
electronics

Article

Securing Publisher–Subscriber Smart Grid Infrastructure

Fraser Orr 1, Muhammad Nouman Nafees 1, Neetesh Saxena 1,* and Bong Jun Choi 2

����������
�������

Citation: Orr, F.; Nafees, M.N.;

Saxena, N.; Choi, B.J. Securing

Publisher–Subscriber Smart Grid

Infrastructure. Electronics 2021, 10,

2355. https://doi.org/10.3390/

electronics10192355

Academic Editor: Jahangir Hossain

Received: 27 July 2021

Accepted: 22 September 2021

Published: 27 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science & Informatics, Cardiff University, Cardiff CF10 3AT, UK;
orrfm@cardiff.ac.uk (F.O.); nafeesm@cardiff.ac.uk (M.N.N.)

2 School of Computer Science and Engineering, Soongsil University, Seoul 06978, Korea;
davidchoi@soongsil.ac.kr

* Correspondence: nsaxena@ieee.org

Abstract: The security of communication protocols in the smart grid system is a crucial concern. An
adversary can exploit the lack of confidentiality and authentication mechanism to cause damaging
consequences. In the substation automation systems that rely on multicast communication between
various intelligent electronic devices, the lack of security features in the standard IEC61850 and
IEC62351 can invite attackers to manipulate the integrity of the employed publisher–subscriber
communication paradigm to their advantage. Consequently, many researchers have introduced
various approaches offering authenticity and confidentiality. However, such schemes and methods
for the aforesaid standards have computational limitations in compliance with the stringent timing
requirements of specific applications in the smart grid. In this paper, we propose an approach that
can fully secure the publisher–subscriber communication against confidentiality attacks. In this
direction, we develop a demo tool to validate the performance of our proposed security approach
for potential factors such as timing requirements and the size of the messages. Finally, we evaluate
our scheme considering the requirements of the GOOSE, SMV, and MMS protocols in the substation
automation systems.

Keywords: smart grid; security; publisher–subscriber model

1. Introduction

Power grid networks are becoming an evolutionary step of providing electricity in
long distances; the now digitized paradigm has improved its control and performance
capabilities. To realize digitized information, substation automation of the grid uses data
from sensors and intelligent electronic devices (IEDs) to control remote power system pro-
cesses [1]. According to a report published in [2], the global substation automation market
size is estimated to be USD 39.9 billion in 2021. It is projected to rise to USD 54.2 billion
by 2026 due to several prominent factors, including increasing power grid development
projects. Substation communication is an integral part of the reliable operation of the power
grid. The substation follows unicast, multicast, and broadcast communication messages
for different purposes. For example, the publisher–subscriber paradigm is employed in
multicast communication within a power substation communication for instant event
notification and asynchronous parallel processing among various control components,
such as intelligent electronic devices (IED) [3]. In this context, the Phasor Gateway (PG)
connects to the network through status routers as a publisher, whereas data destinations
are generally the power usage vendors that act as subscribers in the publisher–subscriber
paradigm. This multicast communication model allows faster response and reduces the
delivery latency by eliminating the need to periodically “poll” for new updates in the
substation automation settings.

Trust in the underlying communication system for the power grid’s control process
applications is of paramount importance. However, security features of the communication
protocols used in substation automation are not included in IEC61850 due to the trade-off

Electronics 2021, 10, 2355. https://doi.org/10.3390/electronics10192355 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6437-0807
https://orcid.org/0000-0002-6550-749X
https://doi.org/10.3390/electronics10192355
https://doi.org/10.3390/electronics10192355
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10192355
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10192355?type=check_update&version=1

Electronics 2021, 10, 2355 2 of 16

with the following factors: (1) high-speed performance requirement; and (2) limited com-
putational resources of the deployed IEDs. Moreover, security was not the primary concern
when the IEC61850 was initially published [4]. However, trusting the communication
protocol commands without any validation is not an effective trade-off in a power grid
system; high capability adversaries can take advantage of intrinsic communication protocol
vulnerabilities to perform stealthy attacks to impact the control processes of the smart grid.

Given the lack of security mechanisms in industrial communication protocols, it is
always possible for an adversary to mount security attacks [5]. Attacks such as man-in-the-
middle (MITM), malicious control command injection, replay, and information tempering
can cause severe damage to the smart grid operations and services [4]. For example, if
an attacker gets access to the network, he can mount information tempering attacks by
targeting the publishers to impact its operations maliciously. Similarly, an attacker can
compromise the monitoring port of the process bus Ethernet switch to obtain real-time
sampled values (SV) messages; they can then mount a replay attack by passing on previous
SV packets that contain fault current and voltages values [1]. The attacker can leverage this
attack to open the circuit breakers by manipulating the SV subscribers.

To protect the communication protocols against malicious actors, its integrity, confi-
dentiality, and authenticity must be assured. Towards this end, the smart grid network
must have a secure communication mechanism to ensure that the control commands are
sent and received by legitimate communication nodes in the system [6]. IEC 61850 rec-
ommends some specific security solutions for multicast messages: generic object-oriented
substation events (GOOSE) and sampled measured value (SMV) should use digital sig-
natures with Rivest–Shamir–Adleman (RSA) algorithms to verify message integrity and
authenticity [7]. However, it has been observed that the generation of digital signatures
with RSA algorithms entails high computational resources in few milliseconds. In ad-
dition, other solutions such as elliptic curve digital signature algorithm (ECDSA)-based
signatures require long processing times, particularly when it is applied to GOOSE com-
munication [7]. For example, IEC 61850-5 recommends the latency requirement of message
delivery within four milliseconds (ms). Therefore, to accommodate such stringent latency
requirements, a realistic and flexible security solution must be proposed to secure the
publisher–subscriber model in the substation automation of the smart grid. Moreover, the
security solution should be based on a simple algorithm with limited computational power
and few modifications that support existing applications.

Contributions. In this paper, we present a secure approach scheme for multicast
communication in substation automation systems. Specifically, we focus our work on
addressing security issues in the publisher–subscriber communication model. The idea
is to propose a solution that conforms to the stringent timing requirements for various
communication protocols such as GOOSE, SMV, and Manufacturing Message Specification
(MMS). In this direction, we perform various experiments by modifying the structure of
messages: For example, we test the different sizes of messages and private keys. Our main
contributions are as follows:

1. We develop a tool to investigate and evaluate the performance of our approach that
incorporates encryption algorithms with various potential factors such as the size of
the messages.

2. We implement the encryption algorithms as per IEC61850 to secure GOOSE, SMV,
and MMS communication in the substation automation systems.

3. We analyze the efficacy of our proposed approach in evaluating it concerning the
specific requirements of the protocols in the substation automation systems.

The rest of the paper is organized as follows. Section 2 describes the communication
system in the context of a multicast communication system in the smart grid, and it also
discusses an adversary model for this paper and the related works. Section 3 presents the
proposed system and our approach. We explain the system design and present an imple-
mentation of a security scheme for multicast communication in the smart grid. Section 4

Electronics 2021, 10, 2355 3 of 16

provides the results and evaluation of our proposed scheme along with attacks analysis.
Finally, Section 5 concludes the work.

2. Communication and Adversary Models

This section introduces the system modeling in substations and presents the adversary
model for this work.

2.1. Substation Automation Features

An electrical substation consists of bays includes subparts in the substation, usually
with common functionalities. The substation controls critical processes such as protective
relay operations through communication networks [8]. For example, the transformer
and circuit breakers work cooperatively along with the functions of protective relays to
transform voltages and protect transmission lines and feeders. This cooperative operation
combining various functions also forms a bay named the transformer bay.

An essential function of substation includes monitoring of control processes. Several
intelligent electronic devices (IEDs) are connected to power devices that usually have an
inbuilt analog-to-digital converter (ADC). The IEDs deliver digitized messages about their
running states to the other devices in the system. For example, a merging unit (MU) IED
delivers digitized current and voltage signals to protect and control IED using SV messages.

