a multivariate modeling approach, we began by estimat-
ing preliminary ERGMs with parameters that measure the count of specific three- and four-node configurations (e.g., 
the 030 T triangle, the kite subgraph). Unfortunately, most of these models did not converge because of problems with 
degeneracy, and as a result, we adopt the alternative simulation approach outlined here.
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For each subgraph and each network, we calculate a vector of SRPs with a length 
equal to the number of potential isomorphic subgraphs. A positive  SRPi indicates that 
subgraph i is more likely to occur in the observed graph when compared to the condi-
tional distribution, while a negative value suggests that subgraph i is less common than 
would be expected. We define motifs as those subgraphs i where the  SRPi for each indi-
vidual network is greater than or equal to zero. Furthermore, since SRPs are normalized 
according to the number of nodes in the graph, we can compare  SRPis across networks.

Results: ERGM simulation approach
When we use ERGMs to simulate multivariate, conditional graphs, we identify five 
motifs, including one dyad, three triads, and one symmetric tetrad. These motifs appear 
in Fig. 1.

Dyads

For all five genres of directed social networks, reciprocated dyads consistently appear 
more frequently than expected when compared to random, simulated graphs that are 
conditioned on the number of observed nodes and edges (see Fig.  2). The proportion 
of reciprocated dyads is as high as 0.82 in some of the denser email networks. For our 

Fig. 1 Overrepresented directed dyads, directed triads, and symmetric tetrads

Fig. 2 Proportion of reciprocated dyads in observed networks versus random, conditional networks. 95% 
confidence intervals represent the range of proportions of mutual dyads in the simulated networks (p < 0.05; 
two-tailed test), dots represent proportions in the observed graphs. Colors indicate network genre
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sparser networks, such as the Twitter graphs, the proportion of reciprocated dyads 
reaches levels as low as 0.001. However, the proportion of reciprocated dyads occurring 
in all the observed networks remains higher than what we would expect (p < 0.001), even 
in those graphs with low density.3

Triads

While there exists a total of 16 possible isomorphic directed triads (see Fig. 3), we only 
consider those 13 triads in which all three nodes in the subgraph are connected, follow-
ing previous research (e.g., Benson et  al. 2016), and because we report dyad patterns 
above. We compare the prevalence of these 13 triads across simulated graphs that are 
conditional on the observed networks’ tendencies towards reciprocity and counts of 
nodes and edges.

Average SRPs for the five directed network genres show an overrepresentation of 
the triad consisting of all three mutual ties (i.e., the “300” triad, following Holland and 
Leinhardt 1971) (see Fig.  4). The “300” triads are particularly prominent in friendship 
(mean  SRPi = 0.418) and email networks (mean  SRPi = 0.427) (see Table 2), implying that 
small, densely interconnected cliques play a key role in the structure of these networks. 
The classic transitive triad (i.e., “030 T” triad), also is overrepresented, and it signifies 
a second triad motif. This graphlet is particularly prominent in networks of friendship, 

Fig. 3 The 16 isomorphic triad classes, with M-A-N labeling. The first digit (M) represents the number 
of mutual ties, the second (A) represents the number of asymmetric ties, and the third (N) represents 
the number of null, or nonexistent ties between dyads. The optional letter represents the directions of 
asymmetric edges (“D” for down, “U” for up, “T” for transitive, and “C” for cyclic)

3 Note that the mutuality coefficients included in our second and third sets of ERGMs were consistently positive and 
statistically significant. This finding further highlights the overrepresentation of mutual ties across our sample of net-
works.
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Twitter, and email. Finally, the “120D” triad, which consists of one mutual tie and two 
asymmetric ties directed towards the mutual tie, also represents a motif. The “120D” 
triad is also transitive and suggests simultaneous patterns of clustering and hierarchy; 
both actors involved in the mutual dyad receive unreciprocated ties from the third actor.