2.2. Communication Model

As shown in Figure 1, a general communication system architecture consists of a com-
munication protocol, where different multicast messages are transmitted among different
devices. For example, protection messages are transmitted between relays through the sta-
tion bus, whereas SV messages on the process bus are transmitted to several IEDs at the bay
level from the merging units. Table 1 summarizes the time criticality of various multicast
messages for different substation applications, including control and protection messages.
An adversary can modify these messages if authentication is not provided. Towards this
end, three communication protocols are mainly used for various substation applications:
MMS, GOOSE, and SMV. In this direction, MMS follows the client–server communica-
tion model, whereas GOOSE and SMV follow the subscriber–publisher communication
model [9].

Electronics 2021, 10, x FOR PEER REVIEW 3 of 17

proposed system and our approach. We explain the system design and present an imple-
mentation of a security scheme for multicast communication in the smart grid. Section 4
provides the results and evaluation of our proposed scheme along with attacks analysis.
Finally, Section 5 concludes the work.

2. Communication and Adversary Models
This section introduces the system modeling in substations and presents the adver-

sary model for this work.

2.1. Substation Automation Features
An electrical substation consists of bays includes subparts in the substation, usually

with common functionalities. The substation controls critical processes such as protective
relay operations through communication networks [8]. For example, the transformer and
circuit breakers work cooperatively along with the functions of protective relays to trans-
form voltages and protect transmission lines and feeders. This cooperative operation com-
bining various functions also forms a bay named the transformer bay.

An essential function of substation includes monitoring of control processes. Several
intelligent electronic devices (IEDs) are connected to power devices that usually have an
inbuilt analog-to-digital converter (ADC). The IEDs deliver digitized messages about their
running states to the other devices in the system. For example, a merging unit (MU) IED
delivers digitized current and voltage signals to protect and control IED using SV mes-
sages.

2.2. Communication Model
As shown in Figure 1, a general communication system architecture consists of a

communication protocol, where different multicast messages are transmitted among dif-
ferent devices. For example, protection messages are transmitted between relays through
the station bus, whereas SV messages on the process bus are transmitted to several IEDs
at the bay level from the merging units. Table 1 summarizes the time criticality of various
multicast messages for different substation applications, including control and protection
messages. An adversary can modify these messages if authentication is not provided. To-
wards this end, three communication protocols are mainly used for various substation
applications: MMS, GOOSE, and SMV. In this direction, MMS follows the client–server
communication model, whereas GOOSE and SMV follow the subscriber–publisher com-
munication model [9].

Figure 1. Smart grid system and protocols. Figure 1. Smart grid system and protocols.

Electronics 2021, 10, 2355 4 of 16

Table 1. Multiclass communication requirements in smart grid.

ID Message Type Requirement Name Criteria Comment

R1 GOOSE, SMV Time Constraint

The total time from publisher
encryption to the message being

decrypted by the subscriber
should take no longer than 4 ms

This is the defining requirement for
the algorithm is the time complexity
will dictate what solutions should

be discussed

R2 GOOSE, SMV Model
The system should support

multicast communication for the
publisher–subscriber model

This is to emulate the real-world
communication the smart grids use

to communicate

R3 MMS Time Constraint

Time is less critical with total time
ranging from 100–500 depending

on if it’s a low/medium or
command message

These are not very quick time
conditions so a wide range of

algorithms should be applicable

R3 MMS Model Follows a client–server model This is a more standard model
to implement

When analyzing the message types being used, i.e., GOOSE, SMV, and MMS, it is
essential to distinguish them based on their different design criteria and topologies. This
means that one design approach may not cover all the criteria of all message types in all
scenarios. Furthermore, it can be seen from Table 1 that the primary considerations for each
message type are the time requirements and the model that the message type supports;
this shows that the problem is split into the GOOSE/SMV side and the MMS side as each
of have different considerations. In addition, it is also an essential requirement to consider
the communication of such protocols with the devices. For example, when designing any
encryption algorithm, the non-functional requirements with the IEDs should be considered.
Table 2 summarizes the non-functional requirements concerning the algorithms.

Table 2. Non-functional requirements for encryption algorithm.

ID Requirement Name Priority Criteria Comment

NF1 Algorithms must be
lightweight High

To be deployed to IEDs, the
algorithms must be able to run in a

limited environment

This directly ties into how quickly the
algorithm runs with most fast
encryption methods based on

lightweight methods

NF2 Time constraints High The specification for message
types must be met

Any implementation must meet the
constraints for each message type, as

mentioned previously

NF3 Message Integrity High
The message sent on any model
must be able to be decoded and

read by the recipient

All encryptions must be able to be
decrypted by the intended recipient

NF4 Attack prevention High
All encryption algorithms used
must not be susceptible to any

known attack

The implementation must be
cryptographically secure from known
attacks such as Man-in-the-middle or

replay attacks

F1 User Comparison High
It should be easy for the user to

compare different algorithms with
different message types

Using the tool, it should be easy to
look at the results of

Publisher—Subscriber Model. The publisher–subscriber model is a messaging pat-
tern where the publishers (senders) publish messages into the communication infrastruc-
ture, and the subscribers (receivers) express interest in a particular message category [10].
This is very different from the synchronous request-response model and is a much more
scalable solution due to no limitations surrounding centralized data.

Electronics 2021, 10, 2355 5 of 16

Within the IEC 61850 framework, GOOSE messages and messages transmitting sam-
pled values (SV) are the main types of messages that require indirect asynchronous deliv-
ery. The publisher–subscriber model can take advantage of multicast messaging, which
allows the sending of a single copy that will be replicated and passed on throughout
routers and forwarded to subscribers that have previously signaled interest. The commu-
nication infrastructure is responsible for the delivery of the messages and maintains the
subscription information.

Publisher–subscriber architecture is vulnerable to man-in-the-middle (MITM), replay,
and impersonation attacks. The system also suffers from publisher (sender) authentication,
subscriber (receivers) authorization, and data integrity issues. The working of the publisher–
subscriber model and how messages are communicated are discussed in [3].

Manufacturing Message Specification (MMS). The manufacturing message specifi-
cation (MMS) is an ISO 9506 standard that is used to transfer real-time process data and
control information between the network devices, such as an IED and the HMI application
running on a PC. It follows a more traditional client–server model for communication.
MMS has the slowest time requirements [11], compared to the publisher–subscriber model
with a broader range of data. Therefore, it has the most flexibility when using an encryption
algorithm as it does not need to be as lightweight.

Generic Object-Oriented Substation Event (GOOSE). Various services in substation
employ GOOSE in the publisher–subscriber model, such as a generic substation event, i.e.,
a control model defined as per IEC 61850 responsible for the fast mechanism of transferring
event data across substation network. Towards this end, the publisher multicast the written
values in a transmission buffer to different subscribers. The power quality monitoring
devices are usually interested in the GOOSE messages published by the LEDs. To receive
such messages, the devices need to subscribe to the published devices in the publisher–
subscriber paradigm.

GOOSE supports exchanging a wide range of possible common data organized by a
DATA-SET. GOOSE messages are used to replace the hard-wired control signal exchange
between various IEDs for interlocking, protection purposes, sensitive missions, high re-
liability, and time criticality [12]. GOOSE messages are exchanged at the data link layer
using the multicast functionality of ethernet cables. When triggered by a preconfigured
event, an IED sends the GOOSE message containing values for the variables that need to be
communicated, such as carry monitoring and control functions, tripping, and interlocking
information. Since these are multicast messages, there is no acknowledgment mechanism.
Moreover, GOOSE messages are generally used within the substation automation systems
to carry the breaker trip or close commands. However, the confidentiality of the messages
becomes more significant when GOOSE is used to communicate with DERs for energy
management or market purposes.

Therefore, the GOOSE messages must be encrypted for confidentiality purposes.
However, the algorithm to encrypt such messages must conform to the stringent GOOSE
time requirements of 4 ms [13]. Towards this end, a short GOOSE message handling just
one digital status information in its dataset has an approximate size of 124 bytes. The actual
size depends on various configured parameters in the GOOSE control block, such as GoID,
the name of the dataset, and the reference object of the GOOSE control block. The typical
size of GOOSE messages is between 92 bytes to 250 bytes [14].

Sampled Measured Values (SMV). IEC 61850-9-2 defines the sampled measured val-
ues traffic, which carries voltage and digital current samples. Towards this end, the merging
units (MUs) receive three-phase current signals from various transmission lines and convert
them to SMV messages over an Ethernet network. SMV also follows a publisher–subscriber
model utilizing multicast messaging. For example, MU IED becomes a publisher when
SMV messages are transmitted between different IEDs while the control IED serves as
subscribers [1]. In addition, the SMV protocol uses OSI model Layer 2 (data link) for
communication identified by MAC address and the identifier in the message body [14].
Therefore, plain text communication of SMV at the data link layer reveals critical data

Electronics 2021, 10, 2355 6 of 16

information of control processes in the communication network. An adversary with access
to the process bus can extract useful information from the semantic of SMV messages. For
example, the adversary can modify the three-phase current and voltages values received
by MU to activate the safeguard scheme at the control IEDs.

2.3. Adversary Model

Generally, the adversary can be anyone capable of performing security attacks over an
insecure network. In addition, adversaries who know the publisher–subscriber architecture
of substation automation systems can mount MITM, information tempering, and replay
attacks. Furthermore, actors who perform false data injection attacks require sufficient
information power system dynamics to keep the attacks stealthy. In contrast to stealthy
false data injection attacks, no expertise in power systems is required for other types of
attacks against multicast communication protocols in substation automation systems.

An adversary can access a process bus in a substation to monitor the communication
traffic to examine protocols’ semantics; however, physical access to the process bus com-
munication network is not always necessary. Therefore, we assume that the adversary
remotely exploits backdoor access to the substation local operating network on a bay level
which connects various IEDs and enables protection applications. Communication over the
local operating network in the substation is not encrypted for IEC 61850 traffic; attackers
can mount attacks, such as replay, false data injection, and MITM attacks. An adversary
can leverage this attack for reconnaissance purposes; he/she can monitor communication
traffic to identify GOOSE and SV messages. For example, an adversary can precisely
monitor the smpCnr field, which increments in line with the transmission of data packets.
Next, an attacker can modify the voltage measurement and replay the older fault current
and voltages measurements to affect the relay protection functions of the SV subscribers.
The attack’s impact can manipulate the functions of the IEDs due to the multiple data
streams of measurements; one data stream from the MU and the other the replayed packets.
Hence, the normal operations of the IED may get blocked. Consequently, a delay in fault
clearance by the IEDs may occur in the event of overloaded lines or short-circuits. In the
worst-case scenario, this attack can overload the transmission lines with the protective relay
being blocked, potentially triggering cascading failures in power systems and blackouts.

Similarly, an adversary can inject false measurements with abnormal information.
To mount this attack, the adversary can utilize the information from the reconnaissance
stage to spoof GOOSE messages. In this direction, an attacker can modify the GOOSE
data payload that issues trip signals and contains sequence number fields. The attack can
be conducted at a higher rate to mimic relay tripping; in so doing, the attacker can cause
the circuit breakers to open, which can trigger tripping of transmission lines and under-
frequency load-shedding in the worst-case scenario. In addition, a malicious connection
between the publisher and subscriber can be created to perform a MITM attack by an
adversary. By doing so, an adversary can impersonate the publisher or the subscriber to
leverage the attack to introduce critical control function faults.

It is important to note that, while the aforementioned attacks are initiated mostly as
communication attacks, the ability of the adversaries to leverage the attack to influence the
physical processes of the smart grid is improving. Moreover, these attacks can be mounted
to cause sudden impact; high capability adversaries can accomplish a high level of success
by utilizing these attacks stealthily over a more extended period as part of an advanced
persistent threat campaign against the infrastructure.

While the primary motivation of our work is the growing sophistication of attacks
against multicast insecure communication messages, our proposed solution assumes a data
integrity attack, which can also be accomplished remotely. In this direction, we assume that
the adversaries can manipulate the critical values in communication data packets, replace
a legitimate command, or inject a malicious command. Apart from these capabilities, we
assume that the attackers have knowledge of power and communication system topology.

Electronics 2021, 10, 2355 7 of 16

Moreover, the attackers have also required resources and have partial access to the system
to perform integrity attacks.

Our approach aims to prevent these attacks; each control command issued in the
publisher–subscriber communication paradigm must undergo the lightweight encryption
process. Moreover, any attempt by an adversary to mimic a subscriber and mount a MITM
attack would trigger an attack detection alarm; each publisher would have a subscribers
list, and an encryption key would be required to become a subscriber. In this direction, an
attempt to communicate from outside the network automatically raises a detection alarm.

Implementation of our solution needs to be carried out as part of a limited computing
resource consideration. For example, we assume that adversaries cannot perform flooding
attacks, causing an increase in the computation overhead while mounting a MITM attack
or any similar attacks.

2.4. Related Work

Several solutions for the security of communication protocols in the smart grid have
been proposed in the literature. Furthermore, Refs. [14,15] analyzed the conformed test on
IEC 61850 standard; however, security solutions for the multicast messages were not the
scope of the research. Falk [16] proposed a security solution for GOOSE and SMV packets.
In this direction, the authors proposed an authentication mechanism for the aforemen-
tioned protocols. However, practical details concerning latency requirements for specific
applications were not discussed. To address security concerns in the publisher–subscriber
model, Fateri et al. [17] presented a simulation-based traffic analysis; however, stringent
timing requirements of the protocols were not discussed. Recently, the performance of
security features enabled secured sampled value packets transmitted between protection
and control devices was discussed in [1]. Towards this end, the authors proposed a proto-
type on a low-cost embedded system for MAC-enabled SV messages to fully secure the
process bus communication of the substation automation systems. However, other security
implementations on other protocols, such as GOOSE and MMS, were not covered.

3. Proposed Approach

In this section, we present our proposed system design and discuss our approach.

3.1. Approach Idea

To facilitate the understanding of the proposed tool’s interaction with the system, our
proposed approach is shown in Figure 2. Towards this end, the basic flow of the network
for the system model alongside the data exchange is also shown. The sender and receiver
are treated as two nodes in a network, with communication between the nodes handled by
the network class to simulate communication over a network. In this direction, we consider
the network to be insecure, so all communication between the nodes should be encrypted.
For the encryption, the nodes will have access to the encryption methods as they should
handle the entire process with no help other than the transmission of the ciphertext and
keys, which the network would handle.

3.2. Proposed Scheme

We propose a new secure scheme for a power substation, based on publisher–subscriber
architecture. The proposed scheme maintains confidentiality and message integrity. In
the original model of the smart grid publisher–subscriber model, a publisher multicasts
a data message to all its subscribers. Upon receiving the message, each subscriber can
decode the message and verifies message integrity. In the traditional publisher–subscriber
model, these messages are sent as plaintext and their integrity and confidentiality are not
verified. Clearly, an adversary can alter the transmitted message over the insecure network.
Referring to Table 1, the proposed scheme aims to offer integrity and confidentiality to
transmitted messages based on their latency requirements.

Electronics 2021, 10, 2355 8 of 16

Electronics 2021, 10, x FOR PEER REVIEW 8 of 17

3. Proposed Approach
In this section, we present our proposed system design and discuss our approach.

3.1. Approach Idea
To facilitate the understanding of the proposed tool’s interaction with the system,

our proposed approach is shown in Figure 2. Towards this end, the basic flow of the net-
work for the system model alongside the data exchange is also shown. The sender and
receiver are treated as two nodes in a network, with communication between the nodes
handled by the network class to simulate communication over a network. In this direction,
we consider the network to be insecure, so all communication between the nodes should
be encrypted. For the encryption, the nodes will have access to the encryption methods as
they should handle the entire process with no help other than the transmission of the ci-
phertext and keys, which the network would handle.

Figure 2. Proposed approach for publisher–subscriber model.