Tetrads

Of the six possible symmetric tetrads (see Fig. 5), one can be characterized as a motif 
in our data (see Table 2). The “four clique” (i.e., four-node subgraph #217) is more com-
mon than we would expect across all network genres (see Fig. 6), as hypothesized. Note 
that the four clique represents a motif, even after we control for reciprocity and triad 

Fig. 4 Significance profiles for directed triads by network type. Range of y-axes refer to  SRPi for triad of 
interest
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patterns in our ERGMs. This higher-level clustering is particularly common in the ter-
rorism and workplace email networks, both of which represent social interaction that 
requires high levels of cooperation to achieve group goals.4

Variation within and between network genres

While several motifs are more common than expected among all the social networks 
in our sample, there are also key differences. From calculating the correlations between 
vectors of the directed triad SRPs and symmetric tetrad SRPs for each pair of networks, 
it is apparent that SRPs tend to be more similar within network genres than between 
genres, as confirmed by a two-sample t-test (p < 0.001) (see Fig.  7). Within network 
genres, the average correlation among SRP vectors is relatively high (0.863), whereas 
the average correlation between SRPs of different types of networks is more moderate 
(0.392). Overall, we conclude that each network genre tends to have a highly correlated 
structural pattern, that is, a unique “fingerprint,” based on the significance profiles for 
triads and tetrads.

Comparing correlations among SRP vectors suggests that certain subgraphs are preva-
lent within some network genres, but not others. For example, triad “120C” is an intran-
sitive triad that includes a mutual dyad and a cyclic pattern between asymmetric ties. 
The “120C” triad is less common than expected according to the null model among the 
co-sponsorship and advice networks (mean  SRPis are − 0.236 and − 0.276, respectively), 
more common than expected in the friendship and email data (mean  SRPis are 0.344 and 
0.236, respectively), and close to zero in Twitter (mean  SRPi is − 0.003). Friendship and 
email networks exhibit particularly high levels of triads that build towards cliques (e.g., 
210 and 300), and the “120C” triad likely represents a step in that direction. See Fig. 8 for 
a visual comparison of the relative prevalence of the 120C triad in each type of network 
with one sample graph for each type.

In another interesting example, the prevalence of the kite tetrad (i.e., tetrad #142) also 
varies across network genre. Compared to our null model, the kite tetrad occurs more 
frequently than expected in our friendship, Twitter, and terrorism networks (mean  SRPis 
are 0.271, 0.400, and 0.184, respectively). The kite tetrad appears about as frequently as 
expected across the advice and email networks (mean  SRPis are 0.040 and 0.004, respec-
tively), but it is less common within co-sponsorship networks (mean  SRPi =  − 0.074).

#94 #125
#142

#203 #205 #217

Fig. 5 Six isomorphic tetrads of interest. Tetrads are labeled according to their directed isomorphic number

4 It is important to note that Tetrads #203 and #205 are embedded within the structures that the geometrically weighted 
open and closed triad ERGMs parameters model. While the decay parameters help ensure that these tetrads are not per-
fectly controlled, we exercise caution when interpreting the results for these two symmetric tetrads.



Page 16 of 26Felmlee et al. Appl Netw Sci            (2021) 6:63 

Comparing with results from degree and dyad conditional distributions

Next, we examine the occurrence of graphlets across our data using two other distri-
butions: one that controls for the conditional dyad distribution (U|MAN) and another 

Fig. 6 Significance profiles for symmetric tetrads by network type. Range of y-axes refer to  SRPi for tetrad of 
interest
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that uses degree sequence. As expected, we uncover multiple variations in motif pat-
terns, depending on the approach used to generate random graphs (see Tables 3, 4 in the 
Appendix). One of the most notable differences concerns the well-known 030 T, transi-
tive triad. When we use either our multivariate, ERGM approach or the dyad conditional 
distribution, this triad is identified as a common motif, whereas when we only control 
for degree sequence, this triad tends to occur less frequently than we would expect 
(mean within-genre  SRPi reaches a minimum of − 0.348). The 030 T triad is not over-
represented under the latter set of controls because this subgraph lacks reciprocal ties, 
which are exceptionally common among social graphs. Since our ERGM technique and 
the U|MAN distribution control for the number of asymmetric dyads and there are only 
two ways in which three asymmetric ties can be arranged, the 030 T triad is more com-
mon than expected with these latter controls.

Another key difference concerns the three-star tetrads (tetrad #94), which are over-
represented in 19 of our 24 networks when we compare the observed data to networks 
generated using our multivariate, simulation framework. Interestingly, these tetrads 
instead are underrepresented in 10 of our observed networks when random graphs 
are generated according to the U|MAN dyad distribution. Most notably, our ERGM 
approach finds that three-stars occur more frequently than expected across the email 
networks, while conditioning comparison graphs solely on the dyad-distribution 

Fig. 7 Correlation plot between SRPs of directed triads and symmetric tetrads
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leaves the impression that these tetrads are underrepresented (average  SRPis are 0.109 
and − 0.127, respectively). When comparison graphs only take the degree distribution 
into account, three-star tetrads also are underrepresented across all (but one) of the 24 
networks in our sample, demonstrating key discrepancies in findings between the vari-
ous approaches.