3.2. Proposed Scheme
We propose a new secure scheme for a power substation, based on publisher–sub-

scriber architecture. The proposed scheme maintains confidentiality and message integ-
rity. In the original model of the smart grid publisher–subscriber model, a publisher mul-
ticasts a data message to all its subscribers. Upon receiving the message, each subscriber
can decode the message and verifies message integrity. In the traditional publisher–sub-
scriber model, these messages are sent as plaintext and their integrity and confidentiality
are not verified. Clearly, an adversary can alter the transmitted message over the insecure
network. Referring to Table 1, the proposed scheme aims to offer integrity and confiden-
tiality to transmitted messages based on their latency requirements.

The publisher in the proposed scheme regains an access structure of its subscribers
[3]. In this scheme, before a publisher multicasts a message to all its subscribers, the mes-
sages are encrypted using one of these algorithms: AES, RSA, and ChaCha20. The use of
a particular algorithm depends upon the latency requirements and the security properties
we need to maintain. For example, if the scheme offers non-repudiation property, we can-
not then use AES, rather RSA would be better to use, as it provides non-repudiation
through digital signatures in public-key cryptography. Furthermore, note that using AES
does not provide integrity; hence, one needs to use a hash function, such as SHA256, to

Figure 2. Proposed approach for publisher–subscriber model.

The publisher in the proposed scheme regains an access structure of its subscribers [3].
In this scheme, before a publisher multicasts a message to all its subscribers, the messages
are encrypted using one of these algorithms: AES, RSA, and ChaCha20. The use of a
particular algorithm depends upon the latency requirements and the security properties we
need to maintain. For example, if the scheme offers non-repudiation property, we cannot
then use AES, rather RSA would be better to use, as it provides non-repudiation through
digital signatures in public-key cryptography. Furthermore, note that using AES does
not provide integrity; hence, one needs to use a hash function, such as SHA256, to offer
data integrity. We pause this discussion until the next subsection; Section 4 will evaluate
their performance to better understand their application and usage in different latency
requirements. The publisher encrypts the transmitted message, and multicasts it to all
subscribers. Each subscriber decrypts the message and reads the original data. Every
exchange of messages contains the ID of the publisher. Algorithm 1 explains the working
and various steps of our approach.

Algorithm 1 Proposed Approach

Step 1: A publisher creates a message that is later multicasted in the network for its all subscribers
of the topic.
Step 2: An access control list is created based on all subscribers of the topic. A group key is created
to cover all subscribers who could receive a secret key to decipher the message.
Step 3: A cipher algorithm is decided to encrypt the message before its transmission over the
network. A message is encrypted using a secret key.
Step 4: A secret key is transmitted to all subscribers using a group key, i.e., encrypting the secret
key using a group key.
Step 5: The message is reached to all its subscribers who will have access to this message based on
the access list.
Step 6: The secret key is extracted using the group key and the message is encrypted by
each subscriber.

3.3. Secret Key Exchange

In the case when we use RSA, the public keys of all subscribers and publishers are kept
in a public repository, which can be accessed by all authorized publishers and subscribers
within the system. We adopted the secret key exchange idea from [3] in the form of an access

Electronics 2021, 10, 2355 9 of 16

control list, which is an authorized subset of the subscribers receiving the same message. In
the case of AES, the secret key is shared between the publisher and all relevant subscribers.
In this case, the symmetric secret key is generated by the publisher each time it publishes
data using a pseudo-random number generator. There is a group key ‘k’ that is shared
among a group of publishers and subscribers. This key is used to transmit the symmetric
key between the publisher and all its subscribers. This shared secret key is generated each
time a published needs to publish a message to its subscribers. Clearly, compromising this
key will still not allow an attacker to be able to decrypt the message. We adopted a group
key generation from [18], which is based on the logical key hierarchy (LKH) approach. We
did not directly use this group key to encrypt a message, as compromising this key may
have severe consequences and message confidentiality can be compromised. Instead, we
used this key to encrypt the session secret key which is shared between the publisher and
all its subscribers. In this case, we use ChaCha20, a stream key that is generated at the
publisher, and the same group key is used to send this stream session key to all subscribers
of a publisher who wants to publish a message. Each time a message is published, a counter
value is also sent along with the message, which reflects how many subscribers are there to
decrypt the message. Each time a message is decrypted by a subscriber, its counter value is
decreased and a return message with the recent value is sent to the publisher.

3.4. Experimental Design

This subsection discusses the implementation of our approach and the different
algorithms that we use, including language-specific modules. Furthermore, we discuss
implementing Java crypto modules in the encryption method and justifying their use
and limitations.

For our proposed approach, replicating an exact model of a smart grid setup is not
required. Therefore, we develop a tool to test encryption algorithms to be evaluated for
smart grid applications.

Java. As the implementation language, we use Java in our approach as it offers a wide
range of importable modules such as the Java crypto packages for cryptographic operations
for AES and ChaCha. Towards this end, the most useful crypto-specific modules of Java in
our approach are the cipher and key generator classes.

For the RSA algorithm, which is used more as a comparison tool to show the difference
to these quicker encryption methods, the java security module is used for the secure random
feature. The Javax.crypto.cipher class provides the functionality of a cryptographic cipher.
To create a Cipher object, the class calls the cipher’s getInstance() method and passes the
name of the requested transformation to it. A transformation is a string that describes the
operation (or set of operations) to be performed. It includes the name of a cryptographic
algorithm (e.g., AES), and may be followed by a feedback mode and padding scheme. In
this case, it includes the mode type of AES and a padding scheme for extra security.

The cipher is then initialized with the mode (either encrypt or decrypt), the secret key,
and an initial vector. The final function of the cipher class used is the final encryption of
the plain text using the doFinal() function which will encrypt or decrypt a byte from the
input, so if you are sending a string, it must be converted into bytes first.

The other crypto modules used are from the key generator class which is a re-usable
key generation object. It can only be used for symmetric secret key generation. There are
two ways to generate a key; in an algorithm-independent manner and an algorithm-specific
manner. The only difference between the two is the initialization of the object.

cipher ci = Cipher.GetInstance(“AES/CBC/PKCS5Padding”); ci.init(Cipher.ENCRYPT_MODE,
skey, ivspec); encoded = ci.doFinal(input);

Nodes. Two separate classes can be constructed for the publisher–subscribers: the
sender and the receiver, as they do not have to fill both roles on the network. However,
there is limited functionality to handle peer–peer communication between the IEDS on this
test network. When used for modeling a publisher–subscriber model, the sender class acts
as the publisher and generates the secret key. The main reason for having separate classes

Electronics 2021, 10, 2355 10 of 16

for nodes and not using a superclass is that in the publisher–subscriber, the publisher plays
a very different role to the subscriber nodes and should not be treated as a similar type [19].
The senders need to generate Keys for AES and ChaCHa20, and the receiver would need
the ability to generate the RSA keys. Both nodes would need to be able to perform, encrypt,
or decrypt operations given the secret key and any other algorithm-specific required input.

SpeedTester is the class name of the GUI, which uses an active listener and is an
extension of the AWT frame class. It contains all the UI elements and handlers and is
used to set up the network when the test is started via the start button. The network class
stores all the sent network parameters, generating the timing data from each test. It is also
responsible for instantiating the sender and receiver class which acts as our IED nodes in
the network architecture. It has a unique setup and runtime for each encryption type.

The Sender Class, also doubling as our publisher in the relevant network architecture,
contains methods to instantiate each encryption class and a method for using the encryption
class to convert a byte input into an encrypted form. For RSA, it requires the public key to
be sent to it for encryption. It also has methods to retrieve the secret key and, if needed, the
initialize vector IV.

The Receiver Class uses methods to instantiate each encryption type but uses different
constructors, as the secret key should already be known. Therefore, the cipher should be
made using this to achieve original plaintext. For RSA, the receiver class contains the key
generation for the private-public key pair.

Network Class. For testing the algorithms, a testing class needs to be developed
to simulate a test network that the GUI could run to get the results. To facilitate this,
a sender object and a receiver object could either work as a simple client–server model
for simple peer–peer communication or work as a publisher–subscriber model for the
GOOSE and SMV communication types. The network would then act as the data stream
maintaining subscriber lists in the case of the publisher–subscriber topology and would
forward messages to the designated locations. It would also handle the setup for the
algorithms, i.e., the secure transmission of the secret keys for symmetric communication.

Each encryption method has its own class that includes two constructors: one for a
new cipher and one to generate an existing cipher based on the secret key and/or initial
vector. It also includes the encoding and decoding methods. The full user process from
selecting the input parameters to the returning of the timing results can be realized as a
sequence process. It details the user and the main classes, not including the encryption
classes that the publisher and subscriber employ for the encryption–decryption process.
This also highlights the communication flow around the classes. The time will start from
the message generation and stop when the subscriber has decrypted the encrypted message
for the timing results.

3.5. Implementation: Protecting Communicated Information—Confidentiality

Encryption algorithms can be split into two kinds: asymmetric and symmetric ciphers.
Considering the time criticality, we utilize symmetric ciphers; their quicker computation
time complies with system requirements. However, the paper includes the RSA example; it
is secure and can be used as a baseline comparison for other algorithms. All the encryption
algorithms take a byte-input of variable size for encryption and decryption.

Asymmetric Communication RSA. For complete security, RSA is commonly used for
secure communication [20]. It is asymmetric encryption with two distinct keys: a public
key for encryption and a private key that is used to decrypt. The security is based on the
difficulty in factorizing the product of two large prime numbers. The algorithm can be split
into major sections: key generation, key sharing, encryption, and decryption.

Key generation for RSA first revolves around selecting two distinct prime numbers p,
q, which should be chosen at random and have similar but different lengths to increase the
difficulty of factorizing. The next step is computing n = p*q, n is the modulus for both the
public and private keys, its length is the key length. N is released as part of the public key.
For the private key, it is the lcm of (p-1)(q-1), which is calculated as follows.

Electronics 2021, 10, 2355 11 of 16

For encryption and decryption, Java’s inbuilt modPow function using the respective
public or private keys is applied. RSA has the added benefit of being able to transmit the
public key and modulus as part of the public key as plain text without compromising the
security of the communication. The encryption example is shown below.

privateKey = publicKey.modInverse(phi); BigInteger phi = (p.subtract(one).multiply(q.subtract
(one)); BigInteger encrypt(BigInteger message)return message.modPow(publicKey, modulus);

Block Cipher AES. The specifically focused algorithm in this paper is the widely used
block cipher advanced encryption standard (AES), which replaced the data encryption
standard (DES) [21]. It uses a fixed block size of 128 bits and a key size of 128,192 or 256 bits.
AES is a great block cipher to use in the comparison due to its efficient implementation in
both software and hardware [22]. The key size that is used in the AES dictates the number
of rounds that the plaintext goes through. Step 1 is a key expansion that derives around the
key from the cipher key. AES requires a separate 128-bit round key block for each round,
along with a final one. In addition, an initial round key is added, which combines (using
bitwise XOR) each byte of the states with a byte from the round key. For the next rounds
(depending on the key size), run as follows.

• A non-linear substitution step where each byte is replaced with another according to a
lookup table.

• A transposition step where the last three rows of the state are shifted a certain number
of steps cyclically.

• A linear mixing operation that operates on the columns of the state, combining the
four bytes in each column.

• Round key addition where the subkey is combined with the state.

The linear mixing operation is removed in the final round that involves the same
steps as the previous rounds but with Step 3. In terms of security, despite a lot of research
into AES, there are no practical attacks on AES, with some side-channel attacks on the
implementation of AES, which can be prevented by eliminating the relationship between
the leaked information and the critical data.

Stream Cipher ChaCha20. Salsa20 and ChaCha20 are a close family of stream ciphers
with the ChaCha variant aiming to increase the diffusion per round and reduce the number
of rounds needed for security. The Salsa20 encryption function is a long chain of three
operations on 32-bit words [23].

Chacha follows the same base design principles as Salsa20 but has an increased
diffusion per round, allowing a smaller minimum number of secure rounds for ChaCHa.
The extra diffusion does not come at the expense of extra operations as the ChaCha round
has 16 additions, 16 xors, and 16 constant distance rotations of 32-bit words, just like a
Slasa20 round. The main speed and diffusion differences come from the quarter round
where each word is updated twice and the word matrix, where it is built with attacker-
controlled input words on the bottom. ChaCha sweeps the matrix through rows in the
same order every round.

This example shows ChaCha20, 20 rounds, w used with an input size of 500 bytes
using a WLAN which gives a network latency of 2 ms. We can see an example of extra
console output of the average time taken for the key generation, which can be an important
consideration for results analysis.

4. Results and Evaluation

In this section, we evaluate the performance of the proposed approach and discuss the
results from the testing tool. In addition, we evaluate the suitability of our approach and
experimental results concerning the implementation into smart grid infrastructure. For this,
we refer to the platform used in [3] and implemented these algorithms using Java. To ensure
the suitability over a broad spectrum of the proposed approach in substation automation,
we test the communication messages of various lengths for all three algorithms; we group
them suitably to compare specific points. Moreover, we discuss the suggested implantation

Electronics 2021, 10, 2355 12 of 16

for SMV, MMS, and GOOSE based on the findings. We present our results obtained along
with their evaluation and attacks analysis in the subsequent subsections.

4.1. Results Observation

Cycles per Bytes (CpB). To improve the timing, we can use the data to work out other
aspects of the algorithm’s software implementation performance. Due to the wide variety
of variables that can affect the time, it is not as reliable as an evidence source. We can use
readings to focus on the cycles per byte performance of the algorithm.

The bytes per second is very easy to calculate; it is the size of the packet being sent,
in this case, 100, 200, 500, or 1000-bytes. We recorded the time taken in each of these
algorithms. We could also split this into the time taken to encrypt and the time taken to
decrypt to work out a cycle per byte for each specific process. For ease of simplicity, we
used symmetric algorithms; half of the total time was considered to calculate the cycles per
byte for either encrypting or decrypting. The cycles per byte are machine-dependent and
can be widely affected. Some processors also are optimized to perform specific algorithms
at a quicker pace. The tool used in this work runs on a personal machine with a CPU
speed of 3.8 GHz for demonstration purposes; the modern PLCs used in smart girds have
dual processors with higher CPU speed. In addition, the process manager in task manager
during the algorithm run time, the total percentage of the application’s processor can be
seen. In most cases, this was a single-digit percentage. Furthermore, encryption process
cycles per second can be viewed using the percent value to keep track of its performance.

Encryption Duration. Most results labeled under time taken were the time for the
plaintext to be encrypted, sent, network delayed, received, and decrypted. Moreover,
additional times, such as setup times and key generation duration, were also considered
concerning their impact on the results.

AES. The AES encryption times using CBC mode with padding were taken using 100-,
200-, 500- and 1000-byte message sizes and ran on a 1 to 1 connection. The results were
taken 10,000 times with a different key generated for each connection, as shown in Figure 3.
For the publisher–subscriber message byte ranges of 150–250 bytes, they had a total time of
0.0147 ms for the 200 bytes on the local machine being used.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 17

either encrypting or decrypting. The cycles per byte are machine-dependent and can be
widely affected. Some processors also are optimized to perform specific algorithms at a
quicker pace. The tool used in this work runs on a personal machine with a CPU speed of
3.8 GHz for demonstration purposes; the modern PLCs used in smart girds have dual
processors with higher CPU speed. In addition, the process manager in task manager dur-
ing the algorithm run time, the total percentage of the application’s processor can be seen.
In most cases, this was a single-digit percentage. Furthermore, encryption process cycles
per second can be viewed using the percent value to keep track of its performance.

Encryption Duration. Most results labeled under time taken were the time for the
plaintext to be encrypted, sent, network delayed, received, and decrypted. Moreover, ad-
ditional times, such as setup times and key generation duration, were also considered
concerning their impact on the results.