Fig. 8 Prevalence of 120C triad. The degree to which the 120C triad occurs relatively more or less frequently 
than expected for each of the six types of networks. One representative graph has been plotted for each 
genre



Page 19 of 26Felmlee et al. Appl Netw Sci            (2021) 6:63  

Discussion
Using a novel, multivariate approach to identify motifs, we find extensive evidence of 
recurring local patterns of network structure within a relatively large sample of social 
networks. The five motifs we uncover point to the relevance of fundamental, micro-
level processes within the social world that occur with some commonality across diverse 
forms of activity and interaction. Certain motifs emerge in our graphs that are common 
in various disciplines, such as the four-clique, which predominates in graphs of protein 
structures and electrical power grids (e.g., Milo et al. 2004). In other words, clustering 
among four nodes crosses scientific domains. The 030  T transitive triad, or “feed-for-
ward loop,” also is overrepresented in biology and in our sample of networks. Not only 
do patterns of omnivory in ecology and genes in biology display triadic closure, in other 
words, but humans also extend a diverse array of social ties in this manner. Although 
early social network research documents transitivity in largely face-to-face, friendly, 
interactions (Holland and Leinhardt 1971; Hallinan 1974), here we find evidence of this 
phenomenon in multiple human behaviors, such as positive and negative online com-
munications and legislative actions. What remains especially remarkable, however, is 
the cross-disciplinary predominance of this type of network subgraph, underlining the 
prominence of local hierarchy processes across a diversity of biological and social struc-
tures. To the best of our knowledge, comparisons of local network patterns across the 
social, natural, and engineering sciences receive limited explicit attention.

Not unlike their counterparts in biology and ecology, social graph motifs also signify 
functional aspects of networks. For example, symmetric dyads were more likely to occur 
in all the observed networks when compared to randomly simulated networks that con-
dition on density. Reciprocity of ties, thus, represents a basic element of many social 
interactions, including those consisting of face-to-face or electronic interchanges, bonds 
of affinity, strategic, political connections, as well as informal or formal bases of organi-
zation. Taken together, our results provide ample support for the “norm of reciprocity,” 
which is associated with the maintenance of stable social systems and the collective ben-
efit of cooperation (Gouldner 1960).

The motifs identified here also point to two latent yet fundamental social processes, 
those of clustering and hierarchy. The frequent appearance of completely connected 
dyads, triads, and tetrads in this sample of social graphs highlights that actors often form 
clusters of ties, and the overabundance of transitive triads with asymmetric ties (i.e., 
030 T and 120D) implies the occurrence of social hierarchy. Both clustering and hier-
archy represent fundamental social processes in formative theories of group processes 
(Holland and Leinhardt 1971; Homans 1961), and we find evidence that these mecha-
nisms are interconnected. Clusters tend to emerge among strong ties in our sample of 
networks, but in addition, weak, intransitive ties are present that bridge these clusters in 
most graphs. Finally, although there remain exceptions, network genres tend to be much 
more similar than different in their triad and tetrad significance patterns. These results 
suggest a tendency towards network structure signatures, or fingerprints, that emerge 
based solely on two small substructures, that is, triads and tetrads.

Notable differences between genres of networks also arise. For example, the kite 
tetrad was overrepresented in several networks genres, but less common in the co-
sponsorship networks of the U.S. Senate. Given that the kite tetrad portends bridging 
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across structural holes (Burt 2004), the prevalence of kite tetrads suggests that many of 
our graphs contain both strong ties that lead to clustering and weak ties that result in 
bridging. Co-sponsorship networks, on the other hand, are likely to be characterized by 
less bridging and contain fewer weak ties, which may be an artifact of the highly parti-
san, two-party political system in the United States. In other words, only rarely does a 
U.S. legislator attempt to push through legislation by bridging a gap across the political 
divide.