AES. The AES encryption times using CBC mode with padding were taken using
100-, 200-, 500- and 1000-byte message sizes and ran on a 1 to 1 connection. The results
were taken 10,000 times with a different key generated for each connection, as shown in
Figure 3. For the publisher–subscriber message byte ranges of 150–250 bytes, they had a
total time of 0.0147 ms for the 200 bytes on the local machine being used.

Figure 3. AES Time and Cycle per Byte performance.

According to benchmark studies [24] on a test platform using 2.9e + 009 Hz using
CBC mode 128-bit key, which is the same encryption method, AES reached a CpB of 28.
The result is comparable to the results of 200-byte input that ran at an estimated 29 cycles
per byte 7.8e + 008 HZ. Interestingly, as the byte input increases, the cycles per byte drop
and the gradient of the trendline on the AES time results is minimal. Therefore, despite
the significant increase in the byte size, it currently suggests a minor increase in operating
time. AES is also widely optimized for most current hardware meaning that, in desktops,
some AES configurations could still be a faster alternative.

RSA. The RSA used had 2048-bit big integer keys; this is deemed with some of the
smaller keys, though quicker, are still deemed to pose a possible security risk. It takes 22
ms to generate the private and public keys, and the public key needs to be sent to the
sender. In a publisher–subscriber model where it is a one-to-many ratio, the publisher
would have to store a list of all the public keys of the subscribers subscribed in an offline
repository subscriber list [3,19]. Therefore, it takes additional setup time and care and
would require more validation for new subscribers. Even on a powerful machine, the run
time of RSA is much slower, even with no network latency. The smallest packet size of
RSA was 100 bytes and took an average time of just under 12.9 ms. In Figure 4, it can be
observed that the RSA could more appropriately be measured in megacycles which means
it requires a lot more cycles per byte. To achieve low speeds, it would require an extremely
fast cycle speed using optimization not currently available.

Figure 3. AES Time and Cycle per Byte performance.

According to benchmark studies [24] on a test platform using 2.9e + 009 Hz using
CBC mode 128-bit key, which is the same encryption method, AES reached a CpB of 28.
The result is comparable to the results of 200-byte input that ran at an estimated 29 cycles
per byte 7.8e + 008 HZ. Interestingly, as the byte input increases, the cycles per byte drop
and the gradient of the trendline on the AES time results is minimal. Therefore, despite
the significant increase in the byte size, it currently suggests a minor increase in operating
time. AES is also widely optimized for most current hardware meaning that, in desktops,
some AES configurations could still be a faster alternative.

RSA. The RSA used had 2048-bit big integer keys; this is deemed with some of the
smaller keys, though quicker, are still deemed to pose a possible security risk. It takes 22 ms
to generate the private and public keys, and the public key needs to be sent to the sender.

Electronics 2021, 10, 2355 13 of 16

In a publisher–subscriber model where it is a one-to-many ratio, the publisher would have
to store a list of all the public keys of the subscribers subscribed in an offline repository
subscriber list [3,19]. Therefore, it takes additional setup time and care and would require
more validation for new subscribers. Even on a powerful machine, the run time of RSA is
much slower, even with no network latency. The smallest packet size of RSA was 100 bytes
and took an average time of just under 12.9 ms. In Figure 4, it can be observed that the
RSA could more appropriately be measured in megacycles which means it requires a lot
more cycles per byte. To achieve low speeds, it would require an extremely fast cycle speed
using optimization not currently available.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 17

Figure 4. RSA time and cycle per byte performance.

ChaCha20. In Figure 5, the time results for a software implementation of ChaCha20,
which belongs to the salsa encryption family, can be seen. ChaCha is the only stream ci-
pher that is tested in this work, and it gives the optimal performance for the application
we used. It is tested using the same parameters as the previous algorithms, running each
message size 10,000 times for an average result. ChaCha20 had a shallow cycle per byte;
the ChaCha20 performs better than other algorithms on lower-performance devices. We
can see that cycles per byte do not increase as dramatically as AES or RSA on lower byte
inputs. The Salsa20 and ChaCha software speeds in [25] indicate that the cycles per byte
depend on the hardware used; the bytes are in the ranges of 3.95 to 15.03. It is also reason-
able to suggest lower cycles per byte as more optimizations come in for chach20 as it be-
comes more widely used.

Figure 5. ChaCha20: Time and Cycle per Byte Result.

4.2. Evaluation
Estimated Timings. To increase the usability of the findings, we could use the cycles

per byte, calculated at 5.3, and find the CPU speed of processors used in a protection relay
to estimate projected times for an IED. Many different processors could be used in various
architectures; this work uses the Sitara AM335X processor, which is one of the most pop-
ular processors for industrial HMI applications [26]. The aforesaid processor has two dif-
ferent speeds; we used the lower speed of 600 MHZ based on our calculation.

In Figure 6, the estimated times in seconds for both AES and ChaCha20 on the pro-
cessor using the cycles per byte at each message size can be observed. It is also worth
pointing out that ChaCha20 performs better than AES in mobile and lower power devices
due to being more lightweight, while, in hardware on optimized machines, AES can out-
perform ChaCha20.

Figure 4. RSA time and cycle per byte performance.

ChaCha20. In Figure 5, the time results for a software implementation of ChaCha20,
which belongs to the salsa encryption family, can be seen. ChaCha is the only stream cipher
that is tested in this work, and it gives the optimal performance for the application we
used. It is tested using the same parameters as the previous algorithms, running each
message size 10,000 times for an average result. ChaCha20 had a shallow cycle per byte; the
ChaCha20 performs better than other algorithms on lower-performance devices. We can
see that cycles per byte do not increase as dramatically as AES or RSA on lower byte inputs.
The Salsa20 and ChaCha software speeds in [25] indicate that the cycles per byte depend
on the hardware used; the bytes are in the ranges of 3.95 to 15.03. It is also reasonable to
suggest lower cycles per byte as more optimizations come in for chach20 as it becomes
more widely used.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 17

Figure 4. RSA time and cycle per byte performance.

ChaCha20. In Figure 5, the time results for a software implementation of ChaCha20,
which belongs to the salsa encryption family, can be seen. ChaCha is the only stream ci-
pher that is tested in this work, and it gives the optimal performance for the application
we used. It is tested using the same parameters as the previous algorithms, running each
message size 10,000 times for an average result. ChaCha20 had a shallow cycle per byte;
the ChaCha20 performs better than other algorithms on lower-performance devices. We
can see that cycles per byte do not increase as dramatically as AES or RSA on lower byte
inputs. The Salsa20 and ChaCha software speeds in [25] indicate that the cycles per byte
depend on the hardware used; the bytes are in the ranges of 3.95 to 15.03. It is also reason-
able to suggest lower cycles per byte as more optimizations come in for chach20 as it be-
comes more widely used.

Figure 5. ChaCha20: Time and Cycle per Byte Result.

4.2. Evaluation
Estimated Timings. To increase the usability of the findings, we could use the cycles

per byte, calculated at 5.3, and find the CPU speed of processors used in a protection relay
to estimate projected times for an IED. Many different processors could be used in various
architectures; this work uses the Sitara AM335X processor, which is one of the most pop-
ular processors for industrial HMI applications [26]. The aforesaid processor has two dif-
ferent speeds; we used the lower speed of 600 MHZ based on our calculation.

In Figure 6, the estimated times in seconds for both AES and ChaCha20 on the pro-
cessor using the cycles per byte at each message size can be observed. It is also worth
pointing out that ChaCha20 performs better than AES in mobile and lower power devices
due to being more lightweight, while, in hardware on optimized machines, AES can out-
perform ChaCha20.

Figure 5. ChaCha20: Time and Cycle per Byte Result.

4.2. Evaluation

Estimated Timings. To increase the usability of the findings, we could use the cycles
per byte, calculated at 5.3, and find the CPU speed of processors used in a protection relay
to estimate projected times for an IED. Many different processors could be used in various
architectures; this work uses the Sitara AM335X processor, which is one of the most popular
processors for industrial HMI applications [26]. The aforesaid processor has two different
speeds; we used the lower speed of 600 MHZ based on our calculation.

Electronics 2021, 10, 2355 14 of 16

In Figure 6, the estimated times in seconds for both AES and ChaCha20 on the
processor using the cycles per byte at each message size can be observed. It is also worth
pointing out that ChaCha20 performs better than AES in mobile and lower power devices
due to being more lightweight, while, in hardware on optimized machines, AES can
outperform ChaCha20.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 17

Figure 6. Estimated Time: AES, ChaCha20 and RSA.

GOOSE and SMV. The timing requirements of GOOSE and SMV are 4 ms, and the
sizes are 92–250 and 150 bytes, respectively. On average, we can see from Figure 6 that
both AES and ChaCha20 can be used even if the network latency is around 2 ms. The
network latency of a 4G network means that it will not meet timing requirements. The
theoretical limit of 5G is 1 ms; although it would not reach this time in a high connectivity
area, it could be possible to have an IED on a 5G connection. RSA has too low of a latency
time, as seen from the estimated times RSA graph, to be considered for this connection
time and due to the publisher–subscriber architecture would not be a suitable encryption
method. Due to ChaCha20 performing better on less powerful machines in an IED sce-
nario, it is a better choice for a smart grid environment and is less common than AES,
which had more attention and cryptanalysis for potential attacks. Both algorithms can
potentially prevent integrity attacks, such as MITM attacks if the secret keys remain se-
cure.

MMS. MMS has much slower critical times depending on the messages using the
protocol; they range from 500 to 1000 ms and work on a more traditional peer–peer archi-
tecture. Though the RSA could support this message type, it would require each sender
to have the public keys for every node it is sending. It would be simpler to implement one
of the other algorithms proposed, such as ChaCha20, and would be easier to set up as all
message types would be using the same communication method.

4.3. Attack Analysis
4.3.1. What If the Secret Session Key Is Compromised?

In the proposed approach, it is very unlikely that an adversary can compromise the
secret key of the encrypted message by performing an MITM attack. As it will be en-
crypted using ChaCha20 which generates a stream key every time, the publisher needs to
encrypt a message. The key is transmitted to all subscribers using a group key. This means
that, even if the attacker has access to the encrypted message, he/she cannot decrypt it
successfully. In the worst case, if this key is compromised, it will not impact future mes-
sages, as each time a new key is generated for ciphering the message to maintain confi-
dentiality. Hence, data tempering will not work.

4.3.2. What If the Group Key Is Compromised?
In case the group key is compromised, first of all, it does not impact the other mes-

sages published under different topics, as each topic is having different subscribers and a
different group key. This each group key is shared among a group of a publisher and
subscribers, and at the end, a publisher can know the value of its counter, i.e., how many
users have decrypted the message. If anyone, not in the access control list, tries to decrypt
the message (who did not receive the message authentically), the counter value will not
decrease and the return message will send the same counter value. As a result, the pub-
lisher will receive the two same counter values; it is good to know that someone not au-
thorized has accessed the message, and a new group key is needed to be created and dis-
tributed to all relevant subscribers to that topic. In the worst case, if we assume that an

Figure 6. Estimated Time: AES, ChaCha20 and RSA.

GOOSE and SMV. The timing requirements of GOOSE and SMV are 4 ms, and the
sizes are 92–250 and 150 bytes, respectively. On average, we can see from Figure 6 that both
AES and ChaCha20 can be used even if the network latency is around 2 ms. The network
latency of a 4G network means that it will not meet timing requirements. The theoretical
limit of 5G is 1 ms; although it would not reach this time in a high connectivity area, it
could be possible to have an IED on a 5G connection. RSA has too low of a latency time, as
seen from the estimated times RSA graph, to be considered for this connection time and
due to the publisher–subscriber architecture would not be a suitable encryption method.
Due to ChaCha20 performing better on less powerful machines in an IED scenario, it is a
better choice for a smart grid environment and is less common than AES, which had more
attention and cryptanalysis for potential attacks. Both algorithms can potentially prevent
integrity attacks, such as MITM attacks if the secret keys remain secure.

MMS. MMS has much slower critical times depending on the messages using the
protocol; they range from 500 to 1000 ms and work on a more traditional peer–peer
architecture. Though the RSA could support this message type, it would require each
sender to have the public keys for every node it is sending. It would be simpler to
implement one of the other algorithms proposed, such as ChaCha20, and would be easier
to set up as all message types would be using the same communication method.

4.3. Attack Analysis
4.3.1. What If the Secret Session Key Is Compromised?

In the proposed approach, it is very unlikely that an adversary can compromise the
secret key of the encrypted message by performing an MITM attack. As it will be encrypted
using ChaCha20 which generates a stream key every time, the publisher needs to encrypt a
message. The key is transmitted to all subscribers using a group key. This means that, even
if the attacker has access to the encrypted message, he/she cannot decrypt it successfully.
In the worst case, if this key is compromised, it will not impact future messages, as each
time a new key is generated for ciphering the message to maintain confidentiality. Hence,
data tempering will not work.

4.3.2. What If the Group Key Is Compromised?

In case the group key is compromised, first of all, it does not impact the other messages
published under different topics, as each topic is having different subscribers and a different
group key. This each group key is shared among a group of a publisher and subscribers,
and at the end, a publisher can know the value of its counter, i.e., how many users have
decrypted the message. If anyone, not in the access control list, tries to decrypt the message

Electronics 2021, 10, 2355 15 of 16

(who did not receive the message authentically), the counter value will not decrease and
the return message will send the same counter value. As a result, the publisher will receive
the two same counter values; it is good to know that someone not authorized has accessed
the message, and a new group key is needed to be created and distributed to all relevant
subscribers to that topic. In the worst case, if we assume that an adversary can compromise
the group key, he/she may extract the session key (stream) to decrypt a message. However,
the adversary cannot decrypt the future messages, as a new group key will be generated
and distributed, which will prevent the adversary to extract the correct key.

5. Conclusions and Future Work

In this work, we present a secure, practical, and simple solution to solve security
issues in a smart grid; more specifically, we address the security issues of industrial com-
munication protocols such as GOOSE, SMV, and MMS. The key elements of our solution
to integrity attacks against the aforementioned protocols include time, performance, and
security. Furthermore, a demo tool is developed to investigate the performance of en-
cryption algorithms with various potential factors such as network types and the size
of the messages. The experiments reveal that our proposed scheme: (1) can protect the
publisher–subscriber model communication against various attacks such as MITM and
data tampering attacks; (2) is a practical and simple security solution that complies with the
stringent timing requirements in the substation automation systems; and (3) is a lightweight
scheme that can be scaled up and employed in larger network setups.

Future work includes (1) a performance evaluation of other encryption schemes
over a broader spectrum of cyber-attacks; (2) an exploration into the security solution
by considering a trust model where subscriber and publisher cannot be trusted; and
(3) an integration of the proposed solution into the IEDS’ modules of various applications
including merging unit, and then performance will be analyzed in the testbed scenario.

Author Contributions: Conceptualization, N.S. and F.O.; methodology, N.S.; software, F.O.; valida-
tion, N.S., F.O. and M.N.N.; formal analysis, N.S., F.O. and B.J.C.; writing—original draft preparation,
F.O. and N.S.; writing—review and editing, N.S., M.N.N. and B.J.C.; supervision, N.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hong, J.; Karnati, R.; Ten, C.W.; Lee, S.; Choi, S. Implementation of Secure Sampled Value (SeSV) Messages in Substation

Automation System. IEEE Trans. Power Deliv. 2021. [CrossRef]
2. Markets, R.A. The $39.9 Billion Worldwide Substation Automation Industry Is Expected to Reach $54.2 Billion by 2026. Globe-

Newswire News Room. Available online: https://www.globenewswire.com/news-release/2021/06/04/2241918/28124/en/
The-39-9-Billion-Worldwide-Substation-Automation-Industry-is-Expected-to-Reach-54-2-Billion-by-2026.html (accessed on
8 July 2021).

3. Saxena, N.; Grijalva, S.; Choi, B.J. Securing restricted publisher-subscriber communications in smart grid substations. In
Proceedings of the 10th International Conference on Communication Systems & Networks (COMSNETS), Bangalore, India,
3–7 January 2018; pp. 364–371.