Finally, our results highlight the importance of selecting appropriate, theoretically-
driven conditional distributions for baseline comparison within motif research. We 
argue that a multivariate ERGM approach for generating random comparison graphs 
has utility for future research that attempts to identify recurrent, local structural pat-
terns, due to its ability to incorporate various lower-level, structural controls simultane-
ously. In the current project, we show that univariate distributions, such as the degree 
distribution and U|MAN distribution, can yield differing conclusions from those using 
our multivariate method. For example, the 030 T triad tends to occur more frequently 
than expected using our approach but less frequently than expected when our observed 
networks are compared to random graphs conditional on the degree distribution. This 
three-node configuration represents a transitive triad, which theories of balance predict 
to be more likely in social graphs than would be expected (e.g., Heider 1946). The fact 
that our results align with theoretical predictions and trends from other disciplines (e.g., 
the feed-forward-loop), provides support for the strengths of our ERGM simulation 
methodology.

In another example, three-star tetrads are overrepresented in the majority of net-
works with our multivariate simulation approach, while they are often underrepre-
sented when using either of the two univariate distributions to produce random 
graphs. These differences highlight the importance of accounting for triad-level prop-
erties in a multivariate model when considering patterns with four or more nodes. 
Given that all our networks are defined by transitivity, four-node motifs that consist 
of many intransitive triads (e.g., the three-star subgraph includes three intransitive 
triples) will be estimated to occur less frequently than chance without such a control. 
Moreover, it is reasonable to expect a three-star pattern to emerge frequently in sev-
eral social interactions, such as in email, where one administrative person could send 
messages to multiple employees, without expectations of triad closure. Our multivari-
ate approach, unlike those of some traditional distributions, identifies this type of key, 
three-star regularity.

Our research is not without limitations, nevertheless. Although our sample of net-
works is relatively large, it is not random and does not represent many forms of social 
interaction. Findings could differ noticeably, depending on the type of human behavior 
studied, as well as the sample of networks and data collection methods. In addition, we 
examine networks at a cross-section. Future research could benefit from an examina-
tion of change in micro-level, network structures over time. Moreover, the conclusions 
drawn from any multivariate model depend on the specific control variables, an issue 
that becomes especially pertinent with highly endogenous network data (see Duxbury 
2021). We conditioned on both mutuality and triad tendencies because patterns of reci-
procity and transitivity were overrepresented in all our graphs, and because the inclusion 
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of these measures was informed by well-established theory. Yet alternative control vari-
ables could shape findings, and additional research is required to address other models. 
The multivariate approach we use here holds promise for such investigations.

Future research also needs to continue to explore which type of local structures 
drive network formation over time. Typical controls for structural interdependence 
in motif research assume that lower-level graph properties could account for higher-
level graph properties, with density, degree, and reciprocity, for example, helping to 
explain triad or tetrad properties. Yet we usually do not know which property pre-
cedes the other. Perhaps tendencies to form 030 T triads condition the development 
of network degree, or reciprocity, instead of the other way around. Theories of balance 
(Cartwright and Harary 1956; Heider 1946) suggest that tendencies towards transitiv-
ity would supersede other social phenomena, like the propensity for well-connected 
individuals to become increasingly central over time. Applying temporal motifs (Par-
anjape et al. 2017) to investigate sequential, communication patterns (Michienzi et al 
2021; Zignani et al 2018), for example, could be helpful in addressing these issues.

In sum, our work builds on a long tradition in which researchers investigate patterns 
among network graphlets, or in our case, “motifs” (e.g., Moreno 1934; Holland and Lein-
hardt 1971, 1978; Milo et al. 2002; Wasserman and Pattison 1996). Several advantages 
exist in further extending the focus on overrepresented subgraphs. For example, pat-
terns of dyads, triads, and tetrad motifs could aid in determining which local structural 
measures to include in multivariate network models. Note also that motifs contain the 
seeds of change. Social networks characterized heavily by reciprocity would be expected 
to turn asymmetric links into those that are symmetric over time, and those composed 
of high levels of transitivity would be predicted to close open triads.

By understanding how network motifs are similar and vary across a range of social 
network types, our findings also have the potential to inform social theories. For 
instance, our results show that all our networks display overrepresented levels of 
clustering at the triad and tetrad levels. When crafting research questions, therefore, 
theories of tie formation that apply to one of these seemingly disparate categories of 
social relationships may be informative for the others. Our results identify network 
motifs that are prevalent not only in social networks, but also in other scientific dis-
ciplines, which raises the potential for scholarly implications that cross disciplinary 
boundaries. Finally, our unique methodological approach, in which we employ mul-
tivariate, exponential random graph models to generate comparable random graphs 
for identifying local structural patterns, increases confidence in the robustness of our 
findings.

Appendix
See Tables 3 and 4.
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