4. Aftab, M.A.; Hussain, S.S.; Ali, I.; Ustun, T.S. IEC 61850 based substation automation system: A survey. Int. J. Electr. Power Energy
Syst. 2020, 120, 106008. [CrossRef]

5. Saxena, N.; Grijalva, S. Dynamic secrets and secret keys based scheme for securing last mile smart grid wireless communication.
IEEE Trans. Ind. Inform. 2016, 13, 1482–1491. [CrossRef]

6. Saxena, N.; Grijalva, S. Efficient signature scheme for delivering authentic control commands in the smart grid. IEEE Trans. Smart
Grid 2017, 9, 4323–4334. [CrossRef]

7. Hussain, S.S.; Farooq, S.M.; Ustun, T.S. A method for achieving confidentiality and integrity in IEC 61850 GOOSE messages. IEEE
Trans. Power Deliv. 2020, 35, 2565–2567. [CrossRef]

8. Elbaset, A.A.; Mohamed, Y.S.; Elghaffar, A.N.A. IEC 61850 Communication Protocol with the Protection and Control Numerical
Relays for Optimum Substation Automation System. J. Eng. Sci. Technol. Rev. 2020, 13, 1–12.

9. Pal, A.; Jolfaei, A.; Kant, K. A Fast Prekeying-Based Integrity Protection for Smart Grid Communications. IEEE Trans. Ind. Inform.
2020, 17, 5751–5758. [CrossRef]

http://doi.org/10.1109/TPWRD.2021.3061205
https://www.globenewswire.com/news-release/2021/06/04/2241918/28124/en/The-39-9-Billion-Worldwide-Substation-Automation-Industry-is-Expected-to-Reach-54-2-Billion-by-2026.html
https://www.globenewswire.com/news-release/2021/06/04/2241918/28124/en/The-39-9-Billion-Worldwide-Substation-Automation-Industry-is-Expected-to-Reach-54-2-Billion-by-2026.html
http://doi.org/10.1016/j.ijepes.2020.106008
http://doi.org/10.1109/TII.2016.2610950
http://doi.org/10.1109/TSG.2017.2655014
http://doi.org/10.1109/TPWRD.2020.2990760
http://doi.org/10.1109/TII.2020.3030799

Electronics 2021, 10, 2355 16 of 16

10. Nweke, L.O.; Weldehawaryat, G.K.; Wolthusen, S.D. Adversary model for attacks against IEC 61850 real-time communication
protocols. In Proceedings of the 16th International Conference on the Design of Reliable Communication Networks (DRCN),
Milan, Italy, 25–27 March 2020; pp. 1–8.

11. Quincozes, S.E.; Albuquerque, C.; Passos, D.; Mossé, D. A survey on intrusion detection and prevention systems in digital
substations. Comput. Netw. 2021, 184, 107679. [CrossRef]

12. Wannous, K.; Toman, P. IEC 61850 communication based distance protection. In Proceedings of the 15th International Scientific
Conference on Electric Power Engineering (EPE), Brno-Bystrc, Czech Republic, 12–14 May 2014; pp. 107–112.

13. Saxena, N.; Choi, B.J. Integrated Distributed Authentication Protocol for Smart Grid Communications. IEEE Syst. J. 2018, 12,
2545–2556. [CrossRef]

14. Hou, D.; Dolezilek, D. IEC 61850–What It Can and Cannot Offer to Traditional Protection Schemes. 2008. Available online: https:
//cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6335_IEC61850_DH-DD_20080912_Web.pdf (accessed
on 20 July 2021).

15. Yeh, T.H.; Hsu, S.C.; Chung, C.K.; Lin, M.S. Conformance test for IEDs based on IEC 61850 communication protocol. J. Power
Energy Eng. 2015, 3, 289. [CrossRef]

16. Falk, H. Securing IEC 61850. In Proceedings of the IEEE Power and Energy Society General Meeting-Conversion and Delivery of
Electrical Energy in the 21st Century, Clemson, SC, USA, 14–17 March 2006; pp. 1–3.

17. Fateri, S.; Ni, Q.; Taylor, G.A.; Panchadcharam, S.; Pisica, I. Design and analysis of multicast-based publisher/subscriber models
over wireless platforms for smart grid Communications. In Proceedings of the 2012 IEEE 11th International Conference on Trust,
Security and Privacy in Computing and Communications, Liverpool, UK, 25–27 June 2012; pp. 1617–1623.

18. Kabra, A.; Kumar, S.; Kasbekar, G.S. Efficient, Flexible and Secure Group Key Management Protocol for Dynamic IoT Settings.
EAI Endorsed Trans. Internet Things 2021, 7, 1–17. [CrossRef]

19. Ozansoy, C.R.; Zayegh, A.; Kalam, A. The real-time publisher/subscriber communication model for distributed substation
systems. IEEE Trans. Power Deliv. 2007, 22, 1411–1423. [CrossRef]

20. Galla, L.K.; Koganti, V.S.; Nuthalapati, N. Implementation of RSA. In Proceedings of the International Conference on Control,
Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, India, 16–17 December 2016;
pp. 81–87.

21. Rebeiro, C.; Selvakumar, D.; Devi, A. Bitslice implementation of AES. In International Conference on Cryptology and Network Security;
Springer: Berlin/Heidelberg, Germany, 2006; pp. 203–212.

22. Yuan, Y.; Yang, Y.; Wu, V.; Zhang, X. A high performance encryption system based on AES algorithm with novel hardware
implementation, In Proceedings of the 2018 IEEE International Conference on Electron. Devices and Solid State Circuits (EDSSC),
Shenzhen, China, 6–8 June 2018; pp. 1–2. [CrossRef]

23. Bernstein, D.J. The Salsa20 Family of Stream Ciphers. In New Stream Cipher Designs; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 84–97.

24. Cryptopp.com. 2021. Speed Comparison of Popular Crypto Algorithms. 2021. Available online: https://www.cryptopp.com/
benchmarks.html (accessed on 6 August 2021).

25. Bernstein, D.J.; ChaCha, a Variant of Salsa. Workshop Record of SASC: The State of the Art of Stream Ciphers. Available online:
https://cr.yp.to/chacha/chacha-20080120.pdf (accessed on 12 August 2021).

26. Mundra, A.; Agarwal, M. Human Machine Interface (HMI) for Protection Relay Reference Design; [ebook] Texas. 2017. Available
online: https://www.ti.com/lit/ug/tidudn5/tidudn5.pdf?ts=1627122810724&ref_url=https%253A%252F%252Fwww.google.
com%252F (accessed on 26 August 2021).

http://doi.org/10.1016/j.comnet.2020.107679
http://doi.org/10.1109/JSYST.2016.2574699
https://cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6335_IEC61850_DH-DD_20080912_Web.pdf
https://cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6335_IEC61850_DH-DD_20080912_Web.pdf
http://doi.org/10.4236/jpee.2015.34039
http://doi.org/10.4108/eai.3-3-2021.168862
http://doi.org/10.1109/TPWRD.2007.893939
http://doi.org/10.1109/EDSSC.2018.8487056
https://www.cryptopp.com/benchmarks.html
https://www.cryptopp.com/benchmarks.html
https://cr.yp.to/chacha/chacha-20080120.pdf
https://www.ti.com/lit/ug/tidudn5/tidudn5.pdf?ts=1627122810724&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/tidudn5/tidudn5.pdf?ts=1627122810724&ref_url=https%253A%252F%252Fwww.google.com%252F

	Introduction
	Communication and Adversary Models
	Substation Automation Features
	Communication Model
	Adversary Model
	Related Work

	Proposed Approach
	Approach Idea
	Proposed Scheme
	Secret Key Exchange
	Experimental Design
	Implementation: Protecting Communicated Information—Confidentiality

	Results and Evaluation
	Results Observation
	Evaluation
	Attack Analysis
	What If the Secret Session Key Is Compromised?
	What If the Group Key Is Compromised?

	Conclusions and Future Work
	References

